BH33NB1WHFWHFV [ROHM]

1ch 150mA CMOS LDO Regulators; 1路150毫安CMOS LDO稳压器
BH33NB1WHFWHFV
型号: BH33NB1WHFWHFV
厂家: ROHM    ROHM
描述:

1ch 150mA CMOS LDO Regulators
1路150毫安CMOS LDO稳压器

稳压器
文件: 总9页 (文件大小:294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMOS LDO Regulators for Portable Equipments  
1ch 150mA  
CMOS LDO Regulators  
BH□□NB1WHFV series  
No.11020EBT04  
Description  
The BH□□NB1WHFV series is a line of 150 mA output, high-performance CMOS regulators that deliver a high ripple  
rejection ratio of 80 dB (Typ., 1 kHz). They are ideal for use in high-performance, analog applications and offer improved line  
regulation, load regulation, and noise characteristics. Using the ultra-small HVSOF5 package, which features a built-in heat  
sink, contributes to space-saving application designs.  
Features  
1) High accuracy output voltage: ± 1%  
2) High ripple rejection ratio: 80 dB (Typ., 1 kHz)  
3) Stable with ceramic capacitors  
4) Low bias current: 60 µA  
5) Output voltage on/off control  
6) Built-in overcurrent and thermal shutdown circuits  
7) Ultra-small HVSOF5 power package  
Applications  
Battery-driven portable devices, etc.  
Product line  
150 mA BH□□NB1WHFV Series  
Product name  
2.5  
2.8  
2.85  
2.9  
3.0  
3.1  
3.3  
Package  
HVSOF5  
BH□□NB1WHFV  
Model name: BH□□NB1W□  
a
b
Symbol  
Description  
Output voltage specification  
□□  
25  
Output voltage (V)  
2.5 V (Typ.)  
□□  
30  
Output voltage (V)  
3.0 V (Typ.)  
a
b
28  
2.8 V (Typ.)  
31  
3.1 V (Typ.)  
2J  
2.85 V (Typ.)  
2.9 V (Typ.)  
33  
3.3 V (Typ.)  
29  
Package HFV: HVSOF5  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.01 - Rev.B  
1/8  
Technical Note  
BH□□NB1WHFV series  
Absolute maximum ratings  
Parameter  
Symbol  
Ratings  
Unit  
Applied power supply voltage  
Power dissipation  
VMAX  
Pd  
0.3 to +6.0  
410 *1  
V
mW  
°C  
Operating temperature range  
Topr  
40 to +85  
Storage temperature range  
Tstg  
55 to +125  
°C  
*1: Reduce by 4.1 mW/C over 25C, when mounted on a glass epoxy PCB (70 mm 70 mm 1.6 mm).  
Recommended operating ranges (not to exceed Pd)  
Parameter  
Symbol  
Ratings  
Unit  
Power supply voltage  
Output current  
VIN  
2.5 to 5.5  
0 to 150  
V
IOUT  
mA  
Recommended operating conditions  
Parameter Symbol  
Input capacitor  
Output capacitor  
Ratings  
Typ.  
Unit  
Conditions  
Min.  
Max.  
The use of ceramic  
capacitors is recommended.  
CIN  
CO  
0.1 *2  
µF  
µF  
The use of ceramic  
capacitors is recommended.  
2.2 *2  
*2 Make sure that the output capacitor value is not kept lower than this specified level across a variety of temperature, DC bias characteristic.  
And also make sure that the capacitor value cannot change as time progresses.  
Electrical characteristics  
(Unless otherwise specified, Ta = 25°C, VIN = VOUT + 1.0 V, STBY = 1.5 V, CIN = 0.1 µF, CO = 2.2 µF)  
Limits  
Parameter  
Output voltage  
Symbol  
Unit  
Conditions  
IOUT = 1 mA  
Min.  
Typ.  
Max.  
VOUT  
IGND  
ISTBY  
VOUT0.99  
VOUT  
VOUT1.01  
V
IOUT = 50 mA  
STBY = 0 V  
Circuit current  
60  
100  
1.0  
µA  
µA  
Circuit current (STBY)  
VRR = 20 dBv, fRR = 1 kz,  
IOUT = 10 mA  
Ripple rejection ratio  
RR  
80  
dB  
IOUT = 1 mA to 30 mA  
IOUT = 30 mA to 1 mA  
Load response 1  
Load response 2  
LTV1  
LTV2  
25  
25  
mV  
mV  
VIN = 0.98 VOUT,  
Dropout voltage 1  
Dropout voltage 2  
Line regulation  
VSAT1  
VSAT2  
VDL1  
80  
250  
1
150  
450  
20  
mV  
mV  
mV  
IOUT = 30 mA  
VIN = 0.98 VOUT,  
IOUT = 100 mA  
VIN = VOUT + 0.5 V to 5.5 V,  
IOUT = 50 mA  
IOUT = 1 mA to 100 mA  
IOUT = 1 mA to 150 mA  
VO = VOUT 0.98  
VO = 0 V  
Load regulation 1  
Load regulation 2  
VDLO1  
VDLO2  
ILMAX  
ISHORT  
RSTB  
6
30  
90  
mV  
mV  
mA  
mA  
kΩ  
9
Overcurrent protection  
limit current  
250  
50  
550  
Short current  
STBY pull-down resistance  
275  
1100  
ON  
OFF  
VSTBH  
VSTBL  
1.5  
VIN  
0.3  
V
V
STBY control voltage  
0.3  
* This IC is not designed to be radiation-resistant.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.01 - Rev.B  
2/8  
Technical Note  
BH□□NB1WHFV series  
Reference data  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
Input Voltage VIN[V]  
Input Voltage VIN[V]  
Input Voltage VIN[V]  
Fig.2 Output Voltage vs Input Voltage  
(BH30NB1WHFV)  
Fig.3 Output Voltage vs Input Voltage  
(BH33NB1WHFV)  
Fig.1 Output Voltage vs Input Voltage  
(BH25NB1WHFV)  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
Input Voltage VIN[V]  
Input Voltage VIN[V]  
Input Voltage VIN[V]  
Fig.6 GND Current vs Input Voltage  
(BH33NB1WHFV)  
Fig.4 GND Current vs Input Voltage  
(BH25NB1WHFV)  
Fig.5 GND Current vs Input Voltage  
(BH30NB1WHFV)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
50  
100 150 200 250 300  
0
50  
100 150 200 250 300  
0
50  
100 150 200 250  
300  
Output Current IOUT[mA]  
Output Current IOUT [mA]  
Output Current IOUT [mA]  
Fig.9 Output Voltage vs Output Current  
(BH33NB1WHFV)  
Fig.8 Output Voltage vs Output Current  
(BH30NB1WHFV)  
Fig.7 Output Voltage vs Output Current  
(BH25NB1WHFV)  
0. 5  
0. 4  
0. 3  
0. 2  
0. 1  
0. 0  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0
50  
100  
150  
0
50  
100  
150  
0
50  
100  
150  
Output Current IOUT[mA]  
Output Current IOUT[mA]  
Output Current IOUT[mA]  
Fig.12 Dropout voltage vs Output Current  
(BH33NB1WHFV)  
Fig.10 Dropout voltage vs Output Current Fig.11 Dropout voltage vs Output Current  
(BH25NB1WHFV) (BH30NB1WHFV)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.01 - Rev.B  
3/8  
Technical Note  
BH□□NB1WHFV series  
2.60  
2.55  
2.50  
3.40  
3.35  
3.30  
3.25  
3.20  
3.10  
3.05  
3.00  
2.95  
2.90  
2.45  
IOUT=1mA  
IOUT=1mA  
IOUT=1mA  
2.40  
-50  
-25  
0
25  
Temp[  
50  
75  
100  
-50  
-25  
0
25  
Temp[ ]  
50  
75  
100  
-50  
-25  
0
25  
Temp[  
50  
75  
100  
]
]
Fig.14 Output Voltage vs Temperature  
(BH30NB1WHFV)  
Fig.15 Output Voltage vs Temperature  
(BH33NB1WHFV)  
Fig.13 Output Voltage vs Temperature  
(BH25NB1WHFV)  
90  
80  
70  
60  
50  
40  
90  
80  
70  
60  
50  
40  
90  
80  
70  
60  
50  
40  
30  
30  
30  
Co=2.2μF  
Io=10mA  
Co=2.2μF  
Io=10mA  
Co=2.2μF  
Io=10mA  
20  
20  
20  
10  
10  
10  
100  
1 k  
10 k  
100  
1 M  
100  
1 k  
10 k  
100  
1 M  
100  
1 k  
10 k  
100  
1 M  
Frequency f[Hz]  
Frequency f[Hz]  
Frequency f[Hz]  
Fig.17 Ripple Rejection  
Fig.18 Ripple Rejection  
Fig.16 Ripple Rejection  
(BH25NB1WHFV)  
(BH30NB1WHFV)  
(BH33NB1WHFV)  
IOUT = 1 mA 30 mA  
IOUT = 1 mA 30 mA  
IOUT = 1 mA 30 mA  
VOUT  
50 mV / div  
100 µs / div  
VOUT  
VOUT  
50 mV / div  
100 µs / div  
50 mV / div  
100 µs / div  
Fig.19 Load Response  
(Co = 2.2 µF)  
Fig.20 Load Response  
(Co = 2.2 µF)  
Fig.21 Load Response  
(Co = 2.2 µF)  
(BH25NB1WHFV)  
(BH30NB1WHFV)  
(BH33NB1WHFV)  
1 V / div  
1 V / div  
1 V / div  
STBY  
STBY  
STBY  
1 V / div  
1 V / div  
1 V / div  
Co = 1 µF  
VOUT  
Co = 1 µF  
Co = 1 µF  
Co = 10 µF  
Co = 10 µF  
Co = 10 µF  
VOUT  
VOUT  
Co = 2.2 µF  
Co = 2.2 µF  
100 µs / div  
Co = 2.2 µF  
100 µs / div  
100 µs / div  
Fig.23 Output Voltage Rise Time  
(BH30NB1WHFV)  
Fig.24 Output Voltage Rise Time  
(BH33NB1WHFV)  
Fig.22 Output Voltage Rise Time  
(BH25NB1WHFV)  
www.rohm.com  
2011.01 - Rev.B  
4/8  
© 2011 ROHM Co., Ltd. All rights reserved.  
Technical Note  
BH□□NB1WHFV series  
Block diagram, recommended circuit diagram, and pin assignment diagram  
BH□□NB1WHFV  
Pin  
No.  
VIN  
VIN  
Symbol  
STBY  
Function  
3
VOLTAGE  
REFERENCE  
Output voltage on/off control  
(High: ON, Low: OFF)  
1
Cin  
VOUT  
Co  
VOUT  
N.C.  
4
5
THERMAL  
PROTECTION  
2
3
4
5
GND  
VIN  
VOUT  
N.C.  
Ground  
2
1
GND  
Power supply input  
Voltage output  
NO CONNECT  
OVER CURRENT  
PROTECTION  
VSTB  
CONTROL  
BLOCK  
STBY  
Cin    0.1µF  
Co    2.2µF  
Fig.25  
Power dissipation (Pd)  
1. Power dissipation (Pd)  
Power dissipation calculations include estimates of power dissipation characteristics and internal IC power consumption,  
and should be treated as guidelines. In the event that the IC is used in an environment where this power dissipation is  
exceeded, the attendant rise in the junction temperature will trigger the thermal shutdown circuit, reducing the current  
capacity and otherwise degrading the IC's design performance. Allow for sufficient margins so that this power dissipation is  
not exceeded during IC operation.  
Calculating the maximum internal IC power consumption (PMAX)  
PMAX = (VIN VOUT) IOUT (MAX.)  
VIN : Input voltage  
VOUT : Output voltage  
IOUT (MAX): Max. output current  
2. Power dissipation/power dissipation reduction (Pd)  
HVSOF5  
0.6  
Board: 70 mm 70 mm 1.6 mm  
Material: Glass epoxy PCB  
0.4  
0.2  
0
410 mW  
0
25  
50  
Ta[]  
75  
100  
125  
Fig. 26 HVSOF5 Power Dissipation/Power Dissipation Reduction (Example)  
*Circuit design should allow a sufficient margin for the temperature range so that PMAX < Pd.  
Input Output capacitors  
It is recommended to insert bypass capacitors between input and GND pins, positioning them as close to the pins as  
possible. These capacitors will be used when the power supply impedance increases or when long wiring paths are used, so  
they should be checked once the IC has been mounted.  
Ceramic capacitors generally have temperature and DC bias characteristics. When selecting ceramic capacitors, use X5R or  
X7R, or better models that offer good temperature and DC bias characteristics and high tolerant voltages.  
Typical ceramic capacitor characteristics  
120  
100  
80  
60  
40  
20  
0
100  
95  
120  
50 V tolerance  
50 V  
tolerance  
100  
80  
60  
40  
20  
0
X7R  
X5R  
90  
85  
80  
75  
70  
Y5V  
10 V  
tolerance  
10 V  
tolerance  
16 V tolerance  
16 V tolerance  
0
1
2
3
4
0
1
2
3
4
-25  
0
25  
Temp[  
50  
75  
DC bias Vdc[V]  
DC bias Vdc[V]  
]
Fig.29 Capacitance vs Temperature  
(X5R, X7R, Y5V)  
Fig.27 Capacitance vs Bias  
(Y5V)  
Fig.28 Capacitance vs Bias  
(X5R, X7R)  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.01 - Rev.B  
5/8  
Technical Note  
BH□□NB1WHFV series  
Output capacitors  
Mounting input capacitor between input pin and GND(as close to pin as possible), and also output capacitor between output  
pin and GND(as close to pin as possible) is recommended. The input capacitor reduces the output impedance of the voltage  
supply source connected to the VCC. The higher value the output capacitor goes, the more stable the whole operation  
becomes. This leads to high load transient response. Please confirm the whole operation on actual application board.  
Generally, ceramic capacitor has wide range of tolerance, temperature coefficient, and DC bias characteristic. And also its  
value goes lower as time progresses. Please choose ceramic capacitors after obtaining more detailed data by asking  
capacitor makers.  
BH□□NB1WHFV  
100  
COUT = 2.2 µF  
Ta = +25°C  
10  
1
Stable region  
0.1  
0.01  
0
50  
100  
150  
Output Current IOUT [mA]  
Fig.30 Stable Operation Region (Example)  
Operation Notes  
1. Absolute maximum ratings  
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc.,  
can break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit.  
If any over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices,  
such as fuses.  
2. Thermal design  
Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating  
conditions.  
3. Inter-pin shorts and mounting errors  
Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any  
connection error or if pins are shorted together.  
4. Thermal shutdown circuit (TSD)  
The IC incorporates a built-in thermal shutdown circuit (TSD circuit). The thermal shutdown circuit is designed only to  
shut the IC off to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation. Do  
not continue to use the IC after operating this circuit or use the IC in an environment where the operation of this circuit is  
assumed.  
5. Overcurrent protection circuit  
The IC incorporates a built-in overcurrent protection circuit that operates according to the output current capacity. This  
circuit serves to protect the IC from damage when the load is shorted. The protection circuit is designed to limit current  
flow by not latching in the event of a large and instantaneous current flow originating from a large capacitor or other  
component. These protection circuits are effective in preventing damage due to sudden and unexpected accidents.  
However, the IC should not be used in applications characterized by the continuous operation or transitioning of the  
protection circuits. At the time of thermal designing, keep in mind that the current capability has negative characteristics  
to temperatures.  
6. Action in strong electromagnetic field  
Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to  
malfunction.  
7. Ground wiring pattern  
When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns,  
placing a single ground point at the ground potential of application so that the pattern wiring resistance and voltage  
variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change  
the GND wiring pattern of any external components, either.  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.01 - Rev.B  
6/8  
Technical Note  
BH□□NB1WHFV series  
8. GND voltage  
The potential of GND pin must be minimum potential in all operating conditions.  
9. Back Current  
In applications where the IC may be exposed to back current flow, it is recommended to create a path to dissipate this  
current by inserting a bypass diode between the VIN and VOUT pins.  
Back current  
VIN  
OUT  
STBY  
GND  
Fig. 31 Example Bypass Diode Connection  
10. Testing on application boards  
When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to  
stress. Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting  
it to or removing it from a jig or fixture during the inspection process. Ground the IC during assembly steps as an  
antistatic measure. Use similar precaution when transporting or storing the IC.  
11. Regarding input pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of these P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example, the relation between each potential is as follows:  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes can occur inevitable in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Accordingly, methods by which parasitic diodes  
operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin, should not be used.  
Resistor  
Transistor (NPN)  
B
Pin A  
Pin B  
Pin B  
C
E
Pin A  
B
C
E
N
N
N
P+  
P+  
P+  
P+  
N
P
P
Parasitic  
element  
N
N
Parasitic  
element  
P substrate  
P substrate  
GND  
GND  
GND  
GND  
Parasitic element  
Parasitic element  
Other adjacent elements  
Fig.32 Example of IC structure  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
2011.01 - Rev.B  
7/8  
Technical Note  
BH□□NB1WHFV series  
Ordering part number  
B H  
2 5  
N B 1  
W
H F V - T R  
Part No.  
Output voltage Series  
Shutdown  
switch  
W : Includes  
switch  
Package  
HFV : HVSOF5  
Packaging and forming specification  
TR: Embossed tape and reel  
25:2.5 V  
28:2.8 V  
2J:2.85 V  
29:2.9 V  
30:3.0 V  
31:3.1 V  
33:3.3 V  
NB1 : High ripple  
rejection  
HVSOF5  
<Tape and Reel information>  
1.6 0.05  
(0.8)  
(0.3)  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
1.0 0.05  
TR  
Direction  
of feed  
5
1
4
3
4
5
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
3
2 1  
2
1pin  
0.13 0.05  
S
0.1  
0.22 0.05  
S
0.5  
M
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
0.08  
Reel  
(Unit : mm)  
www.rohm.com  
2011.01 - Rev.B  
8/8  
© 2011 ROHM Co., Ltd. All rights reserved.  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2011 ROHM Co., Ltd. All rights reserved.  
R1120  
A

相关型号:

BH33NB1WHFWHFV-TR

1ch 150mA CMOS LDO Regulators
ROHM

BH33PB1WHFV

Auto Power Save CMOS Type series regulator
ROHM

BH33PB1WHFV-E1

Regulator, 1 Output, CMOS, PDFP6,
ROHM

BH33PB1WHFV-E2

Regulator, 1 Output, CMOS, PDFP6,
ROHM

BH33PB1WHFV-TR

1ch 150mA CMOS LDO Regulators
ROHM

BH33RB1WGUT

CMOS Type series regulator
ROHM

BH33RB1WGUT-E2

1ch 150mA CMOS LDO Regulators
ROHM

BH34AAL

HOLDER 4-AA CELLS SOLDER LUGS
ETC

BH34AASF

HOLDER BATT 4-AA W/9V SNAP
ETC

BH34AAW

HOLDER BATT 4-AA 6" WIRE LEADS
ETC

BH34M0AWHFV

BHxxM0A系列是输出为300mA的高性能CMOS LDO。电路电流65uA,消耗低且噪音特性优异,适用于逻辑IC电源、RF电源、相机模块电源等各种应用。
ROHM

BH34M0AWHFV-TR

1ch 300mA CMOS LDO Regulators
ROHM