BH6456GUL_12 [ROHM]

System Lens Driver Series for Mobile Phone Cameras 2-wire serial interface Lens Driver for Voice Coil Motor(I2C BUS compatible); 系统镜头驱动器系列的手机摄像头的2线音圈电机串行接口镜头驱动器( I2C总线兼容)
BH6456GUL_12
型号: BH6456GUL_12
厂家: ROHM    ROHM
描述:

System Lens Driver Series for Mobile Phone Cameras 2-wire serial interface Lens Driver for Voice Coil Motor(I2C BUS compatible)
系统镜头驱动器系列的手机摄像头的2线音圈电机串行接口镜头驱动器( I2C总线兼容)

驱动器 电机 手机
文件: 总20页 (文件大小:443K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
System Lens Driver Series for Mobile Phone Cameras  
2-wire serial interface  
Lens Driver for Voice Coil Motor  
(I2C BUS compatible)  
No.12015EAT03  
BH6456GUL  
General Description  
Key Specifications  
The BH6456GUL motor driver provide 1 Full on Driver a  
H-bridge.  
This lens driver is offered in an ultra-small functional lens  
system for use in an auto focus system using a Piezo  
actuator.  
Pch ON Resistance:  
Nch ON Resistance:  
Standby current consumption:  
15MHz OSC:  
0.70Ω(Typ.)  
0.70Ω(Typ.)  
0μA (Typ.)  
±3.0%  
-25to +85℃  
Operating temperature range:  
Features  
Package(s)  
W(Typ.) x D(Typ.) x H(Max.)  
1.95mm x 1.00mm x 0.55mm  
Ultra-small chip size package .  
Low ON-Resistance Power CMOS output.  
Built-in 15MHz Oscillator  
VCSP50L1  
Built-in UVLO (Under Voltage Locked Out: UVLO).  
Built-in TSD (Thermal Shut Down) circuit.  
Standby current consumption: 0μA Typ.  
1.8V can be put into each control input terminal  
Applications  
For Auto focus of camera module  
Digital still camera  
Camera Modules  
Lens Auto focus  
Web Cameras  
Typical Application Circuit(s)  
VCC  
SDA  
SCL  
Band  
Gap  
2-wire  
Serial  
VREG  
UVLO  
TSD  
Interface  
VM  
Pre  
OUTA  
PS  
Driver  
H Bridge  
Controller  
15MHz  
OSC  
OUTB  
GND  
Fig.1 Block Diagram  
Product structureSilicon monolithic integrated circuit This product is not designed protection against radioactive rays  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.03 - Rev.A  
1/19  
Technical Note  
BH6456GUL  
Absolute maximum ratings (Ta=+25°C)  
Parameter  
Symbol  
VCC  
VM  
Limit  
Unit  
V
Power supply voltage  
Motor power supply voltage  
Power save input voltage  
Control input voltage  
Power dissipation  
-0.3 to +4.5  
-0.3 to +5.5  
-0.3 to VCC+0.3  
-0.3 to VCC+0.3  
530*1  
V
VPS  
VIN  
V
V
Pd  
mW  
Operating  
temperature range  
Topr  
-25 to +85  
°C  
Junction temperature  
Storage temperature range  
H-bridge output current  
Tjmax  
Tstg  
+125  
°C  
°C  
-55 to +125  
-500 to +500*2  
Iout  
mA  
*1Conditions: mounted on a glass epoxy board (50mm 58mm 1.75mm; 8 layers). In case of Ta>25°C, reduced by 5.3 mW/°C.  
*2Must not exceed Pd, ASO, or Tjmax of 125°C.  
Operating Conditions (Ta= -25°C to +85°C)  
Parameter  
Power supply voltage  
Symbol  
VCC  
VM  
Min.  
2.3  
2.3  
0
Typ.  
Max.  
3.6  
Unit  
V
3.0  
Motor power supply voltage  
Power save input voltage  
Control input voltage  
3.0  
4.8  
V
VPS  
VIN  
-
-
-
-
VCC  
VCC  
400  
400*3  
V
0
V
2-wire serial interface transmission rate  
H-bridge output current  
*3Must not exceed Pd, ASO.  
SCL  
Iout  
-
kHz  
mA  
-
Package Outline  
Pin Arrangement (Top View)  
1PIN MARK  
1
2
3
4
A
B
VM  
OUTB  
SCL  
SDA  
AAU  
Top View  
Lot No.  
OUTA  
GND  
VCC  
PS  
1.95±0.05  
Fig.3 Pin Arrangement (Top View)  
Side View  
φ0.25±0.1  
(φ0.15)  
INDEX POST  
Bottom View  
0.225±0.05  
P=0.5×3  
Fig.2 VCSP50L1 Package (Unit: mm)  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.02 - Rev.A  
2/19  
Technical Note  
BH6456GUL  
Electrical Characteristics (Unless otherwise specified Ta=25°C, VCC=3.0V )  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min.  
Typ.  
Max.  
Overall  
Circuit current  
during standby operation  
Circuit current  
ICCST  
ICC  
-
-
0
1
μA  
PS=L  
3.2  
6.4  
mA PS=H, SCL=400kHz, OSC active  
UVLO  
UVLO voltage  
VUVLO  
1.8  
-
2.2  
V
Power save input  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
Control input(SDA,SCL)  
High level input voltage  
Low level input voltage  
Low level output voltage  
High level input current  
Low level input current  
H Bridge Drive  
VPSH  
VPSL  
IPSH  
IPSL  
1.5  
0
-
-
VCC  
0.5  
60  
V
V
15  
-3  
30  
0
μA  
μA  
VINH=3.0V  
VINL=0V  
-
VINH  
VINL  
VOL  
IINH  
IINL  
1.5  
0
-
-
-
-
-
VCC  
0.5  
0.4  
10  
V
V
-
V
IIN=3.0mA (SDA)  
Input voltage=VCC  
Input voltage=GND  
-10  
-10  
μA  
μA  
10  
RONP  
RONN  
-
-
0.7  
0.7  
1.0  
1.0  
Output ON-Resistance  
Cycle length of  
sequence drive  
Output rise time  
TMIN  
10.35 10.67 11.00  
μs  
*4 Built in CLK 160 count  
*5 7.5Ω load condition  
*5 7.5Ω load condition  
Tr  
Tf  
-
-
0.1  
0.8  
0.4  
μs  
μs  
Output fall time  
0.02  
*4  
*5  
The time that 1 cycle of sequence drive at the below setting of 2-wire serial data  
ta[7:0] = 0x13, brake1[7:0] = 0x03, tb[7:0] = 0x1E, brake2[7:0] = 0x6B, osc[2:0] = 0x0  
Output switching wave  
100  
90%  
10%  
90%  
Output  
voltage  
10%  
0%  
Tf  
Tr  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.02 - Rev.A  
3/19  
Technical Note  
BH6456GUL  
2 wire Serial Interface Register detail  
Write mode :  
Read mode :  
S
S
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
A
A
PS T2 T1 T0 W3 W2 W1 W0  
A
A
D7 D6 D5 D4 D3 D2 D1 D0  
A
P
Master is output  
Slave is output  
Write  
Up date  
0
PS T2 T1 T0 W3 W2 W1 W0  
PS=Power save  
S
0
0
0
1
1
0
0
1
A
D7 D6 D5 D4 D3 D2 D1 D0 nA  
P
Write  
Read  
S=Start condition  
P=Stop condition  
A=Acknowledge  
W3~W0=Resister address  
D7~D0=Data  
nA=not Acknowledge T2~T0=Test bit  
Resister  
Address W3 W2 W1 W0  
D7  
D6  
D5  
D4  
D3  
init  
D2  
D1  
D0  
dir  
0H  
1H  
2H  
3H  
4H  
5H  
6H  
7H  
8H  
9H  
AH  
BH  
CH  
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
HiZE  
ta[7]  
initB[2]  
ta[6]  
initB[1]  
ta[5]  
InitB[0]  
ta[4]  
START  
ta[2]  
MODE  
ta[1]  
ta[3]  
ta[0]  
brake1[7] brake1[6] brake1[5] brake1[4] brake1[3] brake1[2] brake1[1] brake1[0]  
tb[7] tb[6] tb[5] tb[4] tb[3] tb[2] tb[1] tb[0]  
brake2[7] brake2[6] brake2[5] brake2[4] brake2[3] brake2[2] brake2[1] brake2[0]  
cnt[7]  
cnt[15]  
pa  
cnt[6]  
cnt[14]  
pb  
cnt[5]  
cnt[13]  
osc[2]  
TEST  
TEST  
TEST  
TEST  
TEST  
cnt[4]  
cnt[12]  
osc[1]  
TEST  
TEST  
TEST  
TEST  
TEST  
cnt[3]  
cnt[11]  
osc[0]  
TEST  
TEST  
TEST  
TEST  
TEST  
cnt[2]  
cnt[10]  
cntck[2]  
TEST  
TEST  
TEST  
TEST  
TEST  
cnt[1]  
cnt[9]  
cntck[1]  
TEST  
TEST  
EXT  
cnt[0]  
cnt[8]  
cntck[0]  
TEST  
TEST  
initEXT  
TEST  
TEST  
TEST  
TEST  
TEST  
TEST  
TEST  
TEST  
TEST  
TEST  
TEST  
TEST  
TEST  
TEST  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.02 - Rev.A  
4/19  
Technical Note  
BH6456GUL  
2 wire Serial Interface Action Timing Characteristics (Unless otherwise specified, Ta=-25 to +85°C, VCC=2.3 to 4.8V)  
FAST-MODE*6  
STANDARD-MODE*6  
Parameter  
SCL frequency  
Data clock high time  
Data clock low time  
Start condition hold time  
Start condition setup time  
Data hold time  
Symbol  
Unit  
Min.  
-
Typ.  
Max.  
400  
-
-
-
Min.  
Typ.  
Max.  
fSCL  
tHIGH  
tLOW  
tHD:STA  
tSU:STA  
tHD:DAT  
tSU:DAT  
tSU:STO  
tBUF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
100  
-
-
-
kHz  
μs  
μs  
μs  
μs  
μs  
ns  
μs  
μs  
ns  
0.6  
1.3  
0.6  
0.6  
0
100  
0.6  
1.3  
0
4.0  
4.7  
4.0  
4.7  
0
250  
4.0  
4.7  
0
-
-
0.9  
-
-
-
50  
3.45  
-
-
-
50  
Data setup time  
Stop condition setup time  
BUS release time  
Noise removal valid period  
tI  
*6  
Standard-mode and Fast-mode 2-wire serial interface devices must be able to transmit or receive at that speed.  
The maximum bit transfer rates of 100 kbit/s for Standard-mode devices and 400 kbit/s for Fast-mode devices  
This transfer rates is provided the maximum transfer rates, for example it is able to drive 100 kbit/s of clocks with Fast-mode.  
2 wire Serial Interface Data timing  
tF  
tHIGH  
tR  
SCL  
SDA  
SCL  
SDA  
tHD : DAT  
tSU : DAT  
tLOW  
tSU : STA  
tSU : STO  
tHD : STA  
tHD : STA  
tBUF  
STOP BIT  
START BIT  
Fig.4 Serial data timing  
Fig.5 Start stop bit timing  
Recommend to power supply turning on operation timing  
Recommendation limit  
Parameter  
Symbol  
Unit  
us  
Min.  
1
Typ.  
-
Max.  
-
PS input H voltage set-up time  
2-wire serial interface input data set-up  
time  
TPS  
tI2C  
1
-
-
us  
Sequence of data input timing to power supply  
VCC,VM  
50%  
PS  
50%  
Serial data  
2-wire serial input  
50%  
tPS  
tI2C  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.02 - Rev.A  
5/19  
Technical Note  
BH6456GUL  
Driving wave setting  
The structure of the driving wave for SIDM  
1cycle=(ta+1)+brake1+tb+brake2  
1osc  
1osc  
1osc  
1osc  
1osc  
1osc  
brake1  
ta+1  
tb  
ta  
brake2  
*2  
Ⅱ cw(ccw)  
Ⅱcw(ccw)  
Ⅵ CCW(cw)  
Ⅷ Short brake  
*1  
*1  
*1  
*1  
*1  
*1  
Ⅰ.HiZ  
HiZ Ⅴ HiZ  
Ⅶ HiZ  
Ⅰ HiZ  
Ⅲ HiZ  
*2  
Ⅳ Short brake  
CW:Forward rotation  
CCW:Reverse rotation  
*1  
*2  
The state at A or B and C is HiZ.  
At mode=0,the output logic is a setting of a short brake.  
dir(addressOH,D2)  
Note  
0
1
OUTA  
OUTB  
OUTB  
OUTA  
Move to the direction of Macro  
Move to the direction of ∞  
Driving wave is set by the 4 parameters of ta / brake1 / tb / brake2.  
osc period is set by the osc(Internal CLK basic cycle setting).  
ta  
brake1 : On section is (brake1 -1) count for short brake state.  
tb : On section is (tb1 -1) count for ccw(cw) state.  
brake2 : On section is (brake2 -1) count for short brake state.  
: On section is ( ta +1-1) = ta counts for cw(ccw) state.  
Ex.In case of setting 1 cycle = 10.67μsta = 1.27μsbrake1 = 0.13μstb = 1.93μs, brake2 = 7.07μs.  
osc[2:0]( = Basic cycle setting ) = 3’b000= Basic cycle = 66.67ns)、and ta / brake1 / tb / brake2 setting below;  
ta[7:0]  
brake1[7:0] = 0x03 = 3 count  
tb[7:0] = 0x1E = 30 count  
brake2[7:0] = 0x6B = 107 count  
= 0x13  
= 19 count  
ON section = 19+1-1= 19 count  
ON section = 2 count  
ON section = 29 count  
ON section = 106 count  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.02 - Rev.A  
6/19  
Technical Note  
BH6456GUL  
Driver function table  
Sequence setting  
mode = 0, osc = 0x0 or osc0x0 and HiZE = 0  
output①  
output②  
mode  
HiZ  
H
HiZ  
L
L
L
L
L
L
L
L
L
HiZ  
HiZ  
H
HiZ  
HiZ  
L
Short  
brake  
Short  
brake  
HiZ  
CW  
HiZ  
CCW  
mode = 0, osc0x0 and HiZE = 1  
HiZ(66.67ns  
HiZ(66.67ns  
output①  
output②  
mode  
H
L
L
L
L
L
ec)H  
ec)L  
HiZ(66.67ns  
ec)H  
L
L
L
L
H
HiZ*3  
HiZ*3  
L
HiZ(66.67ns  
ec)Short  
brake  
Short  
brake  
Short  
brake  
HiZ(66.67ns  
ec)CW  
HiZ(66.67ns  
ec)CCW  
CW  
CCW  
*3 The output status of dosen’t become from HiZ(66.67nsec) to Low.It is outputted HiZ.  
mode = 1, osc = 0x0 or osc0x0 and HiZE = 0  
output①  
output②  
mode  
HiZ  
H
HiZ  
HiZ  
L
L
L
HiZ  
L
L
L
HiZ  
HiZ  
HiZ  
HiZ  
H
HiZ  
HiZ  
HiZ  
HiZ  
HiZ  
CW  
HiZ  
CCW  
mode = 1, osc0x0 and HiZE = 1  
HiZ(66.67ns  
HiZ(66.67ns  
output①  
output②  
mode  
H
HiZ  
HiZ  
L
L*4  
HiZ  
ec)H  
ec)L  
L(66.67nsec  
HiZ(66.67ns  
ec)H  
L
L
HiZ  
HiZ  
H
HiZ  
HiZ  
HiZ  
HiZ  
)HiZ  
HiZ(66.67ns  
ec)CW  
HiZ(66.67ns  
ec)CCW  
CW  
HiZ  
CCW  
*4 The output status of dosen’t become from Low (66.67nsec) to HiZ .It is outputed Low.  
Truth table of Pa and Pb  
sequence  
pa  
pb  
0
OUTA  
OUTB  
Function mode  
STOP  
OFF  
0
Z
L
Z
H
L
OFF  
0
1
CCW  
OFF  
1
0
H
CW  
OFF  
ON  
1
1
x
L
-
L
-
Short brake  
X
Follow with the sequence  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.02 - Rev.A  
7/19  
Technical Note  
BH6456GUL  
Normal sequence  
Setting ta[7:0], brake1[7:0], tb[7:0], brake2[7:0], osc[2:0], HiZE, pa, pb, cntck[2:0], cnt[15:0]  
START = Hi Lo while normal sequence, stop the sequence  
input data  
START  
Macro direction select  
direction select  
input data  
dir  
1cycle  
OUTA  
OUTB  
output data  
EXT  
Internal Counter  
set  
value  
Reset  
Count up  
Reset  
Count up  
Set output logic by  
pa , pb  
Set output logic by  
pa , pb  
Normal sequence  
Normal sequence  
Move to to direction  
Move to Macro direction (movement at set cycle)  
In this case of short brake  
In the case of dir = Lo Hi or Hi Lo input while  
START=Hi,reset setting cycle,and start normal  
input data  
START  
Macro direction select  
direction select  
input data  
dir  
1cycle  
OUTA  
OUTB  
output data  
EXT  
Internal Counter  
set  
value  
set value  
Count up  
Count up  
Normal sequence  
Normal sequence  
see output logic by pa,pb  
Move to macro direction  
Move to macro direction  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.02 - Rev.A  
8/19  
Technical Note  
BH6456GUL  
Initial sequence  
Setting ta[7:0], brake1[7:0], tb[7:0], brake2[7:0], osc[2:0], HiZE, pa, pb, cntck[2:0], cnt[15:0], initB[2:0]  
Count stop  
Stop squence  
I2C input data  
START  
I2C input data  
init  
I2C output data  
initEXT  
reset  
Internal Counter  
direction  
reset  
r
reset  
Count up  
Count up  
Count up  
Count up  
Count up  
Setting value  
set  
output  
Set output logic by  
pa, pb(I2C)  
set  
set  
Normal sequence  
Normal sequence  
output  
o
output  
∞ direction  
m
∞ dir  
∞dir  
Initial sequence  
In the case of init(I2C)= Hi Lo input  
In the case of initial(I2C)=  
Hi Lo  
In the case of START(I2C)=Lo  
input while initial sequence, reset  
setting cycle, and start normal  
sequence.  
Hi  
Move to  
direction  
Move to macro direction  
while START(I2C)=Lo,initEXT=Hi  
input while initial sequence, reset  
setting c ycle, and obey output  
logic by pa,pb(I2C).  
Lo output.  
Ignore dir(I2C) signal  
setting initB[2:0]  
I2C input data  
START  
I2C input data  
init  
I2C output data  
initEXT  
Internal Counter  
direction  
direction  
reset  
reset  
reset  
Setting value  
Count up  
Count up  
Count up  
Count up  
Count up  
Setting value  
Set output logic by  
pa,pb(I2C)  
set  
set  
set  
output  
Normal sequence  
Normal sequence  
∞direction  
m
∞ dir  
m
output  
output  
Initial sequence  
Initial sequence  
At START(I2C)=Hi,it is initEXT(I2C)=Hi  
regardless of the init(I2C) logic  
In the case of initEXT(I2C)=Hi  
Lo  
output at init(I2C)=Hi  
sequence ends.  
Lo after initial  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.02 - Rev.A  
9/19  
Technical Note  
BH6456GUL  
STOP sequence  
It changes to the next state after short brake 16.7μsec(typ) when the state transition  
shown in the following while the sequence is operating is done.  
When Initial sequence direction ends  
When Initial sequence ends  
When normal sequence ends  
When dir bit signal reversing input is done at START bit = H  
When initial sequence cancels  
When normal sequence cancels  
When the normal sequence interrupts at an initial sequence  
Output rise, fall waveform  
VM  
A
(VM-B)*0.9+B  
Output  
voltage  
A*0.9  
(VM-B)*0.1+B  
B
Tfall  
Trise  
A*0.1  
0V  
Output  
current  
0mA  
A voltage = (VM voltage) – (Simulation DC output current at the only Resistance load) ×(Upper side output On-R)  
B voltage = (Simulation DC output current at the only Resistance load) × (Lower side output On-R)  
(Ex.) In case, the load is Resistance element = 2Ω, capacity element = 0.033μF  
25°C, VM=3V, Upper side output On-R = 1Ω, Lower side output On-R = 1Ω  
A voltage = (VM voltage) – ((VM voltage)÷(Load (R)+ Total ON-R))×(Upper side ON-R)  
= 3V – (3V÷(2Ω+(1Ω+1Ω)))×1Ω  
= 2.25V  
B voltage = ((VM voltage)÷(Load (R)+ Total ON-R))×(Lower side ON-R)  
= (3V÷(2Ω+(1Ω+1Ω)))×1Ω  
= 0.75V  
Rise time = Trise (A×0.1 to A×0.9)  
= 100nsectyp)  
Fall time = Tfall ((VM-B)×0.9+B to (VM-B)×0.1+B) = 100nsectyp)  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.02 - Rev.A  
10/19  
Technical Note  
BH6456GUL  
Register detail  
Register catalogue  
Bit  
BIT Name  
Function  
address : 0H  
D0  
D1  
dir  
Output direction setting while normal sequence  
Mode of brake1/brake2 setting for initial/normal sequence  
Start setting for normal sequence  
MODE  
D2  
D3  
D4  
D5  
D6  
START  
init  
Start setting for initial sequence  
Initb[0]  
Initb[1]  
Initb[2]  
Macro direction setting while initial sequence[0]  
Macro direction setting while initial sequence [1]  
Macro direction setting while initial sequence [2]  
Dead time setting Lo: 1 cycle of osc[2:0] settingHi: Internal CLK 1 cycle typ  
66.67nsec)  
D7  
HiZE  
address : 1H  
D0  
ta[0]  
ta[1]  
ta[2]  
ta[3]  
ta[4]  
ta[5]  
ta[6]  
ta[7]  
Drive waveform setting[0] ta  
Drive waveform setting[1] ta  
Drive waveform setting[2] ta  
Drive waveform setting[3] ta  
Drive waveform setting[4] ta  
Drive waveform setting[5] ta  
Drive waveform setting[6] ta  
Drive waveform setting[7] ta  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
address : 2H  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
brake1[0]  
brake1[1]  
brake1[2]  
brake1[3]  
brake1[4]  
brake1[5]  
brake1[6]  
brake1[7]  
Drive waveform setting[0] brake1  
Drive waveform setting[1] brake1  
Drive waveform setting[2] brake1  
Drive waveform setting[3] brake1  
Drive waveform setting[4] brake1  
Drive waveform setting[5] brake1  
Drive waveform setting[6] brake1  
Drive waveform setting[7] brake1  
address : 3H  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
tb[0]  
tb[1]  
tb[2]  
tb[3]  
tb[4]  
tb[5]  
tb[6]  
tb[7]  
Drive waveform setting[0] tb  
Drive waveform setting[1] tb  
Drive waveform setting[2] tb  
Drive waveform setting[3] tb  
Drive waveform setting[4] tb  
Drive waveform setting[5] tb  
Drive waveform setting[6] tb  
Drive waveform setting[7] tb  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.02 - Rev.A  
11/19  
Technical Note  
BH6456GUL  
Bit  
BIT Name  
Function  
address : 4H  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
brake2[0]  
Drive waveform setting[0] brake2  
Drive waveform setting[1] brake2  
Drive waveform setting[2] brake2  
Drive waveform setting[3] brake2  
Drive waveform setting[4] brake2  
Drive waveform setting[5] brake2  
Drive waveform setting[6] brake2  
Drive waveform setting[7] brake2  
brake2[1]  
brake2[2]  
brake2[3]  
brake2[4]  
brake2[5]  
brake2[6]  
brake2[7]  
address : 5H  
D0  
cnt[0]  
cnt[1]  
cnt[2]  
cnt[3]  
cnt[4]  
cnt[5]  
cnt[6]  
cnt[7]  
Drive time count setting[0]  
Drive time count setting[1]  
Drive time count setting[2]  
Drive time count setting[3]  
Drive time count setting[4]  
Drive time count setting[5]  
Drive time count setting[6]  
Drive time count setting[7]  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
address : 6H  
D0  
cnt[8]  
cnt[9]  
Drive time count setting[8]  
Drive time count setting[9]  
Drive time count setting[10]  
Drive time count setting[11]  
Drive time count setting[12]  
Drive time count setting[13]  
Drive time count setting[14]  
Drive time count setting[15]  
D1  
D2  
cnt[10]  
cnt[11]  
cnt[12]  
cnt[13]  
cnt[14]  
cnt[15]  
D3  
D4  
D5  
D6  
D7  
address : 7H  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
cntck[0]  
cntck[1]  
cntck[2]  
osc[0]  
osc[1]  
osc[2]  
pb  
Drive time basic cycle setting[0]  
Drive time basic cycle setting [1]  
Drive time basic cycle setting [2]  
Internal CLK basic cycle setting[0]  
Internal CLK basic cycle setting [1]  
Internal CLK basic cycle setting [2]  
Output logic setting b  
pa  
Output logic setting a  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.02 - Rev.A  
12/19  
Technical Note  
BH6456GUL  
Bit  
BIT Name  
Function  
address : 8H  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
cntout[0]  
Drive time count value output[0]  
Drive time count value output[1]  
Drive time count value output[2]  
Drive time count value output[3]  
Drive time count value output[4]  
Drive time count value output[5]  
Drive time count value output[6]  
Drive time count value output[7]  
cntout[1]  
cntout[2]  
cntout[3]  
cntout[4]  
cntout[5]  
cntout[6]  
cntout[7]  
address : 9H  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
cntout[8]  
Drive time count value output[8]  
Drive time count value output[9]  
Drive time count value output[10]  
Drive time count value output[11]  
Drive time count value output[12]  
Drive time count value output[13]  
Drive time count value output[14]  
Drive time count value output[15]  
cntout[9]  
cntout[10]  
cntout[11]  
cntout[12]  
cntout[13]  
cntout[14]  
cntout[15]  
address : AH  
D0  
initEXT  
After initial sequence, Hi output  
D1  
EXT  
Hi output while normal sequenceLo output at the stop mode  
D2  
TEST  
TEST  
TEST  
TEST  
TEST  
TEST  
D3  
D4  
D5  
D6  
D7  
address : BH  
D0  
TEST  
D1  
TEST  
TEST  
TEST  
TEST  
TEST  
TEST  
TEST  
D2  
D3  
D4  
D5  
D6  
D7  
address : CH  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
TEST  
TEST  
TEST  
TEST  
TEST  
TEST  
TEST  
TEST  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.02 - Rev.A  
13/19  
Technical Note  
BH6456GUL  
Internal CLK basic cycle setting [osc] Internal CLK 1 cycle = 66.67nsec(typ)  
Internal  
CLK cycle  
number  
Internal  
CLK cycle  
number  
Internal  
CLK cycle  
number  
Internal  
CLK cycle  
number  
Magnificati  
on  
Magnificati  
on  
Magnificati  
on  
Magnificati  
on  
3’b000  
3’b001  
1
2
3’b010  
3’b011  
3
4
3’b100  
3’b101  
5
6
3’b110  
3’b111  
7
8
Drive waveform [ta, brake1, tb, brake2]  
Osc  
Osc  
Cycle  
Osc  
Cycle  
Osc  
Cycle  
Time setting  
Cycle  
Time setting  
Time setting  
Time setting  
number  
number  
number  
number  
8’b0000_0000  
8’b0000_0001  
8’b0000_0010  
8’b0000_0011  
1
1
8’b0100_0000  
8’b0100_0001  
8’b0100_0010  
8’b0100_0011  
64  
65  
8’b1000_0000  
8’b1000_0001  
8’b1000_0010  
8’b1000_0011  
128  
129  
130  
131  
8’b1100_0000  
8’b1100_0001  
8’b1100_0010  
8’b1100_0011  
192  
193  
194  
195  
2
66  
3
67  
61  
62  
63  
8’b0011_1101  
8’b0011_1110  
8’b0011_1111  
8’b0111_1101  
8’b0111_1110  
8’b0111_1111  
125  
126  
127  
8’b1101_1101  
8’b1101_1110  
8’b1101_1111  
189  
190  
191  
8’b1111_1101  
8’b1111_1110  
8’b1111_1111  
253  
254  
255  
Drive time basic cycle setting [cntck]  
Magnificati  
on  
Cycle  
Magnificati  
on  
Cycle  
Magnificati  
on  
Cycle  
Magnificati  
on  
Cycle  
number  
number  
number  
number  
3’b000  
3’b001  
1
2
3’b010  
3’b011  
4
8
3’b100  
3’b101  
15  
32  
3’b110  
3’b111  
64  
127  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.02 - Rev.A  
14/19  
Technical Note  
BH6456GUL  
Macro direction setting while initial sequence [initB] ( (Total count number) = (cntck)×(initB))  
count  
Cntck cycle  
number  
count  
Cntck cycle  
number  
count  
Cntck cycle  
number  
count  
Cntck cycle  
number  
setting  
setting  
setting  
setting  
3’b000  
3’b001  
1
2
3’b010  
3’b011  
4
8
3’b100  
3’b101  
15  
32  
3’b110  
3’b111  
64  
127  
Drive time count setting [cnt] ( (Total Drive count number) = (cntck)×(cnt))  
count setting  
Cntck cycle  
number  
count setting  
Cntck cycle  
number  
count  
Cntck cycle  
number  
count  
Cntck  
setting  
setting  
cycle number  
16’h0000  
16’h0001  
16’h0002  
16’h0003  
1
1
16’h4000  
16’h4001  
16’h4002  
16’h4003  
16384  
16385  
16386  
16387  
16’h8000  
16’h8001  
16’h8002  
16’h8003  
32768  
32769  
32770  
32771  
16’hC000  
16’hC001  
16’hC002  
16’hC003  
49152  
49153  
49154  
49155  
2
3
16’h3FFD  
16’h3FFE  
16’h3FFF  
16381  
16382  
16383  
16’h7FFD  
16’h7FFE  
16’h7FFF  
32765  
32766  
32767  
16’hBFFD  
16’hBFFE  
16’hBFFF  
49149  
49150  
49151  
16’hFFFD  
16’hFFFE  
16’hFFFF  
65533  
65534  
65535  
(Ex.)  
In case, setting cntck[2:0] = 3’b001, cnt[15:0] = 16’h8000  
cntck×cnt= 2×32768  
= 65536count  
= 851.968msec (In case of setting a cycle = 13usec)  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.02 - Rev.A  
15/19  
Technical Note  
BH6456GUL  
I/O Peripheral Circuit  
1) Pull up resistance of SDA terminal  
SDA is NMOS open drain, so requires pull up resistance. As for this resistance value (RPU), select an appropriate  
value to this resistance value from micro-controller VIL, IL, and VOL – IOL characteristics of this IC. If RPU is large,  
action frequency is limited. The smaller the RPU, the larger the consumption current at action.  
2) Maximum value of RPU  
The maximum value of RPU is determined by the following factors.  
(Ⅰ)SDA rise time to be determined by the capacity (CBUS) of BUS line of RPU and SDA should be tR or below.  
And AC timing should be satisfied even when SDA rise time is late.  
(Ⅱ)The BUS electric potential V1 to be determined by input leak total (IL) of device connected to BUS at output of “H” to  
SDA BUS and RPU should sufficiently secure the input “H” level (VIH) of micro-controller and driver including  
recommended noise margin 0.2VCC.  
Micro-controller  
BR24LX  
VCC - IL×RPU - 0.2×VCC VIH  
RPU  
SDA terminal  
V1  
0.8×VCC - VIH  
IL  
RPU≦  
・・・・・①  
IL  
IL  
Example.) VCC = 3V, IL=10μA, VIH = 0.7×VCC  
from ①  
0.8×3 - 0.7×3  
RPU≦  
= 30kΩ  
10×10-6  
Bus line capacity  
CBUS  
3) Minimum value of RPU  
The minimum value of RPU is determined by the following factors.  
Fig.6 2 wire Serial Interface 1  
(Ⅰ)When IC outputs LOW, it should be satisfied that VOLMAX = 0.4V, and IOLMAX = 3mA.  
VCC-VOL  
IOL  
・・・・・②  
RPU  
(Ⅱ)VOLMAX = 0.4V should secure the input “L” level (VIL) of micro-controller and driver including recommended noise  
margin 0.1VCC.  
VOLMAX VIL-0.1×VCC  
Ex.) VCC = 3V, VOL=0.4V, IOL = 3mA, micro-controller, driver VIL = 0.3×VCC  
3 - 0.4  
3×10-3  
RPU≧  
= 867[]  
And VOL = 0.4[V], VIL = 0.3×3 = 0.9[V]  
Therefore, the condition () is satisfied.  
4) Pull up resistance of SCL terminal  
WHEN SCL control is made at CMOS output port, there is no need but in the case there is timing where SCL  
becomes “Hi-Z”, add a pull up resistance. As for the pull up resistance, one of several kto several ten kis  
recommended in consideration of drive performance of output port of micro-controller.  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.02 - Rev.A  
16/19  
Technical Note  
BH6456GUL  
Cautions on Micro-controller Connection  
1) Rs  
In the 2 wire Serial Interface, it is recommended that SDA port is of open drain input/output. However, when to use  
CMOS input / output of tri state to SDA port, inset a series resistance Rs between the pull up resistance Rpu and the  
SDA terminal of driver. This controls over current that occurs when PMOS of the micro-controller and NMOS of driver  
are turned ON simultaneously. Rs also plays the role of protection of SDA terminal against surge. Therefore, even  
when SDA port is open drain input/output, Rs can be used.  
ACK  
RPU  
SCL  
Rs  
H output of micro-controller  
SDA  
L output of Driver  
Driver  
Micro-controller  
Over current flows to SDA line by H output of micro-controller  
and L output of Driver  
Fig.7 2 wire Serial Interface 2  
2) Maximum value of Rs  
Fig.8 Input / Output collision timing  
The maximum value of Rs is determined by the following relations.  
(Ⅰ)SDA rise time to be determined by the capacity (Cb) of BUS line of Rpu and SDA should be tR or below.  
And AC timing should be satisfied even when SDA rise time is late.  
(Ⅱ)The BUS electric potential V2 to be determined by Rpu and Rs at the moment when driver outputs “L” to SDA BUS  
should sufficiently secure the input “L” level (VIL) of micro-controller including recommended noise margin 0.1VCC.  
VCC  
RPU  
(VCC-VOL)×RS  
V2  
+VOL+0.1×VCC VIL  
RPU+RS  
Rs  
VOL  
IOL  
VIL-VOL-0.1×VCC  
1.1×VCC-VIL  
Rs ≦  
×RPU  
・・・・③  
Bus line  
capacity  
Cb  
Example) When VCC = 3V, VIL = 0.3×VCC, VOL = 0.4V, RPU = 20k,  
from ③  
VIL  
driver  
micro-controller  
0.3×3 - 0.4 - 0.1×3  
Fig.9 2 wire Serial Interface 3  
3) Minimum value of RS  
Rs ≦  
×20×103 = 1.67[k]  
1.1×3 - 0.3×3  
The minimum value of Rs is determined by over current at BUS collision. When over current flows, noises in power  
source line, and instantaneous power failure of power source may occur. When allowable over current is defined as I,  
the following relation must be satisfied. Determine the allowable current in consideration of impedance of power  
source line in set and so forth. Set the over current to driver 10mA or below.  
VCC  
RS  
I  
・・・・④  
RPU  
L output  
RS  
Exampre) When VCC=3V, I=10mA, From ④  
3
Over current I  
Rs≧  
=300[]  
10×10-3  
H output  
Microcontroller  
Driver  
Fig.10 2 wire Serial Interface 4  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.02 - Rev.A  
17/19  
Technical Note  
BH6456GUL  
Operation Notes  
1) Absolute maximum ratings  
Use of the IC in excess of absolute maximum ratings, such as the applied voltage (VCC) or operating temperature  
range (Topr), may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or  
open mode) when such damage is suffered. A physical safety measure, such as a fuse, should be implemented  
when using the IC at times where the absolute maximum ratings may be exceeded.  
2) Storage temperature range (Tstq)  
As long as the IC is kept within this range, there should be no problems in the IC’s performance. Conversely,  
extreme temperature changes may result in poor IC performance, even if the changes are within the above range.  
3) Power supply and wiring  
Be sure to connect the power terminals outside the IC. Do not leave them open. Because a return current is  
generated by a counter electromotive force of the motor, take necessary measures such as putting a Capacitor  
between the power source and the ground as a passageway for the regenerative current. Be sure to connect a  
Capacitor of proper capacitance (0.1μF to 10μF) between the power source and the ground at the foot of the IC, and  
ensure that there is no problem in properties of electrolytic Capacitors such as decrease in capacitance at low  
temperatures. When the connected power source does not have enough current absorbing capability, there is a  
possibility that the voltage of the power source line increases by the regenerative current an exceeds the absolute  
maximum rating of this product and the peripheral circuits.  
Therefore, be sure to take physical safety measures such as putting a zener diode for a voltage clamp between the  
power source an the ground.  
4) Ground terminal and wiring  
The potential at GND terminals should be made the lowest under any operating conditions. Ensure that there are no  
terminals where the potentials are below the potential at GND terminals, including the transient phenomena. The  
motor ground terminals RNF and PGND, and the small signal ground terminal GND are not interconnected with one  
another inside the IC. It is recommended that you should isolate the large-current RNF pattern and PGND pattern  
from the small-signal GND pattern, and should establish a one-point grounding at a reference point of the set, to  
avoid fluctuation of small-signal G voltages caused by voltage changes due to pattern wire resistances and large  
currents. Also prevent the voltage variation of the ground wiring patterns of external components. Use short and thick  
power source and ground wirings to ensure low impedance.  
5) Thermal design  
Use a proper thermal design that allows for a sufficient margin of the power dissipation (Pd) at actual operating  
conditions.  
6) Pin short and wrong direction assembly of the device  
Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any  
connection error or if positive and ground power supply terminals are reversed. The IC may also be damaged if pins  
are shorted together or are shorted to other circuit’s power lines.  
7) Avoiding strong magnetic field  
Malfunction may occur if the IC is used around a strong magnetic field.  
8) ASO  
Ensure that the output transistors of the motor driver are not driven under excess conditions of the absolute  
maximum ratings and ASO.  
9) TSD (Thermal Shut Down) circuit  
If the junction temperature (Tjmax) reaches 150°C, the TSD circuit will operate, and the coil output circuit of the  
motor will open. There is a temperature hysterics of approximately 25°C. The TSD circuit is designed only to shut off  
the IC in order to prevent runaway thermal operating. It is not designed to protect the IC or guarantee its operation.  
The performance of the IC’s characteristics is not guaranteed and it is recommended that the device is replaced after  
the TSD is activated.  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.02 - Rev.A  
18/19  
Technical Note  
BH6456GUL  
10) Regarding the input pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements to keep them isolated.  
P-N junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic  
diode or transistor. For example, the relation between each potential is as follows:  
When GND > Pin A, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic diode and transistor.  
Parasitic elements can occur inevitably in the structure of the IC. The operation of parasitic elements can result in  
mutual interference among circuits, operational faults, or physical damage. Accordingly, methods by which parasitic  
elements operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin, should  
not be used.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
C
N
E
Pin A  
B
C
E
N
N
P+  
P+  
N
P+  
N
N
P+  
P
P
N
Parasitic  
element  
P substrate  
P substrate  
Parasitic  
elements  
Other adjacent  
elements  
GND  
GND  
GND  
Parasitic element  
Parasitic elements  
GND  
Fig.11 Example of Simple IC Architecture  
Ordering Information  
G U  
L
B H 6 4 5 6  
E 2  
Part Number  
Package  
VCSP50L1  
Packaging and forming specification  
E2: Embossed tape and reel  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
2012.02 - Rev.A  
19/19  
Notice  
N o t e s  
No copying or reproduction of this document, in part or in whole, is permitted without the  
consent of ROHM Co.,Ltd.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter  
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,  
which can be obtained from ROHM upon request.  
Examples of application circuits, circuit constants and any other information contained herein  
illustrate the standard usage and operations of the Products. The peripheral conditions must  
be taken into account when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document.  
However, should you incur any damage arising from any inaccuracy or misprint of such  
information, ROHM shall bear no responsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or  
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and  
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the  
use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic  
equipment or devices (such as audio visual equipment, office-automation equipment, commu-  
nication devices, electronic appliances and amusement devices).  
The Products specified in this document are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a  
Product may fail or malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard  
against the possibility of physical injury, fire or any other damage caused in the event of the  
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM  
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed  
scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or  
system which requires an extremely high level of reliability the failure or malfunction of which  
may result in a direct threat to human life or create a risk of human injury (such as a medical  
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-  
controller or other safety device). ROHM shall bear no responsibility in any way for use of any  
of the Products for the above special purposes. If a Product is intended to be used for any  
such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may  
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to  
obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
R1120  
A

相关型号:

BH6478GUL

Brush DC Motor Controller, 0.2A, PBGA6, VSCP-6
ROHM

BH6504K

PWM driver for CD and MD players
ROHM

BH6505K

PWM driver for CD and MD players
ROHM

BH6508FS

光ディスクLSI
ETC

BH6510FS

4-channel PWM driver for CD and MD players
ROHM

BH6511

4-channel PWM driver for CD and MD players
ROHM

BH6511FS

4-channel PWM driver for CD and MD players
ROHM

BH6511FS-E1

Consumer Circuit, PDSO32, 0.80 MM PITCH, SSOP-32
ROHM

BH6511FS-E2

Consumer Circuit, PDSO32, 0.80 MM PITCH, SSOP-32
ROHM

BH6511FS-T1

Consumer Circuit, PDSO32, 0.80 MM PITCH, SSOP-32
ROHM

BH6511FS-T2

Consumer Circuit, PDSO32, 0.80 MM PITCH, SSOP-32
ROHM

BH6512FS

4-channel PWM driver for CD and MD use
ROHM