BM60213FV-C [ROHM]

BM60213FV-C是可驱动使用阴极负载方式的Nch-MOSFET及IGBT的1200V高耐压高边/低边驱动器。内置低电压时误动作防止功能(UVLO)。;
BM60213FV-C
型号: BM60213FV-C
厂家: ROHM    ROHM
描述:

BM60213FV-C是可驱动使用阴极负载方式的Nch-MOSFET及IGBT的1200V高耐压高边/低边驱动器。内置低电压时误动作防止功能(UVLO)。

驱动 双极性晶体管 驱动器
文件: 总25页 (文件大小:2004K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
1200 V High Voltage  
High and Low Side Driver  
BM60213FV-C  
General Description  
Key Specifications  
The BM60213FV-C is high and low side drive IC which  
operates up to 1200 V with bootstrap operation, which  
can drive N-channel power MOSFET and IGBT.  
Under-voltage Lockout (UVLO) function is built-in.  
High-Side Floating Supply Voltage:  
1200 V  
24 V  
75 ns (Max)  
60 ns (Max)  
Maximum Gate Drive Voltage:  
Turn ON/OFF Time:  
Logic Input Minimum Pulse Width:  
Features  
Package  
SSOP-B20W  
W(Typ) x D(Typ) x H(Max)  
6.50 mm x 8.10 mm x 2.01 mm  
AEC-Q100 Qualified(Note 1)  
High-Side Floating Supply Voltage 1200 V  
Under Voltage Lockout Function  
3.3 V and 5.0 V Input Logic Compatible  
(Note 1) Grade 1  
Applications  
MOSFET Gate Driver  
IGBT Gate Driver  
SSOP-B20W  
Typical Application Circuit  
VCCB  
Up to 1200 V  
NC  
GND1  
UVLO  
UVLO  
S
R
ENA  
INA  
INB  
GND2  
NC  
ENA  
INA  
Pulse  
Generator  
Q
INB  
VCCA  
OUTAH  
OUTAL  
VREG  
VCCB  
OUTBH  
OUTBL  
PGND  
GND1  
Regulator  
Pre-  
driver  
CVREG  
NC  
NC  
Pre-  
driver  
CVCCB  
CVCCA  
GND2  
TO  
LOAD  
NC  
Pin 1  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays  
www.rohm.com  
TSZ02201-0818ACH00050-1-2  
26.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
1/22  
TSZ22111 14 001  
 
 
 
 
 
 
BM60213FV-C  
Contents  
General Description ................................................................................................................................................................1  
Features ..........................................................................................................................................................................1  
Applications ..........................................................................................................................................................................1  
Key Specifications...................................................................................................................................................................1  
Package.................................................................................................................................................................................1  
Typical Application Circuit........................................................................................................................................................1  
Contents  
..........................................................................................................................................................................2  
Recommended Range of External Constants...........................................................................................................................3  
Pin Configuration ....................................................................................................................................................................3  
Pin Descriptions......................................................................................................................................................................3  
Description of Functions and Examples of Constant Setting .....................................................................................................5  
Absolute Maximum Ratings.....................................................................................................................................................7  
Thermal Resistance................................................................................................................................................................8  
Recommended Operating Conditions ......................................................................................................................................8  
Electrical Characteristics .........................................................................................................................................................9  
Typical Performance Curves..................................................................................................................................................10  
Figure 6. VCCB Circuit Current 1 vs Low-side Supply Voltage (OUTB=L) ............................................................................10  
Figure 7. VCCB Circuit Current 2 vs Low-side Supply Voltage (OUTB=H)............................................................................10  
Figure 8. VCCB Circuit Current 3 vs Low-side Supply Voltage (INA=10 kHz, Duty=50 %).....................................................10  
Figure 9. VCCB Circuit Current 4 vs Low-side Supply Voltage (INA=20 kHz, Duty=50 %).....................................................10  
Figure 10. VCCA Circuit Current 1 vs High-side Floating Supply Voltage (OUTA=L)............................................................. 11  
Figure 11. VCCA Circuit Current 2 vs High-side Floating Supply Voltage (OUTA=H)............................................................. 11  
Figure 12. Logic H/L Level Input Voltage vs High-side Floating Supply Voltage.................................................................... 11  
Figure 13. OUTA (OUTB)Output Voltage vs Logic Input Voltage (VCCB=15 V, VCCA=15 V, Ta=+25 °C).................................... 11  
Figure 14. Logic Pull-down Resistance vs Temperature.......................................................................................................12  
Figure 15. Logic Pull-down Current vs Temperature............................................................................................................12  
Figure 16. Logic Input Minimum Pulse Width vs Temperature..............................................................................................12  
Figure 17. ENA Input Mask Time vs Temperature................................................................................................................12  
Figure 18. OUTA ON Resistance (Source) vs Temperature .................................................................................................13  
Figure 19. OUTA ON Resistance (Sink) vs Temperature......................................................................................................13  
Figure 20. OUTB ON Resistance (Source) vs Temperature.................................................................................................13  
Figure 21. OUTB ON Resistance (Sink) vs Temperature.....................................................................................................13  
Figure 22. OUTA Turn ON Time vs Temperature (INA=PWM, INB=L) ..................................................................................14  
Figure 23. OUTA Turn OFF Time vs Temperature (INA=PWM, INB=L).................................................................................14  
Figure 24. OUTB Turn ON Time vs Temperature (INA=L, INB=PWM)................................................................................14  
Figure 25. OUTB Turn OFF Time vs Temperature (INA=L, INB=PWM) ................................................................................14  
Figure 26. VCCB UVLO ON/OFF Voltage vs Temperature...................................................................................................15  
Figure 27. VCCB UVLO Mask Time vs Temperature...........................................................................................................15  
Figure 28. VCCA UVLO ON/OFF Voltage vs Temperature...................................................................................................15  
Figure 29. VCCA UVLO Mask Time vs Temperature ...........................................................................................................15  
I/O Equivalence Circuits........................................................................................................................................................16  
Operational Notes.................................................................................................................................................................18  
Ordering Information.............................................................................................................................................................20  
Marking Diagram...................................................................................................................................................................20  
Physical Dimension and Packing Information.........................................................................................................................21  
Revision History....................................................................................................................................................................22  
www.rohm.com  
TSZ02201-0818ACH00050-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
2/22  
TSZ22111 15 001  
26.Oct.2018 Rev.001  
 
 
BM60213FV-C  
Recommended Range of External Constants  
Recommended Value  
Pin  
Symbol  
Name  
Unit  
Min  
0.1  
0.1  
0.1  
Typ  
1.0  
1.0  
3.3  
Max  
VCCA  
VCCB  
VREG  
CVCCA  
CVCCB  
CVREG  
-
-
µF  
µF  
µF  
10.0  
Pin Configuration  
(TOP VIEW)  
20  
NC  
GND2  
NC  
1
2
3
4
5
6
7
8
9
GND1  
19 PGND  
18 OUTBL  
17 OUTBH  
16 VCCB  
15 VREG  
14 INB  
NC  
OUTAL  
OUTAH  
VCCA  
NC  
13 INA  
12 ENA  
GND2  
NC 10  
11  
GND1  
Pin Descriptions  
Pin No.  
1
Pin Name  
NC  
Function  
Non-connection  
2
GND2  
NC  
High-side ground pin  
Non-connection  
3
4
NC  
Non-connection  
5
OUTAL  
OUTAH  
VCCA  
NC  
High-side(OUTA) output pin (Sink)  
High-side(OUTA) output pin (Source)  
High-side power supply pin  
Non-connection  
6
7
8
9
GND2  
NC  
High-side ground pin  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Non-connection  
GND1  
ENA  
Input-side ground pin  
Input enabling signal input pin  
Control input pin for high-side  
Control input pin for low-side  
Power supply pin for input circuit  
Low-side and input-side power supply pin  
Low-side(OUTB) output pin (Source)  
Low-side(OUTB) output pin (Sink)  
Low-side ground pin  
INA  
INB  
VREG  
VCCB  
OUTBH  
OUTBL  
PGND  
GND1  
Input-side ground pin  
www.rohm.com  
TSZ02201-0818ACH00050-1-2  
26.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
3/22  
TSZ22111 15 001  
BM60213FV-C  
Pin Descriptions - continued  
1. VCCA (High-side power supply pin)  
The VCCA pin is a power supply pin on the high-side output. To reduce voltage fluctuations due to the OUTA pin  
output current, connect a bypass capacitor between the VCCA and GND2 pins.  
2. GND2 (High-side ground pin)  
The GND2 pin is a ground pin on the high-side. Connect the GND2 pin to the emitter/source of a high-side power  
device.  
3. VCCB (Low-side and input-side power supply pin)  
The VCCB pin is a power supply pin on the low-side output. To reduce voltage fluctuations due to the OUTB pin output  
current, connect a bypass capacitor between the VCCB and PGND pins.  
4. GND1 (Input-side ground pin)  
The GND1 pin is a ground pin on the input side.  
5. VREG (Power supply pin for input circuit)  
The VREG pin is a power supply pin for the input circuit. To suppress voltage fluctuations due to the current to drive  
internal transformers, connect a bypass capacitor between the VREG and GND1 pins.  
6. INA, INB, ENA (Control input pin)  
The INA, INB and ENA pins are used to determine output logic.  
ENA  
L
INA  
X
INB  
X
OUTA  
OUTB  
L
L
L
H
L
L
L
H
L
L
H
L
H
H
L
H
H
L
H
H
H
L
X: Don't care  
The High output of OUTA (OUTB) becomes effective in ENA=H and L to H edge input of INA (INB).  
7. OUTAH, OUTAL, OUTBH, OUTBL (Output pin)  
The OUTAH pin and the OUTBH pin are source side pins used to drive the gate of a power device, and the OUTAL  
pin and the OUTBL pin are sink side pins used to drive the gate of a power device.  
8. PGND (Low-side ground pin)  
The PGND pin is a ground pin on the low-side. Connect the PGND pin to the emitter/source of a low-side power  
device.  
H
ENA  
L
H
INA(INB)  
L
H
OUTA(OUTB)  
L
Figure 1. Input and Output Logic Timing Chart  
www.rohm.com  
TSZ02201-0818ACH00050-1-2  
26.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
4/22  
TSZ22111 15 001  
BM60213FV-C  
Description of Functions and Examples of Constant Setting  
1. Under-voltage Lockout (UVLO) function  
The BM60213FV-C has the Under-voltage Lockout (UVLO) function both the high and low voltage sides. When the  
power supply voltage drops to VUVLOL (Typ 8.5 V), the OUTA(OUTB) pin will output the “L” signal. When the power  
supply voltage rises to VUVLOH (Typ 9.5 V), the OUT pin will return to a normal state. In addition, to prevent  
malfunctions due to noises, a mask time of tUVLOMSK (Typ 2.5 µs) is set on both the high and the low voltage sides.  
H
INA  
L
VUVLOH  
VUVLOL  
VCCA  
OUTA  
H
Hi-Z  
L
Figure 2. High-side UVLO Function Operation Timing Chart  
H
L
INA (INB)  
VCCB  
VUVLOH  
VUVLOL  
H
Hi-Z  
L
OUTA  
OUTB  
H
Hi-Z  
L
Figure 3. Low-side UVLO Function Operation Timing Chart  
2. I/O condition table  
Input  
ENA  
Output  
No.  
Status  
VCCB  
VCCA  
INB  
X
INA  
X
OUTB  
OUTA  
1
2
VCCB UVLO  
VCCA UVLO  
Disable  
UVLO  
X
UVLO  
UVLO  
UVLO  
UVLO  
X
L
L
L
L
H
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
X
X
3
H
H
H
L
L
X
4
H
H
X
L
5
H
X
6
7
H
H
H
H
L
L
8
L
H
L
Normal  
Operation  
9
H
H
10  
H
○: VCCA or VCCB > UVLO, X: Don't care  
www.rohm.com  
TSZ02201-0818ACH00050-1-2  
26.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
5/22  
TSZ22111 15 001  
BM60213FV-C  
Description of Functions and Examples of Constant Setting - continued  
3. Power supply startup/shutdown sequence  
H
INA  
L
H
INB  
L
VUVLOL  
VUVLOL  
VUVLOH  
VUVLOH  
VUVLOH  
VUVLOH  
VCCA  
VCCB  
VUVLOL  
VUVLOL  
H
Hi-Z  
L
OUTA  
OUTB  
H
Hi-Z  
L
H
INA  
INB  
L
H
L
VUVLOL  
VUVLOL  
VUVLOH  
VUVLOH  
VUVLOH  
VUVLOH  
VCCA  
VCCB  
VUVLOL  
VUVLOL  
H
Hi-Z  
L
OUTA  
OUTB  
H
Hi-Z  
L
: Since the VCCA to GND2 pin voltage is low and the output MOS does not turn ON,  
the output pins become Hi-Z.  
: Since the VCCB to GND1 pin voltage is low and the output MOS does not turn ON,  
the output pins become Hi-Z.  
Figure 4. Power Supply Startup/Shutdown Sequence  
www.rohm.com  
TSZ02201-0818ACH00050-1-2  
26.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
6/22  
TSZ22111 15 001  
BM60213FV-C  
Absolute Maximum Ratings  
Parameter  
Symbol  
Limits  
Unit  
High-side Floating Supply Voltage  
High-side Floating Supply Offset Voltage  
High-side Floating Output Voltage OUTA  
Low-side Supply Voltage  
VCCA  
GND2  
VOUTA  
VCCB  
-0.3 to +1230(Note 2)  
VCCA-30 to VCCA+0.3  
GND2-0.3 to VCCA+0.3  
-0.3 to +30.0(Note 2)  
-0.3 to +VCCB+0.3 or +30.0(Note 2)  
-0.3 to +7.0(Note 2)  
-0.3 to +VCCB+0.3 or +30.0(Note 2)  
5.0(Note 3)  
V
V
V
V
Low-side Output Voltage OUTB  
PGND Pin Voltage  
VOUTB  
VPGND  
VIN  
V
V
Logic Input Voltage (INA, INB, ENA)  
OUTA Pin Output Current (Peak 1 µs)  
OUTB Pin Output Current (Peak 1 µs)  
Storage Temperature Range  
V
IOUTAPEAK  
IOUTBPEAK  
Tstg  
A
5.0(Note 3)  
A
-55 to +150  
°C  
Maximum Junction Temperature  
Tjmax  
150  
°C  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing  
board size and copper area so as not to exceed the maximum junction temperature rating.  
(Note 2) Relative to GND1.  
(Note 3) Must not exceed Tjmax=150 °C.  
www.rohm.com  
TSZ02201-0818ACH00050-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
7/22  
TSZ22111 15 001  
26.Oct.2018 Rev.001  
BM60213FV-C  
Thermal Resistance (Note 4)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 6)  
2s2p(Note 7)  
SSOP-B20W  
Junction to Ambient  
Junction to Top Characterization Parameter (Note 5)  
θJA  
151.5  
47  
80.6  
40  
°C/W  
°C/W  
ΨJT  
(Note 4) Based on JESD51-2A(Still-Air)  
(Note 5) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 6) Using a PCB board based on JESD51-3.  
(Note 7) Using a PCB board based on JESD51-7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70 μm  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
4 Layers  
Top  
Copper Pattern  
Bottom  
Copper Pattern  
74.2 mm x 74.2 mm  
Thickness  
Copper Pattern  
Thickness  
Thickness  
Footprints and Traces  
70 μm  
74.2 mm x 74.2 mm  
35 μm  
70 μm  
Recommended Operating Conditions  
Parameter  
Symbol  
VCCA  
Min  
GND2+10  
-
Typ  
Max  
Unit  
High-side Floating Supply Voltage  
GND2+15  
GND2+24  
1200  
V
V
V
High-side Floating Supply Offset Voltage  
High-side Floating Output Voltage OUTA  
GND2  
VOUTA  
-
-
-
-
GND2  
VCCA  
Low-side Output Voltage OUTB  
Logic Input Voltage (INA, INB, ENA)  
Low-side Supply Voltage  
VOUTB  
VIN  
GND1  
GND1  
10  
VCCB  
VCCB  
24  
V
V
VCCB  
Topr  
15  
V
Operating Temperature  
-40  
+25  
+125  
°C  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00050-1-2  
26.Oct.2018 Rev.001  
8/22  
BM60213FV-C  
Electrical Characteristics  
(Unless otherwise specified Ta=-40 °C to +125 °C, VCCA-GND2=10 V to 24 V, VCCB=10 V to 24 V)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
General  
VCCB Circuit Current 1  
VCCB Circuit Current 2  
VCCB Circuit Current 3  
VCCB Circuit Current 4  
VCCA Circuit Current 1  
VCCA Circuit Current 2  
Logic Block  
ICC11  
ICC12  
ICC13  
ICC14  
ICC21  
ICC22  
0.60  
0.60  
1.60  
1.65  
0.30  
0.25  
1.00  
1.00  
2.40  
2.45  
0.57  
0.47  
1.60  
1.60  
4.20  
4.25  
0.97  
0.80  
mA  
mA  
mA  
mA  
mA  
mA  
OUTB=L  
OUTB=H  
INA=10 kHz, Duty=50 %  
INA=20 kHz, Duty=50 %  
OUTA=L  
OUTA=H  
Logic High Level Input Voltage  
Logic Low Level Input Voltage  
Logic Pull-down Resistance  
Logic Pull-down Current  
Logic Input Minimum Pulse Width  
ENA Input Mask Time  
VINH  
VINL  
2.0  
0
-
-
VCCB  
0.8  
V
V
INA, INB, ENA  
INA, INB, ENA  
RIND  
25  
20  
-
50  
50  
-
100  
150  
60  
kΩ  
µA  
ns  
µs  
INA<3 V, INB<3 V, ENA<3 V  
INA3 V, INB3 V, ENA3 V  
INA, INB  
IIND  
tINMIN  
tENAMSK  
0.6  
1.0  
1.5  
ENA  
Output  
0.4  
0.2  
0.9  
0.6  
2.0  
1.3  
IOUT=-40 mA, OUTA, OUTB  
IOUT=40 mA, OUTA, OUTB  
OUT ON Resistance (Source)  
OUT ON Resistance (Sink)  
RONH  
RONL  
Ω
Ω
Guaranteed by design,  
OUTA, OUTB  
Guaranteed by design,  
OUTA, OUTB  
OUT Maximum Current (Source)  
OUT Maximum Current (Sink)  
IOUTMAXH  
IOUTMAXL  
3.0  
3.0  
4.5  
3.9  
-
-
A
A
OUT Turn ON Time  
tPON  
tPOFF  
tPDIST  
tDM  
35  
35  
-25  
-
55  
55  
0
75  
75  
+25  
25  
-
ns  
ns  
OUTA, OUTB  
OUT Turn OFF Time  
OUT Propagation Distortion  
Delay Matching, HS&LS Turn ON/OFF  
OUT Rise Time  
OUTA, OUTB  
ns  
tPOFF tPON, OUTA, OUTB  
-
ns  
tRISE  
tFALL  
VVREG  
CM  
-
50  
50  
4.7  
-
ns  
OUT-GND 10 nF, OUTA, OUTB  
OUT-GND 10 nF, OUTA, OUTB  
OUT Fall Time  
-
-
ns  
VREG Output Voltage  
Common Mode Transient Immunity  
Protection Functions  
UVLO OFF Voltage  
4.2  
100  
5.2  
-
V
Guaranteed by design  
kV/µs  
VUVLOH  
VUVLOL  
9.0  
8.0  
1.0  
9.5  
8.5  
2.5  
10.0  
9.0  
V
V
VCCA, VCCB  
VCCA, VCCB  
VCCA, VCCB  
UVLO ON Voltage  
UVLO Mask Time  
tUVLOMSK  
5.0  
µs  
INA  
(INB)  
50 %  
50 %  
tPON  
tPOFF  
90 %  
90 %  
OUTA  
(OUTB)  
10 %  
10 %  
tFALL  
tRISE  
Figure 5. IN-OUT Timing Chart  
www.rohm.com  
TSZ02201-0818ACH00050-1-2  
26.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
9/22  
TSZ22111 15 001  
BM60213FV-C  
Typical Performance Curves  
1.60  
1.50  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
1.60  
1.50  
1.40  
1.30  
Ta=+125 °C  
Ta=+125 °C  
1.20  
Ta=+25 °C  
Ta=+25 °C  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
Ta=-40 °C  
Ta=-40 °C  
10  
12  
14  
16  
18  
20  
22  
24  
10  
12  
14  
16  
18  
20  
22  
24  
Low-side SupplyVoltage : VCCB [V]  
Low-side SupplyVoltage : VCCB [V]  
Figure 7. VCCB Circuit Current 2 vs Low-side Supply  
Voltage (OUTB=H)  
Figure 6. VCCB Circuit Current 1 vs Low-side Supply  
Voltage (OUTB=L)  
4.15  
3.65  
3.15  
2.65  
2.15  
1.65  
4.10  
3.60  
3.10  
2.60  
2.10  
1.60  
Ta=+125 °C  
Ta=+25 °C  
Ta=+25 °C  
Ta=+125 °C  
Ta=-40 °C  
Ta=-40 °C  
10  
12  
14  
16  
18  
20  
22  
24  
10  
12  
14  
16  
18  
20  
22  
24  
Low-side SupplyVoltage : VCCB [V]  
Low-side SupplyVoltage : VCCB [V]  
Figure 8. VCCB Circuit Current 3 vs Low-side Supply  
Voltage (INA=10 kHz, Duty=50 %)  
Figure 9. VCCB Circuit Current 4 vs Low-side Supply  
Voltage (INA=20 kHz, Duty=50 %)  
www.rohm.com  
TSZ02201-0818ACH00050-1-2  
26.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
10/22  
TSZ22111 15 001  
BM60213FV-C  
Typical Performance Curves - continued  
0.75  
0.65  
0.55  
0.45  
0.35  
0.25  
0.90  
0.80  
Ta=+25 °C  
Ta=+125 °C  
Ta=+25 °C  
0.70  
0.60  
0.50  
0.40  
0.30  
Ta=+125 °C  
Ta=-40 °C  
Ta=-40 °C  
10  
12  
14  
16  
18  
20  
22  
24  
10  
12  
14  
16  
18  
20  
22  
24  
High-side Floating SupplyVoltage : VCCA [V]  
High-side Floating SupplyVoltage : VCCA [V]  
Figure 10. VCCA Circuit Current 1 vs High-side  
Floating Supply Voltage (OUTA=L)  
Figure 11. VCCA Circuit Current 2 vs High-side  
Floating Supply Voltage (OUTA=H)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
24  
20  
16  
12  
8
VCCB=10 V  
VCCB=15 V  
VCCB=24 V  
H level  
L level  
VCCB=10 V  
VCCB=15 V  
VCCB=24 V  
4
0
0
1
2
3
4
5
10  
12  
14  
16  
18  
20  
22  
24  
LogicInput Voltage : VIN[V]  
High-side Floating SupplyVoltage : VCCA [V]  
Figure 12. Logic H/L Level Input Voltage vs  
High-side Floating Supply Voltage  
Figure 13. OUTA (OUTB)Output Voltage vs Logic  
Input Voltage (VCCB=15 V, VCCA=15 V, Ta=+25 °C)  
www.rohm.com  
TSZ02201-0818ACH00050-1-2  
26.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
11/22  
TSZ22111 15 001  
BM60213FV-C  
Typical Performance Curves - continued  
100  
90  
160  
140  
120  
100  
80  
80  
VCCB=10 V  
VCCB=15 V  
VCCB=24 V  
VCCB =10 V  
VCCB=15 V  
VCCB=24 V  
70  
60  
50  
40  
30  
20  
60  
40  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 14. Logic Pull-down Resistance vs Temperature  
Figure 15. Logic Pull-down Current vs Temperature  
60  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
50  
40  
30  
20  
10  
0
VCCB=10 V  
VCCB=15 V  
VCCB=24 V  
VCCB=10 V  
VCCB=15 V  
VCCB=24 V  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 16. Logic Input Minimum Pulse Width  
vs Temperature  
Figure 17. ENA Input Mask Time vs Temperature  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00050-1-2  
26.Oct.2018 Rev.001  
12/22  
BM60213FV-C  
Typical Performance Curves - continued  
2.0  
1.8  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
VCCA-GND2=10 V  
VCCA-GND2=15 V  
VCCA-GND2=24 V  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
VCCA-GND2=10 V  
VCCA-GND2=15 V  
VCCA-GND2=24 V  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 19. OUTA ON Resistance (Sink) vs Temperature  
Figure 18. OUTA ON Resistance (Source) vs  
Temperature  
1.4  
1.2  
1.0  
0.8  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
VCCB=10 V  
VCCB=15 V  
VCCB=24 V  
0.6  
VCCB=10 V  
VCCB=15 V  
VCCB=24 V  
0.4  
0.2  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 21. OUTB ON Resistance (Sink) vs Temperature  
Figure 20. OUTB ON Resistance (Source) vs  
Temperature  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00050-1-2  
26.Oct.2018 Rev.001  
13/22  
BM60213FV-C  
Typical Performance Curves - continued  
75  
75  
70  
65  
60  
55  
50  
45  
40  
35  
70  
VCCA-GND2=10 V  
VCCA-GND2=15 V  
VCCA-GND2=24 V  
VCCA-GND2=10 V  
VCCA-GND2=15 V  
VCCA-GND2=24 V  
65  
60  
55  
50  
45  
40  
35  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 22. OUTA Turn ON Time vs Temperature  
(INA=PWM, INB=L)  
Figure 23. OUTA Turn OFF Time vs Temperature  
(INA=PWM, INB=L)  
75  
70  
65  
60  
55  
50  
45  
40  
35  
75  
70  
65  
60  
55  
50  
45  
40  
35  
VCCB=10 V  
VCCB=15 V  
VCCB=24 V  
VCCB=10 V  
VCCB=15 V  
VCCB=24 V  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 24. OUTB Turn ON Time vs Temperature  
(INA=L, INB=PWM)  
Figure 25. OUTB Turn OFF Time vs Temperature  
(INA=L, INB=PWM)  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00050-1-2  
26.Oct.2018 Rev.001  
14/22  
BM60213FV-C  
Typical Performance Curves - continued  
5.0  
4.0  
3.0  
2.0  
1.0  
10.0  
9.5  
VUVLOH  
9.0  
8.5  
VUVLOL  
8.0  
-50  
-25  
0
25  
50  
75  
100  
125  
-50 -25  
0
25  
50  
75 100 125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 27. VCCB UVLO Mask Time vs Temperature  
Figure 26. VCCB UVLO ON/OFF Voltage vs  
Temperature  
5.0  
10.0  
9.5  
9.0  
8.5  
8.0  
4.0  
3.0  
2.0  
1.0  
VUVLOH  
VUVLOL  
-50  
-25  
0
25  
50  
75  
100  
125  
-50 -25  
0
25  
50  
75 100 125  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 28. VCCA UVLO ON/OFF Voltage vs  
Temperature  
Figure 29. VCCA UVLO Mask Time vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00050-1-2  
26.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
15/22  
TSZ22111 15 001  
BM60213FV-C  
I/O Equivalence Circuits  
Pin Name  
Function  
Pin No.  
I/O equivalence circuits  
OUTAH  
VCCA  
6
High-side(OUTA)  
output pin (Source)  
OUTAH  
OUTAL  
OUTAL  
5
GND2  
High-side(OUTA)  
output pin (Sink)  
INA  
13  
14  
12  
15  
Control input pin for high-side  
VCCB  
VREG  
Internal power supply  
INB  
Control input pin for low-side  
ENA  
INA  
INB  
ENA  
Input enabling signal input pin  
VREG  
GND1  
Power supply pin for input  
circuit  
www.rohm.com  
TSZ02201-0818ACH00050-1-2  
26.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
16/22  
TSZ22111 15 001  
BM60213FV-C  
I/O Equivalence Circuits continued  
Pin Name  
Pin No.  
I/O equivalence circuits  
Function  
OUTBH  
VCCB  
17  
Low-side(OUTB)  
output pin (Source)  
OUTBH  
OUTBL  
OUTBL  
18  
Low-side(OUTB)  
output pin (Sink)  
PGND  
PGND  
GND1  
19  
Low-side ground pin  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00050-1-2  
26.Oct.2018 Rev.001  
17/22  
BM60213FV-C  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may  
flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring,  
and routing of connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
www.rohm.com  
TSZ02201-0818ACH00050-1-2  
© 2018 ROHM Co., Ltd. All rights reserved.  
18/22  
TSZ22111 15 001  
26.Oct.2018 Rev.001  
BM60213FV-C  
Operational Notes continued  
9. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
10. Regarding the Input Pin of the IC  
This IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N  
junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode  
or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 30. Example of IC Structure  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
.
www.rohm.com  
TSZ02201-0818ACH00050-1-2  
26.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
19/22  
TSZ22111 15 001  
BM60213FV-C  
Ordering Information  
B M 6  
0
2
1
3 F V  
-
CE 2  
Package  
Rank  
FV:SSOP-B20W C:for Automotive applications  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
SSOP-B20W (TOP VIEW)  
Part Number Marking  
BM60213  
LOT Number  
Pin 1 Mark  
www.rohm.com  
TSZ02201-0818ACH00050-1-2  
26.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
20/22  
TSZ22111 15 001  
BM60213FV-C  
Physical Dimension and Packing Information  
Package Name  
SSOP-B20W  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00050-1-2  
26.Oct.2018 Rev.001  
21/22  
BM60213FV-C  
Revision History  
Date  
Revision  
Changes  
26.Oct.2018  
001  
New Release  
www.rohm.com  
TSZ02201-0818ACH00050-1-2  
26.Oct.2018 Rev.001  
© 2018 ROHM Co., Ltd. All rights reserved.  
22/22  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BM60213FV-CE2

Buffer/Inverter Based MOSFET Driver,
ROHM

BM6031B

Supplementary Fuseblocks BM Series
COOPER

BM6031PQ

Supplementary Fuseblocks BM Series
COOPER

BM6031SQ

Supplementary Fuseblocks BM Series
COOPER

BM6032B

Supplementary Fuseblocks BM Series
COOPER

BM6032PQ

Supplementary Fuseblocks BM Series
COOPER

BM6032SQ

Supplementary Fuseblocks BM Series
COOPER

BM6033B

Supplementary Fuseblocks BM Series
COOPER

BM6033PQ

Supplementary Fuseblocks BM Series
COOPER

BM6033SQ

Supplementary Fuseblocks BM Series
COOPER

BM6101FV-C

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation
ROHM

BM6101FV-CE2

Isolation voltage 2500Vrms 1ch Gate Driver Providing Galvanic Isolation
ROHM