BM61S40RFV-C [ROHM]

BM61S40RFV-C是绝缘耐压3750Vrms、输入输出延迟时间65n、最小输入脉冲宽度60ns的栅极驱动器。搭载了UVLO功能、米勒钳位功能、过电压保护功能。;
BM61S40RFV-C
型号: BM61S40RFV-C
厂家: ROHM    ROHM
描述:

BM61S40RFV-C是绝缘耐压3750Vrms、输入输出延迟时间65n、最小输入脉冲宽度60ns的栅极驱动器。搭载了UVLO功能、米勒钳位功能、过电压保护功能。

栅极驱动 脉冲 驱动器
文件: 总28页 (文件大小:1232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Gate Driver Providing Galvanic Isolation Series  
Isolation voltage 3750Vrms  
1ch Gate Driver Providing Galvanic Isolation  
BM61S40RFV-C  
General Description  
Key Specifications  
The BM61S40RFV-C is a gate driver with an isolation  
voltage of 3750 Vrms, I/O delay time of 65ns, and  
minimum input pulse width of 60ns. It incorporates the  
Under-Voltage Lockout (UVLO) function, Miller clamp  
function and Over-Voltage Protect (OVP) function.  
Isolation Voltage:  
Maximum Gate Drive Voltage:  
I/O Delay Time:  
Minimum Input Pulse Width:  
Output Current  
3750 Vrms  
20 V  
65 ns(Max)  
60 ns  
4 A  
Features  
AEC-Q100 Qualified(Note 1 )  
Providing Galvanic Isolation  
Active Miller Clamping  
Under-Voltage Lockout Function  
Over-Voltage Protect Function  
Package  
W(Typ) x D(Typ) x H(Max)  
3.5 mm x10.2 mm x 1.9 mm  
SSOP-B10W  
UL1577 Recognized: File E356010  
(Note 1) Grade1  
Applications  
SiC MOSFET Gate Drive  
SSOP-B10W  
Typical Application Circuits  
Isolation  
GND2  
VCC2  
OUT  
MC  
GND1  
UVLO2  
Logic  
UVLO1  
VCC1  
OVP  
INA  
INB  
Pulse  
Generator  
CVCC2  
CVCC1  
-
+
GND1  
GND2  
Pin 1  
2V  
Figure 1. For Driving SiC MOSFET without Negative Power Supply  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
1/25  
TSZ22111 14 001  
 
 
 
 
 
 
BM61S40RFV-C  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Key Specifications...........................................................................................................................................................................1  
Package  
..................................................................................................................................................................................1  
Typical Application Circuits .............................................................................................................................................................1  
Contents .........................................................................................................................................................................................2  
Recommended Range of External Constants.................................................................................................................................3  
Pin Configurations ..........................................................................................................................................................................3  
Pin Descriptions..............................................................................................................................................................................3  
Description of Functions and Examples of Constant Setting ..........................................................................................................5  
Absolute Maximum Ratings ............................................................................................................................................................8  
Thermal Resistance........................................................................................................................................................................8  
Recommended Operating Ratings..................................................................................................................................................9  
Insulation Related Characteristics ..................................................................................................................................................9  
Electrical Characteristics...............................................................................................................................................................11  
Typical Performance Curves.........................................................................................................................................................12  
Figure 8. Input-side Circuit Current 1 vs Input-side Supply Voltage ..........................................................................................12  
Figure 9. Input-side Circuit Current 1 vs Temperature...............................................................................................................12  
Figure 10. Input-side Circuit Current 2 vs Input-side Supply Voltage (At INA=100 kHz, Duty=50 %)........................................12  
Figure 11. Input-side Circuit Current 2 vs Temperature (At INA=100 kHz, Duty=50 %).............................................................12  
Figure 12. Output-side Circuit Current 2 vs Output-side Supply Voltage (At OUT=L) ...............................................................13  
Figure 13. Output-side Circuit Current 2 vs Temperature (At OUT=L).......................................................................................13  
Figure 14.Output-side Circuit Current 2 vs Output-side Supply Voltage (At OUT=H)................................................................13  
Figure 15 Output-side Circuit Current 2 vs Temperature (At OUT=H).......................................................................................13  
Figure 16. Logic High/Low Level Input Voltage .........................................................................................................................14  
Figure 17.Output Voltage vs Logic Level Input Voltage (INA)....................................................................................................14  
Figure 18 Logic Pull-up/down Resistance vs Temperature........................................................................................................14  
Figure 19 Logic Input Minimum Pulse Width vs Temperature ...................................................................................................14  
Figure 20. OUT ON Resistance (Source) vs Temperature ........................................................................................................15  
Figure 21. OUT ON Resistance (Sink) vs Temperature.............................................................................................................15  
Figure 22 Turn ON Time vs Temperature ..................................................................................................................................15  
Figure 23 Turn OFF Time vs Temperature ................................................................................................................................15  
Figure 24. Turn ON Time vs Temperature (INA=H, INB=PWM) ................................................................................................16  
Figure 25. Turn OFF Time vs Temperature (INA=H, INB=PWM)...............................................................................................16  
Figure 26. MC ON Resistance vs Temperature.........................................................................................................................16  
Figure 27. MC ON Threshold Voltage vs Temperature..............................................................................................................16  
Figure 28 VCC1 UVLO ON/OFF Voltage vs Temperature ...........................................................................................................17  
Figure 29 VCC1 UVLO Mask Time vs Temperature ....................................................................................................................17  
Figure 30 VCC2 UVLO ON/OFF Voltage vs Temperature ...........................................................................................................17  
Figure 31 VCC2 UVLO Mask Time vs Temperature ....................................................................................................................17  
Figure 32 VCC2 OVP ON/OFF Voltage vs Temperature .............................................................................................................18  
Figure 33 VCC2 OVP Mask Time vs Temperature.......................................................................................................................18  
Selection of Components Externally Connected...........................................................................................................................19  
I/O Equivalence Circuits................................................................................................................................................................20  
Operational Notes.........................................................................................................................................................................21  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Reverse Connection of Power Supply............................................................................................................................21  
Power Supply Lines........................................................................................................................................................21  
Ground Voltage...............................................................................................................................................................21  
Ground Wiring Pattern....................................................................................................................................................21  
Recommended Operating Conditions.............................................................................................................................21  
Inrush Current.................................................................................................................................................................21  
Operation Under Strong Electromagnetic Field ..............................................................................................................21  
Testing on Application Boards ........................................................................................................................................21  
Inter-pin Short and Mounting Errors ...............................................................................................................................21  
Unused Input Pins ..........................................................................................................................................................22  
Regarding the Input Pin of the IC ...................................................................................................................................22  
Ceramic Capacitor..........................................................................................................................................................22  
9.  
10.  
11.  
12.  
Ordering Information.....................................................................................................................................................................23  
Marking Diagram ..........................................................................................................................................................................23  
Physical Dimension and Packing Information...............................................................................................................................24  
Revision History............................................................................................................................................................................25  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
2/25  
TSZ22111 15 001  
 
BM61S40RFV-C  
Recommended Range of External Constants  
Recommended Value  
Pin Name  
Symbol  
Unit  
Min  
0.1  
Typ  
Max  
VCC1  
VCC2  
CVCC1  
CVCC2  
1.0  
-
-
µF  
µF  
(Note 2)  
0.01  
-
(Note 2) Value according to the load  
Pin Configurations  
(TOP VIEW)  
GND1  
VCC1  
5
4
3
2
1
6
7
8
9
GND2  
VCC2  
OUT  
MC  
INA  
INB  
10  
GND1  
GND2  
Pin Descriptions  
Pin No.  
Pin Name  
GND2  
MC  
Function  
1
2
Output-side ground pin  
Miller clamp pin  
3
OUT  
Output pin  
4
VCC2  
GND2  
GND1  
VCC1  
INA  
Output-side power supply pin  
Output-side ground pin  
Input-side ground pin  
Input-side power supply pin  
Control input A pin  
5
6
7
8
9
INB  
Control input B pin  
10  
GND1  
Input-side ground pin  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
3/25  
TSZ22111 15 001  
BM61S40RFV-C  
Pin Descriptions - continued  
1) VCC1 (Input-side Power Supply Pin)  
The VCC1 pin is a power supply pin on the input side. To suppress voltage fluctuations due to the current to drive internal  
transformers, connect a bypass capacitor between the VCC1 and the GND1 pins.  
2) GND1 (Input-side Ground Pin)  
The GND1 pin is a ground pin on the input side.  
3) VCC2 (Output-side Power Supply Pin)  
The VCC2 pin is a power supply pin on the output side. To reduce voltage fluctuations due to OUT pin output current,  
connect a bypass capacitor between the VCC2 and the GND2 pins.  
4) GND2 (Output-side Ground Pin)  
The GND2 pin is a ground pin on the output side.  
5) INA, INB (Control Input A/B Pin)  
The INA and INB pins are used to determine output logic.  
INB  
H
INA  
L
OUT  
L
L
H
H
L
L
L
L
H
H
6) OUT (Output Pin)  
The OUT pin is used to drive the gate of a power device.  
7) MC (Miller Clamp Pin)  
The MC pin is for preventing the increase in gate voltage due to the Miller current of the power device connected to the  
OUT pin. If the Miller Clamp function is not used, short-circuit the MC pin to the GND2 pin.  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
4/25  
TSZ22111 15 001  
BM61S40RFV-C  
Description of Functions and Examples of Constant Setting  
1) Miller Clamp Function  
When the INA=L or INB=H and OUT pin voltage < VMCON (typ 2V), the internal MOSFET of the MC pin is turned ON.  
INA  
L
INB  
X
MC  
Internal MOSFET of the MC Pin  
Less Than VMCON  
Less Than VMCON  
X
ON  
ON  
X
H
H
L
OFF  
VCC2  
GATE  
OUT  
MC  
Logic  
-
+
VMCON  
GND2  
Figure 2. Block Diagram of Miller Clamp Function  
-
Figure 3. Timing Chart of Miller Clamp Function  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
5/25  
TSZ22111 15 001  
BM61S40RFV-C  
Description of Functions and Examples of Constant Setting - continued  
2) Under-Voltage Lockout (UVLO) Function  
The BM61S40RFV-C incorporates the Under-Voltage Lockout (UVLO) function both on the Input-side and the output-side.  
When the power supply voltage drops to the UVLO ON voltage (input-side typ 4.0 V, output-side 14.5 V), the OUT pin will  
output the Lsignal. In addition, to prevent malfunctions due to noises, a mask time of tUVLO1MSK (typ 1.5 µs) and tUVLO2MSK  
(typ 2.9 µs) are set on both the input-side and the output-side. After the UVLO on Input-side is released, the input signal  
will take effect from the time after the input signal switches.  
INA  
H
L
INB  
VUVLO1H  
VUVLO1L  
VCC1  
OUT  
tUVLO1MSK  
Figure 4. Timing Chart of Input-side UVLO Function  
H
INA  
INB  
L
H
L
VUVLO2H  
VUVLO2L  
VCC2  
OUT  
H
Hi-Z  
L
tUVLO2MSK  
Figure 5. Timing Chart of Output-side UVLO Function  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
6/25  
BM61S40RFV-C  
Description of Functions and Examples of Constant Setting - continued  
3) Over-Voltage Protect (OVP) Function  
The BM61S40RFV-C incorporates the Over-Voltage Protect (OVP) function on the output-side. When the power supply  
voltage exceeds the OVP ON voltage (typ 21.5 V), the OUT pin will output the Lsignal. In addition, to prevent  
malfunctions due to noises, a mask time of tOVPMSK (typ 10 µs) is set. After the OVP is released, OUT pin becomes the logic  
according to the input logic  
H
INA  
L
H
INB  
L
VOVPH  
VOVPL  
VCC2  
H
OUT  
tOVPMSK  
L
Figure 6. Timing Chart of OVP Function  
4) I/O Condition Table  
Input  
Output  
No.  
Status  
VCC1  
VCC2  
INB  
INA  
OUT  
MC  
1
2
3
4
5
6
VCC1 UVLO  
VCC2 UVLO  
UVLO  
X
X
X
X
X
H
L
X
X
X
X
L
L
L
L
L
L
H
L
L
UVLO  
OVP  
VCC2 OVP  
X
L
No UVLO  
No OVP  
INB Active  
No UVLO  
No UVLO  
No UVLO  
L
No UVLO  
No OVP  
Normal Operation L Input  
Normal Operation H input  
L
No UVLO  
No OVP  
L
H
Hi-Z  
X: Don't care  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
7/25  
TSZ22111 15 001  
BM61S40RFV-C  
Absolute Maximum Ratings  
Parameter  
Symbol  
Limits  
Unit  
Input-side Supply Voltage  
Output-side Supply Voltage  
INA Pin Input Voltage  
VCC1  
VCC2  
-0.3 to +7.0(Note 3)  
-0.3 to +30.0(Note 4)  
-0.3 to +VCC1+0.3 or +7.0(Note 3)  
-0.3 to +VCC1+0.3 or +7.0(Note 3)  
self limited  
V
V
VINA  
V
INB Pin Input Voltage  
VINB  
V
OUT Pin Output Current (Peak 10µs)  
Storage Temperature Range  
Maximum Junction Temperature  
IOUTPEAK  
Tstg  
A
-55 to +150  
°C  
°C  
Tjmax  
+150  
(Note 3) Relative to GND1.  
(Note 4) Relative to GND2.  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB boards with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
Thermal Resistance (Note 5)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 7)  
2s2p(Note 8)  
SSOP-B10W  
Input-side Junction to Ambient  
θJA1  
θJA2  
ΨJT1  
ΨJT2  
172.1  
180.2  
32  
101.8  
108.9  
27  
°C/W  
°C/W  
°C/W  
°C/W  
Output-side Junction to Ambient  
Input-side Junction to Top Characterization Parameter(Note 6)  
Output-side Junction to Top Characterization Parameter(Note 6)  
82  
60  
(Note 5) Based on JESD51-2A (Still-Air)  
(Note 6) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 7) Using a PCB board based on JESD51-3.  
(Note 8) Using a PCB board based on JESD51-7.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70 μm  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
4 Layers  
Top  
Copper Pattern  
Bottom  
Copper Pattern  
74.2 mm x 74.2 mm  
Thickness  
Copper Pattern  
Thickness  
Thickness  
Footprints and Traces  
70 μm  
74.2 mm x 74.2 mm  
35 μm  
70 μm  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
8/25  
TSZ22111 15 001  
BM61S40RFV-C  
Recommended Operating Ratings  
Parameter  
Symbol  
Min  
4.5  
16  
Max  
5.5  
20  
Units  
V
(Note 9)  
Input-side Supply Voltage  
Output-side Supply Voltage  
Operating Temperature  
VCC1  
(Note 10)  
VCC2  
V
Topr  
-40  
125  
°C  
(Note 9) Relative to GND1.  
(Note 10) Relative to GND2.  
Insulation Related Characteristics  
Basic Insulation Requirements according to VDE0884-11(pending)  
Parameter  
Symbol  
Characteristic  
Units  
Insulation Classification Per EN 60664-1, Table 1  
For Rated Main Voltage< 150Vrms  
For Rated Main Voltage< 300Vrms  
For Rated Main Voltage< 450Vrms  
For Rated Main Voltage< 600Vrms  
Rated Impulse Voltage  
I - IV  
I - IV  
I - III  
I - III  
-
Climatic Classification  
40/125/21  
2
-
Pollution Decree(EN 60664-1)  
Minimum External Clearance  
-
CLR  
CPG  
8.1  
mm  
mm  
mm  
-
Minimum External Creepage  
8.1  
Minimum Internal Gap (Internal Clearance)  
Minimum Comparative Tracking Index  
Minimum Repetitive Insulation Voltage  
0.012  
>400  
891  
CTI  
VIORM  
Input to Output Test Voltage, Method b  
VIORM * 1.875= VPR, Productive Test, tm = 1s,  
Partial Discharge < 5pC  
VPR  
1671  
Vpeak  
Surge Isolation Voltage  
VIOSM  
VIOTM  
RIO  
6000  
5300  
>109  
Highest Allowable Voltage, 1min  
Insulation Resistance at TS, VIO = 500V  
Ω
Recognized under UL 1577  
Description  
Symbol  
VISO  
Characteristic  
3750  
Units  
Vrms  
Vrms  
Insulation Withstand Voltage / 1min  
Insulation Test Voltage / 1s  
VISO  
4500  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
9/25  
TSZ22111 15 001  
BM61S40RFV-C  
UL1577 Ratings Table  
Following values are described in UL Report.  
Parameter  
Side 1 (Input Side) Circuit Current  
Side 2 (Output Side) Circuit Current  
Side 1 (Input Side) Consumption Power  
Side 2 (Output Side) Consumption Power  
Isolation Voltage  
Values  
0.4  
Units  
mA  
mA  
mW  
mW  
Vrms  
°C  
Conditions  
VCC1=5.0V, OUT=L  
0.7  
VCC2=15V, OUT=L  
VCC1=5.0V, OUT=L  
VCC2=15V, OUT=L  
2
12.6  
3750  
125  
150  
150  
8.33  
Maximum Operating (Ambient) Temperature  
Maximum Junction Temperature  
Maximum Storage Temperature  
Maximum Data Transmission Rate  
°C  
°C  
MHz  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
10/25  
BM61S40RFV-C  
Electrical Characteristics  
(Unless otherwise specified Ta=-40°C to +125°C, VCC1=4.5V to 5.5V, VCC2=16V to 20V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
INA=L,INB=H  
General  
Input-side Circuit Current 1  
Input-side Circuit Current 2  
Output-side Circuit Current 1  
ICC11  
ICC12  
ICC21  
ICC22  
0.2  
1.0  
0.4  
2.0  
1.0  
4.0  
mA  
mA  
mA  
mA  
INA=100kHz, Duty=50%  
OUT=L  
0.30  
0.22  
0.70  
0.52  
1.20  
0.90  
Output-side Circuit Current 2  
OUT=H  
Logic Block  
Logic High Level Input Voltage  
Logic Low Level Input Voltage  
Logic Pull-down Resistance  
Logic Pull-up Resistance  
VINH  
VINL  
RIND  
RINU  
2.0  
0
-
VCC1  
0.8  
V
V
INA, INB  
INA, INB  
INA  
-
25  
25  
50  
50  
100  
100  
kΩ  
kΩ  
INB  
Logic Input Minimum Pulse Width  
tINMIN  
60  
-
-
ns  
INA, INB  
Output  
0.3  
0.15  
0.67  
0.45  
1.5  
0.98  
IOUT=-40mA  
IOUT=40mA  
OUT ON Resistance (Source)  
OUT ON Resistance (Sink)  
RONH  
RONL  
Ω
Ω
VCC2=18 V,  
Guaranteed by Design  
VCC2=18 V,  
Guaranteed by Design  
INA=PWM, INB=L  
INA=H, INB=PWM  
INA=PWM, INB=L  
INA=H, INB=PWM  
tPOFFA tPONA  
OUT Maximum Current (Source)  
OUT Maximum Current (Sink)  
IOUTMAXH  
4.0  
4.0  
-
-
-
-
A
A
IOUTMAXL  
tPONA  
tPONB  
45  
45  
45  
45  
-10  
-10  
-
55  
55  
55  
55  
0
65  
65  
65  
65  
+10  
+10  
20  
-
ns  
ns  
Turn ON Time  
tPOFFA  
tPOFFB  
tPDISTA  
tPDISTB  
Tsk-pp  
tRISE  
ns  
Turn OFF Time  
ns  
ns  
Propagation Distortion  
tPOFFB tPONB  
0
ns  
Part to Part Skew  
-
ns  
2 nF between OUT-GND2  
2 nF between OUT-GND2  
IMC=40 mA  
Rise Time  
-
15  
15  
0.45  
2
ns  
Fall Time  
tFALL  
-
-
ns  
0.15  
1.8  
100  
0.98  
2.2  
-
Ω
MC ON Resistance  
RONMC  
VMCON  
CM  
MC ON Threshold Voltage  
Common Mode Transient Immunity  
Protection Functions  
VCC1 UVLO OFF Voltage  
VCC1 UVLO ON Voltage  
VCC1 UVLO Mask Time  
VCC2 UVLO OFF Voltage  
VCC2 UVLO ON Voltage  
VCC2 UVLO Mask Time  
VCC2 OVP OFF Voltage  
VCC2 OVP ON Voltage  
VCC2 OVP Mask Time  
V
Guaranteed by Design  
-
kV/µs  
VUVLO1H  
VUVLO1L  
tUVLO1MSK  
VUVLO2H  
VUVLO2L  
tUVLO2MSK  
VOVPL  
3.95  
3.75  
0.4  
4.2  
4.0  
4.45  
4.25  
5.0  
V
V
1.5  
µs  
V
14.6  
14.1  
1.0  
15.0  
14.5  
2.9  
15.4  
14.9  
5.0  
V
µs  
V
20.6  
21.1  
3.0  
21.0  
21.5  
10.0  
21.4  
21.9  
20.0  
VOVPH  
V
tOVPMSK  
µs  
INA  
INB  
VINL  
VINH  
VINH  
VINL  
tPONB  
tPOFFA  
tPONA  
tPOFFB  
90%  
tRISE  
90%  
90%  
90%  
OUT  
10%  
10%  
tFALL  
10%  
10%  
tFALL  
tRISE  
Figure 7. Timing Chart of IN-OUT  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
11/25  
TSZ22111 15 001  
BM61S40RFV-C  
Typical Performance Curves  
1.00  
0.90  
0.80  
0.70  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
Ta=+125°C  
0.60  
0.50  
0.40  
0.30  
0.20  
VCC1=5.5V  
VCC1=5.0V  
VCC1=4.5V  
Ta=+25°C  
5.00 5.25  
Ta=-40°C  
-40 -20  
0
20 40 60 80 100 120  
Temperature: Ta [°C]  
4.50  
4.75  
5.50  
Input-side SupplyVoltage:VCC1[V]  
Figure 8. Input-side Circuit Current 1 vs  
Input-side Supply Voltage  
Figure 9. Input-side Circuit Current 1 vs  
Temperature  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
Ta=+125°C  
VCC1=5.5V  
VCC1=5.0V  
VCC1=4.5V  
Ta=+25°C  
Ta=-40°C  
4.50  
4.75  
5.00  
5.25  
5.50  
-40 -20  
0
20 40 60 80 100 120  
Temperature: Ta [°C]  
Input-side SupplyVoltage:VCC1[V]  
Figure 10. Input-side Circuit Current 2 vs  
Input-side Supply Voltage (At INA=100 kHz,  
Duty=50 %)  
Figure 11. Input-side Circuit Current 2 vs  
Temperature (At INA=100 kHz, Duty=50 %)  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
12/25  
TSZ22111 15 001  
BM61S40RFV-C  
Typical Performance Curves - continued  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
1.20  
1.10  
1.00  
Ta=+125°C  
0.90  
0.80  
0.70  
0.60  
VCC2=20V  
VCC2=18V  
0.50  
0.40  
0.30  
Ta=-40°C  
17  
Ta=+25°C  
18  
VCC2=16V  
-40 -20  
0
20 40 60 80 100 120  
Temperature: Ta [°C]  
16  
19  
20  
Output-side SupplyVoltage:VCC2[V]  
Figure 12. Output-side Circuit Current 1 vs  
Output-side Supply Voltage (At OUT=L)  
Figure 13. Output-side Circuit Current 1 vs  
Temperature (At OUT=L)  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
Ta=+125°C  
VCC2=20V  
VCC2=16V  
Ta=+25°C  
Ta=-40°C  
VCC2=18V  
-40 -20  
0
20  
40  
60  
80 100 120  
16  
17  
18  
19  
20  
Output-side SupplyVoltage:VCC2[V]  
Temperature: Ta [°C]  
Figure 14.Output-side Circuit Current 2 vs  
Output-side Supply Voltage (At OUT=H)  
Figure 15 Output-side Circuit Current 2 vs  
Temperature (At OUT=H)  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
13/25  
TSZ22111 15 001  
BM61S40RFV-C  
Typical Performance Curves - continued  
2.0  
24  
20  
16  
12  
8
Ta=-40°C  
Ta=+125°C  
Ta=+25°C  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
H level  
VCC1=5V  
Ta=+25°C Ta=+125°C  
L level  
Ta=-40°C  
4
0
4.50  
4.75  
5.00  
5.25  
5.50  
0
1
2
3
4
5
Input-side SupplyVoltage:VCC1[V]  
LogicLevel Input Voltage :VINH/L[V]  
Figure 16. Logic High/Low Level Input Voltage  
vs Input-side Supply Voltage  
Figure 17.Output Voltage vs Logic Level Input  
Voltage (INA)  
(VCC1=5 V, VCC2=18 V, Ta=25 °C)  
50  
100  
75  
VCC1=4.5V  
VCC1=5V  
VCC1=5.5V  
40  
30  
20  
10  
0
Logic Pull-up  
VCC1=4.5V  
VCC1=5V  
VCC1=5.5V  
50  
Logic Pull-down  
VCC1=4.5V  
VCC1=5V  
VCC1=5.5V  
25  
-40 -20  
0
20  
40  
60  
80  
100 120  
-40 -20  
0
20  
40  
60  
80 100 120  
Temperature: Ta [°C]  
Temperature: Ta [°C]  
Figure 18 Logic Pull-up/down Resistance vs  
Temperature  
Figure 19 Logic Input Minimum Pulse Width  
vs Temperature  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
14/25  
TSZ22111 15 001  
BM61S40RFV-C  
Typical Performance Curves - continued  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
VCC2=16V  
VCC2=18V  
VCC2=20V  
VCC2=16V  
VCC2=18V  
VCC2=20V  
0.2  
0.0  
-40 -20  
0
20 40 60 80 100 120  
Temperature: Ta [°C]  
-40 -20  
0
20  
40  
60  
80 100 120  
Temperature: Ta [°C]  
Figure 20. OUT ON Resistance (Source) vs  
Temperature  
Figure 21. OUT ON Resistance (Sink) vs  
Temperature  
65  
60  
55  
50  
45  
65  
60  
55  
50  
45  
VCC2=20V  
VCC2=20V  
VCC2=18V  
VCC2=16V  
VCC2=18V  
VCC2=16V  
-40 -20  
0
20 40 60 80 100 120  
Temperature: Ta [°C]  
-40 -20  
0
20 40 60 80 100 120  
Temperature: Ta [°C]  
Figure 22 Turn ON Time vs Temperature  
(INA=PWM, INB=L)  
Figure 23 Turn OFF Time vs Temperature  
(INA=PWM, INB=L)  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
15/25  
TSZ22111 15 001  
BM61S40RFV-C  
Typical Performance Curves - continued  
65  
65  
60  
55  
50  
45  
VCC2=20V  
60  
VCC2=20V  
55  
VCC2=18V  
VCC2=18V  
VCC2=16V  
50  
45  
VCC2=16V  
-40 -20  
0
20 40 60 80 100 120  
Temperature: Ta [°C]  
-40 -20  
0
20 40 60 80 100 120  
Temperature: Ta [°C]  
Figure 24. Turn ON Time vs Temperature  
(INA=H, INB=PWM)  
Figure 25. Turn OFF Time vs Temperature  
(INA=H, INB=PWM)  
2.2  
2.1  
2.0  
1.9  
1.8  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VCC2=16V  
VCC2=18V  
VCC2=20V  
VCC2=16V  
VCC2=18V  
VCC2=20V  
-40 -20  
0
20 40 60 80 100 120  
Temperature: Ta [°C]  
-40 -20  
0
20 40 60 80 100 120  
Temperature: Ta [°C]  
Figure 26. MC ON Resistance vs  
Temperature  
Figure 27. MC ON Threshold Voltage vs  
Temperature  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
16/25  
TSZ22111 15 001  
BM61S40RFV-C  
Typical Performance Curves - continued  
4.40  
4.30  
4.20  
5
4
3
2
1
0
4.10  
VUVLO1H  
4.00  
3.90  
VUVLO1L  
40 60  
Temperature: Ta [°C]  
3.80  
-40 -20  
0
20  
80 100 120  
-40 -20  
0
20  
40  
60  
80 100 120  
Temperature: Ta [°C]  
Figure 28 VCC1 UVLO ON/OFF Voltage vs  
Temperature  
Figure 29 VCC1 UVLO Mask Time vs  
Temperature  
5
15.5  
15.3  
15.1  
14.9  
14.7  
14.5  
14.3  
4
3
2
1
0
VUVLO2H  
VUVLO2L  
-40 -20  
0
20 40 60 80 100 120  
Temperature: Ta [°C]  
-40 -20  
0
20  
40  
60  
80 100 120  
Temperature: Ta [°C]  
Figure 30 VCC2 UVLO ON/OFF Voltage vs  
Temperature  
Figure 31 VCC2 UVLO Mask Time vs  
Temperature  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
17/25  
TSZ22111 15 001  
BM61S40RFV-C  
Typical Performance Curves - continued  
19  
17  
15  
13  
11  
9
21.9  
21.7  
21.5  
VOVPH  
21.3  
21.1  
VOVPL  
20.9  
20.7  
20.5  
7
5
3
-40 -20  
0
20 40 60 80 100 120  
Temperature: Ta [°C]  
-40 -20  
0
20  
40  
60  
80 100 120  
Temperature: Ta [°C]  
Figure 32 VCC2 OVP ON/OFF Voltage vs  
Temperature  
Figure 33 VCC2 OVP Mask Time vs  
Temperature  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
18/25  
TSZ22111 15 001  
BM61S40RFV-C  
Selection of Components Externally Connected  
GND1  
VCC1  
GND2  
VCC2  
OUT  
R1  
INA  
INB  
MC  
GND1  
GND2  
Figure 34. Driving SiC MOSFET  
GND1  
VCC1  
GND2  
R1  
Q1  
VCC2  
OUT  
R1 D1  
INA  
Q2  
MC  
INB  
GND1  
GND2  
Figure 35. Driving SiC MOSFET with Buffer Circuit  
Recommended Parts  
Manufacturer  
ROHM  
Element  
Resistor  
Part Number  
R1  
Q1  
Q2  
D1  
LTR18EZP,LTR50UZP  
2SCR542PFRA  
ROHM  
ROHM  
ROHM  
NPN Transistor  
PNP Transistor  
Diode  
2SAR542PFRA  
RBR3MM30ATF,RBR5LAM30ATF  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
19/25  
TSZ22111 15 001  
BM61S40RFV-C  
I/O Equivalence Circuits  
Name  
Pin No.  
I/O Equivalence Circuits  
Function  
VCC2  
OUT  
OUT  
Output Pin  
MC  
1
GND2  
VCC2  
MC  
2
Miller Clamp pin  
GND2  
VCC1  
INA  
INA  
3
Control Input pin A  
GND1  
VCC1  
INB  
INB  
4
Control Input pin B  
GND1  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
20/25  
TSZ22111 15 001  
BM61S40RFV-C  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7.  
8.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
www.rohm.com  
© 2018 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
21/25  
BM61S40RFV-C  
Operational Notes continued  
10. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
11. Regarding the Input Pin of the IC  
This IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N  
junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or  
transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 36. Example of IC structure  
12. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
22/25  
TSZ22111 15 001  
BM61S40RFV-C  
Ordering Information  
B M 6 1 S 4 0 R F V -  
CE2  
Part Number  
Package  
Product class  
FV: SSOP-B10W  
C: for Automotive applications  
Packaging and forming specification  
E2: Embossed tape and reel  
Marking Diagram  
SSOP-B10W (TOP VIEW)  
Pin 1 Mark  
Part Number Marking  
LOT Number  
BM61S40R  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
23/25  
TSZ22111 15 001  
BM61S40RFV-C  
Physical Dimension and Packing Information  
Package Name  
SSOP-B10W  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
24/25  
TSZ22111 15 001  
BM61S40RFV-C  
Revision History  
Date  
Revision  
Changes  
14.May.2018  
001  
New Release  
Page 1: Changed Features  
Before: UL1577(pending)  
→ After: UL1577 Recognized  
Page 9: Corrected Insulation Related Characteristic  
Before: Reinforced Insulation  
Before: VDE0884-10(pending)  
After: Basic Insulation  
After: VDE0884-11(pending)  
30.Mar.2020  
002  
Before: Recognized under UL 1577(pending)  
After: Recognized under UL 1577  
Before: Vpk After: Vpeak  
Corrected Highest Allowable Voltage, 1min  
Before: 3750Vrms After: 5300Vpeak  
Page 10: Added UL1577 Rating Table  
www.rohm.com  
TSZ02201-0818ACH00400-1-2  
30.Mar.2020 Rev.002  
© 2018 ROHM Co., Ltd. All rights reserved.  
25/25  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BM61S41RFV-C

BM61S41RFV-C是绝缘耐压3750Vrms、输入输出延迟时间65n、最小输入脉冲宽度60ns的栅极驱动器。搭载了UVLO功能、米勒钳位功能。
ROHM

BM6201FS

600V PrestoMOS™ built-in Three phase brushless fan motor driver
ROHM

BM6201FS-E2

600V PrestoMOS™ built-in Three phase brushless fan motor driver
ROHM

BM6202FS

3-Phase Brushless Fan Motor Driver
ROHM

BM6202FS-E2

3-Phase Brushless Fan Motor Driver
ROHM
BOOKLY

BM6203FS

3-Phase Brushless Fan Motor Driver
ROHM

BM6203FS-E2

3-Phase Brushless Fan Motor Driver
ROHM
BOOKLY

BM6204FS

3-Phase Brushless Fan Motor Driver
ROHM

BM6204FS-E2

3-Phase Brushless Fan Motor Driver
ROHM

BM6213FS

3-Phase Brushless Fan Motor Driver
ROHM