BM67290FV-CE2 [ROHM]

Power Supply Support Circuit, Fixed, 1 Channel, PDSO20, SSOP-20;
BM67290FV-CE2
型号: BM67290FV-CE2
厂家: ROHM    ROHM
描述:

Power Supply Support Circuit, Fixed, 1 Channel, PDSO20, SSOP-20

光电二极管
文件: 总33页 (文件大小:1071K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
For Electric Cars & Hybrid Cars  
Isolation Voltage 2,500Vrms  
High Voltage Detection IC  
BM67290FV-C  
Key Specifications  
General Description  
Isolation Voltage:  
Power Source Voltage Range (high voltage side):  
8.0V to 24V  
2,500Vrms (Max)  
This is a voltage detector IC for DC-DC converter.  
Aside from being capable of converting input voltage to  
duty, it has built in protection functions against low  
voltage, overvoltage and active overvoltage.  
Power Source Voltage Range (low voltage side):  
3.0V to 5.5V  
Reference Voltage :  
Oscillation Frequency Variability:  
5V±1.5%  
Features  
Built-in input PWM modulation circuit  
Built-in low voltage lock out circuit  
Built-in input under voltage protection function  
Built-in input overvoltage protection function  
Built-in magnetic isolator  
10kHz to 250kHz (Typ)  
Package  
(Typ) (Typ) (Max)  
6.50mm x 8.10mm x 2.01mm  
Built-in active overvoltage protection function  
Built-in reference voltage output  
Application  
DC-DC converter  
SSOP-B20W  
Typical Application Circuit  
Vbias1  
Vbias2  
VDD1 VDD2  
REF  
VH  
NC  
OUT  
NC  
Controller  
RFOV  
RFLV  
SD1  
VDTY SD2  
VACT  
RT  
NC  
NC  
GND1 GND2  
GND1 GND2  
Figure 1. Example of a Typical Application Circuit of DC-DC Converter  
Product structure: Silicon integrated circuit This product has no designed protection against radioactive rays  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
1/30  
TSZ2211114001  
BM67290FV-C  
Pin Configuration  
REF  
GND1  
RFOV  
RFLV  
VH  
GND2  
NC  
VDD2  
NC  
OUT  
VDTY  
VDD1  
SD1  
NC  
SD2  
NC  
VACT  
GND1  
RT  
GND2  
Figure 2. BM67290FV-C Package (SSOP-B20W)  
Pin Descriptions  
Terminal  
Number  
Code  
I/O  
Function  
Reference voltage terminal  
1
2
REF  
GND1  
RFOV  
RFLV  
VH  
O
-
Grounding terminal 1 (high voltage side)  
Input overvoltage protection value setting terminal  
Input low voltage protection value setting terminal  
Input voltage signal terminal  
3
I
4
I
5
I
6
VDTY  
VDD1  
VACT  
GND1  
RT  
I
Input voltage signal terminal for Duty  
Power source terminal 1 (high voltage side)  
Active voltage signal terminal  
7
-
8
I
9
-
Grounding terminal 1 (high voltage side)  
Timing resistance terminal  
10  
11  
12  
13  
14  
15  
16  
I
GND2  
NC  
-
Grounding terminal 2 (low voltage side)  
Disconnected terminal  
-
SD2  
O
-
Protective cutoff terminal 2  
NC  
Disconnected terminal  
SD1  
O
O
Protective cutoff terminal 1  
Input voltage monitoring condition output signal  
terminal  
OUT  
17  
18  
19  
20  
NC  
VDD2  
NC  
-
-
-
-
Disconnected terminal  
Power source terminal 2 (low voltage side)  
Disconnected terminal  
GND2  
Grounding terminal 2 (low voltage side)  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
2/30  
TSZ2211115001  
BM67290FV-C  
Block Diagram  
VDD1  
REF  
VDD2  
Internal circuit  
VDD1  
UVLO COMP  
(UVLO)  
VDD1  
7.7V/7.4V  
REG12V  
REGlogic  
REF  
Reset  
Internal circuit  
4.2V/4.0V  
REF  
UVLO COMP  
VDD2  
DRV  
Transformer 1  
VACT  
COMP  
Transformer  
driving  
circuit  
(PWM)  
OUT  
SD1  
VACT  
Transformer  
receiving  
circuit  
(PRT1)  
REF/  
4.0V  
GND2  
VHOV  
COMP  
VDD2  
VH  
Transformer  
driving  
circuit  
Transformer  
receiving  
circuit  
PWM  
Circuit/  
Output  
mode  
DRV  
(SD)  
RFOV/  
0.985 x RFOV  
VHLV  
COMP  
RFOV  
Transformer 2  
switching  
GND2  
(PRT2)  
RFLV  
VDTY  
0.8 x RFLV/  
RFLV  
SD2  
RT  
GND2  
GND2  
GND1  
GND2  
GND1  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
3/30  
TSZ2211115001  
BM67290FV-C  
Explanation of Operation  
(1) Timing when VDD2 is ON first before VDD1  
VDD2 powers SD1, SD2 and OUT. When VDD2 turns ON, SD1=H, SD2=L and OUT=L initially.  
Then, when VDD1 turns ON and reaches VthVDD1H, REF turns ON. When REF reaches VthREF, CT turns ON.  
Once the above conditions are satisfied, DUTY will be outputted to OUT pin at CLK’s 2nd pulse. At the same  
time, SD1 becomes L and SD2 becomes Hi-Z.  
VthHVDD2  
VDD2  
0V  
VthVDD1H  
VthVDD1L  
VDD1  
0V  
VthREFH  
VthREFL  
REF  
0V  
VthOV, Vtyh¥VACT  
VthOV×VOVZ  
VHVACT  
VthHPWL  
(CT)  
VH  
VDTY  
VthLV  
VthLV×VLVH  
VthLPWL  
0V  
H
(CLK)  
L
VDD2  
OUT  
0V  
H
(PRT1)  
L
H
(PRT2)  
L
VDD2  
SD1  
0V  
Hi-Z  
SD2  
0V  
Figure 3. VDD2 Start to VDD1 Start Timing Chart  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
4/30  
19.Jul.2016 Rev.002  
TSZ2211115001  
BM67290FV-C  
(2) Timing when VDD1 is ON first before VDD2  
When VDD1 turns ON and reaches VthVDD1, REF turns ON. When REF reaches VthREF, CT turns ON.  
When VDD2 turns ON, SD1=H, SD2=L and OUT=L initially..  
When VDD2 reaches VthVDD2, DUTY will be immediately outputted to OUT pin at the next CLK pulse.  
SD1 and SD2 behavior at CLK’s 2nd pulse is still the same with (1), SD1=L and SD2=Hi-Z at CLK’s 2nd pulse.  
VthVDD2  
VDD2  
0V  
VthVDD1H  
VthLVDD1L  
VDD1  
0V  
VthREFH  
VthREFH  
REF  
0V  
VthOV,VthVACT  
VthOV×VOVZ  
VHVACT  
VthHPWL  
(CT)  
VH  
VDTY  
VTHLV  
VthLV×VLVH  
VthLPWL  
0V  
H
L
(CLK)  
VDD2  
OUT  
0V  
H
L
(PRT1)  
(PRT2)  
H
L
VDD2  
SD1  
0V  
Hi-Z  
0V  
SD2  
Figure 4. VDD1 Start to VDD2 Start Timing Chart  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
5/30  
19.Jul.2016 Rev.002  
TSZ2211115001  
BM67290FV-C  
(3) Timing when VDD1 is turned OFF before VDD2  
When VDD1 reaches VthLVDD1, REF and CT immediately stop. Outputs become SD1=H, SD2=L and OUT=L.  
VDD2  
0V  
VthVDD1H  
VthVDD1L  
VDD1  
0V  
VthREFH  
VthREFL  
REF  
0V  
VthOV, VACT  
VthOV×VOVZ  
VHVACT  
VthHPWL  
( CT )  
VH  
VDTY  
VthLV  
VthLV×VLVH  
VthLPWL  
0V  
H
( CLK )  
L
VDD2  
OUT  
0V  
H
( PRT1 )  
L
H
( PRT2 )  
L
VDD2  
SD1  
0V  
Hi-Z  
SD2  
0V  
Figure 5. VDD1 Stop to VDD2 Stop Timing Chart  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
6/30  
19.Jul.2016 Rev.002  
TSZ2211115001  
BM67290FV-C  
(4) Timing when VDD2 is tuned OFF before VDD1  
When VDD2 reaches VthLVDD2, the outputs become SD1=H, SD2=L and OUT=L even if REF and CT are still  
active.  
VthVDD2  
VDD2  
0V  
VthVDD1H  
VthVDD1L  
VDD1  
0V  
VthREFH  
VthREFL  
REF  
0V  
VthOV, VACT  
VthOV×VOVZ  
VHVACT  
VthHPWML  
( CT )  
VH  
VDTY  
VthLV  
VthLV×VLVH  
VthLPWL  
0V  
H
( CLK )  
L
VDD2  
OUT  
0V  
H
( PRT1 )  
L
H
( PRT2 )  
L
VDD2  
SD1  
0V  
Hi-Z  
SD2  
0V  
Figure 6. VDD2 Stop to VDD1 Stop Timing Chart  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
7/30  
19.Jul.2016 Rev.002  
TSZ2211115001  
BM67290FV-C  
(5) Normal Operation  
During normal operation, the internal oscillator (CT) and internal clock (CLK) are active.  
OUT turns L every time CT is above VDTY.  
OUT turns H every time CLK rises.  
Since protection circuits are not active, SD1=L and SD2=Hi-Z.  
VthOV,VACT  
VthOV×VOVZ  
VHVACT  
VthHPWL  
( CT )  
VH  
VDTY  
VthLV  
VthLV×VLVH  
VthLPWL  
0V  
H
( CLK )  
L
VDD2  
OUT  
0V  
H
( PRT1 )  
L
H
( PRT2 )  
L
VDD2  
SD1  
0V  
Hi-Z  
SD2  
0V  
Figure 7. Normal Operation Timing Chart  
VthHPWL  
VDTY  
(CT)  
VthLPWL  
(CLK)  
(PWM)  
OUT  
Minimum Duty 10%  
Maximum Duty 100%  
td1  
td2  
Propagation delay time =|td1-td2|  
Figure 8. Propagation Delay Time, Minimum Duty, Maximum Duty  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
8/30  
BM67290FV-C  
The output from OUT terminal varies its Duty in accordance with VDTY voltage. Duty becomes higher as VDTY  
voltage increases. The relationship between VDTY voltage and output Duty is shown in the graph below. The  
output Duty becomes 100% when VDTY voltage is above VthHPWL (Typ 4.275V) and minimum duty is achieved  
when VDTY voltage is below VthLPWL (Typ 0.225 V).  
Duty= Min duty + (VDTY-0.225V)/A  
frequency =10kHz  
: Min duty=10.0%, A=0.04500  
frequency =100kHz : Min duty=10.9%, A=0.04545  
frequency =250kHz : Min duty=12.1%, A=0.04607  
100  
Duty  
[ % ]  
50  
10  
0
1.0  
2.0  
3.0  
4.0  
0.225  
(VthLPWL)  
4.275  
VDTY voltage[ V ]  
(VthHPWL)  
Figure 9. VDTY Voltage-Output Duty Property  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
9/30  
TSZ2211115001  
BM67290FV-C  
(6) Overvoltage Detection (active overvoltage protection, input overvoltage protection)  
Overvoltage is detected when VACT > VthACT (for active overvoltage protection) and VH>VthOV (for input  
overvoltage protection). PRT1 immediately turns to “H” and the protection circuit is activated.  
At this time, OUT=H, SD1=H, and SD2=L.  
When the protection circuit is deactivated (VACT<VHVACT for active OVP and VH <VthOV×VOVZ for input OVP),  
OUT returns to normal operation, SD1=L and SD2=Hi-Z at CLK’s 2nd pulse..  
VthOV  
(VthVACT)  
VthOV×VOVZ  
(VHVACT)  
VthHPWL  
( CT )  
VH  
VDTY  
VthLV  
VthLV×VLVH  
VthLPWL  
0V  
H
( CLK )  
L
VDD2  
OUT  
0
H
2CLK  
( PRT1 )  
L
H
( PRT2 )  
L
VDD2  
SD1  
0V  
Hi-Z  
SD2  
0V  
Figure 10. Protection Detection (active overvoltage protection, input overvoltage protection) Timing Chart  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
10/30  
19.Jul.2016 Rev.002  
TSZ2211115001  
BM67290FV-C  
(7) Under Voltage Detection (input low voltage protection)  
When VH < VthLV×VLVH, input low voltage protection is activated. PRT2 immediately turns H.  
At this time, OUT=”L”, SD1=”H”, and SD2=”L”.  
When VH > VthLV, the protection circuit is deactivated and PRT2=L. OUT returns to normal operation, SD1 turns L  
and SD2 turns Hi-Z at CLK’s 2nd pulse.  
VthOV,VthVACT  
VthOV×VOVZ  
VHVACT  
VthHPWL  
( CT )  
VH  
VDTY  
VthLV  
VthLV×VLVH  
VthLPWL  
0V  
H
( CLK )  
L
VDD2  
OUT  
0
H
( PRT1 )  
L
H
( PRT2 )  
L
VDD2  
SD1  
0V  
Hi-Z  
SD2  
0V  
Figure 11. Protection Detection (input low voltage protection) Timing Chart  
(8) UVLO Detection  
This IC is equipped with UVLO circuits for VDD1 voltage, REF voltage and VDD2 voltage.  
When any undervoltage is detected, OUT=L, SD1=H and SD2=L.  
VDD1  
UVLO  
VDD2  
UVLO  
REF  
UVLO  
No  
OUT  
SD1  
SD2  
1
2
3
4
5
6
7
8
L
L
L
L
L
H
H
L
L
H
H
L
H
L
H
L
H
L
H
L
L
L
L
L
L
L
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
DUTY  
OUTPUT  
PROTECTION PROTECTION  
OUTPUT OUTUT  
H:Release L:Detection  
Figure 12. Output Logic of the UVLO  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
11/30  
TSZ2211115001  
BM67290FV-C  
Absolute Maximum Ratings  
Parameter  
Symbol  
VDD1  
VDD2  
VH  
Rating  
Unit  
V
Power Source Terminal (VDD1)  
Power Source Terminal (VDD2)  
Input Voltage (VH)  
-0.3 to +30 (Note 1)  
-0.3 to +7 (Note 2)  
V
-0.3 to VDD1+0.3 or +30 (Note 1)  
-0.3 to VDD1+0.3 or +30 (Note 1)  
-0.3 to VDD1+0.3 or +30 (Note 1)  
-0.3 to VDD1+0.3 or +30 (Note 1)  
-0.3 to VDD1+0.3 or +30 (Note 1)  
-0.3 to VDD2+0.3 or +7 (Note 2)  
-0.3 to VDD2+0.3 or +7 (Note 2)  
-0.3 to +20 (Note 2)  
V
Input Voltage (VDTY)  
VDTY  
VACT  
VRFOV  
VRFLV  
VOUT  
VSD1  
VSD2  
Topr  
Tstg  
V
Input Voltage (VACT)  
V
Input Voltage (RFOV)  
V
Input Voltage (RFLV)  
V
Output Voltage (OUT)  
V
Output Voltage (SD1)  
V
Output Voltage (SD2)  
V
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
-40 to +125  
°C  
°C  
°C  
-55 to+150  
Tjmax  
150  
(Note 1) Based on GND1  
(Note 2) Based on GND2  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated  
over the absolute maximum ratings.  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
12/30  
TSZ2211115001  
BM67290FV-C  
Thermal Resistance(Note3)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 5)  
2s2p(Note 6)  
Fill the package name  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 4)  
151.5  
47  
80.6  
40  
θJA  
°C/W  
°C/W  
ΨJT  
(Note3)Based on JESD51-2A(Still-Air)  
(Note4)The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note5)Using a PCB board based on JESD51-3.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3mm x 76.2mm x 1.57mmt  
Top  
Copper Pattern  
Thickness  
Footprints and Traces  
70μm  
(Note 6)Using a PCB board based on JESD51-7.  
Layer Number of  
Material  
Board Size  
114.3mm x 76.2mm x 1.6mmt  
2 Internal Layers  
Measurement Board  
4 Layers  
FR-4  
Top  
Bottom  
Copper Pattern  
74.2mm x 74.2mm  
Copper Pattern  
Thickness  
Copper Pattern  
Thickness  
Thickness  
Footprints and Traces  
70μm  
74.2mm x 74.2mm  
35μm  
70μm  
Recommended Operating Conditions  
Parameter  
Symbol  
VDD1  
VDD2  
IREF  
Min  
8.0  
3.0  
0
Typ  
10  
5
Max  
Unit  
V
Power Source Voltage VDD1  
Power Source Voltage VDD2  
Reference Voltage Output Current  
Reference Voltage Output Capacity  
Timing Resistance  
24  
5.5  
V
-
5 (Note 7)  
mA  
µF  
kΩ  
kHz  
CREF  
RRT  
1.0  
4
-
4.7  
10  
100  
100  
Oscillation Frequency  
fOSC  
10  
250  
In-phase Input Voltage Range  
VDD1<11.5V  
In-phase Input Voltage Range  
VDD111.5V  
Input Protection Diode  
Current  
VICML  
VICMH  
IDIO  
0
0
-
-
-
-
VDD1-2.5  
9.0  
V
V
2.0  
mA  
(Note 7) Should not exceed Tj=150.  
Insulation Related Characteristics (UL1577 conformity)  
Parameter  
Symbol  
Characteristic  
>109  
Unit  
Ω
Insulation Resistance (VIO=500V)  
Insulation Withstand Voltage / 1min.  
RS  
VISO  
2500  
Vrms  
Insulation Test Voltage / 1s  
VISO  
3000  
Vrms  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
13/30  
TSZ2211115001  
BM67290FV-C  
Electrical Characteristics  
(Unless, otherwise specified, VDD1=8V to 24.0V, VDD2=3.0V to 5.5V, Ta=-40°C to +125°C, RT=10kΩ, described with direction  
of flow from IC as +)  
Limit  
Parameter  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
[Whole]  
VDD1  
VDD2  
IDD1  
8.0  
3.0  
-
-
24.0  
5.5  
V
Input Voltage Range  
-
V
VDD1 Circuit Current  
VDD2 Circuit Current  
4.6  
0.2  
10.0  
1.0  
mA  
mA  
RT=10kΩ , VDTY=2.25V  
RT=10kΩ , VDTY=2.25V  
IDD2  
-
[Low Voltage Malfunction Prevention Circuit]  
Startup Threshold Voltage  
Cutoff Threshold Voltage  
Operation Voltage Hysteresis  
Startup Threshold Voltage  
Cutoff Threshold Voltage  
Operation Voltage Hysteresis  
[Reference Voltage]  
VthVDD1H  
VthVDD1L  
VhysVDD1  
VthREFH  
VthREFL  
VhysREF  
7.5  
7.2  
0.2  
4.0  
3.8  
0.1  
7.7  
7.4  
0.3  
4.2  
4.0  
0.2  
7.9  
7.6  
0.4  
4.4  
4.2  
0.3  
V
V
V
V
V
V
Output Voltage  
VREF  
Iref  
4.925  
5
5.000  
-
5.075  
-
V
IREF=0mA to 5mA  
Output Drive Current  
[PWM Part]  
mA  
Oscillation Frequency  
Duty Precision 10kHz  
Duty Precision 100kHz  
Duty Precision 250kHz  
fOSC  
90  
100  
55.0  
55.5  
56.0  
110  
58.0  
58.5  
59.0  
kHz  
%
RT=10kΩ  
DutyL  
DutyM  
DutyH  
52.0  
52.5  
53.0  
VDTY=2.25V, H duty  
VDTY=2.25V, H duty  
VDTY=2.25V, H duty  
%
%
Duty Temperature  
Property/Electric Property  
Variation Ratio  
ΔDuty  
-
1
-
%
Design assurance  
(Comparison with Ta=25,  
VDD1=10V)  
Threshold Voltage During  
Discharge  
VthHPWL  
4.1  
4.275  
4.45  
V
Threshold Voltage During  
Charge  
VthLPWL  
IbVDTY  
td1  
0.15  
0.225  
0.3  
1.0  
500  
500  
50  
V
Input Bias Current  
-1.0  
-
-
-
-
μA  
ns  
ns  
ns  
VDTY=0V to 9V  
Propagation Delay Time 1  
Propagation Delay Time 2  
-
-
-
td2  
Propagation Delay Time  
Difference  
td1-td2  
[OUT Terminal]  
VOUTL  
VOUTH  
-
-
-
0.5  
V
V
ISINK = -20mA  
Output Voltage  
VDD2-0.5  
VDD2  
ISOURCE = 20mA  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
14/30  
TSZ2211115001  
BM67290FV-C  
Electrical Characteristics continued  
(Unless, otherwise specified, VDD1=8V to 24.0V, VDD2=3.0V to 5.5V, Ta=-40°C to +125°C, RT=10kΩ, described with direction  
of flow from IC as +)  
Limit  
Parameter  
[SD1 Terminal]  
Symbol  
Unit  
Conditions  
Min  
Typ  
Max  
-
-
-
0.5  
V
V
ISINK = -20mA  
VSD1L  
VSD1H  
Output Voltage  
VDD2-0.5  
VDD2  
ISOURCE = 20mA  
[SD2 Terminal]  
SD2 Voltage Operation  
Output Off-leak Current  
[Input Low Voltage Protection Part]  
VSD2  
-
-
-
-
0.5  
10  
V
ISOURCE = 20mA  
SD2 = 20V  
IOFFLEAKSD2  
μA  
Protection Operation/  
Protection Cancellation  
Voltage Ratio  
Protection Cancellation  
Threshold Voltage  
RFLV=1.2V,  
VH=1.5V to down  
VLVH  
VthLV  
tdlyLV  
0.78  
1.15  
-
0.80  
1.20  
-
0.82  
1.25  
1.0  
-
V
RFLV=1.2V, VH=0V to up  
RFLV=1.2V,  
VH=1.5V to 0.5V to  
SD1:L to H, SD2 : H to L  
Protection Operation Delay  
Time  
μs  
RFLV Input Bias Current  
VH Input Bias Current  
IbRFLV  
IbVH  
-1.0  
-1.0  
-
-
1.0  
1.0  
μA  
μA  
VH= RFLV=0V to 9V  
VH= RFLV=0V to 9V  
[Active Overvoltage Protection Part]  
Overvoltage Threshold Voltage  
VthVACT  
VHVACT  
4.9  
3.9  
5.0  
4.0  
5.1  
4.1  
V
V
VACT=3.5V to up  
Protection Cancellation  
Threshold Voltage  
Protection Operation Delay  
Time  
VACT=5.5V to down  
VACT=4.5V to 5.5V to  
SD1L to H, SD2H to L  
VACT=0V to 9V  
tdlyVACT  
IbVACT  
-
-
-
1.0  
1.0  
μs  
VACT Input Bias Current  
-1.0  
μA  
[Input Overvoltage Protection Part]  
Protection Operation/  
Protection Cancellation Voltage  
Ratio  
Protection Operation Threshold  
Voltage  
RFOV=5.0V,  
VH=5.5V to down  
VOVZ  
VthOV  
0.970  
4.9  
0.985  
5.0  
1.000  
5.1  
-
V
RFOV=5.0V,VH=0V to up  
RFOV=5.0V,  
VH=4.5V to 5.5V to  
SD1 : L to H, SD2 : H to L  
Protection Operation Delay  
Time  
tdlyOV  
-
-
-
1.0  
1.0  
μs  
RLOV Input Bias Current  
IbRFOV  
-1.0  
μA  
VH= RFOV=0V to 9V  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
15/30  
TSZ2211115001  
BM67290FV-C  
Typical Performance Curves  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
16  
14  
12  
10  
8
125℃  
6
125  
25℃  
4
2
-40℃  
25℃  
-40℃  
0
0
1
2
3
4
5
0
4
8
12  
16  
20  
24  
Input Voltage : VDD2 [V]  
Input Voltage : VDD1 [V]  
Figure 13. VDD1 Circuit Current 10kHz  
vs Input Voltage  
Figure 14. VDD2 Circuit Current 10kHz  
vs Input Voltage  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
16  
14  
12  
10  
8
25℃  
-40℃  
125℃  
25℃  
6
125℃  
4
-40℃  
2
0
0
1
2
3
4
5
0
4
8
12  
16  
20  
24  
Input Voltage : VDD1 [V]  
Input Voltage : VDD2 [V]  
Figure 16. VDD2 Circuit Current 100kHz  
vs Input Voltage  
Figure 15. VDD1 Circuit Current 100kHz  
vs Input Voltage  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
16/30  
TSZ2211115001  
BM67290FV-C  
Typical Performance Curves - continued  
16  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
25℃  
14  
-40℃  
12  
10  
8
125℃  
125℃  
25℃  
6
4
2
0
-40℃  
0
4
8
12  
16  
20  
24  
0
1
2
3
4
5
Input Voltage : VDD1 [V]  
Input Voltage : VDD2 [V]  
Figure 17. VDD1 Circuit Current 250kHz  
vs Input Voltage  
Figure 18. VDD2 Circuit Current 250kHz  
vs Input Voltage  
6
5
4
3
2
1
0
6
-40℃  
5
4
3
2
1
0
125℃  
125℃  
-40℃  
25℃  
25℃  
25℃  
25℃  
-40℃  
-40℃  
125℃  
125℃  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
Input Voltage : VDD1 [V]  
REF Output Voltage : VREF [V]  
Figure 20. OUT Voltage vs REF Output Voltage  
(REF Startup/Shutdown Threshold)  
Figure 19. REF Output Voltage vs Input Voltage  
(VDD1 Startup/Shutdown Threshold)  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
17/30  
BM67290FV-C  
Typical Performance Curves - continued  
5.075  
5.050  
5.075  
5.050  
5.025  
5.000  
4.975  
4.950  
4.925  
125℃  
25℃  
10V  
8V  
24V  
5.025  
5.000  
4.975  
4.950  
4.925  
-40℃  
-50 -25  
0
25 50 75 100 125 150  
0
1
2
3
4
5
Temperature : Ta [°C]  
REF Output Current : IREF [mA]  
Figure 21. REF Output Voltage vs Temperature  
Figure 22. REF Output Voltage  
vs REF Output Current  
(REF Output Load Regulation (VDD1=10V))  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
110  
108  
106  
104  
102  
100  
98  
125℃  
-40℃  
25℃  
25℃  
-40℃  
125℃  
96  
94  
92  
90  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
-50 -25  
0
25 50 75 100 125 150  
Temperature : Ta [°C]  
VDTY Input Voltage : VDTY [V]  
Figure 23. Oscillation Frequency at 100kHz  
vs Temperature  
Figure 24. OUT Duty vs VDTY Input Voltage  
(VDTY-DUTY Characteristic at 100kHz)  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
18/30  
TSZ2211115001  
BM67290FV-C  
Typical Performance Curves - continued  
11.0  
10.8  
10.6  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
125℃  
-40℃  
25℃  
10.4  
10.2  
10.0  
9.8  
25℃  
-40℃  
125℃  
9.6  
9.4  
9.2  
9.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
-50 -25  
0
25 50 75 100 125 150  
VDTY Input Voltage : VDTY [V]  
Temperature : Ta [°C]  
Figure 26. OUT Duty vs VDTY Input Voltage  
(VDTY-DUTY Characteristic at 10kHz)  
Figure 25. Oscillation Frequency at 10kHz  
vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
275  
270  
265  
260  
255  
250  
245  
240  
235  
230  
225  
125℃  
25℃  
8V  
-40℃  
10V  
24V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
-50 -25  
0
25 50 75 100 125 150  
Temperature : Ta [°C]  
Input Voltage : VDTY [V]  
Figure 27. Oscillation Frequency at 250kHz  
vs Temperature  
Figure 28. OUT Duty vs Input Voltage  
(VDTY-DUTY Characteristic at 250kHz)  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
19/30  
TSZ2211115001  
BM67290FV-C  
Typical Performance Curves - continued  
58.5  
57.5  
58.0  
57.0  
56.0  
55.0  
54.0  
53.0  
52.0  
8V  
10V  
24V  
8V  
10V  
24V  
56.5  
55.5  
54.5  
53.5  
52.5  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
Temperature : Ta [°C]  
Temperature : Ta [°C]  
Figure 29. Duty at 100kHz vs Temperature  
Figure 30. Duty at 10kHz vs Temperature  
59.0  
58.0  
57.0  
56.0  
55.0  
54.0  
53.0  
1.0  
0.8  
0.6  
25℃  
0.4  
-40℃  
0.2  
0.0  
24V  
8V  
10V  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
125℃  
-50 -25  
0
25 50 75 100 125 150  
0
3
6
9
Temperature : Ta [°C]  
Input Voltage : VDTY [V]  
Figure 31. Duty at 250kHz vs Temperature  
Figure 32. Input Bias Current vs VDTY Input Voltage  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
20/30  
TSZ2211115001  
BM67290FV-C  
Typical Performance Curves - continued  
0.5  
0.4  
0.3  
6
5
4
3
2
1
0
-40℃  
25℃  
-40℃  
25℃  
125℃  
25℃  
125℃  
0.2  
125℃  
0.1  
0.0  
-40℃  
0
5
10  
15  
20  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
ISOURCE [mA]  
VH Input Voltage : VH [V]  
Figure 33. SD2 Output Voltage  
Figure 34. SD1 Output Voltage vs VH Input Voltage  
(Low Voltage Detect/Release Threshold)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.0  
0.8  
0.6  
0.4  
125℃  
-40℃  
25℃  
0.2  
0.0  
25℃  
-40℃  
-0.2  
125℃  
-0.4  
-0.6  
-0.8  
-1.0  
8
12  
16  
20  
24  
0
3
6
9
RFLV Input Voltage : VRFLV [V]  
Input Voltage : VDD1 [V]  
Figure 36. Input Bias Current vs RFLV Input Voltage  
Figure 35. Protection Operation Delay Time vs Input Voltage  
(Low Voltage Detect Delay Time)  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
21/30  
TSZ2211115001  
BM67290FV-C  
Typical Performance Curves - continued  
1.0  
0.8  
0.6  
6
5
4
3
2
1
0
-40℃  
-40℃  
25℃  
0.4  
-40℃  
25℃  
0.2  
0.0  
25℃  
125℃  
-0.2  
125℃  
-0.4  
125℃  
-0.6  
-0.8  
-1.0  
0
3
6
9
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VH Input Voltage : VH [V]  
VACT Input Voltage : VACT [V]  
Figure 38. SD1 Output Voltage vs VACT Input Voltage  
(Active High Voltage Detect/Release Threshold)  
Figure 37. Input Bias Current vs VH Input Voltage  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
125℃  
125℃  
25℃  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
25℃  
-40℃  
-40℃  
8
12  
16  
20  
24  
0
3
6
9
Input Voltage : VDD1 [V]  
VACT Input Voltage : VACT [V]  
Figure 40. Input Bias Current vs VACT Input Voltage  
Figure 39. Protection Operation Delay Time vs Input Voltage  
(Active High Voltage Detect Delay Time)  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
22/30  
TSZ2211115001  
BM67290FV-C  
Typical Performance Curves - continued  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
6
5
125℃  
-40℃  
4
-40℃  
-40℃  
25℃  
3
25℃  
25℃  
2
125℃  
125℃  
1
0
8
12  
16  
20  
24  
4.85  
4.90  
4.95  
5.00  
5.05  
Input Voltage : VDD1 [V]  
VH Input Voltage : VH [V]  
Figure 41. SD1 Output Voltage vs VH Input Voltage  
(High Voltage Detect/Release Threshold)  
Figure 42. Protection Operation Delay Time  
vs Input Voltage  
(High Voltage Detect/Release Threshold)  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
-40℃  
25℃  
125℃  
-0.4  
-0.6  
-0.8  
-1.0  
0
3
6
9
RFOV Input Voltage : VRFOV [V]  
Figure 43. Input Bias Current vs RFOV Input Voltage  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
23/30  
TSZ2211115001  
BM67290FV-C  
External Resistor  
(1) VH,VDTY External Resistors  
VH terminal is used to monitor the occurrences of over and under voltage condition.  
VDTY is used to determine the output Duty.  
Voltage is provided to both terminals by a voltage divider circuit.  
Over voltage is detected when VH voltage> RFOV, while under voltage is detected when VH< RFLV voltage×0.8.  
Voltage-divider resistor ratio is determined according to the high voltage to be monitored and to be detection  
voltage.  
When R3 of Figure 44 is removed, internal diodes clamp VH and VDTY voltages to VDD+Vf. At this condition,  
design the values of R1 and R2 that will keep VH and VDTY currents below 2mA.  
High voltage  
High voltage  
VDD1  
VH  
VDD1  
VH  
R1  
R2  
R3  
R1  
Max 2mA  
Max 2mA  
Protection detection  
VDD1+Vf  
R2  
VDTY  
VDTY  
Voltage monitor  
R3
Open  
(High voltage-VDD1)/R1<2mA  
Figure 44. VH,VDTY Partial Resistance  
(2) RFOV,RFLV External Resistors  
RFOV sets the reference value for OVP, while RFLV sets the reference for UVP.  
The resistor values to be used should always keep the load current of REF below 5mA.  
Load current  
REF  
RL1  
RO1  
RO2  
(REF voltage/(RL1+RL2)) + (REF voltage/(RO1+RO2)) < 5mA  
RFOV  
RFLV  
RL2  
Figure 45. RFOV,RFLV Partial Resistance  
(3) RT External Resistors  
RT terminal is used to set the current of the internal reference oscillator.  
Reference frequency is F_OSC=(1.0*10^6)/(RT resistance) [kHz].  
Upper limit of set frequency is 250 kHz (RT=4kΩ), and lower limit is 10 kHz (RT=100kΩ).  
RT Resistance  
100kΩ  
Frequency  
10kHz  
10kΩ  
100kHz  
250kHz  
4kΩ  
Figure 46. RT Resistance and Frequency  
(4) SD2 Resistance  
SD2 terminal is an open drain output terminal. Connect pull-up resistor between SD2 and power source to use it.  
RSD resistance value should keep the current of SD2 terminal below 20mA.  
VBAT  
RSD  
SD2  
VBAT/RSD<20mA  
Figure 47. SD2 Resistance  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
24/30  
BM67290FV-C  
I/O Equivalent Circuits  
VDTY, RFOV, RFLV  
REF  
VACT  
VDD1  
Internal power supply  
VDD1  
VDD1  
VDD1 Internal power supply  
REF  
VACT  
VDTY  
RFOV  
RFLV  
GND1 GND1  
GND1  
GND1  
RT  
VH  
VDD1 Internal power supply  
VDD1  
REF  
RT  
VH  
Internal power supply  
GND1  
GND1  
OUT,SD1  
SD2  
VDD2  
VDD2  
SD2  
OUT  
SD1  
GND2 GND2  
GND2 GND2  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
25/30  
TSZ2211115001  
BM67290FV-C  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
terminals.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Thermal Consideration  
Should by any chance the power dissipation rating be exceeded, the rise in temperature of the chip may result in  
deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when  
the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating,  
increase the board size and copper area to prevent exceeding the Pd rating.  
6. Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
7. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
8. Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
9. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned OFF completely before connecting or removing it from the test setup during the inspection process.  
To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport  
and storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
11. Unused Input Terminals  
Input terminals of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance  
and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input terminals should be connected to  
the power supply or ground line.  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
© 2014 ROHM Co., Ltd. All rights reserved.  
26/30  
19.Jul.2016 Rev.002  
TSZ2211115001  
BM67290FV-C  
Operational Notes continued  
12. Regarding Input Pins of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 49. Example of Monolithic IC Structure  
13. Ceramic Capacitor  
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
14. Over-Current Protection Circuit (OCP)  
This IC has a built-in overcurrent protection circuit that activates when the output is accidentally shorted. However, it is  
strongly advised not to subject the IC to prolonged shorting of the output.  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
27/30  
TSZ2211115001  
BM67290FV-C  
Ordering Information  
0
F
V
B M 6  
7
2
9
CE 2  
Package  
FV: SSOP-B20W  
Package, forming specifications  
E2: Reel type embossed taping  
(SSOP-B20W)  
Part Number  
None: Tray, tube  
Marking Diagram  
SSOP-B20W (TOP VIEW)  
Part Number Marking  
LOT Number  
B M 6 7 2 9 0  
1PIN MARK  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
28/30  
TSZ2211115001  
BM67290FV-C  
Physical Dimension, Tape and Reel Information  
Package Name  
SSOP-B20W  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
29/30  
BM67290FV-C  
Revision History  
Date  
Revision  
001  
Changes  
10.Nov.2014  
New Release  
P1 Modify Figure 1  
P12 Modify VH,VDTY,VACT,RFOV,RFLV Absolute Maximum Ratings  
P12 Modify OUT,SD1 Absolute Maximum Ratings  
P12 Delete Power Dissipation  
P13 Add Thermal Resistance  
P13 Modify Note7  
P13 Add Insulation Related Characteristics  
P14 Modify Duty Temperature Property/Electric Property Variation Ratio  
Symbol DUTY/DUTY DUTY  
19.Jul.2016  
002  
P15 Modify RLOVRFOV  
P15 IsurceIsource  
P21 Modify IbvdtyIbRFLV  
P22 Modify IbvdtyIbVH  
P23 Modify IbvdtyIbVACT  
P23 Modify IbvdtyIbRFOV  
P24 Modify Figure.14Figure.44  
P25 Modify OUT/SD1 Equivalent Circuits GNDGND2  
www.rohm.com  
TSZ02201-0818ABZ00010-1-2  
19.Jul.2016 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
30/30  
TSZ2211115001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BM67421FV-C

Isolation voltage 2500Vrms Bi-direction 2ch High Speed Digital Isolator
ROHM

BM67421FV-E2

Isolation voltage 2500Vrms Bi-direction 2ch High Speed Digital Isolator
ROHM

BM7-46

GENERAL-PURPOSE PHOTOVOLTAIC CELL
ETC

BM7-5

GENERAL-PURPOSE PHOTOVOLTAIC CELL
ETC

BM7-8

GENERAL-PURPOSE PHOTOVOLTAIC CELL
ETC

BM70BLE01FC2

Bluetooth® Low Energy (BLE) Module
MICROCHIP

BM70BLE01FC2-0002AA

RF TXRX MODULE BLUETOOTH
MICROCHIP

BM70BLES1FC2

Bluetooth® Low Energy (BLE) Module
MICROCHIP

BM70BLES1FC2-0B03AA

BLUETOOTH 4.2 BLE MODULE, SHIELD
MICROCHIP

BM71BLE01FC2

Bluetooth® Low Energy (BLE) Module
MICROCHIP

BM71BLES1FC2

Bluetooth® Low Energy (BLE) Module
MICROCHIP

BM71BLES1FC2-0B02AA

BLUETOOTH 4.2 BLE MODULE
MICROCHIP