BM81110MUW [ROHM]

BM81110MUW是面向液晶电视的TFT-LCD面板用系统电源。在面板驱动电源(SOURCE用电压、LOGIC用电压)之外,还内置了正/负电荷泵控制器及Gate Pulse Modulation功能。还有保持各种设定值的EEPROM,可自由设定输出电压及SOFT START时间等。;
BM81110MUW
型号: BM81110MUW
厂家: ROHM    ROHM
描述:

BM81110MUW是面向液晶电视的TFT-LCD面板用系统电源。在面板驱动电源(SOURCE用电压、LOGIC用电压)之外,还内置了正/负电荷泵控制器及Gate Pulse Modulation功能。还有保持各种设定值的EEPROM,可自由设定输出电压及SOFT START时间等。

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 栅 驱动 控制器 泵 CD 软启动
文件: 总49页 (文件大小:3155K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Power supply IC series for TFT-LCD panels  
12V Input Multi-Channel  
System Power Supply IC  
BM81110MUW  
General Description  
Key Specifications  
BM81110MUW is a system power supply for TFT-LCD  
panels used for liquid crystal TVs. This IC is  
incorporated with Negative and Positive charge pump  
controllers and Gate Pulse Modulation (GPM) function. It  
also features built-in EEPROM to contain each setting  
voltage, soft start time, etc.  
Input voltage range  
8.6V to 14.7V  
13.5V to 19.8V  
2.2V to 3.7V  
0.8V to 3.3V  
4.8V to 11.1V  
20V to 35V  
-14.5V to -5.5V  
750kHz(Typ)  
1MHz(Typ)  
AVDD Output voltage range:  
VIO Output voltage range:  
VCORE Output voltage range:  
HAVDD Output voltage range:  
VGH Output voltage range:  
VGL Output voltage range:  
Switching Frequency:  
Features  
Step-up DC/DC converter (AVDD)  
(Synchronous rectification, built-in load switch)  
Step-down DC/DC converter 1 (VIO)  
(Non-synchronous rectification)  
Operating temperature range:  
-40to +85℃  
Step-down DC/DC converter 2 (VCORE)  
(Synchronous rectification)  
Step-down DC/DC converter 3 (HAVDD)  
(Synchronous rectification)  
Package  
VQFN40W6060A  
W(Typ) x D(Typ) x H(Max)  
6.00mm x 6.00mm x 0.8mm  
Positive charge pump controller (VGH)  
Negative charge pump controller (VGL)  
Gate Pulse Modulation (GPM) function  
Output voltage control by I2C  
Built-in EEPROM  
Switching Frequency 750kHz (AVDD, VIO)  
Switching Frequency 1MHz (VCORE, HAVDD)  
Applications  
TFT-LCD panel  
Typical Application CircuitTOP VIEW)  
SW  
VGH  
AVDD  
VIN  
HAVDD  
SWB1  
VGL  
EN  
VGL  
N.C.  
SWO  
SWI  
PGND2  
SWB2  
VDD2  
CTRL  
VINB2  
VDD1  
SWB1  
SWB1  
N.C.  
VCORE  
AVDD  
SW  
VIN  
BM81110MUW  
SW  
PGND  
PGND  
NTC  
VL  
VIO  
Θ
VIN  
Figure1. Application Circuit  
Product structureSilicon monolithic chip This chip has no designed protection against radioactive rays.  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
1/46  
TSZ2211114001  
 
 
 
 
 
 
BM81110MUW  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Key Specifications...........................................................................................................................................................................1  
Package  
..................................................................................................................................................................................1  
Pin Configuration .........................................................................................................................................................................3  
Block Diagram (VGH Doubler)........................................................................................................................................................4  
Block Diagram (VGH Trippler) ........................................................................................................................................................5  
Description of each Block ...............................................................................................................................................................6  
Absolute Maximum Ratings ............................................................................................................................................................7  
Recommended Operating Conditions .........................................................................................................................................7  
Electrical Characteristics .............................................................................................................................................................8  
Typical Performance Curves .....................................................................................................................................................11  
Timing Chart .................................................................................................................................................................................21  
Example ApplicationVGH Doubler.........................................................................................................................................22  
Example ApplicationVGH Trippler..........................................................................................................................................23  
Protection function explanation of each block...............................................................................................................................24  
Protection function list...................................................................................................................................................................26  
Upper limit voltage setting of VGH thermal compensation............................................................................................................27  
FAULT function .............................................................................................................................................................................27  
Serial transmission .......................................................................................................................................................................28  
Register Map ................................................................................................................................................................................31  
Command Table............................................................................................................................................................................32  
Selecting Application Components ...............................................................................................................................................33  
Layout Guideline .............................................................................................................................................................................38  
Power Dissipation.........................................................................................................................................................................38  
I/O Equivalence Circuit .................................................................................................................................................................39  
Operational Notes.........................................................................................................................................................................42  
Ordering Information.....................................................................................................................................................................44  
Marking Diagram ..........................................................................................................................................................................44  
Physical Dimension Tape and Reel Information............................................................................................................................45  
Revision History............................................................................................................................................................................46  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
2/46  
TSZ22111 15 001  
BM81110MUW  
Pin Configuration (TOP View)  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
EN  
VGL  
N.C.  
SWO  
SWI  
PGND2  
SWB2  
VDD2  
CTRL  
VINB2  
VDD1  
SWB1  
SWB1  
N.C.  
SW  
Thermal Pad  
SW  
PGND  
PGND  
NTC  
VL  
1
2
3
4
5
6
7
8
9
10  
Figure 2. Pin Configuration  
Pin Description  
PIN No.  
SYMBOL  
FUNCTION  
PIN No.  
SYMBOL  
FUNCTION  
1
2
VINB1  
VINB1  
FAULT  
SDA  
SCL  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Step-down DC/DC power supply input 1  
Step-down DC/DC power supply input 1  
FAULT signal output  
DRVN  
DRVP  
VGH  
Negative charge pump drive pin  
Positive charge pump drive pin  
Positive charge pump output  
GPM output  
3
4
VGHM  
RE  
Serial data input  
5
Serial clock input  
GPM Slope adjustment pin  
Step-down DC/DC power supply input 3  
6
A0  
VINB3  
N.C.  
I2C address select pin  
HVS mode select pin  
Power supply input  
7
HVS  
AVIN  
AGND  
COMP  
VL  
8
SWB3  
PGND3  
VDD3  
EN  
Step-down DC/DC switching pin 3  
Step-down DC/DC ground 3  
Step-down DC/DC output 3  
Enable input  
9
Analog ground  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Error amplifier output  
Internal REG output  
NTC  
PGND  
PGND  
SW  
PGND2  
SWB2  
VDD2  
CTRL  
VINB2  
VDD1  
SWB1  
SWB1  
N.C.  
Thermistor connecting pin  
Step-up DC/DC ground  
Step-up DC/DC ground  
Step-up DC/DC switching pin  
Step-up DC/DC switching pin  
Load switch input  
Step-down DC/DC ground 2  
Step-down DC/DC switching pin 2  
Step-down DC/DC output 2  
GPM control pin  
SW  
Step-down DC/DC power supply input 2  
Step-down DC/DC output 1  
Step-down DC/DC switching pin 1  
Step-down DC/DC switching pin 1  
SWI  
SWO  
N.C.  
Load switch output  
VGL  
Negative charge pump output  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
3/46  
TSZ22111 15 001  
BM81110MUW  
Block Diagram (VGH Doubler)  
COMP  
SWO  
AVDD  
SWI  
SW  
BOOST  
CONVERTER  
VIN  
VIN  
PGND  
AVIN  
INTERNAL  
REGULATOR  
VIN  
VINB1  
SWB1  
VL  
BUCK  
VIO  
CONVERTER 1  
EEPROM  
VDD1  
VINB2  
SDA  
SCL  
A0  
BUCK  
CONVERTER 2  
VCORE  
I2C  
INTERFACE  
SWB2  
DAC  
PGND2  
HVS  
VDD2  
VIN  
SEQUENCE  
CONTROL  
VINB3  
SWB3  
EN  
BUCK  
HAVDD  
CONVERTER 3  
FAULT  
PGND3  
VDD3  
DRVP  
VGH  
REGULATOR  
AVDD  
SW  
VGH  
NTC  
VGH  
VL  
Θ
VGL  
GPM  
CTRL  
VGHM  
RE  
AGND  
VGL  
DRVN  
VGL  
SWB1  
Figure 3. Block Diagram (VGH Doubler)  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
4/46  
TSZ22111 15 001  
BM81110MUW  
Block Diagram (VGH Trippler)  
COMP  
SWO  
AVDD  
SWI  
SW  
BOOST  
CONVERTER  
VIN  
VIN  
PGND  
AVIN  
INTERNAL  
REGULATOR  
VIN  
VINB1  
SWB1  
VL  
BUCK  
VIO  
CONVERTER 1  
EEPROM  
VDD1  
VINB2  
SDA  
SCL  
A0  
BUCK  
CONVERTER 2  
VCORE  
I2C  
INTERFACE  
SWB2  
DAC  
PGND2  
HVS  
VDD2  
VIN  
SEQUENCE  
CONTROL  
VINB3  
SWB3  
EN  
BUCK  
HAVDD  
CONVERTER 3  
FAULT  
PGND3  
AVDD  
VDD3  
DRVP  
VGH  
REGULATOR  
SW  
SW  
VGH  
NTC  
VGH  
VL  
Θ
VGL  
GPM  
CTRL  
VGHM  
RE  
AGND  
VGL  
DRVN  
VGL  
SWB1  
Figure 4. Block Diagram (VGH Trippler)  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
5/46  
TSZ22111 15 001  
BM81110MUW  
Description of each Block  
BUCK CONVERTER BLOCK  
1
This block generates VIO (VDD1) voltage from Power supply voltage.  
After releasing UVLO of VIN, VL starts activating. After Auto Read is operated to EEPROM, VIO will be activated.  
Power on Reset works at the time of VIN startup and the setting written to EEPROM will be reflected in Register.  
During operation, it is possible to prevent destruction of IC by OVP, UVP and OCP protection functions.  
BUCK CONVERTER BLOCK  
2
This block generates VCORE (VDD2) voltage from Power supply voltage of VIO.  
After completing VIO start-up, VCORE starts activating.  
Power on Reset works at the time of VIN startup and the setting written to EEPROM will be reflected in Register.  
During operation, it is possible to prevent destruction of IC by OVP, UVP and OCP protection functions.  
VGL REGULATOR BLOCK  
This block generates VGL voltage.  
After completing VCORE start-up, VGL starts activating.  
Power on Reset works at the time of VIN startup and the setting written to EEPROM will be reflected in Register.  
During operation, it is possible to prevent destruction of IC by UVP and OCP protection functions.  
BOOST CONVERTER BLOCK  
This block generates AVDD (SWO) voltage from Power supply voltage.  
It activates when EN=H, and under condition where VIO and VGL are active.  
Power on Reset works at the time of VIN startup and the setting written to EEPROM will be reflected in Register.  
During operation, it is possible to prevent destruction of IC by OVP, UVP and OCP protection functions.  
BUCK CONVERTER BLOCK  
3
This block generates HAVDD (VDD3) voltage from Power supply voltage.  
HAVDD starts up following AVDD output voltage.  
The setting voltage range of the HAVDD voltage depends on the AVDD setting voltage, and the lower limit level of the  
HAVDD voltage is limited to AVDD×0.4.  
Power on Reset works at the time of VIN startup and the setting written to EEPROM will be reflected in Register.  
During operation, it is possible to prevent destruction of IC by OVP, UVP and OCP protection functions.  
VGH REGULATOR BLOCK  
This block generates VGH voltage from AVDD voltage.  
After completing AVDD star-up, VGH starts activating.  
Power on Reset works at the time of VIN startup and the setting written to EEPROM will be reflected in Register.  
During operation, it is possible to prevent destruction of IC by OVP, UVP and OCP protection functions.  
GPM BLOCK  
This is a switching circuit to drive a gate voltage for TFT consisted of PMOS FET.  
VGHM output synchronizes with CTRL input and outputs High voltage = VGH at CTRL=H.  
GPM Falling Limit voltage can be controlled by EEPROM.  
Caution  
EN Input tolerant function is built-in. No need to be always EN < VIN.  
When FAULT pin is not used, FAULT pin must be connected to GND, or it should be open.  
When NTC pin is not used, NTC pin must be connected to GND.  
When HVS pin is not used, HVS pin must be connected to GND.  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
6/46  
TSZ22111 15 001  
BM81110MUW  
Absolute Maximum Ratings  
Limits  
Parameter  
Symbol  
Unit  
MIN  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-15  
-0.3  
-40  
-55  
-
TYP  
MAX  
24  
7
AVIN, VINB1, VINB3  
VINB2  
-
V
Supply Voltage  
Input Voltage  
-
V
SDA, SCL, A0, HVS,  
NTC, EN, CTRL  
-
7
V
VL  
-
6.5  
7
V
COMP, FAULT  
VDD2, SWB2  
-
V
SW, SWI, SWO,  
VDD1, SWB1, VDD3, SWB3  
-
24  
7
V
Output Voltage  
VGL, DRVN  
-
V
DRVP, VGH, VGHM, RE  
-
40  
85  
150  
150  
V
Operating Ambient  
Temperature Range  
Ta  
-
-
Storage Temperature  
Range  
Tstg  
Maximum Continuous  
Junction Temperature  
Tjmax (*1)  
Pd  
-
3.20  
39.1  
W
Power Dissipation (*2)  
θja  
degC/W  
*1  
It shows junction temperature when stores.  
*2 Derate by 25.6mW/at Ta>25when mounted on 4-layer 114.3mm×74.2mm×1.6mm glass epoxy board.  
Recommended Operating Conditions (Ta=-40℃~85)  
Limits  
Parameter  
Symbol  
Unit  
MIN  
8.6  
-0.1  
-0.1  
-
TYP  
MAX  
14.7  
5.5  
Supply Voltage  
AVIN  
EN, A0, HVS, CTRL  
SDA, SCL  
-
-
-
-
V
V
Functional pin voltage  
2 wire serial pin voltage  
2 wire serial frequency  
5.5  
V
FCLK  
400  
kHz  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
7/46  
TSZ22111 15 001  
BM81110MUW  
Electrical Characteristics (Unless otherwise specified, Ta=25, AVIN,VINB1,VINB3=12V, VINB2=3.3V)  
Limits  
Parameter  
GENERAL 】  
Symbol  
Unit  
Condition  
MIN  
TYP  
MAX  
8.0  
7.25  
-
8.3  
7.55  
175  
750  
1000  
5
8.6  
7.85  
-
V
V
VIN rising  
VIN falling  
VIN Under Voltage  
Lockout Threshold  
VIN_  
UVLO  
Thermal shutdown  
TSD  
FOSC1  
FOSC2  
VL  
Internal Oscillator Frequency 1  
Internal Oscillator Frequency 2  
VL Voltage  
600  
800  
4.9  
-
900  
1200  
5.1  
-
kHz  
kHz  
V
AVDD, VIO  
VCORE, HAVDD  
Consumption Current  
ICC  
5.0  
mA  
No switching  
LOGIC SIGNALS SDA, SCL, EN, A0, CTRL, HVS 】  
High Level Input Voltage  
Low Level Input Voltage  
Minimum Output Voltage  
Pull-Down Resistance  
VIH  
VIL  
2
-
-
V
V
-
-
-
-
0.5  
0.4  
260  
VSDA  
RLOGIC  
V
SDA, ISDA=3mA  
140  
200  
kΩ  
EN, A0, CTRL, HVS  
BOOST CONVERTER (AVDD) 】  
Output Voltage Range  
AVDD  
13.5  
-
-
19.8  
3
V
V
0.1V step  
0.2V step  
Data0Fh  
SW=0V  
HVS Mode Offset Voltage  
Regulation Voltage  
VHVS  
0
AVDD_R  
ILK_SWH  
RON_SWH  
ILK_SWL  
RON_SWL  
RON_LS  
ILIM_SW  
ILIM_SET  
14.85  
15.0  
0
15.15  
10  
V
Hi-Side Leakage Current  
Hi-Side SW ON-Resistance  
Lo-Side SW Leakage Current  
Lo-Side SW ON-Resistance  
Load SW ON-Resistance  
SW Current Limit  
-
uA  
mΩ  
uA  
mΩ  
mΩ  
A
-
100  
0
200  
10  
ISW=-500mA  
SW=24V  
-
-
-
100  
100  
5
200  
200  
5.75  
2.8  
22.5  
-
ISW=500mA  
ILS=500mA  
L=10uH  
4.25  
0
SW Current Limit Offset  
Over-Voltage Protection Rise  
Over-Voltage Protection Fall  
AVDD UVP Detecting Voltage  
Soft Start Time  
-
A
0.4A step  
VOVP_AVD  
D_RISE  
20.5  
20  
-
21.5  
-
V
VOVP_AVD  
D_FALL  
V
VUVP_  
AVDD  
AVDD  
x 0.8  
-
V
TSS_  
AVDD  
10  
-
-
20  
msec  
A
Load Switch Current Limit  
ILIM_LSW  
7
-
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
8/46  
TSZ22111 15 001  
BM81110MUW  
Electrical Characteristics (Unless otherwise specified, Ta=25, AVIN,VINB1,VINB3=12V, VINB2=3.3V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
MIN  
TYP  
MAX  
BUCK CONVERTER 1 (VIO) 】  
Output Voltage Range  
VIO  
2.2  
-
3.7  
2.55  
10  
300  
4.2  
-
V
V
0.1V step  
Data03h  
SWB1=0V  
Regulation Voltage  
VIO_R  
2.45  
2.5  
0
ILK_  
SWB1H  
Hi-Side SWB1 Leak Current  
Hi-Side SWB1 ON-Resistance  
SWB1 Current Limit  
-
uA  
mΩ  
A
RON_  
SWB1H  
-
200  
3.5  
SWB1=-500mA  
L=10uH  
ILIM_  
SWB1  
2.8  
VOVP_  
VIO  
VIO  
x 1.1  
VIO Over-Voltage Protection  
VIO UVP Detecting Voltage  
-
-
-
V
VUVP_  
VIO  
VIO  
x 0.8  
-
V
Frequency 1/4  
Soft Start Time  
TSS_VIO  
3
-
msec VIO=3.0V  
BUCK CONVERTER 2 (VCORE) 】  
Output Voltage Range  
VCORE  
0.8  
-
3.3  
1.02  
10  
300  
10  
300  
4.0  
-
V
V
0.1V step  
Regulation Voltage  
VCORE_R  
0.98  
1.0  
0
Data02h  
SWB2=0V  
SWB2=-500mA  
SWB2=7V  
SWB2=500mA  
L=10uH  
ILK_  
SWB2H  
Hi-Side SWB2 Leak Current  
Hi-Side SWB2 ON-Resistance  
Lo-Side SWB2 Leak Current  
Lo-Side SWB2 ON-Resistance  
SWB2 Current Limit  
-
uA  
mΩ  
uA  
mΩ  
A
RON_  
SWB2H  
-
175  
0
ILK_  
SWB2L  
-
RON_  
SWB2L  
-
175  
3.0  
ILIM_  
SWB2  
2.0  
VCORE Over-Voltage  
Protection  
VOVP_  
VCORE  
VCORE  
x 1.1  
-
-
-
V
VUVP_  
VCORE  
VCORE  
x 0.8  
VCORE UVP Detecting Voltage  
Soft Start Time  
-
V
Frequency 1/4  
TSS_  
VCORE  
4
-
msec VCORE=2.0V  
BUCK CONVERTER 3 (HAVDD) 】  
Output Voltage Range  
HAVDD  
4.8  
-
11.1  
7.6125  
10  
V
V
0.1V step  
Regulation Voltage  
HAVDD_R 7.3875  
7.5  
0
Data1Bh  
SWB3=0V  
ILK_  
-
Hi-Side SWB3 Leak Current  
Hi-Side SWB3 ON-Resistance  
Lo-Side SWB3 Leak Current  
Lo-Side SWB3 ON-Resistance  
SWB3 Current Limit  
uA  
mΩ  
uA  
mΩ  
A
SWB3H  
RON_  
-
300  
0
500  
10  
SWB3=-500mA  
SWB3=24V  
SWB3=500mA  
L=10uH  
SWB3H  
ILK_  
-
SWB3L  
RON_  
-
300  
1.5  
500  
2.0  
-
SWB3L  
ILIM_  
1.0  
SWB3  
HAVDD Over-Voltage  
Protection  
VOVP_  
-
HAVDD  
x 1.1  
V
HAVDD  
VUVP_  
-
HAVDD  
x 0.8  
HAVDD UVP Detecting Voltage  
-
V
Frequency 1/4  
HAVDD  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
9/46  
TSZ22111 15 001  
BM81110MUW  
Electrical Characteristics (Unless otherwise specified, Ta=25, AVIN,VINB1,VINB3=12V, VINB2=3.3V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
MIN  
TYP  
MAX  
VGH REGULATOR 】  
Output Voltage Range  
VGH  
20  
26.6  
0
-
28  
-
35  
29.4  
15  
-
V
V
1V step  
Data08h  
Io=5mA  
Regulation Voltage  
VGH_R  
VGHH_O  
VGH_H Offset Voltage  
Over-Current Protection  
VGH UVP Detecting Voltage  
VGH Over-Voltage Protection  
V
ILIM_  
DRVP  
5
-
mA  
V
VUVP_  
VGH  
VGH  
x 0.8  
-
-
VOVP_  
VGH  
36  
-
38  
7
40  
-
V
Soft Start Time  
TSS_VGH  
msec VGH=28V  
VGL REGULATOR 】  
Output Voltage Range  
VGL  
-14.5  
-
-7.9  
-
-5.5  
V
V
0.6V step  
Data04h  
Io=5mA  
Regulation Voltage  
VGL_R  
-8.0975  
-7.7025  
ILIM_  
DRVN  
Over-Current Protection  
VGL UVP Detecting Voltage  
Delay Time  
5
-
-
-
-
-
mA  
V
VUVP_  
VGL  
VGL×0.8  
2.5  
TDLY_VGL  
R_DRVN  
-
msec  
kΩ  
DRVN Internal Register  
-
100  
GATE PULSE MODULATION (GPM) 】  
VGH-VGHM ON-Resistance  
RE-VGHM ON-Resistance  
Propagation Delay  
RGHH  
RGHL  
TGPM  
-
-
3
3
5
-
Ω
Ω
150  
250  
350  
nsec  
This product has no designed protection against radioactive rays.  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
10/46  
TSZ22111 15 001  
BM81110MUW  
Typical Performance Curves (Unless otherwise specified, Ta=25, AVIN,VINB1,VINB3=12V, VINB2=3.3V, VIO=3.3V,  
VCORE=1.8V, AVDD=17.5V, HAVDD=9.0V, VGH=28V, VGL=-7.9V, RL=no load)  
1500  
1400  
1300  
1200  
1100  
1000  
900  
8
7
6
5
4
3
2
1
0
AVDD,VIO Frequency  
EN=L  
No Switching  
800  
700  
VCORE,HAVDD Frequency  
600  
500  
5
6
7
8
9
10 11 12 13 14 15  
5
6
7
8
9
10 11 12 13 14 15  
Input Voltage : VIN [V]  
Input Voltage : VIN [V]  
Figure 5. Input Current vs Input Voltage  
(EN=L, no switching)  
Figure 6. Internal Oscillator Frequency vs Input Voltage  
VIN=12V (20V/Div)  
VIN=12V (20V/Div)  
VIO=3.3V (5V/Div)  
VIO=3.3V (5V/Div)  
VCORE=1.8V (5V/Div)  
VGH=28V (10V/Div)  
VCORE=1.8V (5V/Div)  
VGH=28V (10V/Div)  
AVDD=15V (10V/Div)  
AVDD=15V (10V/Div)  
HAVDD=7.5V (10V/Div)  
VGL=-7.9V (10V/Div)  
HAVDD=7.5V (10V/Div)  
VGL=-7.9V (10V/Div)  
VGHM (20V/Div)  
10msec/Div  
VGHM (20V/Div)  
10msec/Div  
Figure 7. Power-on 1  
(VGL driven by VIO switch node)  
Figure 8. Power-on 2  
(VGL driven AVDD switch node)  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
11/46  
TSZ22111 15 001  
BM81110MUW  
Typical Performance Curves (Unless otherwise specified, Ta=25, AVIN,VINB1,VINB3=12V, VINB2=3.3V, VIO=3.3V,  
VCORE=1.8V, AVDD=17.5V, HAVDD=9.0V, VGH=28V, VGL=-7.9V, RL=no load)  
3
2
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
0
-1  
-2  
-3  
VIN=12V  
VIO=3.3V  
VIN=12V  
VIO=3.3V  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800 1000 1200 1400  
Output Current [mA]  
Output Current [mA]  
Figure 9. VIO Efficiency vs Output Current  
Figure 10. VIO Output Voltage vs Output Current  
VIO (10mV/Div AC)  
VIO (100mV/Div AC)  
ΔV6.3mV  
SWB1 (10V/Div)  
ISWB1 (500mA/Div)  
IOUT (500mA/Div)  
IOUT=500mA  
IOUT=100mA  
IOUT (500mA/Div)  
1usec/Div  
50usec/Div  
Figure 11. VIO Load Transient  
Figure 12. VIO Switching  
(Output Current=500mA)  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
12/46  
TSZ22111 15 001  
BM81110MUW  
Typical Performance Curves (Unless otherwise specified, Ta=25, AVIN,VINB1,VINB3=12V, VINB2=3.3V, VIO=3.3V,  
VCORE=1.8V, AVDD=17.5V, HAVDD=9.0V, VGH=28V, VGL=-7.9V, RL=no load)  
3
2
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
0
-1  
-2  
-3  
VIN=12V  
VIO=3.3V  
VCORE=1.8V  
VIN=12V  
VIO=3.3V  
VCORE=1.8V  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800 1000 1200 1400  
Output Current [mA]  
Output Current [mA]  
Figure 13. VCORE Efficiency vs Output Current  
Figure 14. VCORE Output Voltage vs Output Current  
VCORE (10mV/Div AC)  
VCORE (100mV/Div AC)  
ΔV5.2mV  
SWB2 (5V/Div)  
IOUT=300mA  
ISWB2 (500mA/Div)  
IOUT (500mA/Div)  
IOUT=10mA  
IOUT (200mA/Div)  
50usec/Div  
1usec/Div  
Figure 15. VCORE Load Transient  
Figure 16. VCORE Switching  
(Output Current=500mA)  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
13/46  
TSZ22111 15 001  
BM81110MUW  
Typical Performance Curves (Unless otherwise specified, Ta=25, AVIN,VINB1,VINB3=12V, VINB2=3.3V, VIO=3.3V,  
VCORE=1.8V, AVDD=17.5V, HAVDD=9.0V, VGH=28V, VGL=-7.9V, RL=no load)  
3
2
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
0
-1  
-2  
-3  
VIN=12V  
AVDD=17.5V  
HAVDD=9.0V  
(source)  
VIN=12V  
AVDD=17.5V  
HAVDD=9.0V  
source)  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800 1000 1200 1400  
Output Current [mA]  
Output Current [mA]  
Figure 17. HAVDD Efficiency vs Output Current (source)  
Figure 18. HAVDD Output Voltage vs Output Current (source)  
HAVDD (10mV/Div AC)  
HAVDD (100mV/Div AC)  
ΔV6.8mV  
SWB3 (10V/Div)  
IOUT=350mA  
ISWB3 (500mA/Div)  
IOUT (500mA/Div)  
IOUT=0mA  
IOUT (300mA/Div)  
200usec/Div  
1usec/Div  
Figure 19. HAVDD Load Transient (source)  
Figure 20. HAVDD Switching (source)  
(Output Current=500mA)  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0313AAF00410-1-2  
14/46  
2015.08.10 Rev.002  
BM81110MUW  
Typical Performance Curves (Unless otherwise specified, Ta=25, AVIN,VINB1,VINB3=12V, VINB2=3.3V, VIO=3.3V,  
VCORE=1.8V, AVDD=17.5V, HAVDD=9.0V, VGH=28V, VGL=-7.9V, RL=no load)  
3
2
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
0
-1  
-2  
-3  
VIN=12V  
AVDD=17.5V  
HAVDD=9.0V  
(sink)  
VIN=12V  
AVDD=17.5V  
HAVDD=9.0V  
sink)  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800 1000 1200 1400  
Output Currnet [mA]  
Output Current [mA]  
Figure 21. HAVDD Efficiency vs Output Current (sink)  
Figure 22. HAVDD Output Voltage vs Output Current (sink)  
HAVDD (10mV/Div AC)  
ΔV9.4mV  
HAVDD (100mV/Div AC)  
SWB3 (10V/Div)  
ISWB3 (500mA/Div)  
IOUT (500mA/Div)  
IOUT (300mA/Div)  
IOUT=350mA  
IOUT=0mA  
1usec/Div  
200usec/Div  
Figure 23. HAVDD Load Transient (sink)  
Figure 24. HAVDD Switching (sink)  
(Output Current=500mA)  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
15/46  
TSZ22111 15 001  
BM81110MUW  
Typical Performance Curves (Unless otherwise specified, Ta=25, AVIN,VINB1,VINB3=12V, VINB2=3.3V, VIO=3.3V,  
VCORE=1.8V, AVDD=17.5V, HAVDD=9.0V, VGH=28V, VGL=-7.9V, RL=no load)  
3
2
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
0
-1  
-2  
-3  
VIN=12V  
AVDD=17.5V  
VIN=12V  
AVDD=17.5V  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800 1000 1200 1400  
Output Current [mA]  
Output Current [mA]  
Figure 25. AVDD Efficiency vs Output Current  
Figure 26. AVDD Output Voltage vs Output Current  
AVDD (10mV/Div AC)  
AVDD (200mV/Div AC)  
ΔV12.9mV  
SW (10V/Div)  
IOUT=500mA  
ISW (1A/Div)  
IOUT=100mA  
IOUT (500mA/Div)  
IOUT (500mA/Div)  
50usec/Div  
1usec/Div  
Figure 27. AVDD Load Transient  
Figure 28. AVDD Switching  
(Output Current=500mA)  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
16/46  
TSZ22111 15 001  
BM81110MUW  
Typical Performance Curves (Unless otherwise specified, Ta=25, AVIN,VINB1,VINB3=12V, VINB2=3.3V, VIO=3.3V,  
VCORE=1.8V, AVDD=17.5V, HAVDD=9.0V, VGH=28V, VGL=-7.9V, RL=no load)  
3
VGH (200mV/Div AC)  
2
1
0
IOUT=50mA  
IOUT=10mA  
-1  
VIN=12V  
IOUT (50mA/Div)  
AVDD=17.5V  
VGH=28V  
-2  
-3  
200usec/Div  
10  
30  
50  
70  
90  
110  
130  
150  
Output Current [mA]  
Figure 29. VGH Load Transient  
Figure 30. VGH Output Voltage vs Output Current  
VGH (20mV/Div AC)  
SW (10V/Div)  
ΔV14.4mV  
IOUT=50mA  
IOUT (50mA/Div)  
5usec/Div  
Figure 31. VGH Ripple Voltage  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
17/46  
TSZ22111 15 001  
BM81110MUW  
Typical Performance Curves (Unless otherwise specified, Ta=25, AVIN,VINB1,VINB3=12V, VINB2=3.3V, VIO=3.3V,  
VCORE=1.8V, AVDD=17.5V, HAVDD=9.0V, VGH=28V, VGL=-7.9V, RL=no load)  
40  
VIN=12V  
AVDD=17.5V  
VGH=20V  
35  
30  
25  
20  
15  
VL 5V  
100[kΩ]  
NTC  
10[kΩ]  
NCP18XH103F03RB  
390[kΩ]  
Θ
-30  
-20  
-10  
0
10  
20  
30  
Temperature []  
Figure 32. VGH Voltage vs Ta  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
18/46  
TSZ22111 15 001  
BM81110MUW  
Typical Performance Curves (Unless otherwise specified, Ta=25, AVIN,VINB1,VINB3=12V, VINB2=3.3V, VIO=3.3V,  
VCORE=1.8V, AVDD=17.5V, HAVDD=9.0V, VGH=28V, VGL=-7.9V, RL=no load)  
3
VGL (100mV/Div AC)  
2
1
0
IOUT=50mA  
IOUT=10mA  
-1  
VIN=12V  
IOUT (50mA/Div)  
VGL=-7.9V  
-2  
-3  
200usec/Div  
10  
30  
50  
70  
90  
110  
130  
150  
Output Current [mA]  
Figure 33. VGL Load Transient  
Figure 34. VGL Output Voltage vs Output Current  
ΔV17.8mV  
SWB1 (10V/Div)  
IOUT=50mA  
IOUT (50mA/Div)  
5usec/Div  
Figure 35. VGL Ripple Voltage  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
19/46  
TSZ22111 15 001  
BM81110MUW  
Typical Performance Curves (Unless otherwise specified, Ta=25, AVIN,VINB1,VINB3=12V, VINB2=3.3V, VIO=3.3V,  
VCORE=1.8V, AVDD=17.5V, HAVDD=9.0V, VGH=28V, VGL=-7.9V, RL=no load)  
CTRL (5V/Div)  
CTRL (5V/Div)  
VGHM (5V/Div)  
VGHM (5V/Div)  
Delay=255nsec  
Delay=270nsec  
VGH=28V  
VGH=28V  
No Capacitive Load  
RE Resister=0Ω  
No Capacitive Load  
RE Resister=0Ω  
500nsec/Div  
500nsec/Div  
Figure 36. GPM Propagation Delay (rise)  
Figure 37. GPM Propagation Delay (fall)  
CTRL (5V/Div)  
Clamp Voltage 5V  
VGHM (10V/Div)  
500usec/Div  
Figure 38. GPM Clamp Voltage (5V Clamp)  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
20/46  
TSZ22111 15 001  
BM81110MUW  
Timing Chart  
ON and OFF Sequence of this IC are shown below.  
VIN_  
UVLO  
VIN_  
UVLO  
VIN  
VL_  
UVLO  
VL  
TEAR  
TSS_VIO / 3ms  
EEPROM  
Auto Read  
VIO  
TSS_VCORE / 4ms  
VCORE  
VGL  
VGL  
DELAY  
TDLY_VGL / 2.5ms  
(internal)  
EN  
TSS_AVDD  
TSS_LSW / 10ms  
Load Swith ON  
AVDD  
HAVDD  
TSS_VGH / 7ms  
VGH  
CTRL  
VGHM  
VGHM = RE  
VGHM = VGH  
Figure 39. Timing Chart  
VL activates with UVLO release of VIN.  
It reads EEPROM data by Auto Read operation upon VL activation. (TEAR=2msec)  
After Auto Read completion, VIO activates. The Soft Start time of VIO is 3msec if the setting is 3.0V.  
After VIO soft-start completion, VCORE activates. The Soft Start time of VCORE is 4msec if the setting is 2.0V.  
After VCORE soft-start completion, VGL activates. The Soft Start time of VGL depends on output voltage setting, external  
capacitor, etc.  
2.5msec after VCORE soft-start completion, Load SW turns ON (10msec) when EN=High then AVDD activates.  
The Soft Start time of AVDD can be changed by register setting (10msec or 20msec).  
After AVDD started, VGH activates. The Soft Start time of VGH is 7msec if the setting is 28V.  
While VGH is active, CTRL rising or falling will be a trigger to activate GPM operation.  
When VGHM voltage at CTRL=L reaches the GPM clamp voltage, VGHM output is high impedance.  
GPM, VGH, AVDD, and HAVDD shut down when EN=Low. GPM output (VGHM) will be the same potential with RE.  
All outputs shut down when a drop in VIN of UVLO is detected. VGHM will be the same potential with VGH.  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
21/46  
TSZ2211115001  
BM81110MUW  
Example ApplicationTOP VIEW, VGH Doubler)  
RFP1 CFP1  
CFP2  
QP  
SW  
VGH  
AVDD  
DFP2 DFP1  
RQP  
C23  
VIN  
C26  
RQN  
QN  
HAVDD  
L30  
C30  
CFN2  
R25  
DFN2  
SWB1  
VGL  
DFN1  
CFN1 RFN1  
EN  
VGL  
N.C.  
SWO  
SWI  
SW  
C31  
C20  
PGND2  
VCORE  
SWB2  
VDD2  
CTRL  
VINB2  
VDD1  
SWB1  
SWB1  
N.C.  
AVDD  
D16  
L34  
C18  
C34  
C17  
VIN  
BM81110MUW  
SW  
L15  
C15  
PGND  
PGND  
NTC  
L37  
R12_1  
VIO  
D39  
C37  
VL  
R12_2  
RNTC  
C11  
Θ
VIN  
R10  
C10  
C1  
C8  
Figure 40. Example Application  
Parts  
Application circuit components list  
Parts  
name  
Value  
Company  
Parts Number  
Value  
Company  
Parts Number  
name  
C1  
C8  
10 [uF]×2  
1 [uF]  
MURATA  
MURATA  
ROHM  
GRM31CB31E106KA75  
GRM188B31E105KA75  
MCR03  
RQN  
RQP  
QP  
100 [kΩ]  
100 [kΩ]  
-
ROHM  
ROHM  
MCR03  
MCR03  
R10  
75 [kΩ]  
470 [pF]  
1 [uF]  
ROHM  
2SAR513P  
C10  
MURATA  
MURATA  
ROHM  
GRM188B11H471KA01  
GRM188B31E105KA75  
MCR03  
CFP2  
DFP1  
DFP2  
CFP1  
RFP1  
C23  
470 [pF]  
MURATA  
GRM188B11H471KA01  
C11  
-
ROHM  
RB558W  
R12_1  
R12_2  
RNTC  
L15  
100 [kΩ]  
390 [kΩ]  
10 [kΩ]  
10 [uH]  
ROHM  
MCR03  
0.47 [uF]  
MURATA  
ROHM  
GRM188B31E474KA75  
MCR15  
MURATA  
TAIYO YUDEN  
MURATA  
ROHM  
NCP18XH103F03RB  
NS10165T100MNA  
GRM31CB31E106KA75  
RB080L-30TE25  
2.2 [Ω]  
4.7 [uF]×2  
300 [Ω]  
10 [uF]  
MURATA  
ROHM  
GRM31CB31H475KA12  
MCR03  
C15  
10 [uF]×2  
-
R25  
D16  
C26  
MURATA  
GRM31CB31E106KA75  
NRS8040T100M  
C17  
10 [uF]×2  
10 [uF]×4  
4.7 [uF]×2  
MURATA  
MURATA  
MURATA  
GRM31CB31E106KA75  
GRM31CB31E106KA75  
GRM219B31C475KE15  
L30  
10[uH]  
TAIYO YUDEN  
MURATA  
C18  
C30  
10 [uF]×2  
0.1 [uF]  
10[uH]  
GRM31CB31E106KA75  
GRM152B30J104KE19  
NRS8040T100M  
C20  
C31  
MURATA  
DFN1  
DFN2  
CFN1  
RFN1  
CFN2  
QN  
L34  
TAIYO YUDEN  
MURATA  
-
ROHM  
RB558W  
C34  
10 [uF]×2  
10[uH]  
GRM21BB31A106KE18  
NRS8040T100M  
0.47 [uF]  
2.2 [Ω]  
0.22 [uF]  
-
MURATA  
ROHM  
GRM188B31E474KA75  
MCR15  
L37  
TAIYO YUDEN  
MURATA  
C37  
10 [uF]×3  
-
GRM21BB31A106KE18  
RSX301L-30  
MURATA  
ROHM  
GRM188B31E224KA87  
2SCR513P  
D39  
ROHM  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
22/46  
TSZ2211115001  
BM81110MUW  
Example ApplicationTOP VIEW, VGH Trippler)  
SW  
SW  
CFP1 RFP1  
CFP4 RFP2  
CFP3  
QP  
VGH  
VIN  
C26  
AVDD  
DFP2 DFP1  
DFP4 DFP3  
RQP  
C23  
RQN  
QN  
HAVDD  
L30  
C30  
CFN2  
R25  
DFN2  
DFN1  
SWB1  
VGL  
CFN1 RFN1  
EN  
VGL  
C31  
C20  
PGND2  
N.C.  
SWO  
SWI  
SW  
VCORE  
SWB2  
VDD2  
CTRL  
VINB2  
VDD1  
SWB1  
SWB1  
N.C.  
AVDD  
D16  
L34  
C18  
C34  
C17  
VIN  
BM81110MUW  
SW  
L15  
C15  
PGND  
PGND  
NTC  
L37  
R12_1  
VIO  
D39  
C37  
VL  
R12_2  
RNTC  
C11  
Θ
VIN  
R10  
C10  
C1  
C8  
Figure 41. Example Application  
Parts  
Application circuit components list  
Parts  
name  
Value  
Company  
Parts Number  
Value  
Company  
Parts Number  
name  
C1  
C8  
10 [uF]×2  
1 [uF]  
MURATA  
MURATA  
ROHM  
GRM31CB31E106KA75  
GRM188B31E105KA75  
MCR03  
QP  
CFP1  
RFP1  
DFP1  
DFP2  
DFP3  
DFP4  
CFP3  
RFP2  
CFP4  
C23  
-
ROHM  
MURATA  
ROHM  
2SAR513P  
GRM188B31E104KA75  
MCR15  
0.1 [uF]  
2.2 [Ω]  
R10  
75 [kΩ]  
470 [pF]  
1 [uF]  
C10  
MURATA  
MURATA  
ROHM  
GRM188B11H471KA01  
GRM188B31E105KA75  
MCR03  
-
-
ROHM  
ROHM  
RB558W  
RB558W  
C11  
R12_1  
R12_2  
RNTC  
L15  
100 [kΩ]  
390 [kΩ]  
10 [kΩ]  
10 [uH]  
ROHM  
MCR03  
MURATA  
TAIYO YUDEN  
MURATA  
ROHM  
NCP18XH103F03RB  
NS10165T100MNA  
GRM31CB31E106KA75  
RB080L-30TE25  
1[uF]  
MURATA  
ROHM  
GRM21BB31H105KA12  
MCR15  
2.2 [Ω]  
0.1 [uF]  
C15  
10 [uF]×2  
-
MURATA  
MURATA  
ROHM  
GRM188B31E104KA75  
GRM31CB31H475KA12  
MCR03  
D16  
4.7 [uF]×2  
300 [Ω]  
10 [uF]  
C17  
10 [uF]×2  
10 [uF]×4  
4.7 [uF]×2  
MURATA  
MURATA  
MURATA  
GRM31CB31E106KA75  
GRM31CB31E106KA75  
GRM219B31C475KE15  
R25  
C18  
C26  
MURATA  
GRM31CB31E106KA75  
NRS8040T100M  
C20  
L30  
10[uH]  
TAIYO YUDEN  
MURATA  
DFN1  
DFN2  
CFN1  
RFN1  
CFN2  
QN  
C30  
10 [uF]×2  
0.1 [uF]  
10[uH]  
GRM31CB31E106KA75  
GRM152B30J104KE19  
NRS8040T100M  
-
ROHM  
RB558W  
C31  
MURATA  
0.47 [uF]  
2.2 [Ω]  
0.22 [uF]  
-
MURATA  
ROHM  
GRM188B31E474KA75  
MCR15  
L34  
TAIYO YUDEN  
MURATA  
C34  
10 [uF]×2  
10[uH]  
GRM21BB31A106KE18  
NRS8040T100M  
MURATA  
ROHM  
GRM188B31E224KA87  
2SCR513P  
L37  
TAIYO YUDEN  
MURATA  
C37  
10 [uF]×3  
-
GRM21BB31A106KE18  
RSX301L-30  
RQN  
RQP  
100 [kΩ]  
100 [kΩ]  
ROHM  
MCR03  
D39  
ROHM  
ROHM  
MCR03  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
23/46  
TSZ2211115001  
BM81110MUW  
Protection function explanation of each block  
1. BUCK CONVERTER BLOCK 1 (VIO)  
1-1. Over Voltage Protection (OVP)  
OVP function is incorporated to prevent IC or other components from malfunctioning due to rising VIO voltage.  
Voltage inputted to VDD1 pin is monitored and if VIO voltage reaches VIO>110%(Typ), it is judged as unusual condition  
thus OVP function is operated. If OVP is detected, switching is stopped until OVP release voltage (100%, Typ) falls to VIO  
voltage. After OVP is released, switching is re-started.  
1-2. Over Current Protection (OCP)  
If excessive load current (SWB1 peak current>3.5A, Typ) is present, it limits current to flow to builtin Power MOS by  
controlling Switching.  
1-3. Under Voltage Protection (UVP)  
Timer-latch type output UVP function is built-in.  
When the unusual condition (VIO<80%) is detected, SWB1 frequency is divided into 1/4 and UVP timer starts.  
If the unusual condition continues up to 10msec (Typ), all output will be latched in shutdown state. Power reset is needed to  
remove the latch state and to re-start.  
2. BUCK CONVERTER BLOCK 2 (VCORE)  
2-1. Over Voltage Protection (OVP)  
OVP function is incorporated to prevent IC or others components from malfunctioning due to rising VCORE voltage.  
Voltage inputted to VDD2 pin is monitored and if VCORE voltage reaches VCORE>110%(Typ), it is judged as unusual  
condition thus OVP function is operated. If OVP is detected, switching is stopped until OVP release voltage (100%, Typ)  
falls to VCORE voltage. After OVP is released, switching is re-started.  
2-2. Over Current Protection (OCP)  
If excessive load current (SWB2 peak current>3.0A, Typ) is present, it limits current to flow to builtin Power MOS by  
controlling Switching.  
2-3. Under Voltage Protection (UVP)  
Timer-latch type output UVP function is built-in.  
When the unusual condition (VCORE<80%) is detected, SWB2 frequency is divided into 1/4 and UVP timer starts.  
If the unusual condition continues upto 10msec (Typ), all output will be latched in shutdown state. Power reset is needed to  
remove the latch state and to re-start.  
3. VGL REGULATOR BLOCK  
3-1. Over Current Protection (OCP)  
If excessive load current (I_DRVN>5mA, min.) is present, It controls source current (Base current of NPN Tr ) of DRVN.  
3-2. Under Voltage Protection (UVP)  
Timer-latch type output UVP function is built-in.  
When unusual condition is detected (VGL>80%), the UVP time counter starts. If the unusual condition continues up to  
10msec (Typ), all output is latched in shut-down condition. Power reset is needed to cancel the latch state and to re-start.  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
24/46  
TSZ2211115001  
BM81110MUW  
4. BOOST CONVERTER BLOCK (AVDD)  
4-1. Over Voltage Protection (OVP)  
OVP function is built in to prevent IC or other components from malfunctioning due to excessive rise in AVDD voltage.  
The voltage inputted to SWO pin is being monitored. If the SWO pin voltage becomes 21.5V(Typ), OVP is detected. Once  
OVP is detected, switching is stopped. After AVDD voltage falls below OVP detection release voltage 20V(min.), switching  
is restarted.  
4-2. Over Current Protection (OCP)  
If excessive load current over 5A (Typ) of SW peak current is present, OCP limits current to rush to built-in Power MOS by  
controlling its output switching.  
4-3. Under Voltage Protection (UVP)  
Timer-latch type output UVP function is built in.  
When an unusual condition is detected (AVDD<80%), UVP timer starts. If the unusual condition continues up to  
10msec(Typ), all output is latched in shut-down condition. Power reset is needed to remove the latch state and to re-start.  
4-4. Load Switch Over Current Protection (LSW_OCP)  
If excessive load current (7A, Typ) is present, It controls current of load switch.  
5. BUCK CONVERTER BLOCK 3 (HAVDD)  
5-1. Over Voltage Protection (OVP)  
OVP function is incorporated to prevent IC or other components from malfunctioning due to rising HAVDD voltage.  
Voltage inputted to VDD3 pin is being monitored and if HAVDD voltage reaches HAVDD>110% (Typ), it is judged as  
unusual condition thus OVP function is operated. If OVP is detected, switching is stopped until OVP release voltage (100%,  
Typ) falls to HAVDD voltage. After OVP release, switching is re-started.  
5-2. Over Current Protection (OCP)  
If excessive load current (SWB3 peak current>1.5A, typ.) is present, it limits current to flow to builtin Power MOS by  
controlling Switching.  
5-3. Under Voltage Protection (UVP)  
Timer-latch type output UVP function is built in.  
When the unusual condition (HAVDD<80%) is detected, SWB3 frequency is divided into 1/4 and UVP timer starts.  
If the unusual condition continues up to 10msec(Typ), all output will be latched in shutdown state. Power reset is needed to  
remove the latch state and to re-start.  
6. VGH REGULATOR BLOCK  
6-1. Over Voltage Protection (OVP)  
OVP function is incorporated to prevent IC or other components from malfunctioning due to VGH voltage rising.  
Voltage inputted to VGH pin is being monitored and if VGH voltage reaches VGH>38V(Typ), it is judged as unusual  
condition so that OVP function is operated. If OVP is detected, limit DRVP current until OVP release voltage (35V, Typ) falls  
to VGH voltage. After OVP release, the current limiting of the DRVP pin is canceled.  
6-2. Over Current Protection (OCP)  
If excessive load current (I_DRVP>5mA, min.) is present, it controls sink current (Base current of PNP Tr ) of DRVP.  
6-3. Under Voltage Protection (UVP)  
Timer-latch type output UVP function is built in.  
When an unusual condition is detected (VGH<80%), UVP timer starts. If the unusual condition continues up to 10msec  
(Typ), all output is latched in shut-down condition. Power reset is needed to remove the latch state and to re-start.  
7. GENERAL  
7-1. Thermal shutdown  
All outputs will shut down when the IC temperature exceeds 175(typ.). After the temperature falls below 150(Typ), the  
operation re-starts.  
7-2. VIN Under Voltage Lock Out  
VIN Under Voltage Lock Out prevents the circuit malfunction below the UVLO voltage. If VIN voltage is below the UVLO  
voltage (8.3V / 7.55V), it enters the standby state.  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
25/46  
TSZ2211115001  
BM81110MUW  
Protection function list  
Protective  
BLOCK  
Working Condition  
Action  
Protective removal  
VIO<100%  
Function  
OVP  
VIO>110%  
I_SWB1>3.5A  
VIO<80%  
Stops switching.  
BUCK  
CONVERTER  
1
OCP  
UVP  
Controls switching pulse duty to not exceed over current limit.  
Frequency becomes 1/4  
I_SWB1<3.5A  
VIO>80%  
IC shuts down if UVP status maintains in 10msec.  
IC restart  
OVP  
OCP  
UVP  
VCORE>110%  
I_SWB2>3.0A  
VCORE<80%  
Stops switching.  
VCORE<100%  
BUCK  
CONVERTER  
2
Controls switching pulse duty to not exceed over current limit.  
Frequency becomes 1/4  
I_SWB2<3.0A  
VCORE>80%  
IC restart  
IC shuts down if UVP status maintains in 10msec.  
Limits DRVN current.  
OCP  
UVP  
OVP  
OCP  
UVP  
OCP  
I_DRVN> 5 mA  
VGL<80%  
I_DRVN< 5 mA  
IC restart  
VGL  
REGULATOR  
IC shuts down if UVP status maintains in 10msec.  
Stops switching  
SWI>21.5V  
I_SW>5A  
SWI<20V  
BOOST  
CONVERTER  
Controls switching pulse duty to not exceed over current limit.  
IC shuts down if UVP status maintains in 10msec.  
Off the Load Switch.  
I_SW<5A  
SWO<80%  
I_SWO>7.0A  
IC restart  
LOAD SW  
IC restart  
OVP  
OCP  
UVP  
HAVDD>110%  
I_SWB3>1.5A  
HAVDD<80%  
Stops switching.  
HAVDD<100%  
BUCK  
CONVERTER  
3
Controls switching pulse duty to not exceed over current limit.  
Frequency becomes ¼  
I_SWB3<1.5A  
HAVDD>80%  
IC restart  
IC shuts down if UVP status maintains in 10msec.  
DRVP current limit to 0mA  
OVP  
OCP  
UVP  
VGH>38V  
I_DRVP> 5 mA  
VGH<80%  
VGH<35V  
VGH  
REGULATOR  
VGH  
Limits DRVP current.  
I_DRVP< 5 mA  
IC restart  
REGULATOR  
IC shuts down if UVP status maintains in 10msec.  
IC shuts down  
TSD  
Tj>175℃  
Tj<150℃  
GENERAL  
UVLO  
VIN<7.55V  
IC shuts down  
VIN>8.3V  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
26/46  
TSZ2211115001  
BM81110MUW  
Upper limit voltage setting of VGH thermal compensation  
36  
Low Temp setting is  
selected.  
VL 5V  
Low  
Temp  
Setting  
(VGH_H)  
5V  
32  
28  
24  
R12_1  
NTC setting is selected.  
NTC  
Normal  
Temp  
Setting  
(VGH_L)  
RNTC  
(Therminstor)  
R12_2  
NTC  
Normal Temp setting  
is selected.  
Setting  
Θ
Ta []  
Figure 42. VGH thermal compensation  
This IC installs the thermal compensation function for VGH voltage. VGH thermal compensation upper limit voltage  
(VGH_H) is settable by changing the EEPROM setting.  
Thermal gradient setting is possible by the thermistor (R_NTC) connected to NTC pin and the resistor divider  
(R_NTC1, R_NTC2).  
FAULT function  
The FAULT output indicates the status of the protection circuit of this IC.  
Because FAULT is an open-drain output, place a pull-up resistor externally.  
When the FAULT output will not be used, leave the pin OPEN.  
10220[kΩ]  
FAULT  
Figure 43. FAULT Terminal  
The recommended external pull-up resistance for the FAULT output is 10kΩ to 220kΩ. An external resistance of under  
10kΩ can generate an offset voltage during FAULT=L caused by the voltage drop across the internal ON resistance. On the  
other hand, an external resistance of more than 220kΩ can interfere with the output during FAULT=H because of leak  
current.  
The conditions that FAULT terminal becomes Low are as follows.  
If UVLO operates  
If UVP operates  
If TSD operates  
When FAULT function is not used, connect NTC pin to GND, or please make it open.  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
27/46  
TSZ2211115001  
BM81110MUW  
Serial transmission  
Use I2C BUS control for command interface with Host.  
Writing or reading by specifying 1 byte Register address besides Slave address.  
I2C BUS slave mode format is shown below.  
Slave Address  
Register Address  
Select Register Address (8bit)  
Register Address  
DATA  
8bit DATA  
DATA  
R/W A  
A
0
A
0
Write operation Start  
Read operation Start  
Stop  
Stop  
0
0
1
1
0
0
0
0
0
A0  
A0  
0
0
Slave Address  
R/W A  
A
0
A
0
Select Register Address (8bit)  
8bit DATA  
0
0
0
1
0
Start  
Slave Address  
:
:
Start condition  
Send 7 bit data in all with bit of Read Mode (H) or Write Mode (L).  
(MSB First)  
A0 is selectable (1/0) with the slave address select pin.  
Acknowledge  
ACK  
:
Sending or receiving data includes acknowledge bit per byte.  
If the data is sent or received properly, Lis sent and received.  
If His sent and received, it means there is no Acknowledge.  
Use 1 byte select address.  
Data byte. Sending and Receiving data (MSB First)  
Stop condition  
Register Address  
Data  
STOP  
:
:
:
For writing mode from I2C BUS to register, there is Single mode or Multi-mode.  
On single mode, write data to one designated register.  
On multi-mode, as a start address register specified in the second byte, writing data can be performed continuously, by  
entering multiple data.  
Single mode or multi-mode setting can be configured by having or not having stop bit.  
Single Mode Timing Chart  
start  
Slave Address  
Write Ackn  
Resister Address  
Ackn  
Data  
Ackn  
Stop  
SCL  
SDA_in  
A6  
A6  
A5  
A5  
A4  
A4  
A3  
A3  
A2  
A2  
A1  
A1  
A0 R/W Ackn R7  
A0 R/W Ackn R7  
R6  
R6  
R5  
R5  
R4  
R4  
R3  
R3  
R2  
R2  
R1  
R1  
R0 Ackn D7  
R0 Ackn D7  
D6  
D6  
D5  
D5  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0 Ackn  
D0 Ackn  
D4  
Device_Out  
Multi Mode Timing Chart  
start  
Slave Address  
Write Ackn  
Resister Address (Ex.01h)  
Ackn  
Data (to Resister 01h)  
Ackn  
Data (to Resister 02h)  
Ackn  
・・・  
・・・  
・・・  
SCL  
SDA_in  
A6  
A6  
A5  
A5  
A4  
A4  
A3  
A3  
A2  
A2  
A1  
A1  
A0 R/W Ackn R7  
A0 R/W Ackn R7  
R6  
R6  
R5  
R5  
R4  
R4  
R3  
R3  
R2  
R2  
R1  
R0 Ackn  
R0 Ackn  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0 Ackn  
D0 Ackn  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0 Ackn  
D0 Ackn  
D7  
R1  
D7  
Device_Out  
Data(toResister05h)
Ackn  
Data(toResister06h)  
Ackn  
Stop  
・・・  
・・・  
・・・  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0 Ackn D7  
D0 Ackn D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0 Ackn  
D0 Ackn  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
28/46  
TSZ2211115001  
BM81110MUW  
I2C Timing Diagram  
tR  
tHIGH  
tF  
70%  
30%  
SCL  
tLOW  
tPD  
tHD:STA  
tSU;DAT  
tHD;DAT  
70%  
30%  
SDA  
(IN)  
tBUF  
tDH  
70%  
30%  
SDA  
(OUT)  
70%  
SCL  
SDA  
tHD;STA  
tSU;STA  
tSU;STO  
70%  
30%  
tl  
SSTART ビット  
PSTOP ビット  
S
P
Figure 44. I2C Timing Diagram  
NORMAL MODE  
Timing standard values  
FAST MODE  
TYP  
Parameter  
Symbol  
Unit  
MIN  
TYP  
MAX  
MIN  
MAX  
SCL frequency  
SCL high time  
SCL  
tHIGH  
tLOW  
tR  
-
4.0  
4.7  
-
-
-
100  
-
-
0.6  
1.2  
-
-
-
400  
-
kHz  
us  
us  
us  
us  
us  
us  
ns  
ns  
us  
us  
us  
us  
us  
SCL low time  
-
-
-
-
Rise Time  
-
1.0  
-
0.3  
Fall Time  
tF  
-
-
0.3  
-
-
0.3  
Start condition hold time  
Start condition setup time  
SDA hold time  
tHDSTA  
tSUSTA  
tHDDAT  
tSUDAT  
tPD  
4.0  
4.7  
200  
200  
-
-
-
0.6  
0.6  
100  
100  
-
-
-
-
-
-
-
-
-
-
-
SDA setup time  
-
-
-
-
-
-
Acknowledge delay time  
Acknowledge hold time  
Stop condition setup time  
Bus release time  
Noise spike width  
0.9  
0.9  
tDH  
-
0.1  
-
-
-
-
-
-
0.1  
-
-
-
-
-
tSUSTO  
tBUF  
4.7  
4.7  
-
0.6  
1.2  
-
-
-
Tl  
0.1  
0.1  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
29/46  
TSZ2211115001  
BM81110MUW  
Command interface  
EEPROM transmission format for data sending and receiving is shown below.  
I2C Write format  
Slave Address  
Register Address  
00h to 0Ch  
DATA  
R/W  
0
A
0
A
0
A
0
Start  
Stop  
N-bytes DATA  
0
1
0
0
0
0 A0  
It can enter further Register from 3 byte by entering data continuously.  
DATA after 0Dh is invalid.  
Inputted Data reflect to the Register at the ACK output timing.  
I2C Read format  
1. Read data from DAC Register  
Slave Address  
Start  
Register Address  
R/W  
0
A
0
A
0
00h to 0Ch  
DATA  
0
1
0
0
0
0
0
A0  
A0  
Slave Address  
R/W  
1
A
0
A
0
Repeated  
Start  
Stop  
N-bytes DATA  
0
1
0
0
0
EEPROM Write format  
Transmission format for Write operation of EEPROM (DAC Register) is shown below.  
EEPROM Write format  
Slave Address  
Register Address  
DATA  
R/W  
0
A
0
A
0
A
0
Start  
Stop  
0
1
0
0
0
0
A0  
1
1
1
1
1
1
1
1
1
X
X
X
X
X
X
X
D6 to D0 : Dont care  
Automatic EEPROM Read Function at Start-up  
Upon BM81110MUW start-up, a reset signal is generated and each register is initialized.  
After VL activation is finished, data which is stored in the EEPROM is copied to the registers.  
The automatic EEPROM read function at start-up is further explained by the flow chart below.  
VL ACTIVE  
EEPROM READ  
TRANSFER DATA  
REGISTER  
START OPERATION  
Figure 45. Automatic EEPROM Read Function at Start-up  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
30/46  
BM81110MUW  
Content of EEPROM setting  
Register  
Bits  
Function  
Default(*1)  
Resolution  
Address  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
FFh  
6
6
4
3
1
4
5
6
4
4
2
4
4
8
Channel Disable Register  
AVDD output voltage setting[5:0]  
AVDD HVS voltage setting[3:0]  
AVDD OCP offset setting[2:0]  
AVDD soft start time setting[0]  
VIO output voltage setting[3:0]  
VCORE output voltage setting[4:0]  
HAVDD output voltage setting[5:0]  
VGH_L output voltage setting[3:0]  
VGH_H offset voltage setting[3:0]  
GPM clamp voltage setting[1:0]  
VGL output voltage setting[3:0]  
HAVDD HVS voltage setting[3:0]  
00h  
15.0V [0Fh]  
1.0V [05h]  
0.0A [00h]  
10msec [00h]  
2.5V [03h]  
1.0V [02h]  
7.5V [1Bh]  
28V [08h]  
-
0.1V [13.5V to 19.8V]  
0.2V [0V to 3.0V]  
0.4A [0A to 2.8A]  
10msec [10msec or 20msec]  
0.1V [2.2V to 3.7V]  
0.1V [0.8V to 3.3V]  
0.1V [4.8V to 11.1V]  
1V [20V to 35V]  
4V [04h]  
1V [0V to 15V]  
5V [01h]  
5V [5V to 15V]  
-7.9V [04h]  
0.0V [00h]  
Control Register[7:0]  
0.6V [-14.5V to -5.5V]  
0.1V [0.0V to 1.5V]  
*1 Factory value.  
*2 Value of default voltage setting. The Soft start time of each output changes depending on the setting voltage.  
Channel Disable Register  
Register Address = 00h  
[7]  
-
[6]  
-
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
VCORE  
HAVDD  
VGH  
VGL  
GPM  
NTC  
0Enable  
1Disable  
Control Register  
Register  
Address  
DATA  
[BIN]  
Function  
Write to EEPROM from DAC Register data.  
FFh  
1xxx_xxxx  
xDon’t care bit  
Register Map  
Resister  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
Address  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
FFh  
VCORE  
HAVDD  
VGH  
VGL  
GPM  
NTC  
00h  
0Fh  
05h  
00h  
00h  
03h  
02h  
1Bh  
08h  
04h  
01h  
04h  
00h  
AVDD[5:0]  
AVDD HVS [3:0]  
AVDD OCP offset[2:0]  
AVDD SS  
VIO [3:0]  
VCORE [4:0]  
HAVDD [5:0]  
VGH_L [3:0]  
VGH_H offset [3:0]  
GPM clamp [1:0]  
VGL [3:0]  
HAVDD HVS [3:0]  
Control Register )  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
31/46  
TSZ2211115001  
BM81110MUW  
Command Table  
Register Address  
01  
[5:0]  
02  
[3:0]  
03  
[2:0]  
AVDD  
OCP  
offset  
[A]  
04  
[0]  
05  
[3:0]  
06  
[4:0]  
07  
[5:0]  
08  
[3:0]  
09  
[3:0]  
0A  
[1:0]  
0B  
[3:0]  
0C  
[3:0]  
AVDD  
HVS  
[V]  
AVDD  
soft start  
[msec]  
VGH_H  
offset  
[V]  
GPM  
clamp  
[V]  
HAVDD  
HVS  
[V]  
DATA  
(HEX)  
AVDD  
[V]  
VIO  
[V]  
VCORE HAVDD VGH_L  
[V]  
VGL  
[V]  
[V]  
[V]  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
13.5  
13.6  
13.7  
13.8  
13.9  
14.0  
14.1  
14.2  
14.3  
14.4  
14.5  
14.6  
14.7  
14.8  
14.9  
15.0  
15.1  
15.2  
15.3  
15.4  
15.5  
15.6  
15.7  
15.8  
15.9  
16.0  
16.1  
16.2  
16.3  
16.4  
16.5  
16.6  
16.7  
16.8  
16.9  
17.0  
17.1  
17.2  
17.3  
17.4  
17.5  
17.6  
17.7  
17.8  
17.9  
18.0  
18.1  
18.2  
18.3  
18.4  
18.5  
18.6  
18.7  
18.8  
18.9  
19.0  
19.1  
19.2  
19.3  
19.4  
19.5  
19.6  
19.7  
19.8  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
0.0  
10  
20  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
7.0  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
8.0  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
9.0  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
9.8  
9.9  
10.0  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
10.7  
10.8  
10.9  
11.0  
11.1  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
0
1
2
3
4
5
6
7
8
-
-5.5  
-6.1  
-6.7  
-7.3  
-7.9  
-8.5  
-9.1  
-9.7  
-10.3  
-10.9  
-11.5  
-12.1  
-12.7  
-13.3  
-13.9  
-14.5  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
5
10  
15  
9
10  
11  
12  
13  
14  
15  
: Default Value  
AVDD HVS Voltage Setting (Register Address02h)  
When HVS=High, AVDD becomes AVDD setting voltage + AVDD HVS setting voltage [V].  
VGH _H offset Voltage Setting (Register Address09h)  
When NTC=High, VGH becomes VGH_L setting voltage + VGH_H offset setting voltage [V].  
HAVDD HVS Voltage Setting (Register Address0Ch)  
When HVS=High, HAVDD becomes HAVDD setting voltage + HAVDD HVS setting voltage [V].  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
32/46  
BM81110MUW  
Selecting Application Components  
1. Buck Converter  
1-1. Selecting the Output LC Constant  
IL  
IL  
IOMAX+  
should not reach the rated value level.  
ILR  
2
I
OMAXMean current  
t
Figure 46. Inductor Current Waveform (Buck Converter)  
The output inductance (L) is decided by the rated current (ILR)and maximum input current (IOMAX)of the inductance.  
Adjust so that IOMAX+ΔIL / 2 do not reach the rated current value.  
ΔIL can be obtained by the following equation.  
1
L
VO  
VIN  
1
f
ΔI  
=
× (VIN - VO) ×  
×
[A]  
L
where f is the switching frequency  
Set with sufficient margin because the inductance value may have a dispersion of ±30%.  
If the coil current exceeds the rated current (ILR), the IC may be damaged.  
1-2. Selecting the Input/Output capacitor  
The output capacitor (CO) smoothens the ripple voltage at the output. Select a capacitor that will regulate the output ripple voltage  
within the specifications.  
Output ripple voltage can be obtained by the following equation.  
ΔI  
L
VO  
VIN  
1
f
ΔVPP = ΔI × R  
ESR  
×
×
L
2 Co  
However, since the aforementioned conditions are based on a lot of factors, verify the results using the actual product.  
Since the peak current flows between the input and output at the DC/DC converter, a capacitor is required to be installed at  
the Input side. For this reason, a low ESR capacitor is recommended as an input capacitor with a value more than 10μF  
and less than 100mΩ ESR. If an out of range capacitor is selected, the excessive ripple voltage is superimposed on the  
input voltage, thus it may cause the malfunction of IC.  
However these conditions may vary according to the load current, input voltage, output voltage, inductance and switching  
frequency. Be sure to perform margin check using the actual product.  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
33/46  
TSZ2211115001  
BM81110MUW  
1-3. Selecting the Output rectifier diode  
A schottky barrier is recommended as rectifier diode to be used at the output stage of the DC/DC converter. Select carefully  
in consideration of the maximum inductor current, maximum output voltage and power supply voltage.  
ΔI  
L
Maximum inductor current I  
Diode Maximum Absolute Current  
Diode Maximum Absolute Voltage  
OMAX  
IN  
2
Maximum input voltage  
V
Provide sufficient design margins for a tolerance of 30% to 40% for each parameter.  
2. Boost Converter  
2-1. Selecting the Output LC Constant  
IL  
IL  
IOMAX+  
should not reach the rated value level.  
ILR  
2
I
OMAX mean current  
t
Figure 47. Inductor Current Waveform ( Boost Converter )  
The output inductance (L) is decided by the rated current (ILR)and maximum input current (IINMAX)of the inductance.  
Adjust so that IINMAX+ΔIL / 2 does not reach the rated current value.  
ΔIL can be obtained by the following equation.  
1
VO VIN  
1
Δ I  
VIN   
[A]  
L
L
VO  
f
where f is the switching frequency  
Set with sufficient margin because the inductance value may have a dispersion of ±30%.  
If the coil current exceeds the rated current (ILR), this may damage the IC.  
2-2. Selecting the Output capacitor  
The output capacitor (CO) smoothens the ripple voltage at the output. Select a capacitor that will regulate the output ripple voltage  
within the specifications.  
Output ripple voltage can be obtained by the following equation.  
ΔI  
1
VIN  
VO  
L
ΔV  
PP  
= I  
LMAX  
× R  
ESR  
×
×
I
LMAX  
f × CO  
2
However, since the aforementioned conditions are based on a lot of factors, verify the results using the actual product.  
Since the peak current flows between the input and output at the DC/DC converter, a capacitor is required at the  
Input side. For this reason, a low ESR capacitor is recommended as an input capacitor with a value more than  
10μF and less than 100mΩ ESR. If an out of range capacitor is selected, the excessive ripple voltage is superimposed on  
the input voltage, thus it may cause the malfunction of IC.  
However these conditions may vary according to the load current, input voltage, output voltage, inductance and switching  
frequency. Be sure to perform the margin check using the actual product.  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
34/46  
TSZ2211115001  
BM81110MUW  
2-3. Setting phase compensation  
Phase setting procedure.  
Stable negative feedback condition is achieved as follows:  
When the gain is set to 1 (0 dB), phase delay should not be more than 150°.Consequently, phase margin should not be  
less than 30°.  
Also, since DC/DC converter applications are sampled according to the switching frequency, the whole system GBW should  
be set to not more than 1/10 of the switching frequency. The target characteristics of the applications can be summarized  
as follows:  
When the gain is set to 1 (0 dB), the phase delay should not be more than 150°.  
And phase margin should not be less than 30°.  
The frequency when the gain is set to 0 dB should not be more than 1/10 of the switching frequency.  
The responsiveness is determined by the GBW limitation. Consequently, to increase the circuit response, higher switching  
frequencies are required.  
AVDD is in current mode control. The current mode control is a two-pole single-zero system. The poles are formed by the  
error amplifier and load while added zero is for phase compensation.  
By placing poles appropriately, the circuit can maintain good stability and transient load response.  
Board plot diagram of general DC/DC converter is described below. At point (a), gain starts falling via the output impedance  
of the error amplifier and forms a pole by capacitor Ccp. When point (b) is reached, a zero is formed by resistor Rpc and  
capacitor Ccp to cancel the pole by loading and balancing the variation of Gain and phase.  
The GBW (i.e., frequency when the gain is 0 dB) is determined by phase compensation capacitor connected to the error  
amplifier. If GBW is to be reduced, increase the capacitance of the capacitor.  
(a)  
-20dB/decade  
A
Vo  
R3  
Gain  
[dB]  
0
R1  
R2  
GBW(b)  
f
C1  
COMP  
Rcp  
0
-90  
A
Phase  
[deg]  
-90°  
Ccp  
Phase margin  
-180°  
-180  
f
Figure 48. Setting phase compensation  
Formed Zero (fz1) by Rcp resistor and Ccp Capacitor are shown by using the following equation.  
And also, Feed-forward capacitor C1 and R1 resistor both create Formed Zero (fz2) and it is used as boosting phase  
margin in the limited frequency area.  
1
Phase lead fZ1 =  
Phase lead fZ2 =  
[Hz]  
2πCcpRcp  
1
[Hz]  
2πC1R1  
The formed zero fz2 phase compensation is built-in to the IC.  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
35/46  
TSZ2211115001  
BM81110MUW  
3. Positive Charge Pump : VGH  
3-1. Selecting the Output rectifier diode  
Select carefully in consideration of the maximum load current, maximum output voltage and power supply voltage.  
Maximum output current  
I
Diode Maximum Absolute Current  
OMAX  
Maximum output voltage AVDD  
Diode Maximum Absolute Voltage  
Provide sufficient design margins for a tolerance of 30% to 40% for each parameter.  
3-2. Selecting the Output PNP transistor  
Select carefully in consideration of the maximum load current, maximum output voltage and power supply voltage.  
AVDDVIN  
Boost Converter Duty  
D =  
AVDD  
I
OMAX  
D
Maximum Output current  
Transistor Maximum Absolute Current  
Power supply voltage  
DC gain  
AVDD x 2  
IOMAX / IBASE  
Transistor Maximum Absolute Voltage  
Transistor hfe  
Power dissipation (Doubler Mode)  
Power dissipation (Tripler Mode)  
Maximum DRVP current  
( 2 x AVDD VGH 2 x Vf ) x IOUT  
( 3 x AVDD VGH 4 x Vf ) x IOUT  
IBASE5mA)  
Transistor Power dissipation  
Transistor Power dissipation  
Provide sufficient design margins for a tolerance of 30% to 40% for each parameter.  
3-3. Selecting the base emitter resistor  
100kΩ base-emitter resistor used to ensure proper operation.  
3-4. Selecting the flying capacitor and the switch node resistor  
0.1uF to 0.47uF flying capacitor and 1Ω to 20Ω resistor are appropriate for most applications.  
3-5. Selecting the output capacitor  
A 10uF ceramic capacitor is appropriate for most applications. More capacitor can be added to improve the load transient  
response.  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
36/46  
TSZ2211115001  
BM81110MUW  
4. Negative Charge Pump : VGL  
4-1. Selecting the Output rectifier diode  
Select carefully in consideration of the maximum load current, maximum output voltage and power supply voltage.  
Maximum output current  
I
Diode Maximum Absolute Current  
OMAX  
VIN  
Maximum switching voltage  
Diode Maximum Absolute Voltage  
Provide sufficient design margins for a tolerance of 30% to 40% for each parameter.  
4-2. Selecting the Output NPN transistor  
Select carefully in consideration of the maximum load current, maximum output voltage and power supply voltage.  
VINVIO  
VIN  
AVDD  
Converter Duty  
D =  
I
or  
VIN  
OMAX  
D
Maximum output current  
Transistor Maximum Absolute Current  
Power supply voltage  
DC gain  
VIN  
Transistor Maximum Absolute Voltage  
Transistor hfe  
IOMAX / IBASE  
Power dissipation (Doubler Mode)  
Or  
Maximum DRVN current  
(VIN - VGL 2 x Vf ) x IOUT  
(AVDD - VGL 2 x Vf ) x IOUT  
IBASE5mA)  
Transistor Power dissipation  
Provide sufficient design margins for a tolerance of 30% to 40% for each parameter.  
4-3. Selecting the base emitter resistor  
100kΩ base-emitter resistor used to ensure proper operation.  
4-4. Selecting the flying capacitor and the switch node resistor  
0.1uF to 0.47uF flying capacitor and 1Ω to 20Ω resistor are appropriate for most applications.  
4-5. Selecting the output capacitor  
A 10uF ceramic capacitor is appropriate for most applications. More capacitor can be added to improve the load transient  
response.  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
37/46  
TSZ2211115001  
BM81110MUW  
Layout Guideline  
DC/DC converter switching line must be as short and thick as possible to reduce line impedance. If the wiring is long,  
ringing caused by switching would increase and this may exceed the absolute maximum voltage ratings. If the parts are  
located far apart, consider inserting a snubber circuit.  
The thermal Pad on the back side of IC has the great thermal conduction to the chip. So using the GND plain as broad and  
wide as possible can help thermal dissipation. And a lot of thermal via for helping the spread of heat to the different layer is  
also effective. When there is unused area on PCB, please arrange the copper foil plain of DC nodes, such as GND, VIN  
and VOUT for helping heat dissipation of IC or circumference parts.  
Power Dissipation  
3.5  
(3) 3.2W  
3
(2) 2.5W  
2.5  
2
1.5  
(1) 1.1W  
1
0.5  
0
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE : Ta []  
VQFN40W6060A Package  
On 4-layer 114.3mm×74.2mm×1.6mm glass epoxy PCB  
(1) 1-layer board (Backside copper foil area 0 mm ×0 mm)  
(2) 2-layer board (Backside copper foil area 74.2 mm ×74.2 mm)  
(3) 4-layer board (The 2nd, 3rd layers and backside copper foil area 74.2 mm ×74.2 mm)  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
38/46  
TSZ2211115001  
BM81110MUW  
I/O Equivalence Circuit  
1, 2.VINB1  
3. FAULT  
4.SDA  
VINB1  
Internal reg.  
FAULT  
SDA  
5.SCL  
6.A0  
7.HVS  
Internal reg.  
Internal reg.  
AVIN  
Internal reg.  
SCL  
A0  
HVS  
8.AVIN  
10.COMP  
11.VL  
Internal reg.  
AVIN  
AVIN  
COMP  
VL  
12.NTC  
15, 16.SW  
17.SWI  
SWO  
SWO  
SWI  
SW  
SWI  
SW  
NTC  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
39/46  
TSZ2211115001  
BM81110MUW  
18.SWO  
20.VGL  
21.DRVN  
SWO  
SWI  
SW  
VL  
Internal reg.  
VL  
VL  
VGL  
DRVN  
22.DRVP  
23.VGH  
24.VGHM  
VGH  
VGH VGH  
VGH  
DRVP  
VGHM  
RE  
25.RE  
26.VINB3  
28.SWB3  
VGH  
VGH VGH  
VINB3  
VINB3  
VGHM  
RE  
SWB3  
30.VDD3  
31.EN  
33.SWB2  
VINB3  
VINB2  
Internal reg.  
VDD3  
EN  
SWB2  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
40/46  
TSZ2211115001  
BM81110MUW  
34.VDD2  
35.CTRL  
36.VINB2  
VINB2  
Internal reg.  
VDD2  
CTRL  
37.VDD1  
38,39.SWB1  
VINB1  
VINB1  
VDD1  
SWB1  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
41/46  
TSZ2211115001  
BM81110MUW  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the ICs power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
Thermal Consideration  
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in  
deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the board size  
and copper area to prevent exceeding the Pd rating.  
6.  
7.  
Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately  
obtained. The electrical characteristics are guaranteed under the conditions of each parameter.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush  
current may flow instantaneously due to the internal powering sequence and delays, especially if the IC  
has more than one power supply. Therefore, give special consideration to power coupling capacitance,  
power wiring, width of ground wiring, and routing of connections.  
8.  
9.  
Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)  
and unintentional solder bridge deposited in between pins during assembly to name a few.  
11. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
42/46  
TSZ2211115001  
BM81110MUW  
Operational Notes continued  
12. Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should  
be avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 49. Example of monolithic IC structure  
13. Ceramic Capacitor  
When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
14. Area of Safe Operation (ASO)  
Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe  
Operation (ASO).  
15. Thermal Shutdown Circuit(TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s power dissipation rating. If however the rating is exceeded for a continued period, the junction  
temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below  
the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
16. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
43/46  
TSZ2211115001  
BM81110MUW  
Ordering Information  
B M 8  
1
1
1
0 M U W  
ZE2  
Part Number  
Package  
MUW: VQFN40W6060A  
Packaging and forming specification  
ZE2: Embossed tape and reel  
Marking Diagram  
VQFN40W6060A (TOP VIEW)  
Part Number Marking  
LOT Number  
8 1 1 1 0  
1PIN MARK  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
44/46  
TSZ2211115001  
BM81110MUW  
Physical Dimension Tape and Reel Information  
Package Name  
VQFN40W6060A  
ZE2  
www.rohm.com  
© 2014 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
45/46  
BM81110MUW  
Revision History  
Date  
Revision  
001  
Contents  
2013.09.11  
2015.08.10  
New release  
002  
P.1, 22, 23 Application circuit and Application circuit components list update  
www.rohm.com  
TSZ02201-0313AAF00410-1-2  
2015.08.10 Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
46/46  
TSZ2211115001  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BM81110MUW-ZE2

Power Supply Support Circuit,
ROHM

BM81810MUF-M

BM81810MUF-M is a power management IC for TFT-LCD panels which are used in car navigation, in-vehicle center panel, and instrument cluster. This IC incorporates VCOM amplifier, Gate Pulse Modulation (GPM) in addition to the power supply for panel driver (SOURCE, GATE, and LOGIC power supplies). Moreover, this IC has a built-in EEPROM for sequence and output voltage setting retention.
ROHM

BM81810MUV-M

Automotive Panel Power Management IC
ROHM

BM81810MUV-ME2

Automotive Panel Power Management IC
ROHM

BM8290

9.25】8.05mm Max.(L】W),8.85mm Max. Height.
SUMIDA

BM831

0.7~1.4GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP
BEREX

BM831_18

0.7~1.4GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP
BEREX

BM851

1.7~2.7GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP
BEREX

BM851_18

1.7~2.7GHz High IIP3 GaAs MMIC Mixer with Integrated LO AMP
BEREX

BM9164

1A BiCMOS LDO
BOOKLY

BM9164-3.3

1A BiCMOS LDO
BOOKLY

BM9164-5.0

1A BiCMOS LDO
BOOKLY