BM81810MUF-M [ROHM]

BM81810MUF-M is a power management IC for TFT-LCD panels which are used in car navigation, in-vehicle center panel, and instrument cluster. This IC incorporates VCOM amplifier, Gate Pulse Modulation (GPM) in addition to the power supply for panel driver (SOURCE, GATE, and LOGIC power supplies). Moreover, this IC has a built-in EEPROM for sequence and output voltage setting retention.;
BM81810MUF-M
型号: BM81810MUF-M
厂家: ROHM    ROHM
描述:

BM81810MUF-M is a power management IC for TFT-LCD panels which are used in car navigation, in-vehicle center panel, and instrument cluster. This IC incorporates VCOM amplifier, Gate Pulse Modulation (GPM) in addition to the power supply for panel driver (SOURCE, GATE, and LOGIC power supplies). Moreover, this IC has a built-in EEPROM for sequence and output voltage setting retention.

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 栅 CD
文件: 总78页 (文件大小:3637K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Power Supply IC Series for TFT-LCD Panels  
Automotive Panel Power Management IC  
BM81810MUF-M  
General Description  
Features  
AEC-Q100 Qualified(Note 1)  
BM81810MUF-M is  
a power management IC for  
TFT-LCD panels which are used in car navigation,  
in-vehicle center panel, and instrument cluster.  
Alternative Synchronous Buck DC/DC converter or LDO  
for VDD output  
This IC incorporates VCOM amplifier, Gate Pulse  
Modulation (GPM) in addition to the power supply for  
panel driver (SOURCE, GATE, and LOGIC power  
supplies). Moreover, this IC has a built-in EEPROM for  
sequence and output voltage setting retention.  
Synchronous Boost DC/DC converter for AVDD output  
with integrated load switch.  
VCOM amplifier with 7bit calibrator  
Positive charge pump (Integrated diode, x2/x3) for VGH  
output  
Negative charge pump for VGL output  
VGH and VCOM temperature compensation  
Gate Pulse Modulation(GPM)  
Key Specifications  
Input voltage range:  
2.6V to 5.5V  
5.0V to 17.0V  
8.0V to 35.0V  
-4.0V to -14.0V  
0.9V to 3.4V  
I2C Interface Output Voltage Setting Control Function  
(Integrated EEPROM)  
AVDD Output voltage range:  
VGH Output voltage range:  
VGL Output voltage range:  
VDD Output voltage range:  
VCOM Output current:  
Switching Frequency:  
Operating temperature range:  
Standby current:  
Switching frequency switching function  
(525kHz, 1.05MHz, 2.1MHz)  
Protection circuits  
200 mA (Typ)  
525KHz, 1.05MHz, 2.1MHz  
Under-Voltage Lockout  
Thermal Shut Down  
Over-Current Protection  
Over-Voltage Protection  
-40°C to +105°C  
2.0 μA (Typ)  
Under Voltage Protection (Timer Latch type)  
Special Characteristics  
AVDD output voltage accuracy:  
Oscillator Frequency:  
Input tolerant (SCL, SDA, EN, GSIN)  
(Note1: Grade 2)  
±2%  
±10%  
Package  
W(Typ) x D(Typ) x H(Max)  
5.0mm x 5.0mm x 1.0mm  
Applications  
VQFN32FBV050  
TFT-LCD Panels which are used in car navigation,  
in-vehicle center panel, and instrument cluster.  
Typical Application Circuit (TOP VIEW)  
R_NTC2  
R_NTC1  
R_NTC3  
WPN  
R_FLT  
VIN  
R_RE  
GSOUT  
VIN  
R_PG  
Θ
VGH  
FAULT  
C_DRP2  
CPP2  
PG / LDSW  
C_VGH  
D_VGL  
4 2 3 2 2 2 1 2 0 2 9 1 8 1 7 1  
C_VCP  
VCP  
VIN  
GSIN  
SDA  
C_DRP1  
CPP1  
R_RST  
SCL  
RST  
DRP  
DRN  
C_DRN  
VGL  
VDD  
SWB  
EN  
VCOM  
L_SWB  
C_VDD  
C_VCOM  
C_VGL  
1
2
3
4
5
6
7
8
AVDD  
AVDD  
C_VINB  
C_VIN  
C_REG  
(D_SW)  
VIN  
C_AVD  
C_LSO  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 14 001  
1/75  
 
 
 
 
 
 
 
BM81810MUF-M  
Contents  
General Description........................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Special Characteristics ...................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Package……………….. ..................................................................................................................................................................1  
Typical Application Circuit...............................................................................................................................................................1  
Pin Configuration ............................................................................................................................................................................3  
Pin Descriptions..............................................................................................................................................................................3  
Absolute Maximum Ratings ............................................................................................................................................................4  
Thermal Resistance........................................................................................................................................................................5  
Recommended Operating Ratings ................................................................................................................................................5  
Electrical Characteristics ...............................................................................................................................................................6  
Typical Performance Curves.........................................................................................................................................................10  
Application Example 1 ................................................................................................................................................................25  
Timing Chart1 ...............................................................................................................................................................................27  
Application Example 2 ................................................................................................................................................................29  
Timing Chart2 ...............................................................................................................................................................................29  
Application Example 3 ................................................................................................................................................................31  
Timing Chart3 ...............................................................................................................................................................................33  
Serial communication ...................................................................................................................................................................35  
WPN Timing..................................................................................................................................................................................36  
I2C Timing Diagram......................................................................................................................................................................37  
Automatic EEPROM Read Function at Start-up ...........................................................................................................................38  
EEPROM Parameter Setting ........................................................................................................................................................39  
Register Map ................................................................................................................................................................................40  
Command Table............................................................................................................................................................................41  
Check Sum ...................................................................................................................................................................................45  
Soft Start Time..............................................................................................................................................................................46  
Block Diagram ..............................................................................................................................................................................47  
AVDD Block Function....................................................................................................................................................................48  
VGH Block Function .....................................................................................................................................................................51  
VGL Block Function ......................................................................................................................................................................54  
VCOM Block Function ..................................................................................................................................................................55  
VDD Block Function......................................................................................................................................................................56  
GPM Block Function.....................................................................................................................................................................58  
RESET Block Function .................................................................................................................................................................59  
PG/LDSW Block Function.............................................................................................................................................................60  
NTC Block Function......................................................................................................................................................................61  
EN Block Function ........................................................................................................................................................................61  
VGH and VCOM temperature compensation................................................................................................................................62  
FAULT Block Function ..................................................................................................................................................................63  
Fail Register Function...................................................................................................................................................................63  
Protection function explanation of POWER MANAGEMENT block ..............................................................................................64  
Double Register............................................................................................................................................................................65  
Data Refresh.................................................................................................................................................................................65  
PCB Layout Guide........................................................................................................................................................................66  
EMC Layout Guide .......................................................................................................................................................................67  
I/O Equivalence Circuit .................................................................................................................................................................68  
Operational Notes.........................................................................................................................................................................71  
Ordering Information.....................................................................................................................................................................73  
Marking Diagram ..........................................................................................................................................................................73  
Physical Dimension, Tape and Reel Information...........................................................................................................................74  
Revision History............................................................................................................................................................................75  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
2/75  
BM81810MUF-M  
Pin Configuration  
(TOP VIEW)  
EXP-PAD  
EXP-PAD  
4 2 3 2 2 2 1 2 0 2 9 1 8 1 7 1  
VCP  
GSIN  
SDA  
SCL  
CPP1  
DRP  
DRN  
RST  
VGL  
VDD  
SWB  
PGNDB  
EN  
CGND  
VCOM  
NEG  
EXP-PAD  
1
2
3
4
5
6
7
8
EXP-PAD  
EXP-PAD  
Pin Descriptions  
Pin  
No.  
Pin  
Name  
Pin  
No  
Pin  
Name  
Function  
Function  
Built-in Positive charge pump switching Di  
output 3  
1
2
VINB  
Buck DC/DC power supply input  
Inner power supply output  
17  
18  
CPP2  
Positive charge pump feedback & Power Input  
of Gate Pulse Modulation  
VREG  
VGH  
3
4
VIN  
Boost DC/DC load switch input  
Boost DC/DC load switch output  
19 GSOUT Output of Gate Pulse Modulation  
VLSO  
20  
21  
RE  
Slope Setting Pin for Gate Pulse Modulation  
Active Low of EEPROM Writing protection.  
5
6
PGND  
SW  
Boost DC/DC ground  
WPN  
Slope setting pin for temperature compensation  
of the VON and VCOM  
Boost DC/DC switching pin  
22  
23  
NTC  
Boost DC/DC output & output feedback  
Power Input of DRN  
7
8
PAVDD  
AVDD  
FAULT FAULT signal output  
PG/  
Power Good signal output or  
Power Input of VCOM , DRP  
24  
LDSW Load SW of PAVDD.  
9
NEG  
VCOM  
CGND  
VGL  
Negative Input of VCOM Amplifier  
VCOM amplifier output  
25  
26  
27  
28  
29  
30  
GSIN  
SDA  
SCL  
Input of Gate Pulse Modulation  
10  
11  
12  
13  
14  
Serial clock data input (I2C)  
Serial clock input (I2C)  
Charge pump ground  
Negative charge pump feedback  
Negative charge pump driver pin  
Positive charge pump driver pin  
RST  
VDD  
SWB  
Reset output  
DRN  
Buck DC/DC or LDO output feedback input  
Buck DC/DC switching pin or LDO output pin  
DRP  
Built-in Positive charge pump switching Di  
output 1  
15  
16  
CPP1  
VCP  
31 PGNDB Buck DC/DC ground  
Built-in Positive charge pump switching Di  
output 2  
32  
-
EN  
Enable input  
EXP  
-PAD  
Connect to Ground.  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
3/75  
BM81810MUF-M  
Absolute Maximum Ratings  
Limits  
Parameter  
Symbol  
Unit  
Min  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-15  
Typ  
Max  
+6.5  
Power Supply Voltage  
VIN, VINB  
SWB  
-
-
-
-
-
-
-
-
-
-
-
-
-
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
°C  
°C  
VINB+0.3  
+6.5  
VDD  
AVDD, PAVDD, SW  
VLSO  
+19  
+6.5  
VCOM  
AVDD+0.3  
AVDD+0.3  
PAVDD+0.3  
+36  
DRP  
DRN  
Output Pin  
CPP1,CPP2,VCP  
VGH,GSOUT,RE  
VGL  
+36  
+0.3  
VREG  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-
VIN+0.3  
+6.5  
FAULT  
PG/LDSW  
RST, NTC  
NEG  
+19  
-
-
-
-
-
-
VIN+0.3  
AVDD+0.3  
+6.5  
Input Pin  
SCL, SDA, EN, GSIN  
Functional Pin Voltage  
WPN  
VIN+0.3  
+150  
Maximum Junction temperature  
Storage Temperature Range  
Tjmax (Note 1)  
Tstg  
-55  
+150  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
(Note 1) Junction temperature at storage time.  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
4/75  
BM81810MUF-M  
Thermal Resistance (Note 1)  
Thermal Resistance (Typ)  
Symbol  
Unit  
Parameter  
1s(Note 3)  
2s2p(Note 4)  
VQFN32FBV050  
Junction to Ambient  
θJA  
138.9  
11  
39.1  
5
°C/W  
°C/W  
Junction to Top Characterization Parameter(Note 2)  
ΨJT  
(Note 1)Based on JESD51-2A(Still-Air).  
(Note 2)The thermal characterization parameter to report the difference between junction temperature and the temperature  
at the top center of the outside surface of the component package.  
(Note 3)Using a PCB board based on JESD51-3.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3mm x 76.2mm x 1.57mm  
Top  
Copper Pattern  
Thickness  
70µm  
Footprints and Traces  
(Note 4)Using a PCB board based on JESD51-5, 7.  
Thermal Via(Note 5)  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Pitch  
1.20mm  
Diameter  
4 Layers  
114.3mm x 76.2mm x 1.6mmt  
2 Internal Layers  
Φ0.30mm  
Top  
Bottom  
Copper Pattern  
Thickness  
70µm  
Copper Pattern  
Thickness  
35µm  
Copper Pattern  
Thickness  
70µm  
Footprints and Traces  
74.2mm x 74.2mm  
74.2mm x 74.2mm  
(Note 5) This thermal via connects with the copper pattern of all layers.  
Recommended Operating Ratings (Ta=-40 °C to +105 °C)  
Parameter  
Symbol  
Unit  
V
Min  
2.6  
Typ  
-
Max  
5.5  
Power Supply Voltage  
VIN,VINB  
SWB Current  
ISWB  
ISW  
-
-
-
-
1.0  
2.0  
A
A
SW Current  
Functional Pin Voltage  
2 Line Serial Pin Voltage  
2 Line Serial Frequency  
Operating Ambient Temperature  
Operating Junction Temperature  
EN,GSIN,WPN  
SDA, SCL  
FCLK  
-0.1  
-0.1  
-
-
-
-
-
-
+5.5  
+5.5  
400  
V
V
kHz  
°C  
°C  
TA  
-40  
-40  
+105  
+125  
TJ  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
5/75  
BM81810MUF-M  
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VIN, VINB=3.3V)  
1. VDD regulator block (Alternative Buck converter or LDO)  
Limits  
Symbol  
Parameter  
Unit  
Condition  
50 mV step  
Min  
Typ  
Max  
3.4  
Output Voltage Range  
VDD  
0.9  
-
V
V
Output Voltage Accuracy 1  
VDD_R1  
2.462  
-2.0  
2.5  
-
2.538  
+2.0  
VDD=2.5 V setting  
VDD=2.5 V to 3.4 V setting  
(Ta=-40 to +105 °C)  
Output Voltage Accuracy 2  
Output Voltage Accuracy 3  
VDD_R2  
VDD_R3  
%
%
VDD=0.9  
setting  
V to 2.45 V  
-3.0  
-
+3.0  
1.15  
(Ta=-40 to +105 °C)  
Soft Start time  
VDD_SS  
VDD_UVP  
RONH_SWB  
RONL_SWB  
RON_SWB  
IL_ SWBH  
0.85  
1
ms  
V
VDD=1.2 V setting  
Under-Voltage Protection voltage  
SWB H Side ON Resistance  
SWB L Side ON Resistance  
SWB H Side ON Resistance  
SWB H Side Leak Current  
SWB L Side Leak Current  
Current Limit  
VDD×0.7 VDD×0.8 VDD×0.9  
-
300  
300  
1.0  
0
480  
480  
2.0  
20  
mΩ  
mΩ  
Ω
DCDC mode  
-
-
DCDC mode  
LDO mode  
-
µA  
µA  
A
(Ta=-40 to +105 °C)  
(Ta=-40 to +105 °C)  
Buck DCDC mode  
IL_ SWBL  
-
0
20  
ILMT_SWB1  
ILMT_SWB2  
1.0  
0.3  
1.7  
0.5  
2.7  
0.7  
Current Limit  
A
LDO mode  
Freq=1.05 MHz  
Maximum Duty  
DMAX_SWB  
DISR_VDD  
87  
-
95  
25  
-
%
(Freq=0.525 MHz:98%typ)  
(Freq=2.10 MHz:87%typ)  
Discharge Resistance  
50  
Ω
2. Boost DC/DC converter block (AVDD)  
Parameter  
Limits  
Typ  
-
Symbol  
Unit  
Condition  
Min  
5.0  
Max  
17.0  
Output Voltage Range  
AVDD  
V
V
0.1 V step  
Output Voltage Accuracy1  
AVDD_R1  
10.342  
10.5  
10.66  
AVDD=10.5 V setting  
AVDD=10.5 V setting  
(Ta=-40 to +105 °C)  
Output Voltage Accuracy2  
Load Switch Soft Start time  
Soft Start Time  
AVDD_R2  
LS_SS  
10.29  
1.7  
10.5  
2
10.71  
2.3  
V
ms  
ms  
AVDD=10.5 V setting  
5 ms setting  
AVDD_SS  
4.25  
5
5.75  
AVDD×0.7 AVDD×0.8 AVDD×0.9  
AVDD×1.03 AVDDx1.1 AVDD×1.2  
Under-Voltage Protection voltage  
Over-Voltage Protection voltage  
SW H Side On Resistance  
SW L Side On Resistance  
SW H Side Leak Current  
SW L Side Leak Current  
Current Limit  
AVDD_UVP  
AVDD_OVP  
RON_SW  
RON_SW  
IL_SWH  
V
V
-
250  
200  
0
480  
350  
20  
mΩ  
mΩ  
µA  
µA  
A
-
-
(Ta=-40 to +105 °C)  
(Ta=-40 to +105 °C)  
AVDD OCP=2 A setting  
AVDD OCP=1 A setting  
IL_SWL  
-
0
20  
ILMT_SW  
ILMT_SW  
RON_LS  
2.0  
1.0  
-
4.0  
2.0  
200  
6.0  
2.5  
350  
Current Limit  
A
Load Switch ON Resistance  
mΩ  
Freq=1.05 MHz  
Maximum Duty  
DMAX_SW  
83  
-
90  
25  
-
%
(Freq=0.525 MHz:95%typ)  
(Freq=2.10 MHz:80%typ)  
Discharge Resistance  
DISR_AVDD  
50  
Ω
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
6/75  
BM81810MUF-M  
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VIN, VINB=3.3V) continued  
3. VCOM amplifier block (VCOM)  
Limits  
Unit  
V
Condition  
Symbol  
Parameter  
Output Voltage Range1  
Output Voltage Range2  
Output Voltage Range3  
Min  
Typ  
Max  
0.5x  
AVDD  
- 4.0  
VCOM  
HOT  
0.5x  
AVDD  
+ 4.0  
0.5x  
AVDD  
VCOM_HOT  
VCOM_COLD  
VCOM_CAL  
40 mV step  
VCOM  
HOT  
-
V
10 mV step  
10 mV step  
- 0.63  
VCOM  
HOT  
VCOM  
HOT  
+0.63V  
VCOM  
HOT  
V
- 0.63  
Output Voltage Range4  
Calibration Resolution  
Integral Non-Linearity Error  
(INL)  
VCOM_RNG 0.2xAVDD  
-
7
-
0.7x AVDD  
V
RES_CAL  
INL_CAL  
-
-
Bit  
-1  
+1  
LSB  
Differential Non-Linearity Error  
(DNL)  
Output Current Ability  
(Source)  
DNLCAL  
-1  
-
-
+1  
-
LSB  
mA  
ISOURCE  
200  
Output Current Ability (Sink)  
Load Stability  
ISINK  
VLOAD  
SR  
-
-
200  
10  
-
mA  
mV  
Io=-15 mA to +15 mA  
70  
Slew Rate  
30  
60  
V/µs  
80  
4. Positive charge pump block (VGH)  
Parameter  
Limits  
Typ  
-
Unit  
V
Condition  
0.2 V step  
Symbol  
Min  
8.0  
Max  
35  
VGH  
HOT  
+15V  
Output Voltage Range 1  
Output Voltage Range 2  
VGH_HOT  
VGH_COLD  
VGH  
HOT  
0.2 V step  
*Max = 35 V  
-
V
Output Voltage Accuracy 1  
Output Voltage Accuracy 2  
VGH_R1  
VGH_R2  
17.46  
17.1  
4.25  
18  
18  
5
18.54  
18.9  
5.75  
V
V
VGH=18 V setting  
VGH=18 V setting  
(Ta=-40 to +105 °C)  
Soft Start time  
VGH_SS  
VGH_UVP  
ms  
V
VGH=18 V setting  
VGH×0.7 VGH×0.8 VGH×0.9  
Under-Voltage Protection voltage  
DRP H Side On Resistance  
DRP L Side On Resistance  
AVDD-CPP1 On Resistance  
CPP1-VCP On Resistance  
VCP-CPP2 On Resistance  
CPP2-VGH On Resistance  
Discharge Resistance  
RON_DRPH  
RON_DRPL  
RON_CPP1  
RON_CPP2  
RON_CPP3  
RON_CPP4  
DISR_VGH  
-
-
-
-
-
-
-
10  
10  
20  
20  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
10  
20  
10  
20  
10  
20  
10  
20  
150  
300  
5. Negative charge pump block (VGL)  
Parameter  
Limits  
Typ  
-
Unit  
Condition  
Symbol  
Min  
Max  
-4.0  
Output Voltage Range  
VGL  
-14.0  
-6.18  
V
V
0.1 V step  
Output Voltage Accuracy 1  
VGL_R1  
-6  
-5.82  
VGL=-6.0 V setting  
VGL=-6.0 V setting  
(Ta=-40 to +105 °C)  
Output Voltage Accuracy 2  
VGL_R2  
-6.3  
-6  
5
-5.7  
V
Soft Start time  
VGL_SS  
VGL_UVP  
4.25  
5.75  
ms  
V
VGL×0.7 VGL×0.8 VGL×0.9  
Under-Voltage Protection voltage  
DRN H Side On Resistance  
DRN L Side On Resistance  
Discharge Resistance  
RON_DRNH  
RON_DRNN  
DISR_VGL  
-
-
-
10  
10  
20  
20  
Ω
Ω
250  
500  
Ω
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
7/75  
BM81810MUF-M  
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VIN, VINB=3.3V) continued  
6. Temperature compensation block (NTC)  
Limits  
Unit  
Condition  
Symbol  
Parameter  
Min  
0.475  
1.1875  
36  
Typ  
0.5  
1.25  
40  
Max  
0.525  
1.3125  
44  
NTC HOT Voltage  
NTC COLD Voltage  
NTC Current  
VNTC_H  
VNTC_H  
INTC  
V
V
µA  
Bit  
NTC Resolution  
RES_NTC  
-
4
-
7. Gate Pulse Modulation block (GPM)  
Limits  
Typ  
Unit  
Condition  
Symbol  
Parameter  
Min  
-
Max  
30  
GPM High Switch On  
Resistance  
GPM Low Switch On  
Resistance  
RON_GPMH  
RON_GPML  
15  
Ω
Ω
-
-
30  
-
No Capacitive Load  
0.1 µs setting  
GPM Propagation Delay1  
GPM Propagation Delay2  
GPM Propagation Delay3  
GPM Propagation Delay4  
T_GPM1  
T_GPM2  
T_GPM3  
T_GPM4  
0.1  
0.3  
µs  
µs  
µs  
µs  
No Capacitive Load  
0.5 µs setting  
-
-
-
0.5  
1.0  
1.5  
1.0  
1.75  
2.5  
No Capacitive Load  
1.0 µs setting  
No Capacitive Load  
1.5 µs setting  
GSIN Pull Down Resistance  
GSIN Input High Voltage  
GSIN Input Low Voltage  
RGSIN  
VGSINH  
VGSINL  
70  
1.5  
-
100  
130  
-
kΩ  
V
-
-
V
0.6  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
8/75  
BM81810MUF-M  
Electrical Characteristics (Unless otherwise specified, Ta=25°C, VIN, VINB=3.3V) continued  
8. Overall (Entire device)  
Limits  
Symbol  
Parameter  
Unit  
Condition  
Min  
Typ  
Max  
Inside Regulator Voltage  
VREG Output Voltage  
Load Stability  
VREG  
2.15  
-
2.3  
20  
2.45  
100  
V
ΔV  
mV  
IVREG=5 mA  
Oscillator Block  
Oscillating Frequency 1  
Oscillating Frequency 2  
Oscillating Frequency 3  
Under Voltage Lock Out (UVLO) Circuit  
UVLO release voltage  
UVLO detection voltage  
FOSC1  
FOSC2  
FOSC3  
475  
950  
525  
1050  
2100  
575  
1150  
2300  
KHz  
KHz  
KHz  
1900  
VUVLO1  
VUVLO2  
2.5  
2.0  
-
2.55  
2.1  
2.6  
2.2  
-
V
V
V
Hysteresis  
VHYS_UVL  
0.45  
Reset Circuit Block  
Reset Voltage Range  
Reset Voltage Accuracy  
Hysteresis  
*
VRST  
0.6  
1.9  
-
3.3  
2.1  
-
V
V
0.1 V step  
VRST_R1  
VHYS_RST  
T_Delay2  
2.0  
0.1  
-
VRST=2.0 V setting  
V
Reset Delay time Range  
0
40  
ms  
FAULT/ PG / RST Signal Output Block  
Output Off Leak Current  
IL  
-
-
0
1
10  
2
µA  
Output On Resistance  
RON_O  
kΩ  
Control Signal Block1 SDA, SCL, WPN  
Minimum Output Voltage  
H Level Input Voltage  
VSDA  
VIH  
-
1.5  
-
-
0.4  
-
V
V
ISDA=3 mA  
-
-
L Level Input Voltage  
VIL  
0.6  
130  
V
WPN Pull Down Resistance  
Control Signal Block2 EN  
RWPN  
70  
100  
kΩ  
REN_L  
REN_H  
280  
420  
400  
600  
520  
780  
kΩ  
kΩ  
EN=Low  
EN=High  
Pull-Down Resistance Value  
H Level Input Voltage  
VENH  
VENL  
1.5  
-
-
-
-
V
V
L Level Input Voltage  
Overall  
0.6  
Standby Current1  
ISTB1  
ISTB2  
ICC1  
-
-
-
2.0  
-
5.0  
20  
µA  
µA  
EN=GND  
EN=GND  
(Ta=-40 to +105 °C)  
Standby Current2  
Consumption Current  
EN=VIN, No switching  
2.0  
5.0  
mA  
9. EEPROM  
Parameter  
Limits  
Symbol  
Unit  
Condition  
Min  
100  
-
Typ  
Max  
Rewritable cycle  
Programmable time  
Data hold years  
Cyc  
Twr  
-
-
-
-
50  
-
Times  
ms  
TJ<125 °C  
DHY  
20  
Years  
TJ<125 °C  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
9/75  
BM81810MUF-M  
Typical Performance Curves  
(Unless otherwise specified VIN=3.3V, VDD=2.5V, AVDD=10.5V, VGH=18V, VGL=-6.0V, VCOM=5.25V and Ta=25°C)  
5
4
3
2
1
0
20  
18  
16  
14  
12  
10  
8
Ta=25  
Ta=105℃  
Ta=-40℃  
Ta=105  
6
Ta=-40℃  
Ta=25℃  
4
2
0
2.6  
3.1  
3.6  
4.1  
4.6  
5.1  
2.6  
3.1  
3.6  
4.1  
VIN [V]  
4.6  
5.1  
VIN [V]  
Figure 3. Standby Current(EN=L)  
Figure 4. Circuit Current(EN=H, no switching)  
1.15  
1.10  
1.05  
1.00  
0.95  
1.15  
1.10  
1.05  
1.00  
0.95  
Ta=25  
Ta=-40℃  
VIN=3.3V  
VIN=2.6V  
VIN=5.5V  
Ta=105℃  
2.6  
3.1  
3.6  
4.1  
4.6  
5.1  
-40 -20  
0
20  
40  
60  
80 100  
Ta []  
VIN [V]  
Figure 5. Switching Frequency  
( Dependent on input voltage)  
Figure 6. Switching Frequency  
( Dependent on temperature)  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
10/75  
BM81810MUF-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN=3.3V, VDD=2.5V, AVDD=10.5V, VGH=18V, VGL=-6.0V, VCOM=5.25V and Ta=25°C)  
3.0  
EN(4V/div.)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VGH(4V/div.)  
PAVDD(4V/div.)  
AVDD(4V/div.)  
Ta=105  
Ta=25℃  
VCOM(4V/div.)  
VDD(4V/div.)  
GSOUT(4V/div.)  
Ta=-40℃  
VGL(4V/div.)  
0
0.5  
1
1.5  
2
2.5  
3
3.5 4 4.5 5 5.5  
10msec/div.  
EN [V]  
Figure 7. H/L threshold voltage  
(control signals)  
Figure 8. Power on waveform  
(when operated by EN control, Function select = PG)  
VIN, EN  
(4V/div.)  
EN(4V/div.)  
VGH(4V/div.)  
VGH(4V/div.)  
PAVDD(4V/div.)  
AVDD(4V/div.)  
PAVDD(4V/div.)  
AVDD(4V/div.)  
VCOM(4V/div.)  
VDD(4V/div.)  
VCOM(4V/div.)  
GSOUT(4V/div.)  
VDD(4V/div.)  
GSOUT(4V/div.)  
VGL(4V/div.)  
VGL(4V/div.)  
10msec/div.  
10msec/div.  
Figure 9. Power off waveform  
(when operated by EN control, Function select = PG)  
Figure 10. Power on waveform  
(when operated with EN=VCC, Function select = PG)  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
11/75  
BM81810MUF-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN=3.3V, VDD=2.5V, AVDD=10.5V, VGH=18V, VGL=-6.0V, VCOM=5.25V and Ta=25°C)  
VIN, EN  
(4V/div.)  
VIN(4V/div.)  
VGH(4V/div.)  
VGH(4V/div.)  
PAVDD(4V/div.)  
AVDD(4V/div.)  
AVDD(4V/div.)  
PAVDD(4V/div.)  
VCOM(4V/div.)  
VDD(4V/div.)  
VCOM(4V/div.)  
VDD(4V/div.)  
GSOUT(4V/div.)  
GSOUT(4V/div.)  
VGL(4V/div.)  
VGL(4V/div.)  
10msec/div.  
10msec/div.  
Figure 11. Power off waveform  
Figure 12. Power on waveform  
(when operated with EN=VCC, Function select = PG)  
(when operated by EN control, Function select = LDSW)  
VIN, EN  
(4V/div.)  
VIN(4V/div.)  
VGH(4V/div.)  
VGH(4V/div.)  
AVDD(4V/div.)  
PAVDD(4V/div.)  
VCOM(4V/div.)  
AVDD(4V/div.)  
VCOM(4V/div.)  
VDD(4V/div.)  
VDD(4V/div.)  
GSOUT(4V/div.) PAVDD(4V/div.)  
GSOUT(4V/div.)  
VGL(4V/div.)  
VGL(4V/div.)  
10msec/div.  
10msec/div.  
Figure 13. Power off waveform  
Figure 14. Power on waveform  
(when operated by EN control, Function select = LDSW)  
(when operated with EN=VCC, Function select = LDSW)  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
12/75  
BM81810MUF-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN=3.3V, VDD=2.5V, AVDD=10.5V, VGH=18V, VGL=-6.0V, VCOM=5.25V and Ta=25°C)  
100  
VIN, EN  
(4V/div.)  
90  
80  
VGH(4V/div.)  
70  
GSOUT(4V/div.)  
60  
VIN=5.5V  
PAVDD(4V/div.)  
50  
VIN=3.3V  
VCOM(4V/div.)  
VDD(4V/div.)  
40  
30  
20  
10  
0
AVDD(4V/div.)  
VIN=2.6V  
VDD=2.5V  
1.05MHz  
Ta=25  
VGL(4V/div.)  
1
10  
100  
Load [mA]  
1000  
100msec/div.  
Figure 15. Power off waveform  
(when operated with EN=VCC, Function select = LDSW)  
Figure 16. Efficiency  
(VDD DC/DC mode)  
1.5  
1.0  
2.0  
1.5  
1.0  
0.5  
VIN=5.5V  
VIN=5.5V  
0.5  
VIN=2.7V  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
VIN=3.3V  
VIN=2.6V  
VIN=3.3V  
-1.0  
-1.5  
0.9  
1.4  
1.9  
2.4  
2.9  
3.4  
-40 -20  
0
20  
40  
60  
80 100  
setting voltage [V]  
Ta []  
Figure 17. Output voltage accuracy  
(VDD DC/DC mode, dependent on input voltage)  
Figure 18. Output voltage accuracy  
(VDD DC/DC mode, dependent on temperature)  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
13/75  
BM81810MUF-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN=3.3V, VDD=2.5V, AVDD=10.5V, VGH=18V, VGL=-6.0V, VCOM=5.25V and Ta=25°C)  
2.0  
1.5  
1.0  
0.5  
0.0  
Ta=105  
Ta=25  
Ta=-40℃  
-0.5  
-1.0  
-1.5  
-2.0  
VIN=3.3V  
VDD=1.8V  
2.1MHz  
Ta=25  
Load=200mA  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Load [A]  
1
Figure 19. Phase margin  
(VDD DC/DC mode)  
Figure 20. Load Regulation  
(VDD DC/DC mode)  
VDD  
(100mV/div.)  
VDD(AC, 5mV/div.)  
SWB(3V/div.)  
Load  
0mA200mA  
IL(0.2A/div.)  
Iout  
(0.1A/div.)  
Iout(0.2A/div.)  
100usec/div.  
2usec/div.  
Figure 21. Load Transient  
(VDD DC/DC mode)  
Figure 22. Switching waveform  
(VDD DC/DC mode)  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
14/75  
BM81810MUF-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN=3.3V, VDD=2.5V, AVDD=10.5V, VGH=18V, VGL=-6.0V, VCOM=5.25V and Ta=25°C)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.5  
1.0  
VIN=2.6V  
VIN=5.5V  
0.5  
VIN=3.3V  
0.0  
VIN=3.3V  
VIN=2.6V  
-0.5  
-1.0  
-1.5  
VIN=5.5V  
0.9  
1.4  
1.9  
2.4  
2.9  
3.4  
1
10  
100  
setting voltage [V]  
Load [mA]  
Figure 23. Efficiency  
(VDD LDO mode)  
Figure 24. Output voltage accuracy  
(VDD LDO mode, dependent on input voltage)  
2.0  
1.5  
1.0  
0.5  
VIN=3.3V  
VIN=5.5V  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
VIN=2.6V  
VIN=3.3V  
VDD=2.5V  
Ta=25  
Load=250mA  
-40 -20  
0
20  
40  
60  
80 100  
Ta []  
Figure 25. Output voltage accuracy  
(VDD LDO mode, dependent on temperature)  
Figure 26. Phase margin  
(VDD LDO mode)  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
15/75  
BM81810MUF-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN=3.3V, VDD=2.5V, AVDD=10.5V, VGH=18V, VGL=-6.0V, VCOM=5.25V and Ta=25°C)  
2.0  
VDD  
(100mV/div.)  
1.5  
1.0  
0.5  
Ta=-40  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
Load  
10mA200mA  
Ta=105℃  
Ta=25℃  
Iout  
(0.1A/div.)  
0
100  
200  
300  
400  
500  
600  
100usec/div.  
Load [mA]  
Figure 27. Load Regulation  
(VDD LDO mode)  
Figure 28. Load Transient  
(VDD LDO mode)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.5  
1.0  
VIN=5.5V  
VIN=5.5V  
VIN=3.3V  
VIN=2.6V  
VIN=3.3V  
0.5  
VIN=2.6V  
0.0  
-0.5  
-1.0  
-1.5  
5
1
10  
100  
7
9
11  
13  
15  
17  
Load [mA]  
setting voltage [V]  
Figure 29. Efficiency  
(AVDD)  
Figure 30. Output voltage accuracy  
(AVDD, dependent on input voltage)  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
16/75  
BM81810MUF-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN=3.3V, VDD=2.5V, AVDD=10.5V, VGH=18V, VGL=-6.0V, VCOM=5.25V and Ta=25°C)  
2.0  
1.5  
1.0  
VIN=5.5V  
VIN=3.3V  
0.5  
0.0  
VIN=2.6V  
-0.5  
-1.0  
-1.5  
-2.0  
2.1MHz  
Ta=25  
Load=200mA  
-40 -20  
0
20  
40  
60  
80 100  
Ta []  
Figure 31. Output voltage accuracy  
(AVDD, dependent on temperature)  
Figure 32. Phase margin  
(AVDD)  
2.0  
1.5  
AVDD  
(100mV/div.)  
1.0  
0.5  
Ta=105  
Ta=25℃  
Ta=-40℃  
0.0  
Load  
0mA100mA  
-0.5  
-1.0  
-1.5  
-2.0  
Iout  
(0.1A/div.)  
0
50  
100  
150  
200  
100usec/div.  
Load [mA]  
Figure 33. Load Regulation  
(AVDD)  
Figure 34. Load Transient  
(AVDD)  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
17/75  
BM81810MUF-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN=3.3V, VDD=2.5V, AVDD=10.5V, VGH=18V, VGL=-6.0V, VCOM=5.25V and Ta=25°C)  
12  
AVDD(AC, 20mV/div.)  
Ta=105  
10  
SW(10V/div.)  
IL(0.2A/div.)  
8
6
4
2
0
Ta=-40  
Ta=25℃  
AVDD=13V  
VCOM=6.5V setting  
Iout(0.2A/div.)  
-400 -300 -200 -100  
0
100 200 300 400  
2usec/div.  
Load [mA]  
Figure 35. Switching waveform  
(AVDD)  
Figure 36. Output Current  
(VCOM)  
1.0  
0.8  
1.0  
0.8  
Ta=105  
0.6  
0.6  
0.4  
0.4  
Ta=25℃  
Ta=-40℃  
0.2  
0.2  
Ta=-40  
0.0  
0.0  
Ta=25℃  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
Ta=105℃  
AVDD=15V  
VCOM=3.5V ~ 11.5V  
AVDD=15V  
VCOM=3.5V ~ 11.5V  
E4 D0 BC A8 94 80 14 28 3C 50 64  
Data [HEX]  
E4 D0 BC A8 94 80 14 28 3C 50 64  
Data [HEX]  
Figure 37. DAC INL  
(VCOM)  
Figure 38. DAC DNL  
(VCOM)  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
18/75  
BM81810MUF-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN=3.3V, VDD=2.5V, AVDD=10.5V, VGH=18V, VGL=-6.0V, VCOM=5.25V and Ta=25°C)  
AVDD=13V  
VCOM  
2[V/div.]  
VCOM  
2[V/div.]  
AVDD=13V  
Figure 39. Slew Rate  
(VCOM, rise)  
Figure 40. Slew Rate  
(VCOM, fall)  
70  
60  
50  
40  
30  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-15  
6.5  
6.3  
6.1  
5.9  
5.7  
5.5  
5.3  
5.1  
4.9  
4.7  
4.5  
Ta=25℃  
Ta=105℃  
Ta=-40℃  
VCOM HOT=5.93V  
VCOM COLD=4.97V  
-10  
-5  
0
5
10  
15  
0.3  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
Load [mA]  
NTC [V]  
Figure 41. Load Regulation  
(VCOM)  
Figure 42. NTC Function  
(VCOM)  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
19/75  
BM81810MUF-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN=3.3V, VDD=2.5V, AVDD=10.5V, VGH=18V, VGL=-6.0V, VCOM=5.25V and Ta=25°C)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.0  
2.0  
VGH=18V  
3 stage  
AVDD=17V  
1.0  
AVDD=8V  
0.0  
AVDD=10.5V  
AVDD=8V  
-1.0  
-2.0  
-3.0  
AVDD=10.5V  
AVDD=17V  
1
5
25  
8
11 14 17 20 23 26 29 32 35  
setting voltage [V]  
Load [mA]  
Figure 43. Efficiency  
(VGH)  
Figure 44. Output voltage accuracy  
(VGH, dependent on input voltage)  
5
4
3
2
AVDD=8V  
1
AVDD=10.5V  
0
-1  
-2  
-3  
-4  
-5  
AVDD=17V  
3 stage  
1.05MHz  
Load=10mA  
-40 -20  
0
20  
40  
60  
80 100  
Ta []  
Figure 45. Output voltage accuracy  
(VGH, dependent on temperature)  
Figure 46. Phase margin  
(VGH)  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
20/75  
BM81810MUF-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN=3.3V, VDD=2.5V, AVDD=10.5V, VGH=18V, VGL=-6.0V, VCOM=5.25V and Ta=25°C)  
2.0  
VGH  
(700mV/div.)  
1.5  
1.0  
0.5  
Ta=25  
Ta=-40℃  
Load  
0mA10mA  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
Ta=105℃  
Iout  
(10mA/div.)  
0
2
4
6
8
10  
100usec/div.  
Load [mA]  
Figure 47. Load Regulation  
(VGH)  
Figure 48. Load Transient  
(VGH)  
22  
21  
20  
19  
18  
17  
16  
15  
14  
VGH(AC, 100mV/div.)  
DRP(10V/div.)  
CPP1(10V/div.)  
CPP2(10V/div.)  
Iout(20mA/div.)  
VGH HOT=15V  
VGH COLD=20V  
13  
0.3  
0.5  
0.7  
0.9  
NTC [V]  
1.1  
1.3  
1.5  
2usec/div.  
Figure 49. Switching waveform  
(VGH)  
Figure 50. NTC Function  
(VGH)  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
21/75  
BM81810MUF-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN=3.3V, VDD=2.5V, AVDD=10.5V, VGH=18V, VGL=-6.0V, VCOM=5.25V and Ta=25°C)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3
2
AVDD=8V  
1
AVDD=17V  
0
AVDD=10.5V  
AVDD=17V  
AVDD=8V  
-1  
-2  
-3  
AVDD=10.5V  
-14  
-12  
-10  
-8  
-6  
-4  
1
5
25  
setting voltage [V]  
Load [mA]  
Figure 51. Efficiency  
(VGL)  
Figure 52. Output voltage accuracy  
(VGL, dependent on input voltage)  
5
4
3
2
AVDD=17V  
1
AVDD=8V  
0
-1  
-2  
-3  
-4  
-5  
AVDD=10.5V  
1.05MHz  
Load=10mA  
-40 -20  
0
20  
40  
60  
80 100  
Ta []  
Figure 53. Output voltage accuracy  
(VGL, dependent on temperature)  
Figure 54. Phase margin  
(VGL)  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
22/75  
BM81810MUF-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN=3.3V, VDD=2.5V, AVDD=10.5V, VGH=18V, VGL=-6.0V, VCOM=5.25V and Ta=25°C)  
2.0  
VGL  
(100mV/div.)  
1.5  
1.0  
0.5  
0.0  
Ta=25  
Ta=-40℃  
Load  
1mA10mA  
Ta=105℃  
-0.5  
-1.0  
-1.5  
-2.0  
Iout  
(10mA/div.)  
0
2
4
6
8
10  
100usec/div.  
Load [mA]  
Figure 55. Load Regulation  
(VGL)  
Figure 56. Load Transient  
(VGL)  
44  
42  
40  
38  
36  
VGL(AC, 20mV/div.)  
DRN(5V/div.)  
VIN=5.5V  
VIN=2.6V  
VIN=3.3V  
Iout(10mA/div.)  
-40 -20  
0
20  
Ta []  
40  
60  
80 100  
2usec/div.  
Figure 57. Switching waveform  
(VGL)  
Figure 58. NTC current  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
23/75  
BM81810MUF-M  
Typical Performance Curves - continued  
(Unless otherwise specified VIN=3.3V, VDD=2.5V, AVDD=10.5V, VGH=18V, VGL=-6.0V, VCOM=5.25V and Ta=25°C)  
GSIN  
(2V/div.)  
GSIN  
(2V/div.)  
0.1usec setting  
0.5usec setting  
1.0usec setting  
1.5usec setting  
GSOUT  
(4V/div.)  
GSOUT  
(4V/div.)  
250nsec/div.  
25nsec/div.  
Figure 59. Propagation Delay  
(GPM, rise)  
Figure 60. Propagation Delay  
(GPM, fall)  
GSIN  
(2V/div.)  
GSOUT  
(4V/div.)  
10usec/div.  
Figure 61. Waveform  
(GPM)  
.
www.rohm.com  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
24/75  
BM81810MUF-M  
Application Example 1 (when operated by EN control)  
R_NTC2  
R_NTC1  
R_NTC3  
WPN  
R_FLT  
VIN  
VIN  
R_RE  
GSOUT  
VGH  
R_PG  
FAULT  
PG / LDSW  
Θ
C_DRP2  
CPP2  
C_VGH  
D_VGL  
4 2 3 2 2 2 1 2 0 2 9 1 8 1 7 1  
C_VCP  
VIN  
VCP  
GSIN  
SDA  
C_DRP1  
CPP1  
DRP  
DRN  
R_RST  
SCL  
RST  
C_DRN  
VGL  
VDD  
SWB  
EN  
VCOM  
L_SWB  
C_VDD  
C_VCOM  
C_VGL  
1
2
3
4
5
6
7
8
AVDD  
AVDD  
C_VINB  
C_VIN  
C_REG  
(D_SW)  
VIN  
C_AVD  
C_LSO  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
25/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Application Example 1 (when operated by EN control) continued  
Application circuit components list  
(Unless otherwise specified VIN=3.3V, VDD=2.5V, AVDD=10.5V, VGH=18V, VGL=-6.0V, VCOM=5.25V)  
Value  
Parts  
Unit Company  
Parts Number  
Comment  
name  
Min  
Typ  
Max  
(Note 1)  
C_VIN  
10  
10 x 2  
10  
-
-
μF  
μF  
MURATA  
MURATA  
GRT21BC81A106KE01  
GRT21BC81A106KE01  
No need @ VDD LDO  
mode  
C_VINB  
4.7  
C_REG  
C_LSO  
C_AVD  
L_SW  
0.047  
10  
0.1  
10 x 2  
10 x 3  
4.7  
0.47  
μF  
μF  
μF  
μH  
MURATA  
MURATA  
MURATA  
TDK  
GRT188R71H104KE13  
GRT21BC81A106KE01  
GRT31CC81E106KE01  
LTF5022T-4R7N2R0-H  
-
10 x 6  
-
5.0  
-
See p.49 in detail.  
See p.49 in detail.  
Please insert D_SW when  
improving the efficiency is  
necessary.  
D_SW  
-
-
-
-
ROHM  
(RB060M-30DD)  
C_VDD  
L_SWB  
C_VCOM  
C_VGL  
C_DRN  
D_VGL  
C_VGH  
C_CPP1  
C_VCP  
C_CPP2  
R_RE  
10  
10 x 2  
4.7  
-
47  
μF  
μH  
μF  
μF  
μF  
-
MURATA  
TDK  
GRT21BC81A106KE01  
LTF5022T-4R7N2R0-H  
-
-
-
-
-
0.47  
-
MURATA  
MURATA  
MURATA  
ROHM  
1.0  
0.1  
-
4.7  
-
GRT21BC81E105KE13  
GRT188R71H104KE13  
RB558WFH  
0.47  
2.2  
0.1  
1.0  
0.1  
2.0  
4.7  
33  
4.7  
μF  
μF  
μF  
μF  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
MURATA  
MURATA  
MURATA  
MURATA  
ROHM  
GRT21BC8YA225KE13  
GRT188R71H104KE13  
GRT188C81E105KE13  
GRT188R71H104KE13  
MCR03  
-
-
-
-
-
-
0.2  
-
-
-
R_NTC1  
R_NTC2  
R_NTC3  
R_FLT  
ROHM  
MCR03  
-
-
ROHM  
MCR03  
-
10  
-
MURATA  
ROHM  
NCU18XH103F6SRB  
MCR03  
47  
47  
47  
100  
100  
100  
200  
200  
200  
R_PG  
ROHM  
MCR03  
R_RST  
ROHM  
MCR03  
(Note 1)Please set in consideration of temperature properties and DC bias properties not to become less than the minimum.  
Please consider it based on enough evaluations with the actual model.  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
26/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Application Example 1 (when operated by EN control) continued  
Timing Chart1  
Start-up Sequence (when operated by EN control)  
Vcc UVLO release  
Vcc=2.55V  
(Inner logic, reset EEPROM)  
VIN  
Enable=LH  
EN  
VREG  
EEPROM  
Discharge  
05ms  
Auto Read  
EEROM  
Discharge  
1ms  
(when VDD=1.2V)  
VDD  
VDD  
AVDD  
VGL  
90%  
Soft Start time  
5ms (when 10.5V is set)  
AVDD  
delay1  
(0300ms)  
VIN  
level  
load  
SW ON  
VGL  
delay3  
(040ms)  
Soft Start time  
5ms (when -6V is set)  
VCOM ⇒  
Start up by following to  
AVDD voltage  
VCOM  
VGH  
Soft Start time  
5ms (when 18V is set)  
AVDD  
level  
EEPROM Register  
Data write-able zone  
GSOUT  
delay4  
(040ms)  
delay2  
(040ms)  
RST  
PG  
Reset monitor is setting VDD.  
FAULT  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
27/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Application Example 1 (when operated by EN control) continued  
OFF Sequence (when operated by EN control)  
Vcc UVLO detectVcc=2.1V  
(Inner logic, reset EEPROM)  
VIN  
VREG  
EEROM  
Discharge  
Enable=HL  
delay5  
EN  
(010ms)  
VDD  
Discharge  
VDD  
AVDD  
Discharge  
AVDD  
VGL  
VGL  
VGL Hi-Z  
Discharge  
VCOM  
Discharge  
VCOM  
VGH  
VGH  
Discharge  
VGH Hi-Z  
EEPROM Register  
Data write-able zone  
GSOUT  
RST  
PG  
FAULT  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
28/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Application Example 2 (when operated with EN= VCC condition)  
Timing Chart2  
Start-up Sequence (when operated with EN= VCC condition)  
Vcc UVLO release  
Vcc=2.55V  
(Inner logic, reset EEPROM)  
VIN,  
VINB,  
EN  
VREG  
EEPROM  
Discharge  
05ms  
Auto Read  
EEROM  
Discharge  
1ms  
(when VDD=1.2V)  
VDD  
The order of starting VDD  
can be changed by the  
VDD  
90%  
register setting.  
Soft Start time  
5ms (when 10.5V is set)  
AVDD  
delay1  
(0300ms)  
AVDD  
VIN  
level  
load  
SW ON  
VGL  
VGL  
delay3  
(040ms)  
Soft Start time  
5ms (when -6V is set)  
VCOM  
VGH  
Soft Start time  
5ms (when 18V is set)  
AVDD  
level  
EEPROM Register  
Data write-able zone  
GSOUT  
delay4  
(040ms)  
delay2  
(040ms)  
RST  
Reset monitor is setting VDD.  
PG  
FAULT  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
29/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Timing Chart2 - continued  
OFF Sequence (when operated with EN= VCC condition)  
Vcc UVLO detectVcc=2.1V  
(Inner logic, reset EEPROM)  
VIN,  
VINB,  
EN  
VREG  
EEROM  
Discharge  
discharge after Vcc UVLO detect  
VDD  
Discharge  
VDD  
AVDD  
Discharge  
AVDD  
VGL  
Discharge  
VGL  
VCOM  
VGH  
VGH  
Discharge  
*Discharge enable  
EEPROM Register  
Data write-able zone  
GSOUT  
RST  
PG  
FAULT  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
30/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Application Example 3 (using LDSW mode)  
In case of activating in order of VGL => AVDD => VGH, changing the application contracture to following make is possible. In this  
case please set Register08h (Function Select) of the EEPROM to "1".  
R_NTC2  
R_NTC3  
WPN  
R_NTC1  
VIN  
R_RE  
GSOUT  
VGH  
R_FLT  
Θ
FAULT  
PG / LDSW  
C_DRP2  
CPP2  
C_VGH  
D_VGL  
4 2 3 2 2 2 1 2 0 2 9 1 8 1 7 1  
C_VCP  
VIN  
VCP  
GSIN  
SDA  
C_DRP1  
CPP1  
DRP  
DRN  
R_RST  
SCL  
RST  
C_DRN  
VGL  
VDD  
SWB  
EN  
VCOM  
L_SWB  
C_VDD  
C_VGL  
C_VCOM  
1
2
3
4
5
6
7
8
AVDD  
PAVDD  
AVDD  
M_LDSW  
C_VINB  
C_VIN  
C_REG  
C_AVD  
VIN  
C_GD  
C_PAV  
LDSW  
R_LSGATE  
R_LDSW  
C_LDSW  
(D_SW)  
C_LSO  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
31/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Application Example 3 (using LDSW mode) - continued  
Application circuit components list  
(Unless otherwise specified VIN=3.3V, VDD=2.5V, AVDD=10.5V, VGH=18V, VGL=-6.0V, VCOM=5.25V and Ta=25°C)  
Value  
Parts name  
Unit Company  
Parts Number  
Comment  
Min  
(Note 1)  
Typ  
Max  
C_VIN  
10  
10 x 2  
10  
-
-
μF  
μF  
MURATA  
MURATA  
GRT21BC81A106KE01  
GRT21BC81A106KE01  
No need @ VDD LDO  
mode  
C_VINB  
4.7  
C_REG  
C_LSO  
C_PAVD  
C_AVD  
L_SW  
0.047  
10  
0.1  
10 x 2  
10 x 2  
4.7  
0.47  
μF  
μF  
μF  
μF  
μH  
MURATA  
MURATA  
MURATA  
MURATA  
TDK  
GRT188R71H104KE13  
GRT21BC81A106KE01  
GRT31CC81E106KE01  
GRT31CC81E475KE01  
LTF5022T-4R7N2R0-H  
-
10 x 5  
10  
5.0  
2.2  
-
See p.49 in detail.  
See p.49 in detail.  
See p.49 in detail.  
4.7  
-
Please insert D_SW when  
improving the efficiency is  
necessary.  
D_SW  
-
-
-
-
ROHM  
(RB060M-30DD)  
M_LDSW  
R_LDSW  
C_LDSW  
C_GD  
-
-
100  
0.47  
33  
-
-
ROHM  
ROHM  
RTR030P02FHA  
MCR03  
-
-
kΩ  
μF  
nF  
kΩ  
μF  
μH  
μF  
μF  
μF  
-
-
-
-
MURATA  
MURATA  
ROHM  
GRT21BR71H474KE01  
GRT155R71H333KE01  
MCR03  
-
R_LSGATE  
C_VDD  
L_SWB  
C_VCOM  
C_VGL  
-
100  
10 x 2  
4.7  
-
-
10  
47  
-
MURATA  
TDK  
GRT21BC81A106KE01  
LTF5022T-4R7N2R0-H  
-
-
-
0.47  
-
-
MURATA  
MURATA  
MURATA  
ROHM  
1.0  
0.1  
-
4.7  
-
GRT21BC81E105KE13  
GRT188R71H104KE13  
RB558WFH  
C_DRN  
D_VGL  
C_VGH  
C_CPP1  
C_VCP  
0.47  
2.2  
0.1  
1.0  
0.1  
2.0  
4.7  
33  
4.7  
μF  
μF  
μF  
μF  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
MURATA  
MURATA  
MURATA  
MURATA  
ROHM  
GRT21BC8YA225KE13  
GRT188R71H104KE13  
GRT188C81E105KE13  
GRT188R71H104KE13  
MCR03  
-
-
-
-
C_CPP2  
R_RE  
-
-
0.2  
-
-
R_NTC1  
R_NTC2  
R_NTC3  
R_FLT  
-
-
ROHM  
MCR03  
-
ROHM  
MCR03  
-
10  
-
MURATA  
ROHM  
NCU18XH103F6SRB  
MCR03  
47  
47  
100  
100  
200  
200  
R_RST  
ROHM  
MCR03  
(Note 1)Please set in consideration of temperature properties and DC bias properties not to become less than the minimum.  
Please consider it based on enough evaluations with the actual model.  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
32/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Timing Chart3  
Start-up Sequence (when operated with LDSW function)  
Vcc UVLO release  
Vcc=2.55V  
(Inner logic, reset EEPROM)  
VIN,  
VINB  
Enable=LH  
EN  
VREG  
EEPROM  
Auto Read  
Discharge  
05ms  
EEROM  
Discharge  
1ms  
(when VDD=1.2V)  
VDD  
VDD  
AVDD  
VGL  
90%  
Soft Start time  
5ms (when 10.5V is set)  
delay1  
(0300ms)  
PAVDD  
AVDD  
VIN  
level  
load  
SW ON  
VGL  
Soft Start time  
5ms (when -6V is set)  
VCOM ⇒  
Start up by following to  
AVDD voltage  
VCOM  
VGH  
Soft Start time  
5ms (when 18V is set)  
AVDD  
level  
delay3  
(040ms)  
EEPROM Register  
Data write-able zone  
GSOUT  
delay4  
(040ms)  
delay2  
(040ms)  
RST  
Reset monitor is setting VDD.  
LDSW  
FAULT  
Figure 68. Start-Up Sequence Diagram (when operated with LDSW Function)  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
33/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Timing Chart3 - continued  
OFF Sequence (when operated with LDSW function)  
Vcc UVLO detectVcc=2.1V  
(Inner logic, reset EEPROM)  
VIN,  
VINB  
VREG  
EEROM  
Discharge  
Enable=HL  
delay5  
EN  
(010ms)  
VDD  
Discharge  
VDD  
AVDD  
Discharge  
AVDD  
VGL  
VGL  
VGL Hi-Z  
Discharge  
VCOM  
Discharge  
VCOM  
VGH  
VGH  
Discharge  
VGH Hi-Z  
EEPROM Register  
Data write-able zone  
GSOUT  
RST  
LDSW  
FAULT  
Figure 69. OFF Sequence Diagram (when operated with LDSW Function)  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
34/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Serial communication  
This IC has two device-address-differential EEPROM installed and data is send or received to/from EEPROM using 2-line serial  
interface (SCL, SDA). Communication format for data sending or receiving to/from each EEPROM is shown below.  
EEPROM I2C Format for DVR (VCOM calibrator)  
Device address  
R/W ACK  
DATA  
D3 D2  
DATA  
D3 D2  
ACK  
0
Write  
operation  
Start  
Start  
STOP  
STOP  
1
1
0
0
0
1
1
1
1
1
1
0
0
D6  
D6  
D5  
D5  
D4  
D4  
D1  
D1  
D0  
D0  
P
X
Device address  
R/W ACK  
ACK  
1
Read  
operation  
0
1
1
1
0
When Device Address = 1001111(R/W) is selected, Data is Read or Write EEPROM for DVR(VCOM calibrator).  
During Write mode  
When P=1, the sending data is written only to Register.  
When WPN=Low and P=0, the sending data is written only to Register.  
When WPN=High and P=0, the sending data is written both to Register and EEPROM.  
During Read mode  
The last bit of received data is “Don’t care”.  
D6is ± select bit: 0 = +, 1=-from VCOM(HOT) value.  
[D5:D0] are voltage band from VCOM(HOT).  
The voltage band is calculated; 10mV x [D5:D0],  
For example,  
[D6:D0,P] = 82h(D6=1, [D5:D0]=1d, P=0) ••• VCOM = VCOM(HOT) 1 x 10mV;  
[D6:D0,P] = 7Eh(D6=0, [D5:D0]=63d, P=0) ••• VCOM = VCOM(HOT) + 63 x 10mV;  
Sequence of DVR side EEPROM during Read/Write mode is shown in below chart.  
Figure 70  
Figure 71  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
35/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Serial communication - continued  
EEPROM I2C Format for Power Management IC (PMIC)  
R/W ACK  
ACK  
ACK  
Device address  
Register Address  
00h ~ 0Dh, 10h, 11h  
Register Address  
Write  
operation  
Read  
Start  
N-bytes Data  
Device Address  
Stop  
Stop  
1
0
0
Device address  
0
0
0
0
0
R/W ACK  
0
0
ACK  
0
ACK  
ACK  
0
Repeated  
Start  
Start  
N-bytes Data  
00h ~ 0Dh, 10h, 11h  
operation  
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
Device Address of BM81810MUF-M is 1000 000x.  
Multi write is possible until Register 00h to 0Dh.  
EN  
Low  
High  
WPN Start-up( 0Ch[7] ) PMIC ( 00h to 0Dh)  
Output Function  
Shutdown  
Active  
1
2
Low  
Low  
-
-
-
Register  
0*  
Register &  
EEPROM  
3
4
High  
High  
High  
High  
Shutdown  
Active  
1
Register &  
EEPROM  
* In the mass production shipment process, please write Start-up ( 0Ch[7] ) to "1" in EEPROM.  
The following are the settings if you want to send the Data by I2C.  
Device Address?  
1000_0000  
Receive register address  
Yes  
Read  
Write  
No  
Restart?  
Device Address  
1000_0001  
Input data to register  
Output register data  
Low  
WPN  
High  
Write data to EEPROM  
End process  
Figure 72  
WPN Timing  
WPN is normally fixed as Low.  
In case of writing to EEPROM, WPN is set to High, and the timing will be as below.  
Because the maximum of the auto-read time from EEPROM is 5ms, please between EN signal and I2C input than 5ms.  
Also, because the maximum of writing time to EEPROM is 50ms, please between I2C STOP signal and EN falling signal  
than 50ms.  
VIN  
EEPROM Data  
Auto Read  
> 5msec  
EEPROMWrite Time  
> 50msec  
EN  
WPN  
tSU;WPN  
> 0usec  
tHD;WPN  
> 10usec  
S
T
A
R
T
S
T
O
P
SCL  
SDA  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Device  
Address  
Register  
Address  
・・・・・  
DATA  
DATA  
DATA  
Figure 73  
36/75  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
I2C Timing Diagram  
tR  
tHIGH  
tF  
70%  
30%  
SCL  
tLOW  
tPD  
tHD:STA  
tSU;DAT  
tHD;DAT  
70%  
30%  
SDA  
(IN)  
tBUF  
tDH  
70%  
30%  
SDA  
(OUT)  
70%  
SCL  
SDA  
tHD;STA  
tSU;STA  
tSU;STO  
70%  
30%  
tl  
SSTART Bit  
PSTOP Bit  
S
P
Figure 74. I2C Timing Diagram  
Timing standard values  
Parameter  
NORMAL MODE  
FAST MODE  
Typ  
Symbol  
Unit  
Min  
Typ  
Max  
Min  
Max  
SCL frequency  
SCL high time  
fSCL  
tHIGH  
tLOW  
tR  
-
4.0  
4.7  
-
-
-
100  
-
-
0.6  
1.2  
-
-
-
400  
-
kHz  
μs  
μs  
SCL low time  
-
-
-
-
μs  
μs  
μs  
μs  
Rise Time  
-
1.0  
-
0.3  
Fall Time  
tF  
-
-
0.3  
-
-
0.3  
Start condition hold time  
Start condition setup time  
SDA hold time  
tHD;STA  
tSU;STA  
tHD;DAT  
tSU;DAT  
tPD  
4.0  
4.7  
0
-
-
0.6  
0.6  
0
-
-
-
-
-
-
-
-
-
-
ns  
SDA setup time  
200  
-
-
-
-
100  
-
-
-
-
ns  
μs  
Acknowledge delay time  
Acknowledge hold time  
Stop condition setup time  
Bus release time  
Noise spike width  
0.9  
0.9  
μs  
μs  
μs  
μs  
tDH  
-
0.1  
-
-
-
-
-
-
0.1  
-
-
-
-
-
tSU;STO  
tBUF  
4.0  
4.7  
-
0.6  
1.2  
-
-
-
Tl  
0.1  
0.1  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
37/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Automatic EEPROM Read Function at Start-up  
Upon BM81810MUF-M start-up, a reset signal is generated and each register is initialized.  
After VREG activation is finished, data which is stored in the EEPROM is copied to the registers.  
The automatic EEPROM read function at start-up is further explained by the flow chart below.  
VREG ACTIVE  
EEPROM READ  
TRANSFER DATA  
REGISTER  
NO  
CHECK  
SUM  
3times  
NG?  
NG  
OK  
YES  
START OPERATION  
SHUT DOWN  
Figure 75. Automatic EEPROM Read Function at Start-up  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
38/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
EEPROM Parameter Setting  
■EEPROM / Main Register Map ( device address : 1000000x )  
Device Address: 1000000x (PMIC)  
Register  
Address  
Bits  
Function  
Resolution  
Comments  
AVDD Output voltage setting  
VGH(HOT) Output voltage setting  
00h  
8
AVDD Output voltage  
VGH(HOT) Output voltage  
0.1V[5.0Vto 17.0V]  
0.2V[8.0Vto 35.0V]  
01h  
02h  
03h  
04h  
05h  
8
Δ VGH(COLD) Voltage [6:0]  
0.2V [VGH(HOT) + 15V]  
0:Disable, 1:Enable  
8
VGH NTC Enalbe [7]  
8
VGL Output voltage  
0.1V[-14.0Vto -4.0V]  
VGL Output voltage setting  
8
VCOM(HOT) Output voltage  
40mV [0.5xAVDD ±4.0V]  
VCOM(HOT) Output voltage setting  
Δ VCOM(COLD) Voltage [6:0]  
VCOM NTC Enalbe [7]  
VDD Output voltage [5:0]  
VDD mode select [6]  
VDD Phase [7]  
10mV[VCOM(HOT) - 0.63V]  
0:Disable, 1:Enable  
0.05V[0.9Vto 3.4V]  
0 : DC/DC, 1 : LDO  
See P.56 page.  
8
VDD Output voltage setting  
Select VDD operation mode DC/DC or LDO  
select VDD Phase  
06h  
07h  
08h  
8
8
8
Reset Voltage [4:0]  
Reset monitor select [5]  
GPM input delay [7:6]  
Discharge time [2:0]  
Delay1 time [6:3]  
0.1V[0.6Vto 3.3V]  
0:VDD, 1:VIN  
00: 0.1usec, 01: 0.5usec, 10: 1.0usec, 11: 1.5usec  
Reset voltage setting  
Select monitor pin of reset function  
GPM input propagation delay time setting  
Pre-discharge time setting  
Load sw itch of AVDD start-up delay time setting  
24pin function select  
1msec [0 to 5msec]  
[0 to 300msec]  
Function Select [7]  
Delay2 time [2:0]  
0: PG, 1: LDSW  
5msec [0 to 30msec, 40msec]  
0: Disable, 1: Enable  
5msec [0 to 30msec, 40msec]  
0: Disable, 1: Enable  
5msec [0 to 30msec, 40msec]  
0: 0.5sec, 1: 1.0sec  
Reset start delay time setting  
Double Register Function  
DoubleReg [3]  
09h  
0Ah  
8
8
Delay3 time [6:4]  
VGL or VGH start-up delay time setting  
Data Refresh Function  
DataRef [7]  
Delay4 time [2:0]  
GPM start delay time setting  
Data Refresh Time  
AR_Time [3]  
Delay5 time [6:4]  
2msec [0 to 10msec]  
0: Enable, 1: Disable  
See p.49 page.  
VDD stop delay time setting  
VGH Discharge function enable  
VGH Discharge enable [7]  
AVDD Coil[1:0]  
select AVDD Coil indactance  
4step slew rate setting  
(11:fast 00:slow)  
AVDD SW Slew Rate [3:2]  
See p.48 page.  
0Bh  
0Ch  
8
8
AVDD SS time [5:4]  
AVDD OCP Select [6]  
AVDD COMP [7]  
5msec [5msec to 20msec]  
0: 2A, 1: 1A  
AVDD softstart time setting  
AVDD OCP min value select  
AVDD phase compensation setting  
See p.49 page.  
00:2.1MHz, 01:1.05MHz, 10:525KHz, 11:525KHz  
AVDD Frequecy [1:0]  
VDD Frequecy [3:2]  
Seletc AVDD switching frequency  
Select VDD switching frequency  
Select VGH and VGL switching  
frequency. Choose only "00".  
Select VGH charge pump mode  
00:2.1MHz, 01:1.05MHz, 10:525KHz, 11:525KHz  
AVDD Freqency  
( 00: x1, 01: --, 10: --, 11: -- )  
0: x3 mode, 1: x2 or x4 mode  
0:Disable, 1:Enable  
VGH / VGL Frequecy [5:4]  
VGH mode select [6]  
start-up bit [7]  
Device Address: 1001111x (VCOM)  
Register  
Address  
Bits  
Function  
Resolution  
Comments  
-
7
VCOMCalibrator  
+/- 0.01V [ VCOM+/- 0.63V]  
VCOMCalibrator  
When Start-up bit(REG0Ch[7]) is 1, below Register cannot be modified.  
VGH NTC Enable REG02h[7]  
VCOM NTC Enable REG05h[7]  
VDD mode select  
Function select  
VGH mode select  
REG06h[6]  
REG08h[7]  
REG0Ch[6]  
To change those Register setting, start-up bit(REG0Ch[7]) should be in 0.  
After changing the register value, set the Start-up bit(REG0Ch[7]) to 1again to start up with the changed setting.  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
39/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Register Map  
Device Address : 1000000x (PMIC)  
Register  
Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
AVDD Output Voltage  
VGH HOT Output Voltage  
VGH COLD Voltage  
VGL Output Voltage  
00h  
68h  
59h  
83h  
3Bh  
80h  
99h  
20h  
04h  
09h  
13h  
87h  
3Ch  
05h  
60h  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
10h  
VGH  
NTC Enable  
VCOMHOT Output Voltage  
VCOMCOLD Votlage  
VCOM  
NTC Enable  
VDD  
VDD  
VDD Output Voltage  
Phase Select  
MODE  
GPM  
Input Delay  
Function  
Reset  
Reset Voltage  
Monitor Select  
Delay1 time  
Discharge time  
Delay2 time  
Delay4 time  
Select  
Data Refresh  
Delay3 time  
Delayt5 time  
DoubleReg  
AR_Time  
VGH  
Discharge Enable  
AVDD  
COMP  
Start-up  
Bit  
AVDD  
OCP Select  
VGH  
AVDD  
AVDD  
SW Slew Rate  
VDD  
AVDD  
SS Time  
VGH/VGL  
Frequency  
Coil Select  
AVDD  
mode select  
Frequency  
Frequency  
Check Sum  
Double  
Register Error  
Check sum  
Error  
AVDD UVP  
VDD UVP  
VGH UVP  
VGL UVP  
AVDD OCP  
TSD  
Device Address : 1001111x (VCOM)  
Register  
Address  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
P
P
Default  
80h  
VCOMCalibration Voltage  
-
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
40/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Register Map - continued  
Command Table  
Regitser Address  
02h  
VGH COLD  
Voltage  
[6:0]  
05h  
06h  
07h  
08h  
00h  
01h  
03h  
04h  
AVDD  
Output  
Voltage  
[7:0]  
VGH HOT  
Output  
Voltage  
[7:0]  
VGL  
Output  
Voltage  
[7:0]  
VCOM HOT  
Output  
Voltage  
[7:0]  
VCOM  
VDD  
Output  
Voltage  
[5:0]  
GPM  
Input  
Delay  
[7:6]  
Reset  
Monitor  
Selecet  
[5]  
VGH  
NTC Enable  
[7]  
VCOM  
NTC Enable  
[7]  
VDD  
Phase  
[7]  
VDD  
MODE  
[6]  
Reset  
Voltage  
[4:0]  
Function  
Select  
[7]  
Delay1  
time  
[6:3]  
Discharge  
time  
[2:0]  
DATA  
(HEX)  
COLD  
Voltage  
[6:0]  
+0.0V  
+0.2V  
+0.4V  
+0.6V  
+0.8V  
+1.0V  
+1.2V  
+1.4V  
+1.6V  
+1.8V  
+2.0V  
+2.2V  
+2.4V  
+2.6V  
+2.8V  
+3.0V  
+3.2V  
+3.4V  
+3.6V  
+3.8V  
+4.0V  
+4.2V  
+4.4V  
+4.6V  
+4.8V  
+5.0V  
+5.2V  
+5.4V  
+5.6V  
+5.8V  
+6.0V  
+6.2V  
+6.4V  
+6.6V  
+6.8V  
+7.0V  
+7.2V  
+7.4V  
+7.6V  
+7.8V  
+8.0V  
+8.2V  
+8.4V  
+8.6V  
+8.8V  
+9.0V  
+9.2V  
+9.4V  
+9.6V  
+9.8V  
+10.0V  
+10.2V  
+10.4V  
+10.6V  
+10.8V  
+11.0V  
+11.2V  
+11.4V  
+11.6V  
+11.8V  
+12.0V  
+12.2V  
+12.4V  
+12.6V  
+12.8V  
+13.0V  
+13.2V  
+13.4V  
+13.6V  
+13.8V  
+14.0V  
+14.2V  
+14.4V  
+14.6V  
+14.8V  
AVDD/2  
-0.00V  
-0.01V  
-0.02V  
-0.03V  
-0.04V  
-0.05V  
-0.06V  
-0.07V  
-0.08V  
-0.09V  
-0.10V  
-0.11V  
-0.12V  
-0.13V  
-0.14V  
-0.15V  
-0.16V  
-0.17V  
-0.18V  
-0.19V  
-0.20V  
-0.21V  
-0.22V  
-0.23V  
-0.24V  
-0.25V  
-0.26V  
-0.27V  
-0.28V  
-0.29V  
-0.30V  
-0.31V  
-0.32V  
-0.33V  
-0.34V  
-0.35V  
-0.36V  
-0.37V  
-0.38V  
-0.39V  
-0.40V  
-0.41V  
-0.42V  
-0.43V  
-0.44V  
-0.45V  
-0.46V  
-0.47V  
-0.48V  
-0.49V  
-0.50V  
-0.51V  
-0.52V  
-0.53V  
-0.54V  
-0.55V  
-0.56V  
-0.57V  
-0.58V  
-0.59V  
-0.60V  
-0.61V  
-0.62V  
-0.63V  
-0.64V  
-0.65V  
-0.66V  
-0.67V  
-0.68V  
-0.69V  
-0.70V  
-0.71V  
-0.72V  
-0.73V  
-0.74V  
-0.75V  
-0.76V  
-0.77V  
-0.78V  
-0.79V  
-0.80V  
-0.81V  
-0.82V  
-0.83V  
-0.84V  
-0.85V  
-0.86V  
-0.87V  
-0.88V  
-0.89V  
-0.90V  
-0.91V  
-0.92V  
-0.93V  
-0.94V  
-0.95V  
-0.96V  
-0.97V  
-0.98V  
-0.99V  
-1.00V  
-1.01V  
-1.02V  
-1.03V  
-1.04V  
-1.05V  
-1.06V  
-1.07V  
-1.08V  
-1.09V  
-1.10V  
-1.11V  
-1.12V  
-1.13V  
-1.14V  
-1.15V  
-1.16V  
-1.17V  
-1.18V  
-1.19V  
-1.20V  
-1.21V  
-1.22V  
-1.23V  
-1.24V  
-1.25V  
-1.26V  
-1.27V  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
3Eh  
3Fh  
40h  
41h  
42h  
43h  
44h  
45h  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
4Dh  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
54h  
55h  
56h  
57h  
58h  
59h  
5Ah  
5Bh  
5Ch  
5Dh  
5Eh  
5Fh  
60h  
61h  
62h  
63h  
64h  
65h  
66h  
67h  
68h  
69h  
6Ah  
6Bh  
6Ch  
6Dh  
6Eh  
6Fh  
70h  
71h  
72h  
73h  
74h  
75h  
76h  
77h  
78h  
79h  
7Ah  
7Bh  
7Ch  
7Dh  
7Eh  
7Fh  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
2.10  
2.15  
2.20  
2.25  
2.30  
2.35  
2.40  
2.45  
2.50  
2.55  
2.60  
2.65  
2.70  
2.75  
2.80  
2.85  
2.90  
2.95  
3.00  
3.05  
3.10  
3.15  
3.20  
3.25  
3.30  
3.35  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
AVDD/2 +0.04V  
AVDD/2 +0.08V  
AVDD/2 +0.12V  
AVDD/2 +0.16V  
AVDD/2 +0.20V  
AVDD/2 +0.24V  
AVDD/2 +0.28V  
AVDD/2 +0.32V  
AVDD/2 +0.36V  
AVDD/2 +0.40V  
AVDD/2 +0.44V  
AVDD/2 +0.48V  
AVDD/2 +0.52V  
AVDD/2 +0.56V  
AVDD/2 +0.60V  
AVDD/2 +0.64V  
AVDD/2 +0.68V  
AVDD/2 +0.72V  
AVDD/2 +0.76V  
AVDD/2 +0.80V  
AVDD/2 +0.84V  
AVDD/2 +0.88V  
AVDD/2 +0.92V  
AVDD/2 +0.96V  
AVDD/2 +1.00V  
AVDD/2 +1.04V  
AVDD/2 +1.08V  
AVDD/2 +1.12V  
AVDD/2 +1.16V  
AVDD/2 +1.20V  
AVDD/2 +1.24V  
AVDD/2 +1.28V  
AVDD/2 +1.32V  
AVDD/2 +1.36V  
AVDD/2 +1.40V  
AVDD/2 +1.44V  
AVDD/2 +1.48V  
AVDD/2 +1.52V  
AVDD/2 +1.56V  
AVDD/2 +1.60V  
AVDD/2 +1.64V  
AVDD/2 +1.68V  
AVDD/2 +1.72V  
AVDD/2 +1.76V  
AVDD/2 +1.80V  
AVDD/2 +1.84V  
AVDD/2 +1.88V  
AVDD/2 +1.92V  
AVDD/2 +1.96V  
AVDD/2 +2.00V  
AVDD/2 +2.04V  
AVDD/2 +2.08V  
AVDD/2 +2.12V  
AVDD/2 +2.16V  
AVDD/2 +2.20V  
AVDD/2 +2.24V  
AVDD/2 +2.28V  
AVDD/2 +2.32V  
AVDD/2 +2.36V  
AVDD/2 +2.40V  
AVDD/2 +2.44V  
AVDD/2 +2.48V  
AVDD/2 +2.52V  
AVDD/2 +2.56V  
AVDD/2 +2.60V  
AVDD/2 +2.64V  
AVDD/2 +2.68V  
AVDD/2 +2.72V  
AVDD/2 +2.76V  
AVDD/2 +2.80V  
AVDD/2 +2.84V  
AVDD/2 +2.88V  
AVDD/2 +2.92V  
AVDD/2 +2.96V  
AVDD/2 +3.00V  
AVDD/2 +3.04V  
AVDD/2 +3.08V  
AVDD/2 +3.12V  
AVDD/2 +3.16V  
AVDD/2 +3.20V  
AVDD/2 +3.24V  
AVDD/2 +3.28V  
AVDD/2 +3.32V  
AVDD/2 +3.36V  
AVDD/2 +3.40V  
AVDD/2 +3.44V  
AVDD/2 +3.48V  
AVDD/2 +3.52V  
AVDD/2 +3.56V  
AVDD/2 +3.60V  
AVDD/2 +3.64V  
AVDD/2 +3.68V  
AVDD/2 +3.72V  
AVDD/2 +3.76V  
AVDD/2 +3.80V  
AVDD/2 +3.84V  
AVDD/2 +3.88V  
AVDD/2 +3.92V  
AVDD/2 +3.96V  
AVDD/2 +4.00V  
AVDD/2 +4.04V  
AVDD/2 +4.08V  
AVDD/2 +4.12V  
AVDD/2 +4.16V  
AVDD/2 +4.20V  
AVDD/2 +4.24V  
AVDD/2 +4.28V  
AVDD/2 +4.32V  
AVDD/2 +4.36V  
AVDD/2 +4.40V  
AVDD/2 +4.44V  
AVDD/2 +4.48V  
AVDD/2 +4.52V  
AVDD/2 +4.56V  
AVDD/2 +4.60V  
AVDD/2 +4.64V  
AVDD/2 +4.68V  
AVDD/2 +4.72V  
AVDD/2 +4.76V  
AVDD/2 +4.80V  
AVDD/2 +4.84V  
AVDD/2 +4.88V  
AVDD/2 +4.92V  
AVDD/2 +4.96V  
AVDD/2 +5.00V  
AVDD/2 +5.04V  
AVDD/2 +5.08V  
0 msec  
5 msec  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
5 msec  
5 msec  
VDD  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
8.0  
V
-4.0  
V
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
35 msec  
40 msec  
60 msec  
80 msec  
100 msec  
150 msec  
200 msec  
250 msec  
300 msec  
5 msec  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
5.0  
V
3.3  
V
5 msec  
DC/DC  
0.1 usec  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
5 msec  
8.2  
8.4  
8.6  
8.8  
9.0  
9.2  
9.4  
9.6  
V
V
V
V
V
V
V
V
V
-4.1  
-4.2  
-4.3  
-4.4  
-4.5  
-4.6  
-4.7  
-4.8  
-4.9  
-5.0  
-5.1  
-5.2  
-5.3  
-5.4  
-5.5  
-5.6  
-5.7  
-5.8  
-5.9  
-6.0  
-6.1  
-6.2  
-6.3  
-6.4  
-6.5  
-6.6  
-6.7  
-6.8  
-6.9  
-7.0  
-7.1  
-7.2  
-7.3  
-7.4  
-7.5  
-7.6  
-7.7  
-7.8  
-7.9  
-8.0  
-8.1  
-8.2  
-8.3  
-8.4  
-8.5  
-8.6  
-8.7  
-8.8  
-8.9  
-9.0  
-9.1  
-9.2  
-9.3  
-9.4  
-9.5  
-9.6  
-9.7  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
5 msec  
VIN  
9.8  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
10.0  
10.2  
10.4  
10.6  
10.8  
11.0  
11.2  
11.4  
11.6  
11.8  
12.0  
12.2  
12.4  
12.6  
12.8  
13.0  
13.2  
13.4  
13.6  
13.8  
14.0  
14.2  
14.4  
14.6  
14.8  
15.0  
15.2  
15.4  
15.6  
15.8  
16.0  
16.2  
16.4  
16.6  
16.8  
17.0  
17.2  
17.4  
17.6  
17.8  
18.0  
18.2  
18.4  
18.6  
18.8  
19.0  
19.2  
19.4  
19.6  
19.8  
20.0  
20.2  
20.4  
20.6  
20.8  
21.0  
21.2  
21.4  
21.6  
21.8  
22.0  
22.2  
22.4  
22.6  
22.8  
23.0  
23.2  
23.4  
23.6  
23.8  
24.0  
24.2  
24.4  
24.6  
24.8  
25.0  
25.2  
25.4  
25.6  
V
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
7.0  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
8.0  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
9.0  
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
9.8  
9.9  
10.0  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
10.7  
10.8  
10.9  
11.0  
11.1  
11.2  
11.3  
11.4  
11.5  
11.6  
11.7  
11.8  
11.9  
12.0  
12.1  
12.2  
12.3  
12.4  
12.5  
12.6  
12.7  
12.8  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
5 msec  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
3.40  
V
3.3  
V
5 msec  
VD_Phase_  
Set 1  
Disable  
Disable  
Disable  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
2.10  
2.15  
2.20  
2.25  
2.30  
2.35  
2.40  
2.45  
2.50  
2.55  
2.60  
2.65  
2.70  
2.75  
2.80  
2.85  
2.90  
2.95  
3.00  
3.05  
3.10  
3.15  
3.20  
3.25  
3.30  
3.35  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
5 msec  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
5 msec  
VDD  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
5 msec  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
3.3  
V
5 msec  
LDO  
0.5 usec  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
-9.8  
-9.9  
V
-10.0  
-10.1  
-10.2  
-10.3  
-10.4  
-10.5  
-10.6  
-10.7  
-10.8  
-10.9  
-11.0  
-11.1  
-11.2  
-11.3  
-11.4  
-11.5  
-11.6  
-11.7  
-11.8  
-11.9  
-12.0  
-12.1  
-12.2  
-12.3  
-12.4  
-12.5  
-12.6  
-12.7  
-12.8  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
+15.0V  
5 msec  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
5 msec  
VIN  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
5 msec  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
3.40  
V
3.3  
V
5 msec  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
41/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Command Table - continued  
Regitser Address  
02h  
VGH COLD  
Voltage  
[6:0]  
05h  
06h  
07h  
08h  
00h  
01h  
03h  
04h  
AVDD  
Output  
Voltage  
[7:0]  
VGH HOT  
Output  
Voltage  
[7:0]  
VGL  
Output  
Voltage  
[7:0]  
VCOM HOT  
Output  
Voltage  
[7:0]  
VCOM  
VDD  
Output  
Voltage  
[5:0]  
GPM  
Input  
Delay  
[7:6]  
Reset  
Monitor  
Selecet  
[5]  
VGH  
NTC Enable  
[7]  
VCOM  
NTC Enable  
[7]  
VDD  
Phase  
[7]  
VDD  
MODE  
[6]  
Reset  
Voltage  
[4:0]  
Function  
Select  
[7]  
Delay1  
time  
[6:3]  
Discharge  
time  
[2:0]  
DATA  
(HEX)  
COLD  
Voltage  
[6:0]  
+0.0V  
+0.2V  
+0.4V  
+0.6V  
+0.8V  
+1.0V  
+1.2V  
+1.4V  
+1.6V  
+1.8V  
+2.0V  
+2.2V  
+2.4V  
+2.6V  
+2.8V  
+3.0V  
+3.2V  
+3.4V  
+3.6V  
+3.8V  
+4.0V  
+4.2V  
+4.4V  
+4.6V  
+4.8V  
+5.0V  
+5.2V  
+5.4V  
+5.6V  
+5.8V  
+6.0V  
+6.2V  
+6.4V  
+6.6V  
+6.8V  
+7.0V  
+7.2V  
+7.4V  
+7.6V  
+7.8V  
+8.0V  
+8.2V  
+8.4V  
+8.6V  
+8.8V  
+9.0V  
+9.2V  
+9.4V  
+9.6V  
+9.8V  
+10.0V  
+10.2V  
+10.4V  
+10.6V  
+10.8V  
+11.0V  
+11.2V  
+11.4V  
+11.6V  
+11.8V  
+12.0V  
+12.2V  
+12.4V  
+12.6V  
+12.8V  
+13.0V  
+13.2V  
+13.4V  
+13.6V  
+13.8V  
+14.0V  
+14.2V  
+14.4V  
+14.6V  
+14.8V  
AVDD/2  
-0.00V  
-0.01V  
-0.02V  
-0.03V  
-0.04V  
-0.05V  
-0.06V  
-0.07V  
-0.08V  
-0.09V  
-0.10V  
-0.11V  
-0.12V  
-0.13V  
-0.14V  
-0.15V  
-0.16V  
-0.17V  
-0.18V  
-0.19V  
-0.20V  
-0.21V  
-0.22V  
-0.23V  
-0.24V  
-0.25V  
-0.26V  
-0.27V  
-0.28V  
-0.29V  
-0.30V  
-0.31V  
-0.32V  
-0.33V  
-0.34V  
-0.35V  
-0.36V  
-0.37V  
-0.38V  
-0.39V  
-0.40V  
-0.41V  
-0.42V  
-0.43V  
-0.44V  
-0.45V  
-0.46V  
-0.47V  
-0.48V  
-0.49V  
-0.50V  
-0.51V  
-0.52V  
-0.53V  
-0.54V  
-0.55V  
-0.56V  
-0.57V  
-0.58V  
-0.59V  
-0.60V  
-0.61V  
-0.62V  
-0.63V  
-0.64V  
-0.65V  
-0.66V  
-0.67V  
-0.68V  
-0.69V  
-0.70V  
-0.71V  
-0.72V  
-0.73V  
-0.74V  
-0.75V  
-0.76V  
-0.77V  
-0.78V  
-0.79V  
-0.80V  
-0.81V  
-0.82V  
-0.83V  
-0.84V  
-0.85V  
-0.86V  
-0.87V  
-0.88V  
-0.89V  
-0.90V  
-0.91V  
-0.92V  
-0.93V  
-0.94V  
-0.95V  
-0.96V  
-0.97V  
-0.98V  
-0.99V  
-1.00V  
-1.01V  
-1.02V  
-1.03V  
-1.04V  
-1.05V  
-1.06V  
-1.07V  
-1.08V  
-1.09V  
-1.10V  
-1.11V  
-1.12V  
-1.13V  
-1.14V  
-1.15V  
-1.16V  
-1.17V  
-1.18V  
-1.19V  
-1.20V  
-1.21V  
-1.22V  
-1.23V  
-1.24V  
-1.25V  
-1.26V  
-1.27V  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
A1h  
A2h  
A3h  
A4h  
A5h  
A6h  
A7h  
A8h  
A9h  
AAh  
ABh  
ACh  
ADh  
AEh  
AFh  
B0h  
B1h  
B2h  
B3h  
B4h  
B5h  
B6h  
B7h  
B8h  
B9h  
BAh  
BBh  
BCh  
BDh  
BEh  
BFh  
C0h  
C1h  
C2h  
C3h  
C4h  
C5h  
C6h  
C7h  
C8h  
C9h  
CAh  
CBh  
CCh  
CDh  
CEh  
CFh  
D0h  
D1h  
D2h  
D3h  
D4h  
D5h  
D6h  
D7h  
D8h  
D9h  
DAh  
DBh  
DCh  
DDh  
DEh  
DFh  
E0h  
E1h  
E2h  
E3h  
E4h  
E5h  
E6h  
E7h  
E8h  
E9h  
EAh  
EBh  
ECh  
EDh  
EEh  
EFh  
F0h  
F1h  
F2h  
F3h  
F4h  
F5h  
F6h  
F7h  
F8h  
F9h  
FAh  
FBh  
FCh  
FDh  
FEh  
FFh  
12.9  
13.0  
13.1  
13.2  
13.3  
13.4  
13.5  
13.6  
13.7  
13.8  
13.9  
14.0  
14.1  
14.2  
14.3  
14.4  
14.5  
14.6  
14.7  
14.8  
14.9  
15.0  
15.1  
15.2  
15.3  
15.4  
15.5  
15.6  
15.7  
15.8  
15.9  
16.0  
16.1  
16.2  
16.3  
16.4  
16.5  
16.6  
16.7  
16.8  
16.9  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
25.8  
26.0  
26.2  
26.4  
26.6  
26.8  
27.0  
27.2  
27.4  
27.6  
27.8  
28.0  
28.2  
28.4  
28.6  
28.8  
29.0  
29.2  
29.4  
29.6  
29.8  
30.0  
30.2  
30.4  
30.6  
30.8  
31.0  
31.2  
31.4  
31.6  
31.8  
32.0  
32.2  
32.4  
32.6  
32.8  
33.0  
33.2  
33.4  
33.6  
33.8  
34.0  
34.2  
34.4  
34.6  
34.8  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
-12.9  
-13.0  
-13.1  
-13.2  
-13.3  
-13.4  
-13.5  
-13.6  
-13.7  
-13.8  
-13.9  
V
V
V
V
V
V
V
V
V
V
V
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
2.10  
2.15  
2.20  
2.25  
2.30  
2.35  
2.40  
2.45  
2.50  
2.55  
2.60  
2.65  
2.70  
2.75  
2.80  
2.85  
2.90  
2.95  
3.00  
3.05  
3.10  
3.15  
3.20  
3.25  
3.30  
3.35  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
AVDD/2 -0.04V  
AVDD/2 -0.08V  
AVDD/2 -0.12V  
AVDD/2 -0.16V  
AVDD/2 -0.20V  
AVDD/2 -0.24V  
AVDD/2 -0.28V  
AVDD/2 -0.32V  
AVDD/2 -0.36V  
AVDD/2 -0.40V  
AVDD/2 -0.44V  
AVDD/2 -0.48V  
AVDD/2 -0.52V  
AVDD/2 -0.56V  
AVDD/2 -0.60V  
AVDD/2 -0.64V  
AVDD/2 -0.68V  
AVDD/2 -0.72V  
AVDD/2 -0.76V  
AVDD/2 -0.80V  
AVDD/2 -0.84V  
AVDD/2 -0.88V  
AVDD/2 -0.92V  
AVDD/2 -0.96V  
AVDD/2 -1.00V  
AVDD/2 -1.04V  
AVDD/2 -1.08V  
AVDD/2 -1.12V  
AVDD/2 -1.16V  
AVDD/2 -1.20V  
AVDD/2 -1.24V  
AVDD/2 -1.28V  
AVDD/2 -1.32V  
AVDD/2 -1.36V  
AVDD/2 -1.40V  
AVDD/2 -1.44V  
AVDD/2 -1.48V  
AVDD/2 -1.52V  
AVDD/2 -1.56V  
AVDD/2 -1.60V  
AVDD/2 -1.64V  
AVDD/2 -1.68V  
AVDD/2 -1.72V  
AVDD/2 -1.76V  
AVDD/2 -1.80V  
AVDD/2 -1.84V  
AVDD/2 -1.88V  
AVDD/2 -1.92V  
AVDD/2 -1.96V  
AVDD/2 -2.00V  
AVDD/2 -2.04V  
AVDD/2 -2.08V  
AVDD/2 -2.12V  
AVDD/2 -2.16V  
AVDD/2 -2.20V  
AVDD/2 -2.24V  
AVDD/2 -2.28V  
AVDD/2 -2.32V  
AVDD/2 -2.36V  
AVDD/2 -2.40V  
AVDD/2 -2.44V  
AVDD/2 -2.48V  
AVDD/2 -2.52V  
AVDD/2 -2.56V  
AVDD/2 -2.60V  
AVDD/2 -2.64V  
AVDD/2 -2.68V  
AVDD/2 -2.72V  
AVDD/2 -2.76V  
AVDD/2 -2.80V  
AVDD/2 -2.84V  
AVDD/2 -2.88V  
AVDD/2 -2.92V  
AVDD/2 -2.96V  
AVDD/2 -3.00V  
AVDD/2 -3.04V  
AVDD/2 -3.08V  
AVDD/2 -3.12V  
AVDD/2 -3.16V  
AVDD/2 -3.20V  
AVDD/2 -3.24V  
AVDD/2 -3.28V  
AVDD/2 -3.32V  
AVDD/2 -3.36V  
AVDD/2 -3.40V  
AVDD/2 -3.44V  
AVDD/2 -3.48V  
AVDD/2 -3.52V  
AVDD/2 -3.56V  
AVDD/2 -3.60V  
AVDD/2 -3.64V  
AVDD/2 -3.68V  
AVDD/2 -3.72V  
AVDD/2 -3.76V  
AVDD/2 -3.80V  
AVDD/2 -3.84V  
AVDD/2 -3.88V  
AVDD/2 -3.92V  
AVDD/2 -3.96V  
AVDD/2 -4.00V  
AVDD/2 -4.04V  
AVDD/2 -4.08V  
AVDD/2 -4.12V  
AVDD/2 -4.16V  
AVDD/2 -4.20V  
AVDD/2 -4.24V  
AVDD/2 -4.28V  
AVDD/2 -4.32V  
AVDD/2 -4.36V  
AVDD/2 -4.40V  
AVDD/2 -4.44V  
AVDD/2 -4.48V  
AVDD/2 -4.52V  
AVDD/2 -4.56V  
AVDD/2 -4.60V  
AVDD/2 -4.64V  
AVDD/2 -4.68V  
AVDD/2 -4.72V  
AVDD/2 -4.76V  
AVDD/2 -4.80V  
AVDD/2 -4.84V  
AVDD/2 -4.88V  
AVDD/2 -4.92V  
AVDD/2 -4.96V  
AVDD/2 -5.00V  
AVDD/2 -5.04V  
AVDD/2 -5.08V  
0 msec  
5 msec  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
5 msec  
5 msec  
VDD  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
35 msec  
40 msec  
60 msec  
80 msec  
100 msec  
150 msec  
200 msec  
250 msec  
300 msec  
5 msec  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
3.3  
V
5 msec  
DC/DC  
1.0 usec  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
5 msec  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
5 msec  
VIN  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
5 msec  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
3.40  
V
3.3  
V
5 msec  
VD_Phase_  
Set 2  
Enable  
Enable  
Enable  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
2.10  
2.15  
2.20  
2.25  
2.30  
2.35  
2.40  
2.45  
2.50  
2.55  
2.60  
2.65  
2.70  
2.75  
2.80  
2.85  
2.90  
2.95  
3.00  
3.05  
3.10  
3.15  
3.20  
3.25  
3.30  
3.35  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
-14.0  
V
5 msec  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
5 msec  
VDD  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
17.0  
V
5 msec  
35.0  
V
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
3.3  
V
5 msec  
LDO  
1.5 usec  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
+15.0V  
5 msec  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
5 msec  
VIN  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
5 msec  
0 msec  
1 msec  
2 msec  
3 msec  
4 msec  
3.40  
V
3.3  
V
5 msec  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
42/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Command Table - continued  
Regitser Address  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
VGH  
Discharge  
Enable  
[7]  
AVDD  
AVDD  
SS  
time  
[5:4]  
AVDD  
SW  
Slew Rate  
[3:2]  
VGH  
VGH/VGL  
VDD  
AVDD  
Delay3  
time  
[6:4]  
Delay2  
time  
[2:0]  
Delay5  
time  
[6:4]  
Delay4  
time  
[2:0]  
AVDD  
OCP  
COMP  
Select  
[7]  
AVDD  
COIL  
[1:0]  
Start-up  
Bit  
[7]  
Check  
Sum  
[7:0]  
DATA  
(HEX)  
DataRef  
[7]  
DoubleReg  
[3]  
AR_Time  
[3]  
mode Frequenc Frequenc Frequenc  
select  
[6]  
y
[5:4]  
y
[3:2]  
y
[1:0]  
[6]  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
3Eh  
3Fh  
40h  
41h  
42h  
43h  
44h  
45h  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
4Dh  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
54h  
55h  
56h  
57h  
58h  
59h  
5Ah  
5Bh  
5Ch  
5Dh  
5Eh  
5Fh  
60h  
61h  
62h  
63h  
64h  
65h  
66h  
67h  
68h  
69h  
6Ah  
6Bh  
6Ch  
6Dh  
6Eh  
6Fh  
70h  
71h  
72h  
73h  
74h  
75h  
76h  
77h  
78h  
79h  
7Ah  
7Bh  
7Ch  
7Dh  
7Eh  
7Fh  
0 msec  
5 msec  
0 msec  
5 msec  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
2.1MHz  
1.05MHz  
2.1MHz  
1.05MHz  
Slow2  
Slow1  
Fast1  
Fast2  
Slow2  
Slow1  
Fast1  
Fast2  
Slow2  
Slow1  
Fast1  
Fast2  
Slow2  
Slow1  
Fast1  
Fast2  
Slow2  
Slow1  
Fast1  
Fast2  
Slow2  
Slow1  
Fast1  
Fast2  
Slow2  
Slow1  
Fast1  
Fast2  
Slow2  
Slow1  
Fast1  
Fast2  
2.1MHz  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
525KHz  
525KHz  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
0.5 sec  
2.1MHz  
1.05MHz  
2.1MHz  
1.05MHz  
1.05MHz  
525KHz  
525KHz  
0 msec  
0 msec  
2 msec  
4 msec  
6 msec  
8 msec  
5 msec  
10 msec  
15 msec  
20 msec  
5 msec  
2.1MHz  
1.05MHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
525KHz  
525KHz  
1.0 sec  
0.5 sec  
1.0 sec  
0.5 sec  
1.0 sec  
0.5 sec  
1.0 sec  
0.5 sec  
1.0 sec  
0.5 sec  
1.0 sec  
0.5 sec  
1.0 sec  
0.5 sec  
1.0 sec  
525KHz  
2.1MHz  
1.05MHz  
2.1MHz  
1.05MHz  
525KHz  
525KHz  
1.05MHz  
525KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
2.1MHz  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
256KHz  
525KHz  
1.05MHz  
525KHz  
2.1MHz  
1.05MHz  
1.05MHz  
256KHz  
525KHz  
5 msec  
1.05MHz  
525KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
256KHz  
525KHz  
525KHz  
1.05MHz  
525KHz  
2.1MHz  
1.05MHz  
256KHz  
525KHz  
2.0 A  
x3 mode  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
2.1MHz  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
128KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
1.05MHz  
128KHz  
525KHz  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
128KHz  
525KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
128KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
2.1MHz  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
128KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
1.05MHz  
128KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
128KHz  
525KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
128KHz  
525KHz  
AV_COM  
P_Set 1  
Disable  
Enable  
Disable  
2.1MHz  
1.05MHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
2.1MHz  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
525KHz  
525KHz  
2.1MHz  
1.05MHz  
2.1MHz  
1.05MHz  
1.05MHz  
525KHz  
525KHz  
2.1MHz  
1.05MHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
525KHz  
525KHz  
525KHz  
2.1MHz  
1.05MHz  
2.1MHz  
1.05MHz  
525KHz  
525KHz  
1.05MHz  
525KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
525KHz  
1.05MHz  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
256KHz  
525KHz  
1.05MHz  
525KHz  
2.1MHz  
1.05MHz  
256KHz  
525KHz  
10 msec  
15 msec  
20 msec  
1.05MHz  
525KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
256KHz  
525KHz  
2.1MHz  
1.05MHz  
525KHz  
2.1MHz  
1.05MHz  
256KHz  
525KHz  
1.0 A  
x2 mode  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
525KHz  
1.05MHz  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
128KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
128KHz  
525KHz  
10 msec  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
128KHz  
525KHz  
2.1MHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
128KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
525KHz  
1.05MHz  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
128KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
128KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
128KHz  
525KHz  
2.1MHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
128KHz  
525KHz  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
43/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Command Table continued  
Regitser Address  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
VGH  
Discharge  
Enable  
[7]  
AVDD  
AVDD  
SS  
time  
[5:4]  
AVDD  
SW  
Slew Rate  
[3:2]  
VGH  
VGH/VGL  
VDD  
AVDD  
Delay3  
time  
[6:4]  
Delay2  
time  
[2:0]  
Delay5  
time  
[6:4]  
Delay4  
time  
[2:0]  
AVDD  
OCP  
COMP  
Select  
[7]  
AVDD  
COIL  
[1:0]  
Start-up  
Bit  
[7]  
Check  
Sum  
[7:0]  
DATA  
(HEX)  
DataRef  
[7]  
DoubleReg  
[3]  
AR_Time  
[3]  
mode Frequenc Frequenc Frequenc  
select  
[6]  
y
[5:4]  
y
[3:2]  
y
[1:0]  
[6]  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
A1h  
A2h  
A3h  
A4h  
A5h  
A6h  
A7h  
A8h  
A9h  
AAh  
ABh  
ACh  
ADh  
AEh  
AFh  
B0h  
B1h  
B2h  
B3h  
B4h  
B5h  
B6h  
B7h  
B8h  
B9h  
BAh  
BBh  
BCh  
BDh  
BEh  
BFh  
C0h  
C1h  
C2h  
C3h  
C4h  
C5h  
C6h  
C7h  
C8h  
C9h  
CAh  
CBh  
CCh  
CDh  
CEh  
CFh  
D0h  
D1h  
D2h  
D3h  
D4h  
D5h  
D6h  
D7h  
D8h  
D9h  
DAh  
DBh  
DCh  
DDh  
DEh  
DFh  
E0h  
E1h  
E2h  
E3h  
E4h  
E5h  
E6h  
E7h  
E8h  
E9h  
EAh  
EBh  
ECh  
EDh  
EEh  
EFh  
F0h  
F1h  
F2h  
F3h  
F4h  
F5h  
F6h  
F7h  
F8h  
F9h  
FAh  
FBh  
FCh  
FDh  
FEh  
FFh  
0 msec  
5 msec  
0 msec  
5 msec  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
AVC_Set1  
AVC_Set2  
AVC_Set3  
AVC_Set4  
2.1MHz  
1.05MHz  
2.1MHz  
1.05MHz  
Slow2  
Slow1  
Fast1  
Fast2  
Slow2  
Slow1  
Fast1  
Fast2  
Slow2  
Slow1  
Fast1  
Fast2  
Slow2  
Slow1  
Fast1  
Fast2  
Slow2  
Slow1  
Fast1  
Fast2  
Slow2  
Slow1  
Fast1  
Fast2  
Slow2  
Slow1  
Fast1  
Fast2  
Slow2  
Slow1  
Fast1  
Fast2  
2.1MHz  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
525KHz  
525KHz  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
0.5 sec  
2.1MHz  
1.05MHz  
2.1MHz  
1.05MHz  
1.05MHz  
525KHz  
525KHz  
0 msec  
0 msec  
2 msec  
4 msec  
6 msec  
8 msec  
5 msec  
10 msec  
15 msec  
20 msec  
5 msec  
2.1MHz  
1.05MHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
525KHz  
525KHz  
1.0 sec  
0.5 sec  
1.0 sec  
0.5 sec  
1.0 sec  
0.5 sec  
1.0 sec  
0.5 sec  
1.0 sec  
0.5 sec  
1.0 sec  
0.5 sec  
1.0 sec  
0.5 sec  
1.0 sec  
525KHz  
2.1MHz  
1.05MHz  
2.1MHz  
1.05MHz  
525KHz  
525KHz  
1.05MHz  
525KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
2.1MHz  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
256KHz  
525KHz  
1.05MHz  
525KHz  
2.1MHz  
1.05MHz  
1.05MHz  
256KHz  
525KHz  
5 msec  
1.05MHz  
525KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
256KHz  
525KHz  
525KHz  
1.05MHz  
525KHz  
2.1MHz  
1.05MHz  
256KHz  
525KHz  
2.0 A  
x3 mode  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
2.1MHz  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
128KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
1.05MHz  
128KHz  
525KHz  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
128KHz  
525KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
128KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
2.1MHz  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
128KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
1.05MHz  
128KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
128KHz  
525KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
128KHz  
525KHz  
AV_COM  
P_Set 2  
Enable  
Disable  
Enable  
2.1MHz  
1.05MHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
2.1MHz  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
525KHz  
525KHz  
2.1MHz  
1.05MHz  
2.1MHz  
1.05MHz  
1.05MHz  
525KHz  
525KHz  
2.1MHz  
1.05MHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
525KHz  
525KHz  
525KHz  
2.1MHz  
1.05MHz  
2.1MHz  
1.05MHz  
525KHz  
525KHz  
1.05MHz  
525KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
2.1MHz  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
256KHz  
525KHz  
1.05MHz  
525KHz  
2.1MHz  
1.05MHz  
1.05MHz  
256KHz  
525KHz  
10 msec  
15 msec  
20 msec  
1.05MHz  
525KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
256KHz  
525KHz  
525KHz  
1.05MHz  
525KHz  
2.1MHz  
1.05MHz  
256KHz  
525KHz  
1.0 A  
x2 mode  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
2.1MHz  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
128KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
1.05MHz  
128KHz  
525KHz  
10 msec  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
128KHz  
525KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
128KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
2.1MHz  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
0 msec  
128KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
1.05MHz  
128KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
5 msec  
5 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
10 msec  
15 msec  
20 msec  
25 msec  
30 msec  
40 msec  
128KHz  
525KHz  
525KHz  
525KHz  
256KHz  
2.1MHz  
1.05MHz  
128KHz  
525KHz  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
44/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Check Sum  
Check Sum which has been adopted in BM81810MUF-M is shown below.  
You will calculate the Check Sum that the sum of the data, including the Check Sum(CHK7 to CHK0) is 00h.  
Register  
00h  
[7]  
A7  
B7  
C7  
D7  
E7  
[6]  
A6  
B6  
C6  
D6  
E6  
[5]  
A5  
B5  
C5  
D5  
E5  
[4]  
A4  
B4  
C4  
D4  
E4  
[3]  
A3  
B3  
C3  
D3  
E3  
[2]  
A2  
B2  
C2  
D2  
E2  
[1]  
A1  
B1  
C1  
D1  
E1  
[0]  
A0  
B0  
C0  
D0  
E0  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
F0  
G7  
H7  
I7  
G6  
H6  
I6  
G5  
H5  
I5  
G4  
H4  
I4  
G3  
H3  
I3  
G2  
H2  
I2  
G1  
H1  
I1  
G0  
H0  
I0  
09h  
J7  
K7  
L7  
M7  
CHK7  
J6  
K6  
L6  
M6  
CHK6  
J5  
K5  
L5  
M5  
CHK5  
J4  
K4  
L4  
M4  
CHK4  
J3  
K3  
L3  
M3  
CHK3  
J2  
K2  
L2  
M2  
CHK2  
J1  
K1  
L1  
M1  
CHK1  
J0  
K0  
L0  
M0  
CHK0  
0Ah  
0Bh  
0Ch  
0Dh  
[A7:A0] + [B7:B0] + [C7:C0] + [D7:D0] + [E7:E0] + [F7:F0] + [G7:G0] + [H7:H0] + [I7:I0] + [J7:J0]  
+ [K7:K0] + [L7:L0] + [M7:M0] + [CHK7:CHK0] = 00h  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
45/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Soft Start Time  
BM81810MUF-M has soft start function on AVDD, VGH, VGL and VDD.  
Time of the soft start is up to the output voltage reaches the typ Value.  
The output voltage typ Value of each block is shown in the following table.  
Soft Start  
Output Voltage Typ Value  
BLOCK  
Soft Start Time  
AVDD  
VGH  
VGL  
10.5 V  
18.0 V  
-6.0 V  
1.2 V  
Set Register  
5 ms  
5 ms  
VDD  
1 ms  
The time setting Soft Start of AVDD is shown in the table below.  
Bit  
AVDD Soft Start Time  
0
0
1
1
0
1
0
1
5 ms  
10 ms  
15 ms  
20 ms  
The soft-start time of VGH and VGL are 5ms.  
The soft-start time of VDD is 1ms.  
The soft-start setting an example of AVDD and VGH are shown in the figure below.  
exCase of AVDD  
exCase of VGH  
Error of Soft-Start Time  
Error of Soft-Start Time  
Set VoltageTyp.  
Set VoltageTyp.  
Soft-Start  
Time  
Soft-Start  
Time  
VGH(Typ.)  
AVDD(Typ.)  
AVDD(Typ.)  
AVDD  
Error of Soft-Start Time  
Time  
Time  
Figure 76. Soft-Start Time  
If you change the setting voltage from typ values, occurs error in the soft-start time.  
The setting voltage > Typ Value ••• Soft-start will be more slow.  
The setting voltage < Typ Value ••• Soft-start will be more faster.  
No error of soft-start is occurred for change of frequency.  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
46/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Block Diagram  
VDD  
erramp  
REGISTER  
DAC  
pwmcomp  
VDD  
SWB  
30  
driver  
PGNDB  
31  
29  
VREF  
VDD  
VINB  
1
LDO  
RST  
28
VREG  
2
VREG  
RESET  
VIN  
3
4
AVDD  
load SW  
VLSO  
NTC  
22  
ADC  
SW  
6
7
AVDD  
PAVDD  
erramp  
REGISTER  
DAC  
pwmcomp  
Θ
driver  
EEPROM  
PGND  
5
SCL 27  
SDA 26  
VGL  
erramp  
REGISTER  
DAC  
DRN  
LOGIC  
13  
driver  
CP_CLK  
WPN  
21  
VGL  
12  
8
VGL  
EN 32  
I/F  
AVDD  
VCOM  
logic  
OSC  
OSCGND  
REGISTER  
REGISTER  
DAC  
DAC  
VCOM  
10  
9
NEG  
DRP  
VGH  
erramp  
14  
driver  
24  
PG/LDSW  
VGH  
VGH  
Power Good  
18  
level shift  
level shift  
CPP2  
17  
23  
FAULT  
VCP  
16  
FAULT  
level shift  
level shift  
CPP1  
15  
CGND  
11  
CP_CLK  
GPM  
level shift  
level shift  
GSOUT  
19  
GSIN 25  
control  
RE  
20  
Figure 77. Block Diagram  
47/75  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
AVDD Block Function  
VIN  
LOAD SWITCH  
VLSO  
SW  
PAVDD  
ERRAMP  
REGISTER  
DAC  
PWM  
DRIVER  
PGND  
DISCHARGE  
Figure 78. AVDD Block Diagram  
AVDD Block (Boost DC / DC) can set the following functions by EEPROM.  
1. AVDD Voltage (Register Address 00h [7:0])  
AVDD voltage can be set in 0.1V step from 5.0V to 17.0V.  
2. SW Switching Frequency (Register Address 0Ch [1:0])  
The switching frequency can be set at 525KHz, 1.05MHz or 2.1MHz.  
3. Soft Start Time (Register Address 0Bh [5:4])  
Soft Start Time of AVDD can be set in 5ms step from 5ms to 20ms.  
4. SW Switching Slew Rate (Register Address 0Bh [3:2])  
SW pin switching Slew Rate can be controlled by the register setting.  
11b is the fastest slew rate setting, 00b is the slowest slew rate setting.  
The slew rate by each setting is as follows.  
Slew Rate changes by the external part and load electric current conditions such as a coil or the diode, but adjustment  
is possible on a true set condition because Slew Rate changes by Slew Rate setting change like Figure.79.  
The EMI properties are improved by slowing a slew rate, but please do enough evaluations after a slew rate change  
because efficiency becomes the tendency to decrease.  
<xx>:AVDD Slew Rate setting  
<11>  
<11>  
<10>  
<01>  
<01>  
<00>  
<10>  
<00>  
Figure 79. AVDD Switching Slew Rate  
(VIN=3.3V, AVDD=10.5V, Freq=2.1MHz, L=4.7μH, IAVDD=100mA)  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
48/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
AVDD Block Function - continued  
AVDD Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
<00>  
<01>  
<10>  
<11>  
<xx>:AVDD Slew Rate setting  
40  
0
50  
100  
150  
200  
250  
Load [mA]  
Figure 80. AVDD Efficiency  
(dependent on Slew Rate)  
(VIN=3.3V, AVDD=10.5V, Freq=2.1MHz, L=4.7μH, IAVDD=100mA)  
5. OCP Detect Level (Register Address 0Bh [6])  
SW pin Over Current Protection detection level can be set at 1.0A(Min) or 2.0A(Min).  
6. COMP Adjust (Register Address 0B [7])  
Phase Margin can be adjusted.  
0b: AV_COMP_SET1  
1b: AV_COMP_SET2  
7. COIL Adjust (Register Address 0Bh [1:0])  
You can adjust the settings to match the coil constant to be used.  
00b:AV_COIL_SET1  
01b:AV_COIL_SET2  
10b:AV_COIL_SET3  
11b:AV_COIL_SET4  
Please set the setting of COIL Adjust by frequency setting (fs) and a coil to use.  
Coil Adjust  
0Bh[1:0]  
00'b  
Comp Adjust  
fOSC[kHz] Coil[μH]  
0Bh[7]  
0'b  
0'b  
525  
525  
4.7  
10  
11'b  
1050  
1050  
2100  
2100  
4.7  
10  
4.7  
10  
00'b  
11'b  
00'b  
11'b  
0'b  
0'b  
0'b  
0'b  
*Please become more than 10μF/25V product (GRT31CC81E106KE01) x3 with AVDD output capacitor at the time of the use  
with a coil of 10μH.  
In addition, COMP Adjust coordinates phase constant of the ERRAMP output and is effective to shift to the zero point 25% low  
frequency side to produce by the ERRAMP output by making Comp Adjust 1'b and is effective in reducing ringing at the time of  
the load response by the responsiveness adjustment with the actual machine.  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
49/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
AVDD Block Function continued  
About the phase characteristic, please consider it based on enough evaluations with the actual model.  
(1) Setting the Output L Constant (Boost Converter)  
The coil to use for output is decided by the rating current ILR and input current maximum value IINMAX of the coil.  
VIN  
IINMAX + 1/2 x ΔIL should not reach  
IL  
the rating value level  
IL  
L
ILR  
AVDD  
IINMAX  
average current  
Co  
Figure 81. Coil Current Waveform  
Adjust so that IINMAX +∆IL does not reach the rating current value ILR. ∆IL can be obtained by the following equation.  
Figure 82. Output Application Circuit Diagram  
1
AVDD - VIN  
1
[A]  
Here, f is the switching frequency.  
IL =  
VIN  
L
AVDD  
f
Set with sufficient margin because the coil value may have the dispersion of 30%. If the coil current exceeds the  
rating current ILR of the coil, it may damage the IC internal element.  
BM81810MUF-M uses the current mode DC/DC converter control and has the optimized design at the coil value. A coil  
inductance (L) of 4.7 μH to 10 μH is recommended from viewpoints of electric power efficiency, response, and stability.  
(2) Output Capacity Settings  
For the capacitor to use for the output, select the capacitor which has the larger value in the ripple voltage VPP  
allowance value and the drop voltage allowance value at the time of sudden load change. Output ripple voltage is  
decided by the following equation.  
Here, f is the switching frequency  
and RESR is ESR of output capacitor.  
[V]  
1
VIN  
IL  
VPP  
=
ILMAX RESR +  
(ILMAX -  
)
fCo  
AVDD  
2
Perform setting so that the voltage is within the allowable ripple voltage range.  
For the drop voltage during sudden load change; VDR, please perform the rough calculation by the following equation.  
I  
VDR =  
10 μs  
[V]  
Co  
However, 10 μs is the rough calculation value of the DC/DC response speed. Please set the capacitance considering  
the sufficient margin so that these two values are within the standard value range.  
(3) Selecting the Input Capacitor  
Since the peak current flows between the input and output at the DC/DC converter, a capacitor is required to install at  
the input side. For the reason, the low ESR capacitor is recommended as an input capacitor which has the value more  
than 10 μF and less than 100 mΩ. If a capacitor out of this range is selected, the excessive ripple voltage is  
superposed on the input voltage, accordingly it may cause the malfunction of IC.  
However these conditions may vary according to the load current, input voltage, output voltage, inductance and  
switching frequency. Be sure to perform the margin check using the actual product.  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
50/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
VGH Block Function  
AVDD  
DRP  
ERRAMP  
REGISTER  
DAC  
DRIVER  
VGH  
VGH  
level shift  
level shift  
CPP2  
DISCHARGE  
VCP  
level shift  
level shift  
CPP1  
CP_CLK  
Figure 83. VGH Block Diagram  
VGH Block (Positive Charge Pump) can set below functions by EEPROM.  
1. VGH (HOT) Voltage (Register Address 01h [7:0])  
VGH (HOT) voltage can be set in 0.2V step from 8.0V to 35.0V.  
2. DRP Switching Frequency (Register Address 0Ch [5:4])  
Switching frequency can be set at AVDD frequency x1, x1/2, or x1/4.  
3. VGH (COLD) Voltage (Register Address 02h [6:0])  
To set VGH (COLD) voltage can have the VGH voltage relates to NTC Pin voltage, when NTC Function is used.  
VGH (COLD) voltage range can be set in 0.2V step from VGH (HOT) + 0V to VGH (HOT) + 15.0V.  
Refer NTC Block Function” for the detail description of NTC Function.  
4. VGH Mode Select (Register Address 0Ch [6])  
Boost Stage of Positive Charge Pump can be set by x2, x3, or x4.  
x2, x3 can be formed with internal element by EEPROM setting.  
x4 can be formed by connecting with external Diode.  
Since this function switch needs to change the application construction,  
input writing signal by I2C cannot perform Register writing.  
To write this Register setting, start-up bit(REG0Ch[7]) should be 0”.  
The VGH voltage output range with the AVDD voltage is related, and may take UVP without being able to output the  
VGH voltage of the setting when do not choose appropriate constitution.  
Please choose appropriate constitution referring after the following pages.  
5. VGH Discharge enable (Register Address 0Ah [7])  
When OFF sequence, VGH pin Discharge function can be Enable/Disable.  
This function is to confirm when IC starts to operate. If read-and-write is performed after IC starts, the first time  
OFF sequence will not be reflected.  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
51/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
VGH Block Function - continued  
Application Example for VGH (3rd Stage Positive Charge Pump)  
Depending on the circuit construction, output voltage range of Charge Pump can be limited.  
Besides, increasing VGH negative current can lower the possible output voltage.  
Please consider the actual application need to select appropriate circuit construction.  
Below Figure shows the circuit construction of 3rd Stage Positive Charge Pump.  
Under this circuit, the possible setting range of VGH output voltage is (AVDD + 2) V to ( AVDD x 3 - 2 ) V.  
(When VGH negative current is 0mA)  
AVDD  
ERRAMP  
REGISTER  
DAC  
C_AVD  
DRP  
DRIVER  
VGH  
VGH  
C_VGH  
level shift  
level shift  
C_DRP2  
C_VCP  
CPP2  
DISCHARGE  
VCP  
level shift  
level shift  
C_DRP1  
CPP1  
CP_CLK  
Figure 84. 3rd Stage Positive Charge Pump  
Application Example for VGH (2nd Stage Positive Charge Pump)  
Below Figure shows the circuit construction of 2nd Stage Positive Charge Pump.  
Under this circuit, the possible setting range of VGH output voltage is (AVDD + 1) V to (AVDD x 2-1) V  
(When VGH negative current is 0mA)  
AVDD  
ERRAMP  
REGISTER  
DAC  
C_AVD  
DRP  
DRIVER  
VGH  
VGH  
C_VGH  
level shift  
level shift  
CPP2  
DISCHARGE  
VCP  
level shift  
level shift  
C_DRP1  
CPP1  
CP_CLK  
Figure 85. 2nd Stage Positive Charge Pump  
52/75  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
VGH Block Function - continued  
Application Example for VGH (4th Stage Positive Charge Pump)  
Below Figure shows the circuit construction of 4th Stage Positive Charge Pump.  
Under this circuit, the possible setting range of VGH output voltage is (AVDD + 3) V to (AVDD x 4 - 3) V  
(When VGH negative current is 0mA)  
AVDD  
ERRAMP  
REGISTER  
DAC  
C_AVD  
DRP  
DRIVER  
VGH  
VGH  
D_VGH2  
C_VGH  
C_DRP3  
C_DRP2  
level shift  
level shift  
CPP2  
C_VCP2  
D_VGH1  
C_VCP1  
DISCHARGE  
VCP  
level shift  
level shift  
C_DRP1  
CPP1  
CP_CLK  
Figure 86. 4th Stage Positive Charge Pump  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
53/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
VGL Block Function  
PAVDD  
DRN  
ERRAMP  
REGISTER  
DAC  
DRIVER  
CP_CLK  
DISCHARGE  
VGL  
VGL  
Figure 87. VGL Block Diagram  
VGL Block (Negative Charge Pump) can set below functions by EEPROM.  
1. VGL Voltage (Register Address 03h [7:0])  
VGL voltage can be set by 0.1V step from -4.0V to -14.0V.  
2. DRN Switching Frequency (Register Address 0Ch [5:4])  
Switching frequency can set AVDD frequency x1, x1/2, or x1/4.  
Application Example for VGL (1st Stage Negative Charge Pump)  
Below Figure shows the circuit construction of 1st Stage Negative Charge Pump.  
Under this circuit, the possible setting range of VGL output voltage is -4 V to -(AVDD 2Vf) V  
(When VGL positive current is 0mA)  
PAVDD  
ERRAMP  
REGISTER  
DAC  
C_DRN  
DRN  
DRIVER  
D_VGL  
CP_CLK  
DISCHARGE  
VGL  
VGL  
C_VGL  
Figure 88. 1st Stage Negative Charge Pump  
Application Example for VGL (2nd Stage Negative Charge Pump)  
Below Figure shows the circuit construction of 2nd Stage Negative Charge Pump.  
Under this circuit, the possible setting range of VGL output voltage is -4 V to -(AVDDx2 4Vf) V  
(When VGL positive current is 0mA)  
PAVDD  
ERRAMP  
REGISTER  
DAC  
DRN  
DRIVER  
CP_CLK  
C_DRN2  
D_VGL2  
C_DRN1  
D_VGL1  
DISCHARGE  
VGL  
VGL  
C_VGL  
C_VCN  
Figure 89. 2nd Stage Negative Charge Pump  
54/75  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
VCOM Block Function  
AVDD  
VCOM  
NEG  
REGISTER  
DAC  
Figure 90. VCOM Block Diagram  
VCOM Block (VCOM Calibrator) can set below functions by EEPROM.  
1. VCOM (HOT) Voltage (Register Address 04h [7:0])  
VCOM (HOT) voltage can be set by 40mV step from AVDD/2 +/- 0.0V to 4.0V.  
2. VCOM (CAL) Voltage (Device Address 1001111x)  
VCOM (CAL) voltage is the function to make minor adjustment of VCOM (HOT) voltage value.  
VCOM (HOT) can be set by 10mV step from +/- 0.0V to 0.63V.  
Refer Page 19, EEPROM I2C Format for DVR (VCOM calibrator)” for VCOM (CAL) voltage setting.  
3. VCOM (COLD) Voltage (Register Address 05h [6:0])  
To set VCOM (COLD) voltage can have the VCOM voltage relates to NTC Pin voltage, when NTC Function is used.  
VCOM (COLD) voltage range can be set by 10mV step from VCOM (CAL)0V to VCOM (CAL)+0.63V.  
Refer “NTC Block Function” for the detail description of NTC Function.  
However, VCOM output voltage setting range is AVDD x0.7 to AVDD x0.2 or AVDD/2+4.8V to AVDD/2-4.8V.  
For Example AVDD = 13.0V  
11.13V  
+0.63V  
VCOM Max Voltage  
10.5V  
AVDD x 0.7 = 13 x 0.7 = 9.1V  
AVDD/2 = 6.5V  
VCOM Min Voltage  
2.5V  
AVDD x 0.2 = 13 x 0.2 = 2.6V  
-0.63V  
1.87V  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
55/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
VDD Block Function  
VINB  
ERRAMP  
REGISTER  
DAC  
PWM  
VDD  
SWB  
DRIVER  
PGNDB  
VDD  
LDO  
DISCHARGE  
Figure 91. VDD Block Diagram  
VDD Block (Buck DC/DC) can set below functions by EEPROM.  
1. VDD Voltage (Register Address 06h [5:0])  
VDD voltage can be set by 0.05V step from 0.9V to 3.4V.  
2. SWB Switching Frequency (Register Address 0Ch [3:2])  
Switching frequency can be set at 525KHz, 1.05MHz, or 2.1MHz.  
3. VDD Phase Adjust (Register Address 06h [7])  
Phase Margin can be adjusted.  
0b : VD_Phase_Set1  
1b : VD_Phase_Set2  
VIN[V]  
5
VDD[V]  
0.9 to 1.25  
1.3 to  
VDD Phase Adjust  
1'b  
0'b  
0'b  
3.3  
0.9 to  
Set VDD Phase Adjust 1b when On-duty < 25%.  
4. VDD Mode Select (Register Address 06h [6])  
VDD Block can be switched to DC/DC or LDO Mode.  
Since this function switch needs to change the application construction,  
input writing signal by I2C cannot perform Register writing.  
To write this Register setting, start-up bit(REG0Ch[7]) should be 0”.  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
56/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
VDD Block Function continued  
Application Example for VDD (Buck DC/DC)  
VDD application can select Buck DC/DC or LDO by “VDD Mode Selectof EEPROM setting.  
When VDD Mode is selected at 0, Buck DC/DC operates.  
Below figure shows example of Buck DC/DC application circuit.  
VINB  
C_VINB  
ERRAMP  
REGISTER  
DAC  
PWM  
L_SWB  
SWB  
VDD  
DRIVER  
C_VDD  
PGNDB  
VDD  
LDO  
DISCHARGE  
Figure 92. VDD Block Diagram(Buck DC/DC)  
Application Example for VDD (LDO)  
When VDD Mode is selected at 1”, LDO operates.  
Below figure shows example of LDO application circuit.  
VINB  
SWB  
C_VINB  
ERRAMP  
REGISTER  
DAC  
PWM  
VDD  
DRIVER  
C_VDD  
PGNDB  
VDD  
LDO  
DISCHARGE  
Figure 93. VDD Block Diagram(LDO)  
C_VDD in LDO mode, please use 1.0μF to 10μF.  
In addition, when VDD function is not used, please set in VDD LDO mode, and, please connect capacitor more than 1.0μF.  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
57/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
GPM Block Function  
VGH  
level shift  
level shift  
GSOUT  
RE  
GSIN  
control  
Figure 94. GPM Block Diagram  
GPM Block (Gate Pulse Modulation) can set below functions by EEPROM.  
1. Input Delay Time (Register Address 07h [7:6])  
Falling timing of input signal can be set at 0.1μs, 0.5μs, 1.0μs, or 1.5μs.  
GSIN  
Input Delay Time  
GSOUT  
Figure 95. GPM Input Delay Time  
Pin connection when GPM is not used  
When GPM function is not used, connect GSIN pin to VIN.  
Connect RE pin to resistance (2.0kΩ).  
GSOUT pin should be OPEN.  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
58/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
RESET Block Function  
VIN  
VDD  
RST  
RESET  
DELAY  
REGISTER  
DAC  
Figure 96. RESET Block Diagram  
RESET Block can set below functions by EEPROM.  
1. RESET Detect Voltage (Register Address 07h [4:0])  
RESET detection voltage can be set by 0.1V step from 0.6V to 3.3V.  
2. RESET Monitor Select (Register Address 07h [5])  
RESET detection pin can select from VDD and VIN.  
3. Delay2 Time (Register Address 09h [2:0])  
RESET detection time can be set from 0ms to 40ms.  
Detect Voltage  
RESET  
Monitor pin  
(VIN or VDD)  
Detect Voltage -0.1V  
Delay2 Time  
RST  
Figure 97. RESET Function  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
59/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
PG/LDSW Block Function  
PG/LDSW Block can switch PG (Power Good) and LDSW (Load Switch) function by EEPROM.  
Case of PG Function,  
When GPM Block becomes workable, PG pin will change from High to Low to recognize as all boost sequence is completed.  
PG/LDSW  
SEQUENCE  
LOGIC  
VGL  
Figure 98. PG/LDSW Block Diagram  
PG/LDSW  
Case of LDSW Function,  
This function is used when VGL voltage output is prior to AVDD voltage output.  
With below application construction, Timing Chart 3sequence can be realized.  
PAVDD  
M_LDSW  
Gate  
Voltage  
AVDD  
LSW ON Delay  
C_LDSW  
C_GD  
M_LDSW  
PAVDD  
AVDD  
EN  
PG/LDSW  
R_LDSW  
R_LSGATE  
M_LDSW  
Gate  
Voltage  
PG/LDSW  
SEQUENCE  
LOGIC  
AVDD  
LDSW OFF  
Delay  
Figure 99. LDSW Function  
Figure 100. LDSW Delay Time  
LDSW on delay can be set by the formula below.  
ꢍꢏꢔꢕꢖꢗ  ꢍꢎꢏꢐ  
ꢍꢏꢔꢕꢖꢗ  ꢍꢎꢏꢐ  
ꢍꢏꢔꢕꢖꢗ  ꢍꢎꢏꢐ  
ꢝꢞꢟ  
 ꢀꢁꢂꢃꢄꢅꢃꢀꢆꢇꢈꢉ  ꢋꢌꢍꢎꢏꢐ    
 ꢚꢛ ꢒꢜ   
ꢙꢃꢡꢢꢆꢣꢤ  
ꢍꢎꢏꢐ  
ꢠꢝꢀꢀ  
LDSW off delay can be set by the formula below.  
ꢍꢏꢔꢕꢖꢗ  ꢍꢎꢏꢐ  
ꢝꢞꢟ  
 ꢀꢁꢂꢃꢄꢥꢥꢃꢀꢆꢇꢈꢉ  ꢋꢌꢦ ꢀꢁꢂ  ꢓꢦ ꢀꢁꢂ  ꢚꢛ   
 ꢡꢢꢆꢣꢤ  
ꢍꢎꢏꢐ  
ꢠꢝꢀꢀ  
where:  
AVDD is AVDD setting voltage.  
Vth is M_LDSW gate threshold voltage  
When using the LDSW function, set the delay3 time to be longer than or equal to the sum of the maximum value including the  
variation of the load switch ON delay time and VGL soft start time. If the delay3 time setting is short, UVP is applied at startup.  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
60/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
NTC Block Function  
VGH  
REGISTER  
REGISTER  
DAC  
NTC  
ADC  
4bit  
LOGIC  
VCOM  
DAC  
Θ
Figure 101. NTC Block Diagram  
NTC Block is the function to adjust VGH, VCOM voltage depending on NTC pin voltage.  
NTC pin will output 40μA (Typ) current.  
Connecting thermistor element can perform temperature adjustment function.  
Below functions can be set by EEPROM.  
1. VGH NTC Enable (Register Address 02h [7])  
VGH Block NTC Function can be changed to Enable or Disable.  
2. VCOM NTC Enable (Register Address 05h [7])  
VCOM Block NTC Function can be changed to Enable or Disable.  
Pin connection when NTC is not used.  
When NTC function is not used, connect NTC pin to OPEN.  
EN Block Function  
VEN  
Rup  
EN  
100KΩ  
-
+
VREF  
(0.9V)  
300KΩ  
200KΩ  
Figure 102. EN Block Diagram  
When inserting resistor to EN terminal, EN threshold voltage is decided by resistance division with internal resistor.  
Threshold Voltage calculation;  
EN threshold voltage high typical ( VENH ) = 0.9/300x (400+Rup) [V]  
EN threshold voltage low typical ( VENL ) = 0.9/500x (600+Rup) [V]  
The EN threshold voltage including unevenness is as follows;  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
61/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
VGH and VCOM temperature compensation  
NTC[V]  
1.25V  
0.5V  
Ta[]  
VGH[V]  
VGH + VGH  
Fh  
Eh  
Dh  
Ch  
Bh  
Ah  
9h  
8h  
7h  
6h  
5h  
4h  
3h  
2h  
1h  
0h  
(HOT) (COLD)  
VGH  
(HOT)  
Ta[]  
VCOM[V]  
VCOM  
(CAL)  
Fh  
Eh  
Dh  
Ch  
Bh  
Ah  
9h  
8h  
7h  
6h  
5h  
4h  
3h  
2h  
1h  
0h  
VCOM + VCOM  
(CAL) (COLD)  
Ta[]  
Figure 103. NTC Function  
NTC Function can adjust VGH, VCOM voltage depending on NTC voltage (VNTC).  
4 bit ADC is used to detect NTC voltage.  
When NTC pin voltage VNTC 0.5V, NTC function will judge as HOT setting.  
In this case, VGH and VCOM output voltage can be calculated by below formula.  
VGH = VGH (HOT)  
VCOM = VCOM (CAL)  
When NTC pin voltage VNTC 1.25V, NTC function will judge as COLD setting.  
VGH = VGH (HOT) + ΔVGH (COLD)  
VCOM = VCOM (CAL) – ΔVCOM (COLD)  
When NTC pin voltage is 0.5V < VNTC < 1.25V, VGH and VCOM can be estimated by below formula.  
ꢩꢝꢧꢨꢪꢌꢄ ꢀꢫ  
ꢬꢭ  
ꢝꢅꢱꢌ  ꢲꢳꢴꢝ  
ꢲꢳꢲꢵꢶꢝ  
ꢝꢧꢨ   
 ꢒꢓꢄꢯꢅꢀꢯꢰ   
  ꢬꢙ  ꢝꢧꢨ ꢨꢄꢱ ꢃꢡꢷꢤ  
ꢩꢷꢹꢺꢻ ꢹꢄ ꢀ  
ꢝꢅꢱꢌ  ꢲꢳꢴꢝ  
ꢝꢌꢄꢸ  ꢝꢌꢄꢸ ꢌꢠ    
 ꢒꢓꢄꢯꢅꢀꢯꢰ   
  ꢬꢙꢃꢡꢝꢤ  
ꢬꢭ  
ꢲꢳꢲꢵꢶꢝ  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
62/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
FAULT Block Function  
FAULT  
UVLO  
TSD  
Shut Down  
by UVP and OCP  
LOGIC  
Check Sum  
I2C  
Fail Register  
Figure 104. FAULT Block Diagram  
FAULT Function is to inform IC situation to outside.  
When the operation is normal, FAULT pin will be High.  
When the operation is abnormal, FAULT pin will be Low.  
Below are the conditions to have FAULT pin to Low.  
I. Detect UVLO  
II. Start TSD  
III. Shutdown by UVP or OCP  
IV. Check Sum NG  
Fail Register Function  
When FAULT PIN is Low, it is possible to confirm which protection circuit is activating by reading Data from Fail Register.  
Fail Register will reflect the protection detected circuit at the moment of FAULT=Low  
Register Address of Fail Register is 10h.  
Register  
Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Double  
Register AVDD OCP  
Error  
Check sum  
Error  
AVDD UVP VDD UVP  
VGH UVP  
VGL UVP  
TSD  
10h  
Fail Register does not have EEPROM writing function.  
When VIN UVLO is detected, the data will be deleted.  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
63/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Protection function explanation of POWER MANAGEMENT block  
I. UNDER VOLTAGE LOCK OUT (UVLO)  
The BM81810MUF-M has UVLO function for VIN and a circuit miss-operation during in under UVLO voltage operation is  
prevented. If VIN below UVLO voltage, it shuts down VDD, AVDD, VGH, VGL, GPM, VCOM and RESET.  
II. THERMAL SHUTDOWN (TSD)  
The BM81810MUF-M incorporates a Thermal Shut Down (TSD) function. If IC temperature exceeds 175°C (TYP), it shuts  
down VDD, AVDD, VGH, VGL, GPM, VCOM and RESET.  
III. UNDER VOLTAGE PROTECTION (UVP)  
This block has Under Voltage Protection (UVP) function for VDD, AVDD, VGH and VGL output.  
When detecting UVP, inner Counter will be activated, and after 5ms passed, it shuts down VDD, AVDD, VGH, VGL, GPM,  
and VCOM. (It also shuts down RESET when RESET monitors VDD voltage.)  
IV. OVER VOLTAGE PROTECTION (OVP)  
This block has Over Voltage Protection (OVP) function for AVDD output.  
When detecting OVP, output voltage rising is limited by forcing Switching turn off. If output voltage falls, Switching is  
restarted.  
V. OVER CURRENT PROTECTION (OCP)  
This block has Over Current Protection (OCP) function for VDD and AVDD.  
When detecting OCP, it controls Switching and limits generating over current in FET.  
BLOCK  
VDD  
Protective Function  
Working Condition  
ISWB > 1.0 A (Min)  
Action  
Protective removal  
ISWB < 1.0 A (Min)  
Over current Protection  
( Buck DCDC mode )  
Control switching pulse duty to not over  
current limit  
Over current Protection  
( LDO mode )  
ISWB > 0.3 A (Min)  
Control LDO to not over current limit.  
ISWB < 0.3 A (Min)  
IC restart  
Detect : VDD<Target value x 0.8  
Release : VDD>Target value x 0.9  
IC shutdown  
if UVP status maintains during 5ms  
Under Voltage Protection  
Over Voltage Protection  
AVDD > (Target value x 1.1)  
Switching STOP  
AVDD < ( Target Value x 1.05 )  
Control switching pulse duty to not  
over current limit  
IC shutdown  
if OCP status maintains during 5ms  
ISW < 1.0 A (Min) or 2.0 A (Min)  
IC restart  
Over current Protection  
Under Voltage Protection  
ISW > 1.0 A (Min) or 2.0 A (Min)  
AVDD  
Detect : AVDD<Target value x 0.8  
Release : AVDD>Target value x 0.9  
IC shutdown  
if UVP status maintains during 5ms  
IC restart  
Detect : VGH<Target value x 0.8  
Release : VGH>Target value x 0.9  
IC shutdown  
if UVP status maintains during 5ms  
VGH  
VGL  
Under Voltage Protection  
Under Voltage Protection  
Under Voltage Lockout  
Thermal shutdown  
IC restart  
IC restart  
Detect : VGL>Target value x 0.8  
Release : VGL<Target value x 0.85  
IC shutdown  
if UVP status maintains during 5ms  
VIN < 2.0V (Min)  
Tj > 175°C (Typ)  
IC shutdown  
IC shutdown  
VIN > 2.55V (Typ)  
Tj < 150°C (Typ)  
General  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
64/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Double Register  
BM81810MUF-M can perform various setting by Register.  
If these settings are changed without intension, to avoid application abnormal operation, certain specific Register has error  
detection function.  
Below shows the Register with anomaly detection function.  
Register  
Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
AVDD Output Voltage  
VGH HOT Output Voltage  
VGH COLD Voltage  
VGL Output Voltage  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
10h  
VGH  
NTC Enable  
VCOMHOT Output Voltage  
VCOMCOLD Votlage  
VCOM  
NTC Enable  
VDD  
VDD  
VDD Output Voltage  
Phase  
MODE  
GPM  
Input Delay  
Function  
Reset  
Reset Voltage  
Monitor Select  
Delay1 time  
Discharge time  
Delay2 time  
Delay4 time  
Select  
Data Refresh  
Delay3 time  
Delayt5 time  
DoubleReg  
AR_Time  
VGH  
Discharge Enable  
AVDD  
COMP  
Start-up  
Bit  
AVDD  
OCP Select  
VGH  
AVDD  
AVDD  
SW Slew Rate  
VDD  
AVDD  
SS Time  
VGH/VGL  
Frequency  
COIL  
AVDD  
mode select  
Frequency  
Frequency  
Check Sum  
Double Register  
Error  
Check sum  
Error  
AVDD UVP  
VDD UVP  
VGH UVP  
VGL UVP  
AVDD OCP  
TSD  
Double Register correspond BIT  
Data Refresh  
Data Refresh is the Function to read Data from EEPROM periodically.  
If Register setting is suddenly changed without intension, Data Refresh function can read Data from EEPROM to recover to the  
normal Data.  
Data Refresh performs at certain cycle period.  
The time of period can be set by Register at 0.5s or 1.0s.  
In the case of WPN=Low, Double Register Function and Data Refresh Function can be set by Register as Enable or Disable.  
Below table shows the function by each combination.  
In the case of WPN=High, Double Register Function and Data Refresh Function are Disable.  
Data  
Refresh  
Double  
Register  
WPN  
Data Refresh Operation  
Double Register Check  
Disable  
Low  
0 : Disable  
0 : Disable  
0 : Disable  
1 : Enable  
Disable  
Keep working even logic abnormality happens)  
Enable  
Low  
Disable  
First shutdown once logic abnormality detects.  
After Fault to be low for 1msec, then re-start)  
Enable  
Disable  
Low  
Low  
High  
1 : Enable  
1 : Enable  
-
0 : Disable  
1 : Enable  
-
Data Refresh at set period)  
Keep working even logic abnormality happens)  
Enable  
Enable  
Data Refresh at set period)  
(Perform Data Refresh once logic abnormality detects)  
Disable  
Disable  
Keep working even logic abnormality happens)  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
65/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
PCB Layout Guide  
GND Wiring Pattern  
The high current GND (PGND) should be wired thick. To reduce line impedance, the GND lines must be as short and  
thick as possible and uses few via. Therefore design at PCB board four layers or above is recommended. (Please use  
the middle layer as GND shielding and directly connect each GND.) In the case of two layers or less at PCB board  
designs, please enough confirm with the actual model about the heat and the noise with care to a GND wiring.  
Switching-Line Wiring Pattern  
The wiring from switching line (SW pin) of DC/DC converter to inductor and diode must be as short and thick as  
possible. If a wiring is long, ringing by switching increases, and the voltage over the resistance of this IC might be  
generated. Please note that switching line does not vary PCB layer.  
Switching line and wiring easily affected by noise such as feedback line must be placed separately.  
Switching noise spread may cause the lack of operation stability. In case the multi-layer PCB board, please note that a  
switching line and a line easily affected by noise or the external components are not adjacent between layers.  
Drawing GND shield line between switching line and these lines easily affected by noise is recommended if these lines  
are placed close.  
Power Supply Voltage Line Wiring Pattern  
For power supply voltage (VIN, VINB, VLSO, PAVDD, AVDD, VGH), place smooth capacitor nearby IC pin.  
Please note that smooth capacitor does not vary PCB layer.  
The figure 105 shows an application circuit on the basis of the basic PCB layout pattern guideline mentioned above.  
Bold line: High current line  
Blue line(two dots and dashed line): Wiring easily affected by noise  
Red line (dashed line): Noise source line such as switching line.  
Place smooth capacitor nearby IC pin  
D_SW locates it near SW terminal / PAVDD terminal of BM81810MUF-M, and a current loop of SW terminal ••• SBD  
••• PAVDD, please become as short as possible.  
R_NTC2  
R_NTC3  
WPN  
R_NTC1  
R_FLT  
VIN  
R_RE  
GSOUT  
VGH  
VIN  
R_PG  
Θ
FAULT  
PG / LDSW  
C_DRP2  
CPP2  
C_VGH  
D_VGL  
4 2 3 2 2 2 1 2 0 2 9 1 8 1 7 1  
C_VCP  
VIN  
VCP  
GSIN  
SDA  
C_DRP1  
CPP1  
R_RST  
SCL  
RST  
DRP  
DRN  
C_DRN  
VGL  
VDD  
SWB  
EN  
VCOM  
L_SWB  
C_VDD  
C_VCOM  
C_VGL  
1
2
3
4
5
6
7
8
AVDD  
AVDD  
C_VINB  
C_VIN  
C_REG  
(D_SW)  
VIN  
C_AVD  
C_LSO  
Figure 105. PCB Layout Indications  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
66/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
EMC Layout Guide  
Introduce the plan that can design on the PCB as EMC measures.  
Measures by the board pattern  
Wire AVDD line briefly thickly. (1)  
Wire the current loop of Boost DC/DC briefly thickly. (2)  
Measures by the external component  
Insert a common mode filter or a beads coil in the AVDD line and form the EMC filter. (3)  
Place output capacitor and small capacitor (10pF - 1,000pF) in parallel. (4)  
Insert the snubber circuit in SW pin. (Assumed the efficiency becomes worse) (5)  
Figure 106. EMI Circuit 1  
(2)  
Figure 107. EMI Circuit 2  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
67/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
I/O Equivalence Circuit  
1. VINB  
2. VREG  
3. VIN  
VIN  
VINB  
VIN  
VREG  
4. VLSO  
6. SW  
7. PAVDD  
VIN  
PAVDD  
PAVDD  
VLSO  
SW  
8. AVDD  
9. NEG  
10. VCOM  
AVDD  
AVDD  
AVDD  
AVDD  
VCOM  
NEG  
12. VGL  
13. DRN  
14. DRP  
PAVDD  
PAVDD  
AVDD  
AVDD  
Internal reg.  
DRN  
DRP  
VGL  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
68/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
I/O Equivalence Circuit - continued  
15. CPP1  
16. VCP  
17. CPP2  
VGH  
VGH  
VGH  
CPP2  
CPP2  
CPP2  
VCP  
VCP  
VCP  
CPP1  
CPP1  
CPP1  
AVDD  
VGH  
AVDD  
VGH  
AVDD  
18. VGH  
19. GSOUT  
20. RE  
VGH  
GSOUT  
GSOUT  
RE  
RE  
21. WPN  
22. NTC  
23. FAULT  
VREG  
VREG  
FAULT  
WPN  
NTC  
24. PG/LDSW  
25. GSIN  
26. SDA  
VREG  
VREG  
PG/LDSW  
SDA  
GSIN  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
69/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
I/O Equivalence Circuit - continued  
27. SCL  
28. RST  
29. VDD  
VREG  
VDD  
RST  
SCL  
30. SWB  
32. EN  
VREG  
VINB  
EN  
SWB  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
70/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Operational Notes  
1.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
2.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
71/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Operational Notes continued  
8.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
10.  
Regarding the Input Pin of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P
P+  
P+  
N
P+  
P
P+  
N
N
N
N
N
N
N
Parasitic  
Elements  
Parasitic  
Elements  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Elements  
Parasitic  
Elements  
N Region  
close-by  
Figure 108. Example of Monolithic IC Structure  
11.  
12.  
Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
Thermal Shutdown Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
13.  
Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
72/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Ordering Information  
B M 8 1 8 1 0 M U F  
-
ME2  
Part Number  
Package  
Product Rank  
MUF: VQFN32FBV050  
M: for Automotive  
Packaging specification  
E2: Embossed tape and reel  
Marking Diagram  
VQFN32FBV050(TOP VIEW)  
Part Number Marking  
B M  
LOT Number  
8 1 8 1 0 F  
Pin 1 Mark  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
73/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Physical Dimension, Tape and Reel Information  
Package Name  
VQFN32FBV050  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
74/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
BM81810MUF-M  
Revision History  
Date  
15.May.2020  
Revision  
001  
Changes  
New Release  
.
www.rohm.com  
© 2020 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
75/75  
TSZ02201-0A3A0AS00510-1-2  
15.May.2020 Rev.001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY