BR25H040F-WC [ROHM]

EEPROM, 512X8, Serial, CMOS, PDSO8, ROHS COMPLIANT, SOP-8;
BR25H040F-WC
型号: BR25H040F-WC
厂家: ROHM    ROHM
描述:

EEPROM, 512X8, Serial, CMOS, PDSO8, ROHS COMPLIANT, SOP-8

存储 内存集成电路 光电二极管 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟
文件: 总17页 (文件大小:1148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TECHNICAL NOTE  
HIGH GRADE Specification HIGH RELIABILITY series  
SPI BUS Serial EEPROMs  
Supply voltage 2.5V~5.5V  
Operating temperature -40°C ~ +125°C type  
BR25H010-W, BR25H020-W, BR25H040-W, BR25H080-W, BR25H160-W, BR25H320-W  
: Under development  
Description  
BR25H□□□-W series is a serial EEPROM of SPI BUS interface method.  
Features  
High speed clock action up to 5MHz (Max.)  
Wait function by HOLDB terminal.  
Part or whole of memory arrays settable as read only memory area by program.  
2.55.5V single power source action most suitable for battery use.  
Page write mode useful for initial value write at factory shipment.  
Highly reliable connection by Au pad and Au wire.  
For SPI bus interface (CPOL, CPHA)=(0, 0), (1, 1)  
Auto erase and auto end function at data rewrite.  
Low current consumption  
Page write  
Number of  
pages  
16 Byte  
32 Byte  
At write action (5V)  
At read action (5V)  
: 1.5mA (Typ.)  
: 1.0mA (Typ.)  
BR25H010-W  
BR25H020-W  
BR25H040-W  
BR25H080-W  
BR25H160-W  
BR25H320-W  
Product  
number  
At standby action (5V) : 0.1μA (Typ.)  
Address auto increment function at read action  
Write mistake prevention function  
Write prohibition at power on.  
Write prohibition by command code (WRDI).  
Write prohibition by WPB pin.  
Write prohibition block setting by status registers (BP1, BP0)  
Write mistake prevention function at low voltage.  
SOP8, SOP-J8 Package  
Data at shipment Memory array: FFh, status register WPEN, BP1, BP0 : 0  
Data kept for 40 years.  
Data rewrite up to 1,000,000times.  
BR25H series  
Power source  
Capacity Bit format  
Type  
SOP8 SOP-J8  
voltage  
2.5~5.5V  
2.5~5.5V  
2.5~5.5V  
2.5~5.5V  
2.5~5.5V  
2.5~5.5V  
1Kbit  
2Kbit  
128×8  
256×8  
512×8  
1K×8  
2K×8  
4Kx8  
BR25H010-W  
BR25H020-W  
BR25H040-W  
BR25H080-W  
BR25H160-W  
BR25H320-W  
4Kbit  
8Kbit  
16Kbit  
32Kbit  
Ver A. Aug. 2007  
Absolute maximum ratings (Ta=25°C)  
Recommended action conditions  
Parameter  
Impressed voltage  
Permissible  
Symbol  
Vcc  
Limits  
-0.3~+6.5  
450(SOP8)  
450(SOP-J8)  
Unit  
V
Parameter  
Power source voltage  
Input voltage  
Symbol  
Vcc  
Vin  
Limits  
2.5~5.5  
0~Vcc  
Unit  
V
*1  
*2  
Pd  
mW  
°C  
dissipation  
Storage  
temperature range  
Operating  
Tstg  
-65~150  
Input / output capacity (Ta=25°C, frequency=5MHz)  
Topr  
-40~125  
°C  
V
temperature range  
Parameter  
Symbol  
CIN  
Conditions  
VIN=GND  
Min.  
Max.  
8
Unit  
-0.3~Vcc+0.3  
Terminal voltage  
ж1  
ж1  
Input capacity  
When using at Ta=25or higher, 3.6mW (*1,*2) to be reduced per 1℃  
pF  
Output capacity  
COUT  
8
VOUT=GND  
Memory cell characteristics (Vcc=2.5V5.5V)  
*1: Not 100% TESTED  
Limits  
Parameter  
Unit  
Condition  
Min  
1,000,000  
500,000  
300,000  
40  
Typ.  
Max  
Ta85℃  
Ta105℃  
Ta125℃  
Ta25°C  
Ta85°C  
-
-
-
-
-
-
-
-
-
-
Times  
Times  
Times  
Years  
Years  
Number of data  
rewrite times  
ж1  
Data hold years  
ж1  
20  
ж1:Not 100% TESTED  
Electrical characteristics (Unless otherwise specified, Ta=-40~+125°C, Vcc=2.5~5.5V)  
Limits  
Parameter  
Conditions  
Symbol  
VIH  
Unit  
V
Min. Typ. Max.  
0.7x  
Vcc  
Vcc  
+0.3  
0.3x  
Vcc  
0.4  
“H” input voltage  
2.5Vcc5.5V  
“L” output voltage  
“L” output voltage  
“H” output voltage  
VIL  
VOL  
VOH  
-0.3  
V
V
V
2.5Vcc5.5V  
IOL=2.1mA  
0
Vcc  
-0.5  
-10  
Vcc  
IOH=-0.4mA  
Input leak current  
ILI  
10  
10  
μA  
μA  
VIN=0~Vcc  
Output lead current  
ILO  
-10  
VOUT=0~Vcc, CSB=Vcc  
Vcc=2.5V,fSCK=5MHz, tE/W=5ms  
VIH/VIL=0.9Vcc/0.1Vcc,  
Byte write, Page write  
ICC  
1
2
2.0  
mA  
mA  
Current consumption at write  
action  
Write status regisuter  
Vcc=5.5V,fSCK=5MHz, tE/W=5ms  
VIH/VIL=0.9Vcc/0.1Vcc  
Byte write, Page write  
ICC  
3.0  
1.5  
Write status register  
Vcc=2.5V,fSCK=5MHz  
ICC  
3
4
mA VIH/VIL=0.9Vcc/0.1Vcc,  
Read, Read status register  
Vcc=5.5V,fSCK=5MHz  
Current consumption at read  
action  
ICC  
2.0  
10  
mA VIH/VIL=0.9Vcc/0.1Vcc  
Read, Read status register  
Vcc=5.5V  
Standby current  
ISB  
μA  
CSB=HOLDB=WPB=Vcc, SCK=SI=Vcc or =GND, SO=OPEN  
Radiation resistance design is not made  
Block diagram  
VOLTAGE  
CSB  
INSTRUCTION DECODE  
CONTROL CLOCK  
GENERATION  
DETECTION  
SCK  
HIGH VOLTAGE  
WRITE  
*1 7bit: BR25H010-W  
GENERATOR  
INHIBITION  
8bit: BR25H020-W  
9bit: BR25H040-W  
SI  
INSTRUCTION  
REGISTER  
STATUS REGISTER  
10bit: BR25H080-W  
11bit: BR25H160-W  
12bit: BR25H320-W  
ADDRESS  
HOLDB  
ADDRESS  
712bit *1  
712bit *1  
REGISTER  
DECODER  
132K  
EEPROM  
DATA  
READ/WRITE  
AMP  
WPB  
SO  
8bit  
8bit  
REGISTER  
Fig.1 Block diagram  
2/16  
Pin assignment and description  
Terminal name Input/Output  
Function  
Power source to be connected  
All input / output reference voltage, 0V  
Chip select input  
Serial clock input  
Start bit, ope code, address, and serial data input  
Serial data output  
Vcc  
HOLDB SCK  
SI  
Vcc  
GND  
CSB  
SCK  
SI  
Input  
Input  
Input  
Output  
BR25H010-W  
BR25H020-W  
BR25H040-W  
BR25H080-W  
BR25H160-W  
BR25H320-W  
SO  
Hold input  
HOLDB  
WPB  
Input  
Input  
Command communications may be suspended temporarily  
(HOLD status)  
Write protect input  
CSB  
SO  
WPB  
GND  
Write command is prohibited *1  
Write status register command is prohibited.  
*1:BR25H010/020/040-W  
Fig.2 Pin assignment diagram  
Operating timing characteristics  
Sync data input  
timing  
/
output  
(Ta=-40~+125°C, unless otherwise specified, load capacity CL1=100pF)  
2.5Vcc5.5V  
Min. Typ. Max  
Parameter  
Symbol  
Unit  
tCSS  
tCS  
CSB  
SCK  
tSCKS  
SCK frequency  
SCK high time  
SCK low time  
CSB high time  
CSB setup time  
CSB hold time  
SCK setup time  
SCK hold time  
SI setup time  
fSCK  
tSCKWH  
tSCKWL  
tCS  
5
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRC  
tFC  
tSCKWH  
tSCKWL  
tDIS  
85  
85  
85  
90  
85  
90  
90  
20  
30  
tDIH  
SI  
High-Z  
SO  
tCSS  
tCSH  
tSCKS  
tSCKH  
tDIS  
Fig.3 Input timing  
SI is taken into IC inside in sync with data rise edge of SCK.  
Input address and data from the most significant bit MSB.  
tCS  
SI hold time  
tDIH  
70  
Data output delay time1  
Data output delay time1  
(CL2=30pF)  
tPD1  
tSCKH  
CSB  
tCSH  
SCK  
SI  
tPD2  
55  
ns  
tPD  
tRO,tFO  
tOZ  
tOH  
High-Z  
Output hold time  
Output disable time  
HOLDB setting  
setup time  
HOLDB setting  
hold time  
HOLDB release  
setup time  
HOLDB release  
hold time  
Time from HOLDB  
to output High-Z  
Time from HOLDB  
To output change  
SCK rise time  
SCK fall time  
tOH  
tOZ  
0
100  
ns  
ns  
SO  
Fig.4 Input / Output timing  
tHFS  
tHFH  
tHRS  
tHRH  
tHOZ  
tHPD  
0
40  
0
ns  
ns  
ns  
ns  
ns  
ns  
SO is output in sync with data fall edge of SCK. Data is output  
from the most significant bit MSB.  
"H"  
CSB  
"L"  
tHFS tHFH  
tHRS tHRH  
SCK  
SI  
70  
tDIS  
n
n+1  
n-1  
tHOZ  
Dn  
tHPD  
High-Z  
100  
70  
SO  
Dn+1  
Dn  
Dn-1  
HOLDB  
Ж1  
tRC  
tFC  
1
1
μs  
μs  
Ж1  
Fig.5 HOLD timing  
Ж1  
OUTPUT  
rise time  
OUTPUT  
fall time  
tRO  
50  
ns  
Ж1  
tFO  
50  
5
ns  
Write time  
tE/W  
ms  
Ж1 NOT 100% TESTED  
AC measurement conditions  
Limits  
Min. Typ. Max  
Parameter  
Symbol  
Unit  
Load capacity 1  
Load capacity 2  
Input rise time  
Input fall time  
Input voltage  
CL1  
CL2  
100  
30  
50  
pF  
pF  
ns  
ns  
V
50  
0.2Vcc/0.8Vcc  
0.3Vcc/0.7Vcc  
Input / Output judgment voltage  
V
3/16  
Characteristic data (The following characteristic data are Typ. Values.)  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
1
0.8  
0.6  
0.4  
0.2  
0
Ta=-40℃  
Ta=25℃  
Ta=125℃  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
SPEC  
SPEC  
SPEC  
4
0
1
2
3
Vcc[V]  
4
5
6
0
1
2
3
5
6
0
1
2
3
4
5
6
IOL[mA]  
Vcc[V]  
Fig.7 "L" input voltageVIL(CSB,SCK,SI,HOLDB,WPB)  
Fig.8"L" output voltageVOL-IOL(Vcc=2.5V)  
Fig.6 "H" input voltageVIH(CSB,SCK,SI,HOLDB,WPB)  
12  
10  
8
12  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
SPEC  
SPEC  
10  
8
Ta=-40℃  
Ta=25℃  
Ta=125℃  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
6
6
SPEC  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
4
4
2
1.9  
1.8  
2
2
0
0
0
0.4  
0.8  
1.2  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Vcc[V]  
VOUT[V]  
IOH[mA]  
Fig.11Output leak current ILO(SO)(Vcc=5.5V)  
Fig.10Input leak current ILI(CSB,SCK,SI,HOLDB,WPB)  
Fig.9"H" output voltage VOH-IOH(Vcc=2.5V)  
12  
10  
8
4
3
2
1
0
2.5  
2
fSCK=5MHz  
DATA=AAh  
fSCK=5MHz  
SPEC  
SPEC  
SPEC  
DATA=00h  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
SPEC  
1.5  
1
SPEC  
6
Ta=-40℃  
Ta=25℃  
Ta=125℃  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
4
0.5  
0
2
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Vcc[V]  
Vcc[V]  
Vcc[V]  
Fig.12Current consumption at WRITE operation  
Fig.14Consumption current at standby operation ISB  
Fig.13Consumption Current at READ operation  
ICC1,2  
ICC3,4  
100  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
SPEC  
SPEC  
10  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
SPEC  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
1
0.1  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Vcc[V]  
Vcc[V]  
Vcc[V]  
Fig.15SCK frequency fSCK  
Fig.16 SCK high timetSCKWH  
Fig.17 SCK low timetSCKWL  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
SPEC  
SPEC  
SPEC  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Vcc[V]  
Vcc[V]  
Vcc[V]  
Fig.19CSB setup timetCSS  
Fig.20CSB hold timetCSH  
Fig.18 CSB high timetCS  
4/16  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
30  
20  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
SPEC  
SPEC  
SPEC  
10  
0
Ta=-40℃  
Ta=25℃  
Ta=125℃  
-10  
-20  
0
1
2
3
Vcc[V]  
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Vcc[V]  
Fig.21SI setup timetDIS  
Vcc[V]  
Fig.22SI hold timetDIH  
Fig.23Data output delay timetPD1(CL=100pF)  
120  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
80  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
SPEC  
60  
40  
SPEC  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
SPEC  
20  
0
-20  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Vcc[V]  
Vcc[V]  
Vcc[V]  
Fig.25Output disable time tOZ  
Fig.26HOLDB setting hold time tHFH  
Fig.24Data output delay time tPD2(CL-30pF)  
120  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
80  
60  
40  
20  
0
Ta=-40℃  
Ta=25℃  
Ta=125℃  
SPEC  
SPEC  
SPEC  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
-20  
-20  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Vcc[V]  
Vcc[V]  
Vcc[V]  
Fig.27HOLDB release hold time tHRH  
Fig.28Time from HOLDB to output High-Z tHOZ  
Fig.29Time from HOLDB to output change tHPD  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
8
6
4
2
0
Ta=-40℃  
Ta=25℃  
Ta=125℃  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
Ta=-40℃  
Ta=25℃  
Ta=125℃  
SPEC  
Ta=125℃  
SPEC  
Ta=-40℃  
Ta=25℃  
SPEC  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
Vcc[V]  
Vcc[V]  
Vcc[V]  
Fig.32 Write cycle time tE/W  
Fig.31 Output fall time tFO  
Fig.30 Output rise time tRO  
5/16  
Features  
Status registers  
This IC has status registers. The status registers are of 8 bits and express the following parameters.  
BP0 and BP1 can be set by write status register command. These 2 bits are memorized into the EEPROM, therefore are  
valid even when power source is turned off.  
Rewrite characteristics and data hold time are same as characteristics of the EEPROM.  
WEN can be set by write enable command and write disable command. WEN becomes write disable status when power  
source is turned off. R/B is for write confirmation, therefore cannot be set externally.  
The value of status register can be read by read status command.  
Status registers  
Product number  
BR25H010-W  
BR25H020-W  
BR25H040-W  
BR25H080-W  
BR25H160-W  
BR25H320-W  
bit 7  
1
bit 6  
1
bit 5  
1
bit 4  
1
bit 3  
BP1  
bit 2  
BP0  
bit 1  
bit 0  
R/B  
WEN  
R/B  
WPEN  
0
0
0
BP1  
BP0  
WEN  
Memory  
bit  
Function  
Contents  
location  
WPB pin enable / disable designation bit  
WPEN=0=invalid  
This enables / disables the functions  
of WPB pin.  
WPEN EEPROM  
WPEN=1=valid  
This designates the write disable area  
of EEPROM. Write designation areas  
of product numbers are shown below.  
BP1  
EEPROM  
BP0  
EEPROM write disable block designation bit  
Write and write status register write enable / disable status confirmation bit  
WEN Register  
WEN=0=prohibited  
WEN=1=permitted  
Write cycle status (READY / BUSY) status confirmation bit  
R/B=0=READY  
Register  
R/B  
R/B=1=BUSY  
Write disable block setting  
Write disable block  
BP1 BP0  
BR25H010-W  
None  
BR25H020-W  
None  
BR25H040-W  
BR25H080-W  
None  
BR25H160-W BR25H320-W  
0
0
1
1
0
1
0
1
None  
None  
None  
60h-7Fh  
40h-7Fh  
00h-7Fh  
C0h-FFh  
80h-FFh  
00h-FFh  
180h-1FFh  
100h-1FFh  
000h-1FFh  
300h-3FFh  
200h-3FFh  
000h-3FFh  
600h-7FFh  
400h-7FFh  
000h-7FFh  
C00h-FFFh  
800h-FFFh  
000h-FFFh  
WPB pin  
By setting WPB=LOW, write command is prohibited. As for BR25H080, 160, 320-W, only when WPEN bit is set “1”, the WPB  
pin functions become valid. And the write command to be disabled at this moment is WRSR. As for BR25H010, 020,040-W,  
both WRITE and WRSR commands are prohibited.  
However, when write cycle is in execution, no interruption can be made.  
Product number  
WRSR  
WRITE  
BR25H010-W  
BR25H020-W  
BR25H040-W  
BR25H080-W  
BR25H160-W  
BR25H320-W  
Prohibition  
possible  
Prohibition  
possible  
Prohibition possible  
but WPEN bit “1”  
Prohibition  
impossible  
HOLDB pin  
By HOLDB pin, data transfer can be interrupted. When SCK=”1”, by making HOLDB from “1” into”0”, data transfer to  
EEPROM is interrupted. When SCK = “0”, by making HOLDB from “0” into “1”, data transfer is restarted.  
6/16  
Command mode  
Ope code  
BR25H080-W  
BR25H040-W BR25H160-W  
BR25H320-W  
Command  
Contents  
BR25H010-W  
BR25H020-W  
WREN Write enable  
WRDI Write disable  
READ Read  
Write enable command  
Write disable command 0000  
0000  
ж110 0000  
ж100 0000  
ж110  
ж100  
0000  
0000 0100  
0011  
ж010 0000 A8010 0000 0010  
0110  
Read command  
Write command  
Status register read  
command  
Status register write  
command  
0000  
0000  
ж011 0000 A8011 0000  
WRITE Write  
RDSR Read status register  
WRSR Write status register  
0000  
0000  
ж101 0000  
ж101  
0000 0101  
0000 0001  
ж001 0000  
ж001  
Timing chart  
1. Write enable (WREN) / disable (WRDI) cycle  
1. WREN (WRITE ENABLE): Write enable  
CSB  
SCK  
SI  
0
1
2
3
4
5
6
7
0
0
0
0
*1  
1
1
0
High-Z  
SO  
ж1 BR25H010/020/040-W= Don’t care  
BR25H080/160/320-W= “0” input  
Fig.33 Write enable command  
1. WRDI (WRITE DISABLE): Write disable  
CSB  
SCK  
SI  
0
1
2
3
4
5
6
7
0
0
0
0
*1  
1
0
0
High-Z  
SO  
ж1 BR25H010/020/040-W= Don’t care  
BR25H080/160/320-W= “0” input  
Fig.34 Write disable  
This IC has write enable status and write disable status. It is set to write enable status by write enable command, and it is set  
to write disable status by write disable command. As for these commands, set CSB LOW, and then input the respective ope  
codes. The respective commands accept command at the 7-th clock rise. Even with input over 7 clocks, command becomes  
valid.  
When to carry out write and write status register command, it is necessary to set write enable status by the write enable  
command. If write or write status register command is input in the write disable status, commands are cancelled. And even in  
the write enable status, once write and write status register command is executed, it gets in the write disable status. After  
power on, this IC is in write disable status.  
7/16  
2. Read command (READ)  
CSB  
~  
~  
~  
~  
Product  
Address  
length  
A6-A0  
A7-A0  
A8-A0  
0
1
2
3
4
5
6
7
8
9
10  
11  
15  
16  
22  
SCK  
SI  
number  
~  
BR25H010-W  
BR25H020-W  
BR25H040-W  
0
0
0
0
*1  
0
1
1
A7 A6 A5  
A4  
A1 A0  
~  
~  
~  
~  
High-Z  
D7 D6  
D2 D1 D0  
SO  
ж1 BR25H010/020-W=Don’t care  
BR25H040-W=A8  
Fig.35 Read command (BR25H010/020/040-W)  
CSB  
SCK  
~  
~  
~  
Product  
Address  
length  
~  
number  
0
1
2
3
4
5
6
7
8
12  
23  
24  
30  
~  
BR25H080-W  
BR25H160-W  
BR25H320-W  
A9-A0  
~  
~  
A10-A0  
A11-A0  
ж  
~  
~  
ж
ж
0
0
0
0
0
0
1
1
A11  
A1 A0  
~  
SI  
~  
~  
High-Z  
D7 D6  
D2 D1 D0  
SO  
ж=Don’t Care  
Fig.36 Read command (BR25H080/160/320-W)  
By read command, data of EEPROM can be read. As for this command, set CSB LOW, then input address after read ope code.  
EEPROM starts data output of the designated address. Data output is started from SCK fall of 15/23ж1 clock, and from D7 to D0  
sequentially. This IC has increment read function. After output of data for 1 byte (8bits), by continuing input of SCK, data of the  
next address can be read. Increment read can read all the addresses of EEPROM. After reading data of the most significant  
address, by continuing increment read, data of the most insignificant address is read.  
ж1 BR25H010/020/040-W=15 clocks  
BR25H080/160/320-W=23 clocks  
3. Write command (WRITE)  
CSB  
~  
~  
~  
~  
Product  
Address  
length  
A6-A0  
A7-A0  
A8-A0  
0
1
2
3
4
5
6
7
8
15  
16  
22  
23  
SCK  
number  
~  
~  
~  
BR25H010-W  
BR25H020-W  
BR25H040-W  
0
0
0
0
ж1  
0
1
0
A7  
A6  
A5  
A4  
A1  
A0  
D7 D6  
D2  
~  
D1  
D0  
SI  
~  
~  
High-Z  
SO  
ж1 BR25H010/020-W=Don’t care  
BR25H040-W=A8  
Fig.37 Write command (BR25H010/020/040-W)  
CSB  
~  
~  
Product  
Address  
length  
~  
number  
0
1
2
3
4
5
6
7
8
23  
24  
30  
31  
SCK  
~  
~  
BR25H080-W  
BR25H160-W  
BR25H320-W  
A9-A0  
~  
ж
ж
ж
~  
A10-A0  
A11-A0  
0
0
0
0
0
0
1
0
A11  
A1  
A0  
D7 D6  
D2  
~  
D1  
D0  
SI  
High-Z  
~  
~  
SO  
ж=Don't care  
Fig.38 Write command (BR25H080/160/320-W)  
By write command, data of EEPROM can be written. As for this command, set CSB LOW, then input address and data after  
write ope code. Then, by making CSB HIGH, the EEPROM starts writing. The write time of EEPROM requires time of tE/W  
(Max 5ms). During tE/W, other than status read command is not accepted. Start CSB after taking the last data (D0), and  
before the next SCK clock starts. At other timing, write command is not executed, and this write command is cancelled. This  
IC has page write function, and after input of data for 1 byte (8 bits), by continuing data input without starting CSB, data up to  
16/32*1bytes can be written for one tE/W. In page write, the insignificant 4/5ж2 bit of the designated address is incremented  
internally at every time when data of 1 byte is input and data is written to respective addresses. When data of the maximum  
bytes or higher is input, address rolls over, and previously input data is overwritten.  
ж1 BR25H010/020/040-W=16 bytes at maximum  
BR25H080/160/320-W=32 bytes at maximum  
ж2 BR25H010/020/040-W=Insignificant 4 bits  
BR25H080/160/320-W=Insignificant 5 bits  
8/16  
4. Status register write / read command  
CSB  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
SCK  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
ж
ж
ж
ж
ж
ж
ж
0
0
0
0
0
0
1
BP1 BP0  
SI  
High-Z  
SO  
ж=Don't care  
Fig.39 Status register write command (BR25H010/020/040-W)  
CSB  
SCK  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
bit7  
WPEN  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
0
0
0
0
0
0
0
1
BP1 BP0  
SI  
*
*
*
*
*
High-Z  
SO  
ж=Don't care  
Fig.40 Status register write command (BR25H080/160/320-W)  
Write status register command can write status register data. The data can be written by this command are 2 bitsж1, that is,  
BP1 (bit3) and BP0 (bit2) among 8 bits of status register. By BP1 and BP0, write disable block of EEPROM can be set. As for  
this command, set CSB LOW, and input ope code of write status register, and input data. Then, by making CSB HIGH,  
EEPROM starts writing. Write time requires time of tE/W as same as write. As for CSB rise, start CSB after taking the last  
data bit (bit0), and before the next SCK clock starts. At other timing, command is cancelled. Write disable block is determined  
by BP1 and BP0, and the block can be selected from 1/4 of memory array, 1/2, and entire memory array. (Refer to the write  
disable block setting table.) To the write disabled block, write cannot be made, and only read can be made.  
*1 3bits including BR25H080/160/320-W WPEN (bit7)  
CSB  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
SCK  
SI  
0
0
0
0
ж
1
0
1
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
R/B  
ж=Don’t care  
High-Z  
WEN  
1
1
1
BP1 BP0  
SO  
1
Fig.41 Status register read command (BR25H010/020/040-W)  
CSB  
SCK  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
0
0
0
1
0
1
SI  
0
bit7  
WPEN  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
WEN  
bit0  
R/B  
High-Z  
0
0
0
BP1 BP0  
SO  
Fig.42 Status register read command (BR25H080/160/320-W)  
9/16  
At standby  
Current at standby  
Set CSB “H”, and be sure to set SCK, SI, WPB, HOLDB input “L” or “H”. Do not input intermediate electric potantial.  
Timing  
As shown in Fig.43, at standby, when SCK is “H”, even if CSB is fallen, SI status is not read at fall edge. SI status is read at  
SCK rise edge after fall of CSB. At standby and at power ON/OFF, set CSB “H” status.  
Even if CSB is fallen at SCK=SI=”H”,  
SI status is not read at that edge.  
CSB  
Command start here. SI is read.  
SCK  
SI  
0
1
2
Fig.43 Operating timing  
WPB cancel valid area  
WPB is normally fixed to “H” or “L” for use, but when WPB is controlled so as to cancel write status register command and write  
command, pay attention to the following WPB valid timing.  
While write or write status register command is executed, by setting WPB = “L” in cancel valid area, command can be  
cancelled. The area from command ope code before CSB rise at internal automatic write start becomes the cancel valid area.  
However, once write is started, any input cannot be cancelled. WPB input becomes Don’t Care, and cancellation becomes  
invalid.  
SCK  
15  
16  
CSB  
tE/W  
Ope code  
Data  
data write time  
WPB cancel invalid area  
WPB cancel invalid area WPB cancel invalid area  
invalid  
Fig.44 WPB valid timing (WRSR)  
tE/W  
Ope code  
Address  
Data  
data write time  
WPB cancel invalid area  
WPB cancel invalid area  
valid  
WPB cancel invalid area  
invalid  
Fig.45 WPB valid timing (WRITE)  
HOLDB pin  
By HOLDB pin, command communication can be stopped temporarily. (HOLD status) The HOLDB pin carries out command  
communications normally when it is HIGH. To get in HOLD status, at command communication, when SCK=LOW, set the  
HOLDB pin LOW. At HOLD status, SCK and SI become Don’t Care, and SO becomes high impedance (High-Z). To release the  
HOLD status, set the HOLDB pin HIGH when SCK=LOW. After that, communication can be restarted from the point before the  
HOLD status. For example, when HOLD status is made after A5 address input at read, after release of HOLD status, by starting  
A4 address input, read can be restarted. When in HOLD status, leave CSB LOW. When it is set CSB=HIGH in HOLD status,  
the IC is reset, therefore communication after that cannot be restarted.  
10/16  
Method to cancel each command  
READ  
Method to cancel : cancel by CSB = “H”  
Ope code  
8 bit  
Address  
Data  
8 bit  
8 bit/16bit  
Cancel available in all areas of read mode  
Fig.46 READ cancel valid timing  
RDSR  
Method to cancel : cancel by CSB = “H”  
Data  
8 bit  
Ope code  
8 bit  
Cancel available in all  
areas of read mode  
Fig.47 RDSR cancel valid timing  
WRITEPAGE WRITE  
aOpe code, address input area.  
Address  
Data  
tE/W  
d
Ope code  
8bit  
Cancellation is available by CSB=”H”  
8bit/16bit  
8bit  
b
bData input area (D7~D1 input area)  
Cancellation is available by CSB=”H”  
a
c
cData input area (D0 area)  
Fig.48 WRITE cancel valid timing  
When CSB is started, write starts.  
After CSB rise, cancellation cannot be made by any means.  
dtE/W area.  
SCK  
SI  
Cancellation is available by CSB = “H”. However, when  
write starts (CSB is started) in the area c, cancellation  
cannot be made by any means. And by inputting on  
SCK clock, cancellation cannot be made. In page write  
mode, there is write enable area at every 8 clocks.  
D7 D6 D5 D4 D3 D2 D1 D0  
c
b
Note 1) If Vcc is made OFF during write execution, designated address data is not guaranteed, therefore  
write it once again.  
Note 2) If CSB is started at the same timing as that of the SCK rise, write execution / cancel becomes unstable,  
therefore, it is recommended to fall in SCK = “L” area. As for SCK rise, assure timing of tCSS / tCSH or higher.  
WRSR  
aFrom ope code to 15 rise.  
14 15  
16  
17  
Cancel by CSB =”H”.  
D1  
D0  
bFrom 15 clock rise to 16 clock rise (write enable area).  
When CSB is started, write starts.  
a
b
c
After CSB rise, cancellation cannot be made by any means.  
cAfter 16 clock rise.  
tE/W  
c
Ope code  
8 bit  
Data  
8 bit  
Cancel by CSB=”H”. However, when write starts (CSB is started)  
in the area b, cancellation cannot be made by any means.  
And, by inputting on SCK clock, cancellation cannot be made.  
a
b
Fig.49 WRSR cancel valid timing  
Note 1) If Vcc is made OFF during write execution, designated address data is not guaranteed, therefore write it once  
again  
Note 2) If CSB is started at the same timing as that of the SCK rise, write execution / cancel becomes unstable,  
therefore, it is recommended to fall in SCK = “L” area. As for SCK rise, assure timing of tCSS / tCSH or higher.  
7
8
9
SCK  
WREN/WRDI  
a
b
aFrom ope code to 7-th clock rise, cancel by CSB = “H”.  
bCancellation is not available when CSB is started after 7-th clock.  
Ope code  
8 bit  
a
b
Fig.50 WREN/WRDI cancel valid timing  
11/16  
High speed operation  
In order to realize stable high speed operations, pay attention to the following input / output pin conditions.  
Input pin pull up, pull down resistance  
When to attach pull up, pull down resistance to EEPROM input pin, select an appropriate value for the microcontroller VOL,  
IOL from VIL characteristics of this IC.  
Pull up resistance  
VCC-VOLM  
・・・①  
・・・②  
RPU≥  
IOLM  
VOLM  
VILE  
Microcontroller  
VOLM  
“L” output  
IOLM  
EEPROM  
VILE  
Example) When Vcc=5V, VILE=1.5V, VOLM=0.4V, IOLM=2mA,  
from the equation ,  
“L” input  
5-0.4  
2×10-3  
RPU≥  
Fig.51 Pull up resistance  
RPU  
2.3[k]  
With the value of Rpu to satisfy the above equation, VOLM  
becomes 0.4V or higher, and with VILE (=1.5V), the equation is  
also satisfied.  
VILE :EEPROM VIL specifications  
VOLM :Microcontroller VOL specifications  
IOLM :Microcontroller IOL specifications  
And, in order to prevent malfunction, mistake write at power ON/OFF, be sure to make CSB pull up.  
Pull down resistance  
VOHM  
Microcontroller  
VOHM  
EEPROM  
VIHE  
・・・③  
・・・④  
RPD  
IOHM  
VOHM  
VIHE  
“H” output  
“H” input  
IOHM  
Example) When VCC=5V, VOHM=VCC-0.5V, IOHM0.4mA,  
VIHE=VCC×0.7V, from the equation③,  
Fig.52 Pull down resistance  
5-0.5  
0.4×10-3  
RPD≥  
RPU  
11.3[k]  
Further, by amplitude VIHE, VILE of signal input to EEPROM, operation speed changes. By inputting signal of amplitude of  
VCC / GND level to input, more stable high speed operations can be realized. On the contrary, when amplitude of 0.8VCC /  
0.2Vcc is input, operation speed becomes slow.  
12/16  
In order to realize more stable high speed operation, it is recommended to make the values of RPU, RPD as large as possible,  
and make the amplitude of signal input to EEPROM close to the amplitude of VCC / GND level.  
(ж1 At this moment, operating timing guaranteed value is guaranteed.)  
tPD-VIL characteristics  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vcc=2.5V  
Ta=25  
VIH=Vcc  
CL=100pF  
0
0.2  
0.4  
0.6  
0.8  
1
VIL[V]  
Fig.53 VIL dependency of  
data output delay time  
SO load capacity condition  
Load capacity of SO output pin affects upon delay characteristic of SO output. (Data output delay time, time from HOLDB to  
High-Z) In order to make output delay characteristic into higher speed, make SO load capacity small. In concrete, “Do not  
connect many devices to SO bus”, “Make the wire between the controller and EEPROM short”, and so forth.  
tPD-CL characteristics  
80  
Vcc=2.5V Ta=25  
70  
60  
50  
40  
30  
20  
VIH/VIL=0.8Vcc/0.2Vcc  
EEPROM  
SO  
CL  
0
20  
40  
60  
80  
100  
120  
CL[V]  
Fig.54 SO load dependency of data output delay time  
Other cautions  
Make the wire length from the microcontroller to EEPROM input signal same length, in order to prevent setup / hold violation  
to EEPROM, owing to difference of wire length of each input.  
13/16  
Equivalent circuit  
Output circuit  
SO  
OEint.  
Fig.55 SO output equivalent circuit  
Input circuit  
RESETint.  
CSB  
Fig.56 CSB input equivalent circuit  
SCK  
SI  
Fig.57 SCK input equivalent circuit  
Fig.58 SI input equivalent circuit  
HOLDB  
WPB  
Fig.59 HOLDB input equivalent circuit  
Fig.60 WPB input equivalent circuit  
14/16  
Notes on power ON/OFF  
At power ON/OFF, set CSB “H” (=Vcc).  
When CSB is “L”, this IC gets in input accept status (active). If power is turned on in this status, noises and the likes may cause malfunction,  
mistake write or so. To prevent these, at power ON, set CSB “H”. (When CSB is in “H” status, all inputs are canceled.)  
Vcc  
Vcc  
GND  
Vcc  
CSB  
GND  
Good Example  
Bad example  
Fig.61 CSB timing at power ON/OFF  
(Good example) CSB terminal is pulled up to Vcc.  
At power OFF, take 10ms or higher before supply. If power is turned on without observing this condition, the IC internal  
circuit may not be reset, which please note.  
(Bad example)  
CSB terminal is “L” at power ON/OFF.  
In this case, CSB always becomes “L” (active status), and EEPROM may have malfunction, mistake write owing to  
noises and the likes.  
Even when CSB input is High-Z, the status becomes like this case, which please note.  
LVCC circuit  
LVCC (Vcc-Lockout) circuit prevents data rewrite action at low power, and prevents wrong write.  
At LVCC voltage (Typ. =1.9V) or below, it prevent data rewrite.  
P.O.R. circuit  
This IC has a POR (Power On Reset) circuit as mistake write countermeasure. After POR action, it gets in write disable status. The POR  
circuit is valid only when power is ON, and does not work when power is OFF. When power is ON, if the recommended conditions of the  
following tR, tOFF, and Vbot are not satisfied, it may become write enable status owing to noises and the likes.  
Recommended conditions of tR, tOFF, Vbot  
tR  
Vcc  
tR  
tOFF  
Vbot  
10ms or below  
100ms or below  
10ms or higher  
10ms or higher  
0.3V or below  
0.2V or below  
tOFF  
Vbot  
0
Fig.62 Rise waveform  
Noise countermeasures  
Vcc noise (bypass capacitor)  
When noise or surge gets in the power source line, malfunction may occur, therefore, for removing these, it is recommended to attach a  
bypass capacitor (0.1μF) between IC Vcc and GND. At that moment, attach it as close to IC as possible.  
And, it is also recommended to attach a bypass capacitor between board Vcc and GND.  
SCK noise  
When the rise time (tR) of SCK is long, and a certain degree or more of noise exists, malfunction may occur owing to clock bit displacement.  
To avoid this, a Schmitt trigger circuit is built in SCK input. The hysterisis width of this circuit is set about 0.2V, if noises exist at SCK input,  
set the noise amplitude 0.2Vp-p or below. And it is recommended to set the rise time (tR) of SCK 100ns or below. In the case when the rise  
time is 100ns or higher, take sufficient noise countermeasures. Make the clock rise, fall time as small as possible.  
WPB noise  
During execution of write status register command, if there exist noises on WPB pin, mistake in recognition may occur and forcible  
cancellation may result, which please note. To avoid this, a Schmitt trigger circuit is built in WPB input. In the same manner, a Schmitt trigger  
circuit is built in SI input and HOLDB input too.  
Cautions on use  
(1)Described numeric values and data are design representative values, and the values are not guaranteed.  
(2)We believe that application circuit examples are recommendable, however, in actual use, confirm characteristics further sufficiently. In the case of use by  
changing the fixed number of external parts, make your decision with sufficient margin in consideration of static characteristics and transition characteristics and  
fluctuations of external parts and our LSI.  
(3)Absolute maximum ratings  
If the absolute maximum ratings such as impressed voltage and operating temperature range and so forth are exceeded, LSI may be destructed. Do not impress  
voltage and temperature exceeding the absolute maximum ratings. In the case of fear exceeding the absolute maximum ratings, take physical safety  
countermeasures such as fuses, and see to it that conditions exceeding the absolute maximum ratings should not be impressed to LSI.  
(4)GND electric potential  
Set the voltage of GND terminal lowest at any action condition. Make sure that each terminal voltage is lower than that of GND terminal.  
(5)Heat design  
In consideration of permissible dissipation in actual use condition, carry out heat design with sufficient margin.  
(6)Terminal to terminal short circuit and wrong packaging  
When to package LSI onto a board, pay sufficient attention to LSI direction and displacement. Wrong packaging may destruct LSI. And in the case of short circuit  
between LSI terminals and terminals and power source, terminal and GND owing to foreign matter, LSI may be destructed.  
(7)Use in a strong electromagnetic field may cause malfunction, therefore, evaluate design sufficiently.  
15/16  
Selection of order type  
2 5  
H
0 1 0  
W
E 2  
F
B R  
Capacity  
010= 1K  
020= 2K  
040= 4K  
080= 8K  
160=16K  
320=32K  
Package type  
F: SOP8  
FJ: SOP-J8  
Package specifications  
E2reel shape emboss taping  
Rohm type  
name  
Operating temperature  
H :-40℃~+125℃  
BUS type  
25: SPI  
Double cell  
Package specifications  
SOP8/SOP-J8  
<External appearance>  
<Package specifications> SOP8/SOP-J8  
Package type  
Emboss taping  
SOP8  
SOP-J8  
Package quantity  
Package direction  
2500pcs  
E2  
4.9 0.2  
5.0 0.2  
8
7
6
5
8
5
4
(When the reel gripped by the left hand, and the tape is  
pulled out by the right hand, No.1 pin of product is at the  
left top.)  
1
2
3
4
0.2 0.1  
0.1  
1
0.15 0.1  
0.1  
1.27  
0.42 0.1  
1.27  
Pulling side  
Pin No.1  
Reel  
*For ordering, specify a number of multiples of the package quantity.  
0.4 0.1  
(Unit:mm)  
16/16  
Appendix  
Notes  
No technical content pages of this document may be reproduced in any form or transmitted by any  
means without prior permission of ROHM CO.,LTD.  
The contents described herein are subject to change without notice. The specifications for the  
product described in this document are for reference only. Upon actual use, therefore, please request  
that specifications to be separately delivered.  
Application circuit diagrams and circuit constants contained herein are shown as examples of standard  
use and operation. Please pay careful attention to the peripheral conditions when designing circuits  
and deciding upon circuit constants in the set.  
Any data, including, but not limited to application circuit diagrams information, described herein  
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM  
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any  
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of  
whatsoever nature in the event of any such infringement, or arising from or connected with or related  
to the use of such devices.  
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or  
otherwise dispose of the same, no express or implied right or license to practice or commercially  
exploit any intellectual property rights or other proprietary rights owned or controlled by  
ROHM CO., LTD. is granted to any such buyer.  
Products listed in this document are no antiradiation design.  
The products listed in this document are designed to be used with ordinary electronic equipment or devices  
(such as audio visual equipment, office-automation equipment, communications devices, electrical  
appliances and electronic toys).  
Should you intend to use these products with equipment or devices which require an extremely high level  
of reliability and the malfunction of which would directly endanger human life (such as medical  
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers  
and other safety devices), please be sure to consult with our sales representative in advance.  
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance  
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow  
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in  
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM  
cannot be held responsible for any damages arising from the use of the products under conditions out of the  
range of the specifications or due to non-compliance with the NOTES specified in this catalog.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUPOPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2007 ROHM CO.,LTD.  
21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix1-Rev2.0  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY