BR25H040FVT-WE2 [ROHM]

EEPROM, 512X8, Serial, CMOS, PDSO8, LEAD FREE, TSSOP-8;
BR25H040FVT-WE2
型号: BR25H040FVT-WE2
厂家: ROHM    ROHM
描述:

EEPROM, 512X8, Serial, CMOS, PDSO8, LEAD FREE, TSSOP-8

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟 光电二极管 内存集成电路
文件: 总17页 (文件大小:1138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TECHNICAL NOTE  
HIGH GRADE Specification HIGH RELIABILITY series  
SPI BUS Serial EEPROMs  
Supply voltage 1.8V~5.5V  
Operating temperature –40°C~+85°C type  
BR25L010-W, BR25L020-W, BR25L040-W, BR25L080-W, BR25L160-W, BR25L320-W, BR25L640-W  
Description  
BR25L†††-W series is a serial EEPROM of SPI BUS interface method.  
Features  
y High speed clock action up to 5MHz (Max.)  
y Wait function by HOLD terminal  
y Part or whole of memory arrays settable as read only memory area by program  
y 1.8 ~ 5.5V single power source action most suitable for battery use  
y Page write mode useful for initial value write at factory shipment  
y Highly reliable connection by Au pad and Au wire  
y For SPI bus interface (CPOL, CPHA) = (0, 0), (1, 1)  
y Auto erase and auto end function at data rewrite  
y Low current consumption  
At write action (5V)  
At read action (5V)  
At standby action (5V) : 0.1µA (Typ.)  
: 1.5mA (Typ.)  
: 1.0mA (Typ.)  
Page write  
Number of  
pages  
y Address auto increment function at read action  
y Write mistake prevention function  
16 Byte  
32 Byte  
BR25L080-W  
BR25L160-W  
BR25L320-W  
BR25L640-W  
Write prohibition at power on  
Write prohibition by command code (WRDI)  
Write prohibition by WP pin  
BR25L010-W  
BR25L020-W  
BR25L040-W  
Product  
number  
Write prohibition block setting by status registers (BP1, BP0)  
Write mistake prevention function at low voltage  
y SOP8, SOP-J8, SSOP-B8, TSSOP-B8, MSOP8 TSSOP-B8J package *1 *2  
y DataꢀatꢀshipmentꢀꢀMemoryꢀarrayꢀ:ꢀFFh,ꢀstatusꢀregisterꢀWPEN,ꢀBP1,ꢀBP0ꢀ:ꢀ0  
y Data kept for 40 years  
y Data rewrite up to 1,000,000 times  
*1 BR25L080/160-W : SOP8, SOP-J8, SSOP-B8, TSSOP-B8  
*2 BR25L320/640-W : SOP8, SOP-J8  
BR25L series  
Power source  
Capacity  
1Kbit  
Bit format  
128 × 8  
256 × 8  
512 × 8  
1K × 8  
Type  
SOP8  
SOP-J8  
SSOP-B8  
TSSOP-B8  
MSOP8  
TSSOP-B8J  
voltage  
BR25L010-W  
BR25L020-W  
BR25L040-W  
BR25L080-W  
1.8 ~ 5.5V  
2Kbit  
1.8 ~ 5.5V  
1.8 ~ 5.5V  
1.8 ~ 5.5V  
4Kbit  
8Kbit  
16Kbit  
32Kbit  
64Kbit  
2K × 8  
4K × 8  
8K × 8  
BR25L160-W  
BR25L320-W  
BR25L640-W  
1.8 ~ 5.5V  
1.8 ~ 5.5V  
1.8 ~ 5.5V  
Ver.B Oct.2005  
Recommended action conditions  
Absolute maximum ratings (Ta = 25˚C)  
Parameter  
Power source voltage  
Input voltage  
Symbol  
VCC  
Limits  
1.8 ~ 5.5  
0 ~ VCC  
Unit  
V
Parameter  
Symbol  
VCC  
Unit  
V
Limits  
Impressed voltage  
-
0.3 ~ +6.5  
*1  
Vin  
450(SOP8)  
*2  
*3  
*4  
*5  
450(SOP-J8)  
300(SSOP-B8)  
Memory cell characteristics (Ta=25˚C, VCC=1.8 ~ 5.5V)  
mW  
Permissible  
dissipation  
Limits  
Pd  
Parameter  
Unit  
Min.  
1,000,000  
40  
Typ.  
Max.  
330(TSSOP-B8  
)
*1  
*1  
Number of data rewrite times  
Times  
Years  
310(MSOP8)  
Data hold years  
310(TSSOP-B8J) *6  
*1:Not 100% TESTED  
Storage  
temperature range  
Operating  
temperature range  
˚C  
˚C  
V
Tstg  
Topr  
-
-
-
65 ~ +125  
Input / output capacity (Ta=25˚C, frequency=5MHz)  
40 ~ +85  
Terminal voltage  
0.3 ~ VCC+0.3  
Parameter  
Input capacity  
Output capacity  
Symbol Conditions  
Min.  
Max.  
Unit  
*1  
*1  
CIN  
VIN=GND  
8
8
pF  
pF  
yWhen using at Ta = 25˚C or higher, 4.5mW (*1, *2), 3.0mW (*3),  
3.3mW(*4), 3.1mW (*5, *6) to be reduced per 1˚C  
COUT  
VOUT=GND  
*1:Not 100% TESTED  
Electrical characteristics (Unless otherwise specified, Ta = 40 ~ +85˚C, VCC = 1.8 ~ 5.5V)  
Limits  
Typ.  
Parameter  
"H" input voltage 1  
"L" input voltage 1  
Symbol  
VIH1  
Unit  
V
Conditions  
Min.  
Max.  
0.7x  
VCC  
VCC  
+0.3  
1.8VCC5.5V  
1.8VCC5.5V  
0.3x  
VCC  
VIL1  
-0.3  
V
=
=
IOL 2.1mA(VCC 2.5V ~ 5.5V)  
"L" output voltage 1  
"L" output voltage 2  
VOL1  
VOL2  
0
0
0.4  
0.2  
V
V
=
=
IOL 150µA(VCC 1.8V ~ 2.5V)  
VCC  
=
=
VCC  
VCC  
V
V
"H" output voltage 1  
"H" output voltage 2  
VOH1  
VOH2  
IOH  
IOH  
-
0.4mA(VCC 2.5V ~ 5.5V)  
-0.5  
VCC  
=
=
-
100µA(VCC 1.8V ~ 2.5V)  
-0.2  
ILI  
-
1
µA  
µA  
Input leak current  
1
1
=
VIN 0 ~ VCC  
Output leak current  
ILO  
-1  
=
=
VOUT 0 ~ VCC,CS VCC  
=
=
=
VCC 1.8V,fSCK 2MHz,tE/W 5ms  
Byte write  
Page write  
Write status register  
1.0  
2.0  
mA  
mA  
ICC1  
ICC2  
=
=
=
VCC 2.5V,fSCK 5MHz,tE/W 5ms  
Byte write  
Page write  
Current consumption at write  
action  
Write status register  
=
=
=
VCC 5.5V,fSCK 5MHz,tE/W 5ms  
Byte write  
Page write  
Write status register  
3.0  
1.5  
mA  
mA  
ICC3  
ICC4  
=
=
VCC 2.5V,fSCK 5MHz  
Read  
Read status register  
Current consumption at read  
action  
=
=
VCC 5.5V,fSCK 5MHz  
Read  
Read status register  
2.0  
2
mA  
ICC5  
ISB  
=
CC 5.5V  
V
µA  
Standby current  
=
=
=
=
=
=
CS HOLD WP VCC,SCK SI VCC or GND,SO=OPEN  
Radiation resistance design is not made.  
Block diagram  
VOLTAGE  
DETECTION  
INSTRUCTION DECODE  
CONTROL CLOCK  
GENERATION  
CS  
WRITE  
HIGH VOLTAGE  
GENERATOR  
SCK  
INHIBITION  
INSTRUCTION  
REGISTER  
SI  
STATUS REGISTER  
ADDRESS  
REGISTER  
ADDRESS  
DECODER  
*1 7bit : BR25L010-W  
8bit : BR25L020-W  
9bit : BR25L040-W  
10bit : BR25L080-W  
11bit : BR25L160-W  
12bit : BR25L320-W  
13bit : BR25L640-W  
7~13bit *1  
8bit  
HOLD  
7~13bit *1  
8bit  
1K~64K  
EEPROM  
WP  
SO  
READ/WRITE  
AMP  
DATA  
REGISTER  
Fig.1 Block diagram  
2/16  
Pin assignment and description  
Terminal name Input/output  
Function  
Power source to be connected  
VCC  
VCC  
HOLD SCK  
SI  
GND  
CS  
SCK  
SI  
Input  
All input / output reference voltage, 0V  
Chip select input  
BR25L010-W  
BR25L020-W  
BR25L040-W  
BR25L080-W  
BR25L160-W  
BR25L320-W  
BR25L640-W  
Input  
Input  
Serial clock input  
Start bit, ope code, address, and serial data input  
SO  
Output Serial data output  
Hold input  
Input  
HOLD  
Command communications may be suspended temporarily (HOLD status).  
Write protect input  
Write command is prohibited.*1  
Write status register command is prohibited.  
WP  
Input  
CS  
SO  
WP  
GND  
Fig. 2 Pin assignment diagram  
*1:BR25L010/020/040-W  
Sync data input / output timing  
Operating timing characteristics  
(Ta = -40 ~ +85˚C, unless otherwise specified, load capacity CL1 100pF)  
tCS  
tCSS  
1.8VCC<2.5V  
2.5VCC<5.5V  
CS  
Parameter  
Symbol  
Unit  
tSCKS  
Min. Typ. Max. Min. Typ. Max.  
tRC  
tFC  
tSCKWL  
tSCKWH  
SCK frequency  
SCK high time  
SCK low time  
CS high time  
fSCK  
2
5
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK  
tDIS tDIH  
tSCKWH 200  
tSCKWL 200  
85  
85  
85  
90  
85  
90  
90  
20  
40  
SI  
tCS  
tCSS  
tCSH  
tSCKS  
tSCKH  
tDIS  
200  
200  
200  
200  
200  
40  
High-Z  
SO  
CS setup time  
CS hold time  
Fig. 3 Input timing  
SI is taken into IC inside in sync with data rise edge of SCK. Input  
address and data from the most significant bit MSB.  
SCK setup time  
SCK hold time  
SI setup time  
SI hold time  
tCS  
tDIH  
50  
150  
70  
CS  
tSCKH  
tCSH  
Data output delay time 1  
tPD1  
Data output delay time 2  
(CL2=30pF)  
SCK  
SI  
tPD2  
145  
55  
ns  
Output hold time  
tOH  
tOZ  
0
250  
0
100  
ns  
ns  
tPD  
tOZ  
tRO,tFO  
tOH  
High-Z  
Output disable time  
SO  
HOLD setting  
setup time  
tHFS  
tHFH  
tHRS  
tHRH  
tHOZ  
tHPD  
tRC  
120  
90  
120  
140  
60  
40  
60  
70  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
Fig. 4 Input / output timing  
HOLD setting  
hold time  
SO is output in sync with data fall edge of SCK. Data is output  
from the most significant bit MSB.  
HOLD release  
setup time  
"H"  
CS  
"L"  
tHFS tHFH  
tHRS tHRH  
HOLD release  
hold time  
SCK  
SI  
tDIS  
Time from HOLD  
to output High-Z  
n+1  
n
n-1  
250  
150  
1
100  
70  
1
tHOZ  
Dn  
tHPD  
Dn  
High-Z  
SO  
Dn+1  
Dn-1  
Time from HOLD  
to output change  
HOLD  
*1  
SCK  
rise time  
Fig. 5 HOLD timing  
*1  
SCK  
fall time  
tFC  
1
1
*1  
OUTPUT  
rise time  
tRO  
100  
50  
*1  
OUTPUT  
fall time  
tFO  
100  
5
50  
5
ns  
Write time  
tE/W  
ms  
*1NOT 100% TESTED  
AC measurement conditions  
Parameter  
Limits  
Symbol  
Unit  
Min. Typ. Max.  
Load capacity 1  
Load capacity 2  
Input rise time  
CL1  
CL2  
100  
30  
pF  
pF  
ns  
ns  
V
50  
Input fall time  
50  
Input voltage  
0.2VCC/0.8VCC  
0.3VCC/0.7VCC  
Input / output judgment voltage  
V
3/16  
Characteristic data (The following characteristic data are Typ. values.)  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
1
0.8  
0.6  
0.4  
0.2  
0
Ta=85˚C  
Ta=25˚C  
Ta=85˚C  
Ta=25˚C  
SPEC  
Ta=-40˚C  
SPEC  
Ta=85˚C  
Ta=25˚C  
Ta=  
3
-
40˚C  
SPEC  
4
Ta=-40˚C  
0
1
2
4
5
6
0
1
2
3
5
6
0
1
2
3
4
5
6
VCC[V]  
IOL[mA]  
VCC[V]  
Fig.6 "H" input voltage VIH(CS,SCK,SI,HOLD,WP)  
Fig.7 "L" input voltage VIL(CS,SCK,SI,HOLD,WP)  
Fig.8 "L" output voltage VOL-IOL(VCC=1.8V)  
2.6  
2.4  
2.2  
2
2
1
Ta=-40˚C  
Ta=-40˚C  
0.8  
1.8  
1.6  
1.4  
1.2  
0.6  
0.4  
0.2  
0
Ta=25˚C  
Ta=85˚C  
Ta=25˚C  
Ta=85˚C  
SPEC  
Ta=85˚C  
Ta=25˚C  
SPEC  
SPEC  
Ta=  
4
-40˚C  
1.8  
0
1
2
3
5
0
0.4  
IOH[mA]  
0.8  
0
0.4  
IOH[mA]  
0.8  
IOL[mA]  
Fig.9 "H" output voltage VOH-IOH(VCC=1.8V)  
Fig.10 "L" output voltage VOL-IOL(VCC=2.5V)  
Fig.11 "H" output voltage VOH-IOH(VCC=2.5V)  
V
V
CC=2.5V 2mA  
CC=5.5V 3mA  
1.2  
1
1.2  
1
4
3
2
1
0
SPEC  
SPEC  
fSCK=5MHz  
DATA=55h  
SPEC  
0.8  
0.8  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
SPEC  
Ta=25˚C  
Ta=-40˚C  
Ta=85˚C  
Ta=25˚C  
Ta=85˚C  
Ta=25˚C  
Ta=  
-
40˚C  
Ta=  
-
40˚C  
Ta=85˚C  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
VCC[V]  
VCC[V]  
VCC[V]  
Fig.12 Input leak current ILI(CS,SCK,SI,WP,HOLD)  
Fig.13 Output leak current ILO(SO)  
Fig.14 Current consumption at WRITE operation  
ICC1,2,3(WRITE,PAGE WRITE,WRSR,fSCK=5MHz)  
BR25L010-W,BR25L020-W,BR25L040-W  
Vcc=2.5V 1.5mA  
Vcc=5.5V 2.0mA  
2.5  
2.5  
2
100  
Ta=25˚C  
fSCK=5MHz  
Ta=-  
40˚C  
SPEC  
SPEC  
DATA=55h  
2
SPEC  
Ta=85˚C  
10  
1
Ta=  
-40˚C  
1.5  
1
1.5  
1
Ta=25˚C  
SPEC  
SPEC  
Ta=85˚C  
Ta=25˚C  
Ta= 40˚C  
Ta=85˚C  
0.5  
0
0.5  
0
-
0.1  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
VCC[V]  
VCC[V]  
VCC[V]  
Fig.15 Consumption current at READ operation  
ICC4,5(READ,WRSR,fSK=5MHz)  
Fig.16 Consumption current at standby operation ISB  
Fig.17 SCK frequency fSCK  
250  
250  
250  
200  
150  
100  
50  
SPEC  
SPEC  
SPEC  
200  
150  
100  
50  
200  
150  
SPEC  
SPEC  
100  
SPEC  
Ta=-40˚C  
Ta=25˚C  
Ta=85˚C  
Ta=-40˚C  
Ta=85˚C  
Ta=25˚C  
Ta=  
-
40˚C  
50  
0
Ta=25˚C  
Ta=85˚C  
0
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
1
2
3
4
5
6
VCC[V]  
VCC[V]  
VCC[V]  
Fig.18 tSCK high time tSCKWH  
Fig.19 SCK low time tSCKWL  
Fig.20 CS high time tCS  
4/16  
250  
200  
150  
100  
50  
60  
40  
20  
0
250  
200  
150  
100  
50  
SPEC  
SPEC  
SPEC  
SPEC  
SPEC  
SPEC  
Ta=25˚C  
Ta=85˚C  
Ta=85˚C  
Ta=85˚C  
Ta=25˚C  
Ta=-40˚C  
-20  
-40  
Ta=  
-
40˚C  
0
Ta=-40˚C Ta=25˚C  
-
50  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0
0
0
0
1
2
3
4
5
6
6
6
6
[ ]  
VCC V  
[ ]  
CC V  
V
[ ]  
CC V  
V
CS setup time  
Fig.22 CS hold time tCSH  
SI setup time  
Fig.23 tDIS  
Fig.21  
tCSS  
200  
150  
100  
50  
200  
150  
100  
50  
60  
50  
SPEC  
SPEC  
SPEC  
SPEC  
40  
30  
20  
Ta=85˚C  
Ta=85˚C  
SPEC  
Ta=85˚C  
Ta=-40˚C  
SPEC  
Ta=  
-
40˚C  
10  
0
Ta=25˚C  
Ta=25˚C  
Ta=25˚C  
Ta=  
-
40˚C  
0
0
2
3
0
1
2
3
[
4
5
6
1
2
3
[ ]  
CC V  
4
5
0
1
4
5
6
[
V
]
]
V
V
CC  
V
CC  
V
=
=
Fig.24 SI hold time tDIH  
Fig.25 Data output delay time tPD1(CL 100pF)  
Fig.26 Data output delay time tPD2(CL 30pF)  
150  
120  
90  
60  
30  
0
300  
250  
200  
150  
100  
50  
140  
120  
100  
80  
SPEC  
SPEC  
SPEC  
SPEC  
60  
SPEC  
SPEC  
40  
Ta=85˚C  
Ta=85˚C  
20  
Ta=85˚C  
Ta=25˚C  
Ta=  
-40˚C  
Ta=25˚C  
Ta=25˚C  
0
Ta=  
-
40˚C  
Ta=-40˚C  
-20  
-30  
0
1
2
3
4
5
0
1
2
3
4
5
6
0
1
2
3
4
5
6
[
CC V  
]
[ ]  
V
V
V
CC  
VCC[V]  
Fig.27 Output disable time tOZ  
Fig.28 HOLD setting hold time tHFH  
Fig.29 HOLD release hold time tHRH  
160  
120  
80  
40  
0
120  
90  
60  
30  
0
300  
250  
200  
SPEC  
SPEC  
SPEC  
SPEC  
150  
100  
50  
SPEC  
SPEC  
Ta=85˚C  
Ta=25˚C  
Ta=85˚C  
Ta=25˚C  
Ta=85˚C  
Ta=25˚C  
Ta=-40˚C  
Ta=  
1
-40˚C  
Ta=-40˚C  
-40  
0
1
2
3
4
5
0
1
2
3
4
5
6
0
2
3
4
5
6
[
]
[ ]  
VCC V  
VCC V  
[ ]  
CC V  
V
Fig.30 Time from HOLD to output High-Z tHOZ  
Fig.31 Time from HOLD to output change tHPD  
Fig.32 Output rise time tRO  
10  
8
120  
SPEC  
90  
60  
30  
0
6
SPEC  
SPEC  
Ta=-40˚C  
4
Ta=85˚C  
Ta=25˚C  
Ta=25˚C  
Ta=85˚C  
2
Ta=  
-40˚C  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
[ ]  
V
[ ]  
VCC V  
V
CC  
Fig.33 Output fall time  
Fig.34 Write cycle time tE/W  
5/16  
Features  
Status registers  
This IC has status registers. The status registers are of 8 bits and express the following parameters.  
BP0 and BP1 can be set by write status register command. These 2 bits are memorized into the EEPROM, therefore are  
valid even when power source is turned off.  
Rewrite characteristics and data hold time are same as characteristics of the EEPROM.  
WEN can be set by write enable command and write disable command. WEN becomes write disable status when power  
source is turned off. R/B is for write confirmation, therefore cannot be set externally.  
The value of status register can be read by read status command.  
Status registers  
Product number  
BR25L010-W  
BR25L020-W  
BR25L040-W  
BR25L080-W  
BR25L160-W  
BR25L320-W  
BR25L640-W  
bit 7  
1
bit 6  
1
bit 5  
1
bit 4  
1
bit 3  
BP1  
bit 2  
BP0  
bit 1  
bit 0  
-
WEN  
R/B  
-
WPEN  
0
0
0
BP1  
BP0  
WEN  
R/B  
Memory  
location  
bit  
Function  
Contents  
WP pin enable / disable designation bit  
This enables / disables the functions  
of WP pin.  
WPEN EEPROM  
WPEN = 0 = invalid  
WPEN = 1 = valid  
This designates the write disable area  
of EEPROM. Write designation areas  
of product numbers are shown below.  
BP1  
EEPROM  
BP0  
EEPROM write disable block designation bit  
Write and write status register write enable / disable status confirmation bit  
WEN  
Register  
Register  
WEN = 0 = prohibited  
WEN = 1 = permitted  
Write cycle status (READY / BUSY) status confirmation bit  
-
-
R/B  
= =  
= =  
R/B 0 READY  
-
R/B 1 BUSY  
Write disable block setting  
Write disable block  
BR25L010-W BR25L020-W BR25L040-W BR25L080-W BR25L160-W BR25L320-W BR25L640-W  
BP1  
BP0  
0
0
1
1
0
1
0
1
None  
None  
None  
None  
None  
None  
None  
60h-7Fh  
40h-7Fh  
00h-7Fh  
C0h-FFh  
80h-FFh  
00h-FFh  
180h-1FFh  
100h-1FFh  
000h-1FFh  
300h-3FFh  
200h-3FFh  
000h-3FFh  
600h-7FFh  
400h-7FFh  
000h-7FFh  
C00h-FFFh  
800h-FFFh  
000h-FFFh  
1800h-1FFFh  
1000h-1FFFh  
0000h-1FFFh  
WP pin  
By setting WP = LOW, write command is prohibited. As for BR25L080, 160, 320, 640-W, only when WPEN bit is set "1",  
the WP pin functions become valid. And the write command to be disabled at this moment is WRSR. As for BR25L010,  
020, 040-W, both WRITE and WRSR commands are prohibited.  
However, when write cycle is in execution, no interruption can be made.  
Product number  
BR25L010-W  
BR25L020-W  
BR25L040-W  
BR25L080-W  
BR25L160-W  
BR25L320-W  
BR25L640-W  
WRSR  
WRITE  
Prohibition  
possible  
Prohibition  
possible  
Prohibition  
possible but  
WPEN bit "1"  
Prohibition  
impossible  
HOLD pin  
By HOLD pin, data transfer can be interrupted. When SCK = "1", by making HOLD from "1" into "0", data transfer to  
EEPROM is interrupted. When SCK = "0", by making HOLD from "0" into "1", data transfer is restarted.  
6/16  
Command mode  
Ope code  
BR25L080-W  
BR25L160-W  
BR25L320-W  
BR25L640-W  
Command  
Contents  
BR25L010-W  
BR25L020-W  
BR25L040-W  
WREN Write enable  
WRDI Write disable  
READ Read  
Write enable command 0000 * 110  
0000  
* 110 0000 0110  
Write disable command 0000 * 100 0000 * 100 0000 0100  
Read command  
Write command  
0000 * 011 0000 A8011 0000 0011  
0000 * 010 0000 A8010 0000 0010  
WRITE Write  
Status register read  
command  
RDSR  
Read status register  
0000 * 101 0000 * 101 0000 0101  
0000 * 001 0000 * 001 0000 0001  
Status register write  
command  
WRSR Write status register  
Timing chart  
1. Write enable (WREN) / disable (WRDI) cycle  
1.WREN (WRITE ENABLE) : Write enable  
CS  
SCK  
0
1
2
3
4
5
6
1
7
0
SI  
0
0
0
0
* 1  
1
High-Z  
SO  
Don't care  
*1 BR25L010/020/040-W=  
BR25L080/160/320/640-W=  
Fig. 35 Write enable command  
“0” input  
1.WRDI (WRITE DISABLE) : Write disable  
CS  
SCK  
SI  
0
1
2
3
4
5
6
7
0
0
0
0
* 1  
1
0
0
High-Z  
SO  
Don't care  
-W=  
*1 BR25L010/020/040  
BR25L080/160/320/640  
Fig. 36 Write disable  
“0” input  
-W=  
This IC has write enable status and write disable status. It is set to write enable status by write enable command, and it is  
set to write disable status by write disable command. As for these commands, set CS LOW, and then input the respective  
ope codes. The respective commands accept command at the 7-th clock rise. Even with input over 7 clocks, command  
becomes valid.  
When to carry out write and write status register command, it is necessary to set write enable status by the write enable  
command. If write or write status register command is input in the write disable status, commands are cancelled. And even  
in the write enable status, once write and write status register command is executed once, it gets in the write disable  
status. After power on, this IC is in write disable status.  
7/16  
2. Read command (READ)  
CS  
Product  
number  
Address  
length  
0
1
2
3
4
5
6
7
8
9
10  
11  
14  
15  
16  
17  
22  
SCK  
A6-A0  
A7-A0  
A8-A0  
BR25L010-W  
BR25L020-W  
BR25L040-W  
* 1  
A5  
A4  
A1  
A0  
0
0
0
0
0
A7  
A6  
1
1
SI  
High-Z  
D7 D6  
D2  
D1  
D0  
SO  
=
* 1 BR25L010/020-W Don't care  
Fig. 37 Read command (BR25L010/020/040-W)  
=
BR25L040-W A8  
CS  
Product  
number  
Address  
length  
0
1
2
3
4
5
6
7
8
23  
24  
30  
SCK  
A9-A0  
A10-A0  
A11-A0  
A12-A0  
BR25L080-W  
BR25L160-W  
BR25L320-W  
BR25L640-W  
A12  
0
0
0
0
0
0
1
1
A1  
SI  
A0  
*
*
*
High-Z  
SO  
D7  
D6  
D2  
D1  
D0  
* =  
Don't care  
Fig. 38 Read command (BR25L080/160/320/640-W)  
By read command, data of EEPROM can be read. As for this command, set CS LOW, then input address after read ope  
code. EEPROM starts data output of the designated address. Data output is started from SCK fall of 15/23*1 clock, and  
from D7 to D0 sequentially. This IC has increment read function. After output of data for 1 byte (8 bits), by continuing input  
of SCK, data of the next address can be read. Increment read can read all the addresses of EEPROM. After reading data  
of the most significant address, by continuing increment read, data of the most insignificant address is read.  
=
* 1 BR25L010/020/040-W 15 clocks  
* =  
Don't care  
=
BR25L080/160/320/640-W 23 clocks  
3. Write command (WRITE)  
Product  
number  
Address  
length  
CS  
0
1
2
3
4
5
6
7
8
15  
16  
22 23  
SCK  
A6-A0  
A7-A0  
A8-A0  
BR25L010-W  
BR25L020-W  
BR25L040-W  
A7 A6 A5 A4  
A1  
A0 D7 D6  
D2 D1 D0  
0
0
0
0
0
1
0
* 1  
SI  
High-Z  
SO  
=
* 1 BR25L010/020-W Don't care  
Fig.39 Write command (BR25L010/020/040-W)  
=
BR25L040-W A8  
CS  
Product  
number  
Address  
length  
0
1
2
3
4
5
6
7
8
23  
24  
30  
31  
SCK  
A9-A0  
A10-A0  
A11-A0  
A12-A0  
BR25L080-W  
BR25L160-W  
BR25L320-W  
BR25L640-W  
A12  
A1  
A0 D7 D6  
D2 D1 D0  
0
0
0
0
0
0
1
0
*
*
*
SI  
High-Z  
SO  
* =  
Don't care  
Fig.40 Write command (BR25L080/160/320/640-W)  
By write command, data of EEPROM can be written. As for this command, set CS LOW, then input address and data  
after write ope code. Then, by making CS HIGH, the EEPROM starts writing. The write time of EEPROM requires time of  
tE/W (Max 5ms). During tE/W, other than status read command is not accepted. Start CS after taking the last data (D0),  
and before the next SCL clock starts. At other timing, write command is not executed, and this write command is  
cancelled. This IC has page write function, and after input of data for 1 byte (8 bits), by continuing data input without  
starting CS, data up to 16/32*1 bytes can be written for one tE/W. In page write, the insignificant 4/5*2 bit of the  
designated address is incremented internally at every time when data of 1 byte is input, and data is written to respective  
addresses. When data of the maximum bytes or higher is input, address rolls over, and previously input data is  
overwritten.  
=
* 1 BR25L010/020/040-W 16 bytes at maximum  
=
BR25L080/160/320/640-W 32 bytes at maximum  
=
* 2 BR25L010/020/040-W Insignificant 4 bits  
=
BR25L080/160/320/640-W Insignificant 5 bits  
8/16  
4. Status register write / read command  
CS  
0
1
2
3
4
5
6
7
8
9
10  
11  
12 13  
14  
15  
SCK  
bit7  
bit6  
bit5  
bit4  
bit3 bit2  
bit1  
bit0  
0
0
0
0
*
0
0
1
BP1 BP0  
SI  
*
*
*
*
*
*
-
High Z  
SO  
* =  
Don't care  
Fig.41 Status register write command (BR25L010/020/040-W)  
CS  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
SCK  
bit7  
bit6 bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
WPEN  
0
0
0
0
0
0
0
1
BP1 BP0  
SI  
*
*
*
*
*
-
High Z  
SO  
* =  
Don't care  
Fig.42 Status register write command (BR25L080/160/320/640-W)  
Write status register command can write status register data. The data the can be written by this command are 2 bits *1,  
that is, BP1 (bit3) and BP0 (bit2) among 8 bits of status register. By BP1 and BP0, write disable block of EEPROM can be  
set. As for this command, set CS LOW, and input ope code of write status register, and input data. Then, by making CS  
HIGH, EEPROM starts writing. Write time requires time of tE/W as same as write. As for CS rise, start CS after taking the  
last data bit (bit0), and before the next SCK clock starts. At other timing, command is cancelled. Write disable block is  
determined by BP1 and BP0, and the block can be selected from 1/4 of memory array, 1/2, and entire memory array.  
(Refer to the write disable block setting table.) To the write disabled block, write cannot be made, and only read can be  
made.  
* 3 bits including BR25L080, 160, 320, 640-W WPEN (bit7)  
CS  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
SCK  
SI  
0
0
0
0
1
0
1
*
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
-
High Z  
1
1
1
1
BP1 BP0 WEN R/B  
SO  
* =  
Don't care  
Fig.43 Status register read command (BR25L010/020/040-W)  
CS  
SCK  
SI  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0
0
0
0
0
1
0
1
bit7  
WPEN  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
-
High Z  
SO  
0
0
0
BP1 BP0 WEN R/B  
Fig.44 Status register read command (BR25L080/160/320/640-W)  
9/16  
At standby  
Current at standby  
Set CS "H", and be sure to set SCK, SI, WP, HOLD input "L" or "H". Do not input intermediate electric potential.  
Timing  
As shown in Fig. 45, at standby, when SCK is "H", even if CS is fallen, SI status is not read at fall edge. SI status is read  
at SCK rise edge after fall of CS. At standby and at power ON/OFF, set CS "H" status.  
Even if CS is fallen at SCL = SI = "H",  
SI status is not read at that edge.  
CS  
Command start here. SI is read.  
SCK  
SI  
0
1
2
Fig.45 Operating timing  
WP cancel valid area  
WP is normally fixed to "H" or "L" for use, but when WP is controlled so as to cancel write status register command and write  
command, pay attention to the following WP valid timing.  
While write or write status register command is executed, by setting WP = "L" in cancel valid area, command can be  
cancelled. The area from command ope code before CS rise at internal automatic write start becomes the cancel valid area.  
However, once write is started, any input cannot be cancelled. WP input becomes Don't Care, and cancellation becomes  
invalid.  
SCK  
CS  
15  
16  
tE/W  
data write time  
Ope code  
Data  
WP cancel invalid area WP cancel invalid area  
invalid  
WP cancel invalid area  
Fig.46 WP valid timing (WRSR)  
tE/W  
data write time  
Ope code  
Address  
Data  
WP cancel invalid area  
invalid  
WP cancel invalid area  
valid  
WP cancel invalid area  
Fig.47 WP valid timing (WRITE)  
HOLD pin  
By HOLD pin, command communication can be stopped temporarily. (HOLD status) The HOLD pin carries out command  
communications normally when it is HIGH. To get in HOLD status, at command communication, when SCK = LOW, set  
the HOLD pin LOW. At HOLD status, SCK and SI become Don't Care, and SO becomes high impedance (High-Z). To  
release the HOLD status, set the HOLD pin HIGH when SCK = LOW. After that, communication can be restarted from the  
point before the HOLD status. For example, when HOLD status is made after A5 address input at read, after release of  
HOLD status, by starting A4 address input, read can be restarted. When in HOLD status, leave CS LOW. When it is set  
CS = HIGH in HOLD status, the IC is reset, therefore communication after that cannot be restarted.  
10/16  
Method to cancel each command  
READ  
Ope code  
8 bits  
Address  
Data  
y Method to cancel : cancel by CS = "H"  
8 bits /16bits  
8 bits  
Cancel available in all areas of read mode  
Fig.48 READ cancel valid timing  
RDSR  
Ope code  
8 bits  
Data  
y Method to cancel : cancel by CS = "H"  
8 bits  
Cancel available in all  
areas of read mode  
Fig.49 RDSR cancel valid timing  
WRITE, PAGE WRITE  
a : Ope code, address input area.  
Cancellation is available by CS = "H".  
b : Data input area (D7 ~ D1 input area)  
Cancellation is available by CS = "H".  
c : Data input area (D0 area)  
Ope code  
8 bits  
Address  
Data (n)  
tE/W  
d
8 bits  
a
8 bits  
b
c
Fig.50 WRITE cancel valid timing  
When CS is started, write starts.  
After CS rise, cancellation cannot be made by any  
means.  
d : tE/W area  
SCK  
Cancellation is available by CS = "H". However, when  
write starts (CS is started) in the area c, cancellation  
cannot be made by any means. And, by inputting on  
SCK clock, cancellation cannot be made. In page write  
mode, there is write enable area at every 8 clocks.  
SI D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
b
c
Note 1) If Vcc is made OFF during write execution, designated address data is not guaranteed, therefore write it once  
again.  
Note 2) If CS is started at the same timing as that of the SCK rise, write execution / cancel becomes unstable,  
therefore, it is recommended to fall in SCK = "L" area. As for SCK rise, assure timing of tCSS / tCSH or higher.  
SCK  
14  
15  
16  
17  
WRSR  
a : From ope code to 15 clock rise  
Cancel by CS = "H".  
SI D1  
D0  
b : From 15 clock rise to 16 clock rise (write enable area)  
When CS is started, write starts.  
After CS rise, cancellation cannot be made by any  
means.  
a
b
c
Ope code  
8 bit  
Address  
8 bit  
tE/W  
c
c : After 16 clock rise  
a
b
Cancel by CS = "H". However, when write starts (CS is  
started) in the area b, cancellation cannot be made by  
any means. And, by inputting on SCK clock, cancellation  
cannot be made.  
Fig.51 WRSR cancel valid timing  
Note 1) If Vcc is made OFF during write execution, designated address data is not guaranteed, therefore write it once  
again.  
Note 2) If CS is started at the same timing as that of the SCK rise, write execution / cancel becomes unstable,  
therefore, it is recommended to fall in SCK = "L" area. As for SCK rise, assure timing of tCSS/tCSH or higher.  
WREN/WRDI  
SCK  
a : From ope code to clock rise, cancel by CS = "H".  
7
8
9
b : Cancellation is not available when CS is started after 7 clock.  
a
b
b
Ope code  
8 bit  
a
Fig.52 WREN / WRDI cancel valid timing  
11/16  
High speed operation  
In order to realize stable high speed operations, pay attention to the following input / output pin conditions.  
Input pin pull up, pull down resistance  
When to attach pull up, pull down resistance to EEPROM input pin, select an appropriate value for the microcontroller  
VOL, IOL from VIL characteristics of this IC.  
Pull up resistance  
VCC  
-VOLM  
RPU  
IOLM  
VOLM ≤  
VILE  
Microcontroller  
IOHM  
EEPROM  
VOLM  
VILE  
Example) When Vcc = 5V, VILM = 1.5V, VOLM = 0.4V, IOLM = 2mA,  
from the equation  
,
"L" output  
"L" input  
5
-0.4  
RPU≥  
RPU≥  
2 × 10-3  
Fig.53 Pull up resistance  
2.3[k  
]
With the value of Rpu to satisfy the above equation, VOLM  
becomes 0.4V or higher, and with VILE (= 1.5V), the equation  
is also satisfied.  
y VILM : EEPROM VIH specifications  
y VOLM : Microcontroller VOL specifications  
y IOLM : Microcontroller IOL specifications  
And, in order to prevent malfunction, mistake write at power ON/OFF, be sure to make CS pull up.  
Pull down resistance  
VOHM  
IOHM  
EEPROM  
RPD ≥  
VOHM  
VIHE  
VOHM ≥  
VIHE  
IOHM  
Example) When Vcc = 5V, VOHM = Vcc - 0.5V, IOHM = 0.4mA,  
VIHM = Vcc × 0.7V, from the equation  
,
Fig.54 Pull down resistance  
5
-
0.5  
RPD≥  
RPD≥  
0.4 × 10-3  
11.3[k  
]
Further, by amplitude VIHE, VILE of signal input to EEPROM, operation speed changes. By inputting signal of amplitude of  
VCC / GND level to input, more stable high speed operations can be realized. On the contrary, when amplitude of 0.8VCC /  
0.2VCC is input, operation speed becomes slow.  
12/16  
In order to realize more stable high speed operation, it is recommended to make the values of RPU, RPD as large as  
possible, and make the amplitude of signal input to EEPROM close to the amplitude of VCC / GND level.  
(*1 At this moment, operating timing guaranteed value is guaranteed.)  
tPD-VIL characteristics  
80  
75  
70  
65  
=
VCC 1.8V  
60  
55  
=
Ta 25°C  
=
VIH VCC  
=
CL 100pF  
0
0.2  
0.4  
0.6  
VIL[V]  
0.8  
1
Fig.55 VIL dependency of  
data output delay time  
SO load capacity condition  
Load capacity of SO output pin affects upon delay characteristic of SO output. (Data output delay time, time from HOLD  
to High-Z) In order to make output delay characteristic into higher speed, make SO load capacity small. In concrete, "Do  
not connect many devices to SO bus", "Make the wire between the controller and EEPROM short", and so forth.  
tPD-CL characteristics  
80  
=
=
VCC 1.8V Ta 25°C  
=
VIH/VIL 0.8VCC/0.2VCC  
EEPROM  
70  
60  
SO  
CL  
50  
40  
0
20  
40  
60  
80  
100  
120  
CL [V]  
Fig.56 SO load dependency of data output delay time  
Other cautions  
Make the wire length from the microcontroller to EEPROM input signal same length, in order to prevent setup / hold violation  
to EEPROM, owing to difference of wire length of each input.  
13/16  
Equivalent circuit  
Output circuit  
SO  
OEint.  
Fig.57 SO output equivalent circuit  
Input circuit  
RESETint.  
CS  
Fig.58 CS input equivalent circuit  
SCK  
SI  
Fig.59 SCK input equivalent circuit  
Fig.60 SI input equivalent circuit  
HOLD  
WP  
Fig.61 HOLD input equivalent circuit  
Fig.62 WP input equivalent circuit  
14/16  
Notes on power ON/OFF  
At power ON/OFF, set CS "H" (= VCC).  
When CS is "L", this IC gets in input accept status (active). If power is turned on in this status, noises and the likes may cause  
malfunction, mistake write or so. To prevent these, at power ON, set CS "H". (When CS is in "H" status, all inputs are canceled.)  
Vcc  
Vcc  
GND  
Vcc  
CS  
GND  
Bad example  
Good example  
Fig.63 CS timing at power ON/OFF  
(Good example) CS terminal is pulled up to VCC.  
At power OFF, take 10ms or higher before re supply. If power is turned on without observing this condition, the IC internal  
circuit may not be reset, which please note.  
(Bad example)  
PORcircuit  
CS terminal is "L" at power ON/OFF.  
In this case, CS always becomes "L" (active status), and EEPROM may have malfunction, mistake write owing to noises  
and the likes.  
Even when CS input is High-Z, the status becomes like this case, which please note.  
This IC has a POR (Power On Reset) circuit as mistake write countermeasure. After POR action, it gets in write disable status. The POR  
circuit is valid only when power is ON, and does not work when power is OFF. When power is ON, if the recommended conditions of the  
following tR, tOFF, and Vbot are not satisfied, it may become write enable status owing to noises and the likes.  
tR  
VCC  
Recommended conditions of tR, tOFF, Vbot  
tR  
tOFF  
Vbot  
10ms or below 10ms or higher 0.3V or below  
100ms or below 10ms or higher 0.2V or below  
tOFF  
Vbot  
0
Fig.64ꢀꢀRiseꢀwaveform  
Noise countermeasures  
Vcc noise (bypass capacitor)  
When noise or surge gets in the power source line, malfunction may occur, therefore, for removing these, it is recommended to attach a  
by pass capacitor (0.1µF) between IC Vcc and GND. At that moment, attach it as close to IC as possible.  
And, it is also recommended to attach a bypass capacitor between board Vcc and GND.  
SCK noise  
When the rise time (tR) of SCK is long, and a certain degree or more of noise exists, malfunction may occur owing to clock bit displacement.  
To avoid this, a Schmitt trigger circuit is built in SCK input. The hysteresis width of this circuit is set about 0.2V, if noises exist at SCK input,  
set the noise amplitude 0.2Vp-p or below. And it is recommended to set the rise time (tR) of SCK 100ns or below. In the case when the rise  
time is 100ns or higher, take sufficient noise countermeasures. Make the clock rise, fall time as small as possible.  
WP noise  
During execution of write status register command, if there exist noises on WP pin, mistake in recognition may occur and forcible cancellation  
may result, which please note. To avoid this, a Schmitt trigger circuit is built in WP input. In the same manner, a Schmitt trigger circuit is  
built in SI input and HOLD input too.  
Cautions on use  
(1) Described numeric values and data are design representative values, and the values are not guaranteed.  
(2) We believe that application circuit examples are recommendable, however, in actual use, confirm characteristics further sufficiently. In the case  
of use by changing the fixed number of external parts, make your decision with sufficient margin in consideration of static characteristics  
and transition characteristics and fluctuations of external parts and our LSI.  
(3) Absolute maximum ratings  
If the absolute maximum ratings such as impressed voltage and operating temperature range and so forth are exceeded, LSI may be destructed.  
Do not impress voltage and temperature exceeding the absolute maximum ratings. In the case of fear exceeding the absolute maximum  
ratings, take physical safety countermeasures such as fuses, and see to it that conditions exceeding the absolute maximum ratings should  
not be impressed to LSI.  
(4) GND electric potential  
Set the voltage of GND terminal lowest at any action condition. Make sure that each terminal voltage is lower than that of GND terminal.  
(5) Heat design  
In consideration of permissible dissipation in actual use condition, carry out heat design with sufficient margin.  
(6) Terminal to terminal short circuit and wrong packaging  
When to package LSI onto a board, pay sufficient attention to LSI direction and displacement. Wrong packaging may destruct LSI. And in  
the case of short circuit between LSI terminals and terminals and power source, terminal and GND owing to foreign matter, LSI may be  
destructed.  
(7) Use in a strong electromagnetic field may cause malfunction, therefore, evaluate design sufficiently.  
15/16  
Selection of order type  
B R  
2 5  
L
0 1 0  
F - W E 2  
Double cell  
Rohm type BUS type Operating temperature Capacity Package type  
Package specifications  
name  
25:SPI  
:
1 K  
2 K  
4 K  
:
010=  
020=  
040=  
080=  
160=  
320=  
640=  
L −40℃〜+85℃  
F SOP8  
E2 : reel shape emboss taping  
TR : reel shape emboss taping  
(MSOP8 package only)  
:
FJ SOP-J8  
Hꢀ −40℃〜+125℃  
:
FV SSOP-B8  
8 K  
FVT :TSSOP-B8  
16K  
32K  
64K  
:
FVM MSOP8  
FVJ : TSSOP-B8J  
Package specifications  
SOP8/SOP-J8/SSOP-B8/TSSOP-B8/TSSOP-B8J  
<External appearance>  
<Package specifications>SOP8/SOP-J8/SSOP-B8/TSSOP-B8/TSSOP-B8J  
Package type  
Emboss taping  
• SOP8  
• SOP-J8  
• SSOP-B8  
• TSSOP-B8 • TSSOP-B8J  
Package quantity  
Package direction  
2500pcs  
3.0±0.2  
3.0±0.1  
3.0±0.1  
4.9±0.2  
5.0±0.2  
5
8
8
5
8
5
E2  
8
7
6
5
8
5
4
(When the reel is gripped by the left hand, and the tape is pulled  
out by the right hand, No.1 pin of the product is at the left top.)  
1
4
+0.05  
0.145 0.03  
1
4
1
4
0.15±0.1  
+0.05  
0.03  
1
2
3
4
0.145  
1
0.2±0.1  
0.1  
+0.1  
0.05  
0.17  
0.1  
0.1  
0.08 S  
+0.05  
0.08  
+0.05  
S
1.27  
0.42±0.1  
1.27  
0.42±0.1  
0.245 0.04  
0.65  
0.22±0.1  
(0.52) 0.65  
0.32 0.04  
0.65  
Pulling side  
Pin No.1  
Reel  
* For ordering, specify a number of multiples of the package quantity.  
(Unitꢀ:ꢀmm)  
MSOP8  
<External appearance>  
<Package specifications> MSOP8  
Package type  
Emboss taping  
2.9 ± 0.1  
3000pcs  
Package quantity  
Package direction  
8
5
TR  
(When the reel is gripped by the left hand, and the tape is pulled  
out by the right hand, No.1 pin of the product is at the right top.)  
1
4
+0.05  
0.03  
0.145  
0.475  
+0.05  
0.22 0.04  
M
0.08  
0.65  
0.08 S  
Pin No.1  
Pulling side  
Reel  
(Unitꢀ:ꢀmm)  
* For ordering, specify a number of multiples of the package quantity.  
The contents described herein are correct as of October, 2005  
The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO.,LTD.  
Any part of this application note must not be duplicated or copied without our permission.  
Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding  
upon circuit constants in the set.  
Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any  
warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such  
infringement, or arising from or connected with or related to the use of such devices.  
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other  
proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer.  
The products described herein utilize silicon as the main material.  
The products described herein are not designed to be X ray proof.  
Published by  
Application Engineering Group  
Catalog No. 05T824Ae '05.©1020R0O0HMTSU  
Appendix  
Notes  
No technical content pages of this document may be reproduced in any form or transmitted by any  
means without prior permission of ROHM CO.,LTD.  
The contents described herein are subject to change without notice. The specifications for the  
product described in this document are for reference only. Upon actual use, therefore, please request  
that specifications to be separately delivered.  
Application circuit diagrams and circuit constants contained herein are shown as examples of standard  
use and operation. Please pay careful attention to the peripheral conditions when designing circuits  
and deciding upon circuit constants in the set.  
Any data, including, but not limited to application circuit diagrams information, described herein  
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM  
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any  
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of  
whatsoever nature in the event of any such infringement, or arising from or connected with or related  
to the use of such devices.  
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or  
otherwise dispose of the same, no express or implied right or license to practice or commercially  
exploit any intellectual property rights or other proprietary rights owned or controlled by  
ROHM CO., LTD. is granted to any such buyer.  
Products listed in this document are no antiradiation design.  
The products listed in this document are designed to be used with ordinary electronic equipment or devices  
(such as audio visual equipment, office-automation equipment, communications devices, electrical  
appliances and electronic toys).  
Should you intend to use these products with equipment or devices which require an extremely high level  
of reliability and the malfunction of which would directly endanger human life (such as medical  
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers  
and other safety devices), please be sure to consult with our sales representative in advance.  
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance  
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow  
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in  
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM  
cannot be held responsible for any damages arising from the use of the products under conditions out of the  
range of the specifications or due to non-compliance with the NOTES specified in this catalog.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUPOPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2007 ROHM CO.,LTD.  
21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix1-Rev2.0  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY