BU12JA3DG-C (新产品) [ROHM]

BUxxJA3DG-C系列是适用于车载应用的低功耗线性稳压器。该系列IC的耐压为6.5V,输出电流为300mA,消耗电流为37µA(Typ),输出电压精度为±2%,适用于需要低消耗电流的应用。产品具有输出关断功能,当在EN引脚上施加HIGH电压时,IC的输出ON,当施加LOW电压时,IC的输出OFF。另外,本系列IC还内置过电流保护电路,可防止输出短路等导致的IC损坏;内置过热保护电路,可防止IC因过负载状态等导致的热损坏。其输出相位补偿电容可使用低ESR的陶瓷电容器。;
BU12JA3DG-C (新产品)
型号: BU12JA3DG-C (新产品)
厂家: ROHM    ROHM
描述:

BUxxJA3DG-C系列是适用于车载应用的低功耗线性稳压器。该系列IC的耐压为6.5V,输出电流为300mA,消耗电流为37µA(Typ),输出电压精度为±2%,适用于需要低消耗电流的应用。产品具有输出关断功能,当在EN引脚上施加HIGH电压时,IC的输出ON,当施加LOW电压时,IC的输出OFF。另外,本系列IC还内置过电流保护电路,可防止输出短路等导致的IC损坏;内置过热保护电路,可防止IC因过负载状态等导致的热损坏。其输出相位补偿电容可使用低ESR的陶瓷电容器。

过电流保护 电容器 陶瓷电容器 稳压器
文件: 总96页 (文件大小:7447K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
For Automotive 300 mA  
CMOS LDO Regulators  
BUxxJA3DG-C series  
General Description  
Key Specifications  
The BUxxJA3DG-C series are linear regulators designed  
as low current consumption products for power supplies in  
various automotive applications.  
These products are designed for up to 6.5 V as an absolute  
maximum voltage and to operate until 300 mA for the  
output current with low current consumption 37 µA (Typ).  
These can regulate the output with a very high accuracy,  
±2 %. These regulators are therefore an ideal for any  
applications requiring a low current consumption.  
A logical “HIGH” at the EN pin turns on the device, and in  
the other side, the devices are controlled to disable by a  
logical “LOW” input to the EN pin.  
Wide Temperature Range (Tj):  
Operating Input Range:  
Low Current Consumption:  
Output Current Capability:  
High Output Voltage Accuracy:  
Output Voltage:  
-40 °C to +150 °C  
1.7 V to 6.0 V  
37 µA (Typ)  
300 mA  
±2 %  
1.2 V to 3.3 V  
Package  
SSOP5  
W(Typ) x D(Typ) x H(Max)  
2.9 mm x 2.8 mm x 1.25 mm  
The devices feature the integrated Over Current Protection  
to protect the device from a damage caused by a short-  
circuiting or an overload. These products also integrate  
Thermal Shutdown Protection to avoid the damage by  
overheating.  
Furthermore, low ESR ceramic capacitors are sufficiently  
applicable for the phase compensation.  
Features  
AEC-Q100 Qualified(Note 1)  
Output Shutdown Function (EN Function)  
Over Current Protection (OCP)  
Thermal Shutdown Protection (TSD)  
(Note 1) Grade 1  
Applications  
Automotive (Power Train, Body ECU, Infotainment,  
Cluster, etc.)  
Typical Application Circuit  
Components Externally Connected  
Capacitor: 0.1 µF ≤ CIN (Min), 0.47 µF ≤ COUT ≤ 47 µF(Note 2)  
(Note 2) Electrolytic ( ESR < 1 Ω), tantalum and ceramic capacitors can be used.  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
1/93  
 
 
 
 
 
 
BUxxJA3DG-C series  
Ordering Information  
B
U
x
x
J
A
3
D
G
-
C
y
y
Part  
Number  
Output Voltage  
12 : 1.2 V  
15 : 1.5 V  
18 : 1.8 V  
25 : 2.5 V  
30 : 3.0 V  
33 : 3.3 V  
Series Name  
Output Current Capability: 300 mA  
Maximum Power Supply Voltage: 6.5 V  
Package  
G : SSOP5  
Product Rank  
Packaging and forming specification  
C : for Automotive Embossed tape and reel  
TR : The pin number 1 is the upper right  
TL : The pin number 1 is the lower left  
Lineup  
Ordering  
Output Voltage  
1.2 V  
Package  
Packing Specification  
BU12JA3DG-CTR  
BU15JA3DG-CTR  
BU18JA3DG-CTR  
BU25JA3DG-CTR  
BU30JA3DG-CTR  
BU33JA3DG-CTR  
BU12JA3DG-CTL  
BU15JA3DG-CTL  
BU18JA3DG-CTL  
BU25JA3DG-CTL  
BU30JA3DG-CTL  
BU33JA3DG-CTL  
SSOP5 Reel of 3000  
SSOP5 Reel of 3000  
SSOP5 Reel of 3000  
SSOP5 Reel of 3000  
SSOP5 Reel of 3000  
SSOP5 Reel of 3000  
SSOP5 Reel of 3000  
SSOP5 Reel of 3000  
SSOP5 Reel of 3000  
SSOP5 Reel of 3000  
SSOP5 Reel of 3000  
SSOP5 Reel of 3000  
1.5 V  
1.8 V  
2.5 V  
3.0 V  
3.3 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.0 V  
3.3 V  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
2/93  
 
 
BUxxJA3DG-C series  
Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Typical Application Circuit...............................................................................................................................................................1  
Ordering Information.......................................................................................................................................................................2  
Lineup.............................................................................................................................................................................................2  
Contents .........................................................................................................................................................................................3  
Pin Configurations ..........................................................................................................................................................................4  
Pin Descriptions..............................................................................................................................................................................4  
Block Diagram ................................................................................................................................................................................5  
Description of Blocks ......................................................................................................................................................................5  
Absolute Maximum Ratings ............................................................................................................................................................6  
Thermal Resistance........................................................................................................................................................................6  
Operating Conditions......................................................................................................................................................................7  
Electrical Characteristics.................................................................................................................................................................8  
Typical Performance Curves (BU12JA3DG-C)...............................................................................................................................9  
Typical Performance Curves (BU15JA3DG-C).............................................................................................................................21  
Typical Performance Curves (BU18JA3DG-C).............................................................................................................................33  
Typical Performance Curves (BU25JA3DG-C).............................................................................................................................45  
Typical Performance Curves (BU30JA3DG-C).............................................................................................................................57  
Typical Performance Curves (BU33JA3DG-C).............................................................................................................................68  
Typical Performance Curves.........................................................................................................................................................79  
Application and Implementation....................................................................................................................................................81  
Selection of External Components............................................................................................................................................81  
Input Pin Capacitor................................................................................................................................................................81  
Output Pin Capacitor .............................................................................................................................................................81  
Typical Application.....................................................................................................................................................................82  
Surge Voltage Protection for Linear Regulators ........................................................................................................................83  
Positive Surge to the Input.....................................................................................................................................................83  
Negative Surge to the Input...................................................................................................................................................83  
Reverse Voltage Protection for Linear Regulators ....................................................................................................................83  
Protection Against Reverse Input/Output Voltage..................................................................................................................83  
Protection Against Input Reverse Voltage..............................................................................................................................84  
Protection Against Reverse Output Voltage when Output Connect to an Inductor ................................................................85  
Power Dissipation.........................................................................................................................................................................86  
SSOP5 ......................................................................................................................................................................................86  
Thermal Design ............................................................................................................................................................................87  
I/O Equivalence Circuits................................................................................................................................................................88  
Operational Notes.........................................................................................................................................................................89  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Reverse Connection of Power Supply............................................................................................................................89  
Power Supply Lines........................................................................................................................................................89  
Ground Voltage...............................................................................................................................................................89  
Ground Wiring Pattern....................................................................................................................................................89  
Operating Conditions......................................................................................................................................................89  
Inrush Current.................................................................................................................................................................89  
Thermal Consideration ...................................................................................................................................................89  
Testing on Application Boards ........................................................................................................................................89  
Inter-pin Short and Mounting Errors ...............................................................................................................................89  
Unused Input Pins ..........................................................................................................................................................89  
Regarding the Input Pin of the IC ...................................................................................................................................90  
Ceramic Capacitor..........................................................................................................................................................90  
Thermal Shutdown Protection Circuit (TSD)...................................................................................................................90  
Over Current Protection Circuit (OCP) ...........................................................................................................................90  
Enable Pin......................................................................................................................................................................90  
9.  
10.  
11.  
12.  
13.  
14.  
15.  
Marking Diagram ..........................................................................................................................................................................91  
Physical Dimension and Packing Information...............................................................................................................................92  
Revision History............................................................................................................................................................................93  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
3/93  
 
BUxxJA3DG-C series  
Pin Configurations  
SSOP5 (TOP VIEW)  
N.C.  
VOUT  
VIN  
EN  
GND  
Pin Descriptions  
Pin No.  
Pin Name  
Pin Function  
Descriptions  
Set a capacitor with a capacitance of 0.1 μF (Min) or higher  
between the VIN pin and GND. The selecting method is described  
in Selection of External Components. If the inductance of power  
supply line is high, please adjust input capacitor value.  
1
VIN  
Input Voltage Pin  
2
3
4
5
GND  
EN  
Ground Pin  
Enable Input Pin  
-
Ground.  
A logical “HIGH” (VENH ≥ 1.1 V) at the EN pin enables the device  
and “LOW” (VENL ≤ 0.5 V) at the EN pin disables the device.  
This pin is not connected to the chip.  
It can keep open or it’s also possible to connect to GND.  
N.C.  
VOUT  
Set a capacitor with a capacitance of 0.47 μF (Min) or higher  
between the VOUT pin and GND. The selecting method is  
described in Selection of External Components.  
Output Voltage Pin  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
4/93  
27.Jun.2022 Rev.002  
BUxxJA3DG-C series  
Block Diagram  
Description of Blocks  
Block Name  
Function  
Description of Blocks  
A logical “HIGH” (VENH ≥ 1.1 V) at the EN pin enables the device  
and LOW(VENL ≤ 0.5 V) at the EN pin disables the device.  
EN  
Enable Input  
In case maximum power dissipation exceeds or the ambient  
temperature is higher than the Maximum Junction Temperature,  
overheating causes the chip temperature (Tj) to rise. The TSD  
protection circuit detects this and forces the gate of output  
MOSFET(Power Tr.) to turn off in order to protect the device from  
overheating. When the junction temperature decreases to low, the  
output turns on automatically.  
TSD  
Thermal Shutdown Protection  
VREF  
AMP  
Reference Voltage  
Error Amplifier  
Generate the reference voltage.  
The error amplifier amplifies the difference between the feedback  
voltage of the output voltage and the reference voltage.  
If the output current increases higher than the maximum output  
current, it is limited by Over Current Protection to protect the device  
from damage caused by an over current.  
OCP  
Over Current Protection  
While this block is operating, the output voltage may decrease  
because the output current is limited.  
If an abnormal state is removed and the output current value returns  
to normal, the output voltage also returns to normal state.  
Output pin is discharged by the internal resistance (Typ: 40 Ω) when  
EN = “LOW” input.  
DISCHARGE Output Discharge Function  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
5/93  
27.Jun.2022 Rev.002  
BUxxJA3DG-C series  
Absolute Maximum Ratings  
Parameter  
Symbol  
Ratings  
Unit  
VIN Pin Voltage(Note 1)  
VIN  
VEN  
-0.3 to +6.5  
-0.3 to +6.5  
-0.3 to +6.5 (≤ VIN + 0.3)  
-40 to +150  
-55 to +150  
150  
V
V
EN Pin Voltage(Note 2)  
VOUT Pin Voltage  
VOUT  
V
Junction Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
ESD Withstand Voltage (HBM)(Note 3)  
ESD Withstand Voltage (CDM)(Note 4)  
Tj  
°C  
°C  
°C  
V
Tstg  
Tjmax  
VESD_HBM  
VESD_CDM  
±2000  
±750  
V
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance and power dissipation taken into  
consideration by increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
(Note 1) Do not exceed Tjmax.  
(Note 2) The start-up orders of power supply (VIN) and the VEN do not influence if the voltage is within the operation power supply voltage range.  
(Note 3) ESD susceptibility Human Body Model “HBM”; base on ANSI/ESDA/JEDEC JS001 (1.5 kΩ, 100 pF).  
(Note 4) ESD susceptibility Charged Device Model “CDM”; base on JEDEC JESD22-C101.  
Thermal Resistance(Note 5)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 7)  
2s2p(Note 8)  
SSOP5  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 6)  
θJA  
264.4  
34  
135.7  
27  
°C/W  
°C/W  
ΨJT  
(Note 5) Based on JESD51-2A(Still-Air). Using BUxxJA3DG-C.  
(Note 6) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 7) Using a PCB board based on JESD51-3.  
(Note 8) Using a PCB board based on JESD51-7,.  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
Single  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Layer Number of  
Measurement Board  
Material  
FR-4  
Board Size  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
4 Layers  
Top  
Copper Pattern  
Bottom  
Copper Pattern  
74.2 mm x 74.2 mm  
Thickness  
70 μm  
Copper Pattern  
Thickness  
35 μm  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
6/93  
BUxxJA3DG-C series  
Operating Conditions (-40 °C ≤ Tj ≤ +150 °C)  
Parameter  
Symbol  
Min  
Max  
Unit  
VIN Input Voltage(Note 1)  
Start-Up Voltage  
VIN  
VIN Start-Up  
VEN  
VOUT (Max) + ΔVd (Max)  
6.0  
-
V
V
1.7  
0
Enable Input Voltage  
Output Current  
6.0  
300  
-
V
IOUT  
0
mA  
µF  
µF  
Input Capacitor(Note 2)  
Output Capacitor(Note 3)  
CIN  
0.1  
0.47  
COUT  
47  
Output Capacitor Equivalent Series  
Resistance  
ESR(COUT  
)
-
1
Operating Temperature  
Ta  
-40  
+125  
°C  
(Note 1) Minimum Input Voltage must be 1.7 V or more.  
Please consider that the output voltage would be dropped (Dropout voltage ΔVd) depending on the output current.  
(Note 2) If the inductance of power supply line is high, please adjust input capacitor value in order to lower the input impedance.  
A lower input impedance can bring out the ideal characteristic of IC as much as possible.  
It also has the effect of preventing the voltage-drop at the input line.  
(Note 3) Set capacitor value which do not fall below the minimum value. This value needs to consider the temperature characteristics and DC device  
characteristics.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
7/93  
BUxxJA3DG-C series  
Electrical Characteristics  
Unless otherwise specified, Tj = -40 °C to +150 °C, VIN = VOUT + 1.0 V(Note 1), IOUT = 0 mA, VEN = 1.5 V  
Typical values are defined at Tj = 25 °C, VIN = VOUT + 1.0 V(Note 1)  
Limit  
Parameter  
Symbol  
ISD  
Unit  
Conditions  
MIN  
TYP  
MAX  
2
-
-
-
-
µA  
µA  
µA  
VEN = 0 V, Tj = -40 °C to +85 °C  
Shutdown Current  
VEN = 0 V,  
Tj = -40 °C to +125 °C  
IOUT 500 µA, VIN 5.5 V  
Tj = +25 °C  
IOUT 500 µA, VIN 5.5 V  
Tj = -40 °C to +85 °C  
IOUT 500 µA  
10  
-
-
-
37  
37  
37  
55  
62  
80  
Current Consumption  
Output Voltage  
ICC  
µA  
µA  
Tj = -40 °C to +125 °C  
IOUT = 1 mA to 300 mA  
VOUT > 2.5 V  
VIN = VOUT + 0.5 V to 5.5 V  
VOUT  
×0.98  
VOUT  
×1.02  
VOUT  
VOUT  
V
VOUT 2.5 V  
VIN = 3.0 V to 5.5 V  
IOUT = 10 mA  
-
-
4
6
8
mV  
mV  
VOUT 2.5 V  
VIN = 3.0 V to 5.5 V  
Line Regulation  
Load Regulation  
Reg.I  
IOUT = 10 mA  
VOUT > 2.5 V  
VIN = VOUT + 0.5 V to 5.5 V  
12  
Reg.L  
-
-
15  
500  
365  
330  
240  
220  
200  
-
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mA  
mA  
dB  
IOUT = 1 mA to 300 mA  
-
-
IOUT = 300 mA, VOUT = 1.2 V  
IOUT = 300 mA, VOUT = 1.5 V  
IOUT = 300 mA, VOUT = 1.8 V  
IOUT = 300 mA, VOUT = 2.5 V  
IOUT = 300 mA, VOUT = 3.0 V  
IOUT = 300 mA, VOUT = 3.3 V  
VIN > VOUT (Max) + ΔVd (Max)  
-
-
-
-
Dropout Voltage(Note 2)  
ΔVd  
-
-
-
-
-
300  
-
-
Maximum Output Current  
Over Current Protection(Note 3)  
Ripple Rejection Ratio  
Output Noise(Note 3)  
IOMAX  
IOUT(OCP)  
R.R.  
-
Applied VOUT × 0.95  
for the VOUT Pin  
VRR = 1 Vp-p, fRR = 1 kHz  
IOUT = 300 mA, VIN = 5 V  
BW = 10 Hz to 100 kHz  
VOUT = 1.2 V  
450  
60  
600  
-
-
VNOISE  
RDSC  
-
25  
1.1  
0
30  
40  
-
-
75  
6.0  
0.5  
4
µVrms  
Ω
VIN = 4.0 V, VEN = 0 V  
VOUT = 4.0 V  
Discharge Resistor  
Enable HIGH Voltage  
Enable LOW Voltage  
Enable Bias Current  
VENH  
V
-
-
-
-
-
VENL  
-
V
IEN  
-
-
µA  
°C  
°C  
Thermal Shutdown  
Temperature(Note 3)  
TTSD  
155  
-
175  
15  
195  
-
Thermal Shutdown  
TTSDHYS  
Hysteresis(Note 3)  
(Note 1) VIN = 3.0 V for VOUT < 2.5 V.  
(Note 2) VIN = VOUT x 0.98. For outputs below 1.7 V, dropout voltage means the minimum input-to-output differential voltage with IOUT = 300 mA for regulate.  
(Note 3) Not measured.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
8/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU12JA3DG-C)  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
1.4  
1.2  
1
70  
60  
50  
40  
30  
20  
10  
0
0.8  
0.6  
0.4  
0.2  
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
0
2
4
6
0
2
4
6
Input Voltage: VIN [V]  
Input Voltage: VIN [V]  
Figure 1. Output Voltage vs Input Voltage  
VOUT = 1.2 V  
Figure 2. Circuit Current vs Input Voltage  
VOUT = 1.2 V  
0.5  
1.2  
1
0.45  
0.4  
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
0.35  
0.3  
0.8  
0.6  
0.4  
0.2  
0
0.25  
0.2  
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
0.15  
0.1  
0.05  
0
0
0.2  
0.4  
0.6  
0
0.1  
0.2  
0.3  
Output Current: IOUT [A]  
Output Current: IOUT [A]  
Figure 3. Output Current Limit  
VOUT = 1.2 V  
Figure 4. Dropout Voltage vs Output Current  
VIN = 1.7 V, VOUT = 1.2 V  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
9/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU12JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
1.25  
1.23  
1.21  
1.19  
1.17  
1.15  
15  
10  
5
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
0
0
0.1  
0.2  
0.3  
1.7  
2.7  
3.7  
4.7  
5.7  
Output Current: IOUT [A]  
Input Voltage: V [V]  
IN  
Figure 5. Line Regulation  
VOUT = 1.2 V, IOUT = 50 mA  
Figure 6. Load Regulation  
VOUT = 1.2 V, IOUT = 1 mA to 300 mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT = 50 mA  
IOUT = 100 mA  
IOUT = 300 mA  
Tj = -40 °C  
Tj = +25 °C  
Tj = +125 °C  
0.01 0.1  
1
10 100 100010000  
0.01 0.1  
1
10  
100 1000 10000  
Frequency: f [kHz]  
Frequency: f [kHz]  
Figure 7. PSRR vs Frequency and Output Current  
CIN = 0 µF, COUT = 10 µF  
Figure 8. PSRR vs Frequency and Temparature  
CIN = 0 µF, COUT = 10 µF  
VOUT = 1.2 V  
VIN = 5 V, VOUT = 1.2 V, IOUT = 300 mA  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
10/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU12JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
1.224  
1.218  
1.212  
1.206  
1.200  
1.194  
1.188  
1.182  
1.176  
80  
60  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
IOUT = 1 mA  
IOUT = 50 mA  
IOUT = 100 mA  
IOUT = 300 mA  
0
100 200 300 400 500  
-40  
10  
60  
110  
160  
Time [μs]  
Junction Temperature:Tj [°C]  
Figure 9. Output Voltage vs Junction temperature  
VOUT = 1.2 V  
Figure 10. Load Transient  
VOUT = 1.2 V  
tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF  
Tj = -40 °C  
80  
60  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
80  
60  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
40  
40  
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 11. Load Transient  
VOUT = 1.2 V  
Figure 12. Load Transient  
VOUT = 1.2 V  
tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF  
Tj = 25 °C  
tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
11/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU12JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-50  
-50  
-100  
-150  
-200  
-250  
-100  
-150  
-200  
-250  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 13. Load Transient  
VOUT = 1.2 V  
Figure 14. Load Transient  
VOUT = 1.2 V  
tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 25 °C  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
0
-50  
-100  
-150  
-200  
-250  
0
100 200 300 400 500  
Time [μs]  
Figure 15. Load Transient  
VOUT = 1.2 V  
tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
12/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU12JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 16. Load Transient  
VOUT = 1.2 V  
Figure 17. Load Transient  
VOUT = 1.2 V  
tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 25 °C  
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
0
-20  
-40  
-60  
-80  
0
100 200 300 400 500  
Time [μs]  
Figure 18. Load Transient  
VOUT = 1.2 V  
tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
13/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU12JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
0.8  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
50  
0
50  
0
VOUT  
IOUT  
VOUT  
IOUT  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-50  
-50  
-100  
-150  
-100  
-150  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 19. Load Transient  
VOUT = 1.2 V  
Figure 20. Load Transient  
VOUT = 1.2 V  
tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 25 °C  
0.8  
50  
VOUT  
0.7  
IOUT  
0.6  
0
0.5  
0.4  
-50  
0.3  
0.2  
0.1  
0
-100  
-150  
0
100 200 300 400 500  
Time [μs]  
Figure 21. Load Transient  
VOUT = 1.2 V  
tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
14/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU12JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-20  
-40  
-60  
-20  
-40  
-60  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 22. Load Transient  
VOUT = 1.2 V  
Figure 23. Load Transient  
VOUT = 1.2 V  
tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 25 °C  
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
0
-20  
-40  
-60  
0
100 200 300 400 500  
Time [μs]  
Figure 24. Load Transient  
VOUT = 1.2 V  
tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
15/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU12JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
3
2.5  
2
100  
80  
60  
40  
20  
0
3
2.5  
2
100  
80  
60  
40  
20  
0
1.5  
1
1.5  
1
VIN  
VIN  
0.5  
0
0.5  
0
-20  
-40  
-20  
-40  
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time [μs]  
Time [μs]  
Figure 25. Line Transient  
VOUT = 1.2 V  
Figure 26. Line Transient  
VOUT = 1.2 V  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = 25 °C  
3
2.5  
2
100  
3
2.5  
2
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
1.5  
1
1.5  
1
VIN  
VIN  
0.5  
0
0.5  
0
-20  
-40  
-20  
-40  
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time [μs]  
Time [μs]  
Figure 27. Line Transient  
VOUT = 1.2 V  
Figure 28. Line Transient  
VOUT = 1.2 V  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = 85 °C  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
16/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU12JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
3
2.5  
2
100  
80  
60  
40  
20  
0
3
2.5  
2
100  
80  
60  
40  
20  
0
1.5  
1
1.5  
1
VIN  
VIN  
0.5  
0
0.5  
0
-20  
-40  
-20  
-40  
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time [μs]  
Time [μs]  
Figure 29. Line Transient  
VOUT = 1.2 V  
Figure 30. Line Transient  
VOUT = 1.2 V  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = 25 °C  
3
2.5  
2
100  
3
2.5  
2
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
1.5  
1
1.5  
1
VIN  
VIN  
0.5  
0
0.5  
0
-20  
-40  
-20  
-40  
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time [μs]  
Time [μs]  
Figure 31. Line Transient  
VOUT = 1.2 V  
Figure 32. Line Transient  
VOUT = 1.2 V  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = 85 °C  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
17/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU12JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
3
2.5  
2
100  
80  
60  
40  
20  
0
3
2.5  
2
100  
80  
60  
40  
20  
0
1.5  
1
1.5  
1
VIN  
VIN  
0.5  
0
0.5  
0
-20  
-40  
-20  
-40  
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time [μs]  
Time [μs]  
Figure 33. Line Transient  
VOUT = 1.2 V  
Figure 34. Line Transient  
VOUT = 1.2 V  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = 25 °C  
3
2.5  
2
100  
3
2.5  
2
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
1.5  
1
1.5  
1
VIN  
VIN  
0.5  
0
0.5  
0
-20  
-40  
-20  
-40  
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time [μs]  
Time [μs]  
Figure 35. Line Transient  
VOUT = 1.2 V  
Figure 36. Line Transient  
VOUT = 1.2 V  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = 85 °C  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
18/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU12JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
5
4.5  
4
300  
250  
200  
150  
100  
50  
5
4.5  
4
300  
250  
200  
150  
100  
50  
VIN  
VIN  
EN  
EN  
VOUT  
IOUT  
VOUT  
IOUT  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
0
0
100  
200  
300  
0
100  
200  
300  
Time [μs]  
Time [μs]  
Figure 37. Start Up Waveform  
VOUT = 1.2 V, IOUT = 50 mA  
VIN = 3.3 V, COUT = 10 µF  
Tj = -40 °C  
Figure 38. Start Up Waveform  
VOUT = 1.2 V, IOUT = 50 mA  
VIN = 3.3 V, COUT = 10 µF  
Tj = 25 °C  
5
4.5  
4
300  
250  
200  
150  
100  
50  
VIN  
EN  
VOUT  
IOUT  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
0
100  
200  
300  
Time [μs]  
Figure 39. Start Up Waveform  
VOUT = 1.2 V, IOUT = 50 mA  
VIN = 3.3 V, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
19/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU12JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
6
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
6
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
VIN  
VIN  
EN  
EN  
VOUT  
IOUT  
VOUT  
IOUT  
0
0
0
100  
200  
300  
0
100  
200  
300  
Time [μs]  
Time [μs]  
Figure 40. Start Up Waveform  
VOUT = 1.2 V, IOUT = 50 mA  
VIN = 5.0 V, COUT = 10 µF  
Tj = -40 °C  
Figure 41. Start Up Waveform  
VOUT = 1.2 V, IOUT = 50 mA  
VIN = 5.0 V, COUT = 10 µF  
Tj = 25 °C  
6
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
VIN  
EN  
VOUT  
IOUT  
0
0
100  
200  
300  
Time [μs]  
Figure 42. Start Up Waveform  
VOUT = 1.2 V, IOUT = 50 mA  
VIN = 5.0 V, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
20/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU15JA3DG-C)  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
1.6  
1.4  
1.2  
1
70  
60  
50  
40  
30  
20  
10  
0
0.8  
0.6  
0.4  
0.2  
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
0
2
4
6
0
2
4
6
Input Voltage: V [V]  
Input Voltage: V [V]  
IN  
IN  
Figure 43. Output Voltage vs Input Voltage  
VOUT = 1.5 V  
Figure 44. Circuit Current vs Input Voltage  
VOUT = 1.5 V  
1.6  
0.35  
0.3  
1.4  
1.2  
1
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
0.25  
0.2  
0.8  
0.6  
0.4  
0.2  
0
0.15  
0.1  
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
0.05  
0
0
0.1  
0.2  
0.3  
0
0.2  
0.4  
0.6  
Output Current: IOUT [A]  
Output Current: IOUT [A]  
Figure 45. Output Current Limit  
VOUT = 1.5 V  
Figure 46. Dropout Voltage vs Output Current  
VIN = 1.7 V, VOUT = 1.5 V  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
21/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU15JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
1.55  
1.53  
1.51  
1.49  
1.47  
1.45  
15  
10  
5
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
0
0
0.1  
0.2  
0.3  
2
3
4
5
6
Output Current: IOUT [A]  
Input Voltage: V [V]  
IN  
Figure 47. Line Regulation  
VOUT = 1.5 V, IOUT = 50 mA  
Figure 48. Load Regulation  
VOUT = 1.5 V, IOUT = 1 mA to 300 mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT = 50 mA  
IOUT = 100 mA  
IOUT = 300 mA  
Tj = -40 °C  
Tj = +25 °C  
Tj = +125 °C  
0.01 0.1  
1
10 100 100010000  
0.01 0.1  
1
10 100 1000 10000  
Frequency: f [kHz]  
Frequency: f [kHz]  
Figure 49. PSRR vs Frequency and Output Current  
CIN = 0 µF, COUT = 10 µF  
Figure 50. PSRR vs Frequency and Temparature  
CIN = 0 µF, COUT = 10 µF  
VOUT = 1.5 V  
VIN = 5 V, VOUT = 1.5 V, IOUT = 300 mA  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
22/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU15JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
1.53  
1.52  
1.51  
1.5  
80  
60  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
1.49  
1.48  
1.47  
IOUT = 1 mA  
IOUT = 50 mA  
IOUT = 100 mA  
IOUT = 300 mA  
-40  
10  
60  
110  
160  
0
100 200 300 400 500  
Junction Temperature: Tj [°C]  
Time [μs]  
Figure 51. Output Voltage vs Junction temperature  
VOUT = 1.5 V  
Figure 52. Load Transient  
VOUT = 1.5 V  
tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF  
Tj = -40 °C  
80  
60  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
80  
60  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
40  
40  
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 53. Load Transient  
VOUT = 1.5 V  
Figure 54. Load Transient  
VOUT = 1.5 V  
tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF  
Tj = 25 °C  
tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
23/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU15JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-50  
-50  
-100  
-150  
-200  
-250  
-100  
-150  
-200  
-250  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 55. Load Transient  
VOUT = 1.5 V  
Figure 56. Load Transient  
VOUT = 1.5 V  
tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 25 °C  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
0
-50  
-100  
-150  
-200  
-250  
0
100 200 300 400 500  
Time [μs]  
Figure 57. Load Transient  
VOUT = 1.5 V  
tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
24/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU15JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 58. Load Transient  
VOUT = 1.5 V  
Figure 59. Load Transient  
VOUT = 1.5 V  
tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 25 °C  
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
0
-20  
-40  
-60  
-80  
0
100 200 300 400 500  
Time [μs]  
Figure 60. Load Transient  
VOUT = 1.5 V  
tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
25/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU15JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
0.8  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
50  
0
50  
0
VOUT  
IOUT  
VOUT  
IOUT  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-50  
-50  
-100  
-150  
-100  
-150  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 61. Load Transient  
VOUT = 1.5 V  
Figure 62. Load Transient  
VOUT = 1.5 V  
tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 25 °C  
0.8  
50  
VOUT  
0.7  
IOUT  
0.6  
0
0.5  
0.4  
-50  
0.3  
0.2  
0.1  
0
-100  
-150  
0
100 200 300 400 500  
Time [μs]  
Figure 63. Load Transient  
VOUT = 1.5 V  
tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
26/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU15JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 64. Load Transient  
VOUT = 1.5 V  
Figure 65. Load Transient  
VOUT = 1.5 V  
tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 25 °C  
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
0
-20  
-40  
-60  
-80  
0
100 200 300 400 500  
Time [μs]  
Figure 66. Load Transient  
VOUT = 1.5 V  
tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
27/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU15JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
3.5  
3
100  
80  
60  
40  
20  
0
3.5  
3
100  
80  
60  
40  
20  
0
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
0.5  
0
-20  
-40  
0.5  
0
-20  
-40  
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time [μs]  
Time [μs]  
Figure 67. Line Transient  
VOUT = 1.5 V  
Figure 68. Line Transient  
VOUT = 1.5 V  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = 25 °C  
3.5  
100  
3.5  
100  
3
2.5  
2
80  
60  
40  
20  
0
3
2.5  
2
80  
60  
40  
20  
0
1.5  
1
1.5  
1
VIN  
VIN  
0.5  
0
-20  
-40  
0.5  
0
-20  
-40  
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time [μs]  
Time [μs]  
Figure 69. Line Transient  
VOUT = 1.5 V  
Figure 70. Line Transient  
VOUT = 1.5 V  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = 85 °C  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
28/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU15JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
3.5  
3
100  
80  
60  
40  
20  
0
3.5  
3
100  
80  
60  
40  
20  
0
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
0.5  
0
-20  
-40  
0.5  
0
-20  
-40  
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time [μs]  
Time [μs]  
Figure 71. Line Transient  
VOUT = 1.5 V  
Figure 72. Line Transient  
VOUT = 1.5 V  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = 25 °C  
3.5  
3
100  
3.5  
3
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
0.5  
0
-20  
-40  
0.5  
0
-20  
-40  
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time [μs]  
Time [μs]  
Figure 73. Line Transient  
VOUT = 1.5 V  
Figure 74. Line Transient  
VOUT = 1.5 V  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = 85 °C  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
29/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU15JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
3.5  
3
100  
80  
60  
40  
20  
0
3.5  
3
100  
80  
60  
40  
20  
0
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
0.5  
0
-20  
-40  
0.5  
0
-20  
-40  
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time [μs]  
Time [μs]  
Figure 75. Line Transient  
VOUT = 1.5 V  
Figure 76. Line Transient  
VOUT = 1.5 V  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = 25 °C  
3.5  
3
100  
3.5  
3
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
0.5  
0
-20  
-40  
0.5  
0
-20  
-40  
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time [μs]  
Time [μs]  
Figure 77. Line Transient  
VOUT = 1.5 V  
Figure 78. Line Transient  
VOUT = 1.5 V  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = 85 °C  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
30/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU15JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
5
4.5  
4
300  
250  
200  
150  
100  
50  
5
4.5  
4
300  
250  
200  
150  
100  
50  
VIN  
VIN  
EN  
EN  
VOUT  
IOUT  
VOUT  
IOUT  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
0
0
100  
200  
300  
0
100  
200  
300  
Time [μs]  
Time [μs]  
Figure 79. Start Up Waveform  
VOUT = 1.5 V, IOUT = 50 mA  
VIN = 3.3 V, COUT = 10 µF  
Tj = -40 °C  
Figure 80. Start Up Waveform  
VOUT = 1.5 V, IOUT = 50 mA  
VIN = 3.3 V, COUT = 10 µF  
Tj = 25 °C  
5
4.5  
4
300  
250  
200  
150  
100  
50  
VIN  
EN  
VOUT  
IOUT  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
0
100  
200  
300  
Time [μs]  
Figure 81. Start Up Waveform  
VOUT = 1.5 V, IOUT = 50 mA  
VIN = 3.3 V, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
31/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU15JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
6
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
6
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
VIN  
VIN  
EN  
EN  
VOUT  
IOUT  
VOUT  
IOUT  
0
0
0
100  
200  
300  
0
100  
200  
300  
Time [μs]  
Time [μs]  
Figure 82. Start Up Waveform  
VOUT = 1.5 V, IOUT = 50 mA  
VIN = 5.0 V, COUT = 10 µF  
Tj = -40 °C  
Figure 83. Start Up Waveform  
VOUT = 1.5 V, IOUT = 50 mA  
VIN = 5.0 V, COUT = 10 µF  
Tj = 25 °C  
6
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
VIN  
EN  
VOUT  
IOUT  
0
0
100  
200  
300  
Time [μs]  
Figure 84. Start Up Waveform  
VOUT = 1.5 V, IOUT = 50 mA  
VIN = 5.0 V, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
32/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU18JA3DG-C)  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
2
1.8  
1.6  
1.4  
1.2  
1
70  
60  
50  
40  
30  
20  
10  
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
0.8  
0.6  
0.4  
0.2  
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
0
2
4
6
0
2
4
6
Input Voltage: V [V]  
IN  
Input Voltage: V [V]  
IN  
Figure 85. Output Voltage vs Input Voltage  
VOUT = 1.8 V  
Figure 86. Circuit Current vs Input Voltage  
VOUT = 1.8 V  
2
0.3  
1.8  
1.6  
1.4  
1.2  
1
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
0.25  
0.2  
0.15  
0.1  
0.8  
0.6  
0.4  
0.2  
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
0.05  
0
0
0.1  
0.2  
0.3  
0
0.2  
0.4  
0.6  
Output Current: IOUT [A]  
Output Current: IOUT [A]  
Figure 87. Output Current Limit  
VOUT = 1.8 V  
Figure 88. Dropout Voltage vs Output Current  
VIN = 1.764 V, VOUT = 1.8 V  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
33/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU18JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
1.85  
1.83  
1.81  
1.79  
1.77  
1.75  
15  
10  
5
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
0
2.3  
3.3  
4.3  
5.3  
0
0.1  
0.2  
0.3  
Input Voltage: V [V]  
Output Current: IOUT [A]  
IN  
Figure 89. Line Regulation  
VOUT = 1.8 V, IOUT = 50 mA  
Figure 90. Load Regulation  
VOUT = 1.8 V, IOUT = 1 mA to 300 mA  
s
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT=50mA  
IOUT=100mA  
IOUT=300mA  
Tj = -40 °C  
Tj = +25 °C  
Tj = +125 °C  
0.01 0.1  
1
10 100 1000 10000  
Frequency: f [kHz]  
0.01 0.1  
1
10  
100 1000 10000  
Frequency: f [kHz]  
Figure 91. PSRR vs Frequency and Output Current  
CIN = 0 µF, COUT = 10 µF  
Figure 92. PSRR vs Frequency and Temparature  
CIN = 0 µF, COUT = 10 µF  
VOUT = 1.8 V  
VIN = 5 V, VOUT = 1.8 V, IOUT = 300 mA  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
34/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU18JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
1.836  
1.824  
1.812  
1.800  
1.788  
1.776  
1.764  
80  
60  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
IOUT=1mA  
IOUT=50mA  
IOUT=100mA  
IOUT=300mA  
-40  
10  
60  
110  
160  
0
100 200 300 400 500  
Tj(℃)  
Time [μs]  
Figure 93. Output Voltage vs Junction temperature  
VOUT = 1.8 V  
Figure 94. Load Transient  
VOUT = 1.8 V  
tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF  
Tj = -40 °C  
80  
60  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
80  
60  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
40  
40  
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 95. Load Transient  
VOUT = 1.8 V  
Figure 96. Load Transient  
VOUT = 1.8 V  
tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF  
Tj = 25 °C  
tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
35/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU18JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-50  
-50  
-100  
-150  
-200  
-250  
-300  
-100  
-150  
-200  
-250  
-300  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 97. Load Transient  
VOUT = 1.8 V  
Figure 98. Load Transient  
VOUT = 1.8 V  
tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 25 °C  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
0
-50  
-100  
-150  
-200  
-250  
-300  
0
100 200 300 400 500  
Time [μs]  
Figure 99. Load Transient  
VOUT = 1.8 V  
tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
36/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU18JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 100. Load Transient  
VOUT = 1.8 V  
Figure 101. Load Transient  
VOUT = 1.8 V  
tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 25 °C  
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
0
-20  
-40  
-60  
-80  
0
100 200 300 400 500  
Time [μs]  
Figure 102. Load Transient  
VOUT = 1.8 V  
tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
37/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU18JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-50  
-50  
-100  
-150  
-200  
-250  
-300  
-100  
-150  
-200  
-250  
-300  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 103. Load Transient  
VOUT = 1.8 V  
Figure 104. Load Transient  
VOUT = 1.8 V  
tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 25 °C  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
0
-50  
-100  
-150  
-200  
-250  
-300  
0
100 200 300 400 500  
Time [μs]  
Figure 105. Load Transient  
VOUT = 1.8 V  
tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
38/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU18JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 106. Load Transient  
VOUT = 1.8 V  
Figure 107. Load Transient  
VOUT = 1.8 V  
tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 25 °C  
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
0
-20  
-40  
-60  
-80  
0
100 200 300 400 500  
Time [μs]  
Figure 108. Load Transient  
VOUT = 1.8 V  
tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
39/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU18JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
4
3.5  
3
100  
80  
60  
40  
20  
0
4
3.5  
3
100  
80  
60  
40  
20  
0
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 109. Line Transient  
VOUT = 1.8 V  
Figure 110. Line Transient  
VOUT = 1.8 V  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = 25 °C  
4
3.5  
3
100  
4
3.5  
3
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 111. Line Transient  
VOUT = 1.8 V  
Figure 112. Line Transient  
VOUT = 1.8 V  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = 85 °C  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
40/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU18JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
4
3.5  
3
100  
80  
60  
40  
20  
0
4
3.5  
3
100  
80  
60  
40  
20  
0
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 113. Line Transient  
VOUT = 1.8 V  
Figure 114. Line Transient  
VOUT = 1.8 V  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = 25 °C  
4
3.5  
3
100  
4
3.5  
3
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 115. Line Transient  
VOUT = 1.8 V  
Figure 116. Line Transient  
VOUT = 1.8 V  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = 85 °C  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
41/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU18JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
4
3.5  
3
100  
80  
60  
40  
20  
0
4
3.5  
3
100  
80  
60  
40  
20  
0
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 117. Line Transient  
VOUT = 1.8 V  
Figure 118. Line Transient  
VOUT = 1.8 V  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = 25 °C  
4
3.5  
3
100  
4
3.5  
3
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 119. Line Transient  
VOUT = 1.8 V  
Figure 120. Line Transient  
VOUT = 1.8 V  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = 85 °C  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
42/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU18JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
5
4.5  
4
300  
250  
200  
150  
100  
50  
5
4.5  
4
300  
250  
200  
150  
100  
50  
VIN  
VIN  
EN  
EN  
VOUT  
IOUT  
VOUT  
IOUT  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
0
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 121. Start Up Waveform  
VOUT = 1.8 V, IOUT = 50 mA  
VIN = 3.3 V, COUT = 10 µF  
Tj = -40 °C  
Figure 122. Start Up Waveform  
VOUT = 1.8 V, IOUT = 50 mA  
VIN = 3.3 V, COUT = 10 µF  
Tj = 25 °C  
5
4.5  
4
300  
250  
200  
150  
100  
50  
VIN  
EN  
VOUT  
IOUT  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
0
100  
200  
300  
Time(μs)  
Figure 123. Start Up Waveform  
VOUT = 1.8 V, IOUT = 50 mA  
VIN = 3.3 V, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
43/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU18JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
6
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
6
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
VIN  
VIN  
EN  
EN  
VOUT  
IOUT  
VOUT  
IOUT  
0
0
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 124. Start Up Waveform  
VOUT = 1.8 V, IOUT = 50 mA  
VIN = 5.0 V, COUT = 10 µF  
Tj = -40 °C  
Figure 125. Start Up Waveform  
VOUT = 1.8 V, IOUT = 50 mA  
VIN = 5.0 V, COUT = 10 µF  
Tj = 25 °C  
6
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
VIN  
EN  
VOUT  
IOUT  
0
0
100  
200  
300  
Time(μs)  
Figure 126. Start Up Waveform  
VOUT = 1.8 V, IOUT = 50 mA  
VIN = 5.0 V, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
44/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU25JA3DG-C)  
Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
80  
2.5  
70  
60  
2
50  
1.5  
40  
30  
1
Tj = -40 °C  
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
Tj = +25 °C  
Tj = +85 °C  
20  
0.5  
Tj = +125 °C  
10  
Tj = +150 °C  
0
0
0
2
4
6
0
2
4
6
Input Voltage: V [V]  
Input Voltage: V [V]  
IN  
IN  
Figure 127. Output Voltage vs Input Voltage  
VOUT = 2.5 V  
Figure 128. Circuit Current vs Input Voltage  
VOUT = 2.5 V  
Tj = -40 °C  
0.2  
0.15  
0.1  
2.5  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
2
1.5  
1
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
0.05  
0
0.5  
0
0
0.2  
0.4  
0.6  
0
0.1  
0.2  
0.3  
Output Current: IOUT [A]  
Output Current: IOUT [A]  
Figure 129. Output Current Limit  
VOUT = 2.5 V  
Figure 130. Dropout Voltage vs Output Current  
VIN = 2.45 V, VOUT = 2.5 V  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
45/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU25JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
15  
10  
5
2.55  
2.54  
2.53  
2.52  
2.51  
2.5  
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
2.49  
2.48  
2.47  
2.46  
2.45  
0
0
0.1  
0.2  
0.3  
3
4
5
6
Output Current: IOUT [A]  
Input Voltage: V [V]  
IN  
Figure 131. Line Regulation  
VOUT = 2.5 V, IOUT = 50 mA  
Figure 132. Load Regulation  
VOUT = 2.5 V, IOUT = 1 mA to 300 mA  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +125 °C  
IOUT=50mA  
IOUT=100mA  
IOUT=300mA  
0.01 0.1  
1
10 100 1000 10000  
0.01 0.1  
1
10 100 1000 10000  
Frequency: f [kHz]  
Frequency: f [kHz]  
Figure 133. PSRR vs Frequency and Output Current  
CIN = 0 µF, COUT = 10 µF  
Figure 134. PSRR vs Frequency and Temparature  
CIN = 0 µF, COUT = 10 µF  
VOUT = 2.5 V  
VIN = 5 V, VOUT = 2.5 V, IOUT = 300 mA  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
46/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU25JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
2.55  
2.54  
2.53  
2.52  
2.51  
2.5  
80  
60  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
2.49  
2.48  
2.47  
2.46  
2.45  
IOUT = 1 mA  
IOUT = 50 mA  
IOUT = 100 mA  
IOUT = 300 mA  
-40  
10  
60  
110  
160  
0
100 200 300 400 500  
Junction Temperature: Tj [°C]  
Time [μs]  
Figure 135. Output Voltage vs Junction temperature  
VOUT = 2.5 V  
Figure 136. Load Transient  
VOUT = 2.5 V  
tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF  
Tj = -40 °C  
80  
60  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
80  
60  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
40  
40  
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 137. Load Transient  
VOUT = 2.5 V  
Figure 138. Load Transient  
VOUT = 2.5 V  
tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF  
Tj = 25 °C  
tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
47/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU25JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
150  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
150  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-50  
-50  
-100  
-150  
-200  
-250  
-300  
-100  
-150  
-200  
-250  
-300  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 139. Load Transient  
VOUT = 2.5 V  
Figure 140. Load Transient  
VOUT = 2.5 V  
tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 25 °C  
150  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
150  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-50  
-50  
-100  
-150  
-200  
-250  
-300  
-100  
-150  
-200  
-250  
-300  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 141. Load Transient  
VOUT = 2.5 V  
Figure 142. Load Transient  
VOUT = 2.5 V  
tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 150 °C  
tR = tF = 1 µs, IOUT = 1 mA to 300 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
48/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU25JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 143. Load Transient  
VOUT = 2.5 V  
Figure 144. Load Transient  
VOUT = 2.5 V  
tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 25 °C  
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
0
-20  
-40  
-60  
-80  
0
100 200 300 400 500  
Time [μs]  
Figure 145. Load Transient  
VOUT = 2.5 V  
tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
49/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU25JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
150  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
150  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-50  
-50  
-100  
-150  
-200  
-250  
-300  
-100  
-150  
-200  
-250  
-300  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 146. Load Transient  
VOUT = 2.5 V  
Figure 147. Load Transient  
VOUT = 2.5 V  
tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 25 °C  
150  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
150  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-50  
-50  
-100  
-150  
-200  
-250  
-300  
-100  
-150  
-200  
-250  
-300  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 148. Load Transient  
VOUT = 2.5 V  
Figure 149. Load Transient  
VOUT = 2.5 V  
tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 150 °C  
tR = tF = 10 µs, IOUT = 1 mA to 300 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
50/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU25JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 150. Load Transient  
VOUT = 1.5 V  
Figure 151. Load Transient  
VOUT = 1.5 V  
tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 25 °C  
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
0
-20  
-40  
-60  
-80  
0
100 200 300 400 500  
Time [μs]  
Figure 152. Load Transient  
VOUT = 1.5 V  
tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
51/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU25JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
5
4.5  
4
100  
80  
60  
40  
20  
0
5
4.5  
4
100  
80  
60  
40  
20  
0
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 153. Line Transient  
VOUT = 2.5 V  
Figure 154. Line Transient  
VOUT = 2.5 V  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = 25 °C  
5
4.5  
4
100  
5
4.5  
4
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 155. Line Transient  
VOUT = 2.5 V  
Figure 156. Line Transient  
VOUT = 2.5 V  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = 85 °C  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
52/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU25JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
5
4.5  
4
100  
80  
60  
40  
20  
0
5
4.5  
4
100  
80  
60  
40  
20  
0
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 157. Line Transient  
VOUT = 2.5 V  
Figure 158. Line Transient  
VOUT = 2.5 V  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = 25 °C  
5
4.5  
4
100  
5
4.5  
4
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 159. Line Transient  
VOUT = 2.5 V  
Figure 160. Line Transient  
VOUT = 2.5 V  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = 85 °C  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
53/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU25JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
5
4.5  
4
100  
80  
60  
40  
20  
0
5
4.5  
4
100  
80  
60  
40  
20  
0
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 161. Line Transient  
VOUT = 2.5 V  
Figure 162. Line Transient  
VOUT = 2.5 V  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = 25 °C  
5
4.5  
4
100  
5
4.5  
4
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 163. Line Transient  
VOUT = 2.5 V  
Figure 164. Line Transient  
VOUT = 2.5 V  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = 85 °C  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
54/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU25JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
5
4.5  
4
300  
250  
200  
150  
100  
50  
5
4.5  
4
300  
250  
200  
150  
100  
50  
VIN  
VIN  
EN  
EN  
VOUT  
IOUT  
VOUT  
IOUT  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
0
0
100  
200  
300  
400  
0
100  
200  
300  
400  
Time(μs)  
Time(μs)  
Figure 165. Start Up Waveform  
VOUT = 2.5 V, IOUT = 50 mA  
VIN = 3.3 V, COUT = 10 µF  
Tj = -40 °C  
Figure 166. Start Up Waveform  
VOUT = 2.5 V, IOUT = 50 mA  
VIN = 3.3 V, COUT = 10 µF  
Tj = 25 °C  
5
4.5  
4
300  
250  
200  
150  
100  
50  
VIN  
EN  
VOUT  
IOUT  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
0
100  
200  
300  
400  
Time(μs)  
Figure 167. Start Up Waveform  
VOUT = 2.5 V, IOUT = 50 mA  
VIN = 3.3 V, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
55/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU25JA3DG-C) - continued  
Unless otherwise specified, VIN = 3.5 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
6
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
6
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
VIN  
VIN  
EN  
EN  
VOUT  
IOUT  
VOUT  
IOUT  
0
0
0
100  
200  
300  
400  
0
100  
200  
300  
400  
Time(μs)  
Time(μs)  
Figure 168. Start Up Waveform  
VOUT = 2.5 V, IOUT = 50 mA  
VIN = 5.0 V, COUT = 10 µF  
Tj = -40 °C  
Figure 169. Start Up Waveform  
VOUT = 2.5 V, IOUT = 50 mA  
VIN = 5.0 V, COUT = 10 µF  
Tj = 25 °C  
6
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
VIN  
EN  
VOUT  
IOUT  
0
0
100  
200  
300  
400  
Time(μs)  
Figure 170. Start Up Waveform  
VOUT = 2.5 V, IOUT = 50 mA  
VIN = 5.0 V, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
56/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU30JA3DG-C)  
Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
100  
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
3
90  
80  
2.5  
70  
2
60  
50  
1.5  
40  
Tj = -40 °C  
1
0.5  
0
30  
20  
10  
0
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
0
2
4
6
0
2
4
6
Input Voltage: V [V]  
Input Voltage: V [V]  
IN  
IN  
Figure 171. Output Voltage vs Input Voltage  
VOUT = 3.0 V  
Figure 172. Circuit Current vs Input Voltage  
VOUT = 3.0 V  
0.2  
3
0.18  
0.16  
0.14  
0.12  
0.1  
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
2.5  
2
1.5  
1
0.08  
0.06  
0.04  
0.02  
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
0.5  
0
0
0.2  
0.4  
0.6  
0
0.1  
0.2  
0.3  
Output Current: IOUT [A]  
Output Current: IOUT [A]  
Figure 173. Output Current Limit  
VOUT = 3.0 V  
Figure 174. Dropout Voltage vs Output Current  
VIN = 2.94 V, VOUT = 3.0 V  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
57/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU30JA3DG-C) - continued  
Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
3.05  
3.04  
3.03  
3.02  
3.01  
3
15  
10  
5
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
2.99  
2.98  
2.97  
2.96  
2.95  
0
0
0.1  
0.2  
0.3  
3.5  
4
4.5  
5
5.5  
6
Output Current: IOUT [A]  
Input Voltage: V [V]  
IN  
Figure 175. Line Regulation  
VOUT = 3.0V, IOUT = 50 mA  
Figure 176. Load Regulation  
VOUT = 3.0V, IOUT = 1 mA to 300 mA  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +125 °C  
IOUT = 50 mA  
IOUT = 100 mA  
IOUT = 300 mA  
0.01 0.1  
1
10 100 100010000  
0.01 0.1  
1
10 100 1000 10000  
Frequency: f [kHz]  
Frequency: f [kHz]  
Figure 177. PSRR vs Frequency and Output Current  
CIN = 0 µF, COUT = 10 µF  
Figure 178. PSRR vs Frequency and Temparature  
CIN = 0 µF, COUT = 10 µF  
VOUT = 3.0 V  
VIN = 5 V, VOUT = 3.0 V, IOUT = 300 mA  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
58/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU30JA3DG-C) - continued  
Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
3.06  
3.04  
3.02  
3
80  
60  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
2.98  
2.96  
2.94  
IOUT = 1 mA  
IOUT = 50 mA  
IOUT = 100 mA  
IOUT = 300 mA  
-40  
10  
60  
110  
160  
0
100 200 300 400 500  
Junction Temperature: Tj [°C]  
Time [μs]  
Figure 179. Output Voltage vs Junction temperature  
VOUT = 3.0 V  
Figure 180. Load Transient  
VOUT = 3.0 V  
tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF  
Tj = -40 °C  
80  
60  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
80  
60  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
40  
40  
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 181. Load Transient  
VOUT = 3.0 V  
Figure 182. Load Transient  
VOUT = 3.0 V  
tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF  
Tj = 25 °C  
tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
59/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU30JA3DG-C) - continued  
Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
150  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
150  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-50  
-50  
-100  
-150  
-200  
-250  
-300  
-100  
-150  
-200  
-250  
-300  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 183. Load Transient  
VOUT = 3.0 V  
Figure 184. Load Transient  
VOUT = 3.0 V  
tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 25 °C  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
150  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-50  
-50  
-100  
-150  
-200  
-250  
-300  
-100  
-150  
-200  
-250  
-300  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 185. Load Transient  
VOUT = 3.0 V  
Figure 186. Load Transient  
VOUT = 3.0 V  
tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 150 °C  
tR = tF = 1 µs, IOUT = 1 mA to 300 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
60/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU30JA3DG-C) - continued  
Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 187. Load Transient  
VOUT = 3.0 V  
Figure 188. Load Transient  
VOUT = 3.0 V  
tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 25 °C  
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
0
-20  
-40  
-60  
-80  
0
100 200 300 400 500  
Time [μs]  
Figure 189. Load Transient  
VOUT = 3.0 V  
tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
61/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU30JA3DG-C) - continued  
Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-50  
-50  
-100  
-150  
-200  
-250  
-300  
-100  
-150  
-200  
-250  
-300  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 190. Load Transient  
VOUT = 3.0 V  
Figure 191. Load Transient  
VOUT = 3.0 V  
tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 25 °C  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-50  
-50  
-100  
-150  
-200  
-250  
-300  
-100  
-150  
-200  
-250  
-300  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 192. Load Transient  
VOUT = 3.0 V  
Figure 193. Load Transient  
VOUT = 3.0 V  
tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 150 °C  
tR = tF = 10 µs, IOUT = 1 mA to 300 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
62/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU30JA3DG-C) - continued  
Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 194. Load Transient  
VOUT = 3.0 V  
Figure 195. Load Transient  
VOUT = 3.0 V  
tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 25 °C  
40  
20  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
0
-20  
-40  
-60  
-80  
0
100 200 300 400 500  
Time [μs]  
Figure 196. Load Transient  
VOUT = 3.0 V  
tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
63/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU30JA3DG-C) - continued  
Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
5
4.5  
4
100  
80  
60  
40  
20  
0
5
4.5  
4
100  
80  
60  
40  
20  
0
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time [μs]  
Time [μs]  
Figure 197. Line Transient  
VOUT = 3.0 V  
Figure 198. Line Transient  
VOUT = 3.0 V  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = 25 °C  
5
4.5  
4
100  
5
4.5  
4
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time [μs]  
Time [μs]  
Figure 199. Line Transient  
VOUT = 3.0 V  
Figure 200. Line Transient  
VOUT = 3.0 V  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = 85 °C  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
64/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU30JA3DG-C) - continued  
Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
5
4.5  
4
100  
80  
60  
40  
20  
0
5
4.5  
4
100  
80  
60  
40  
20  
0
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time [μs]  
Time [μs]  
Figure 201. Line Transient  
VOUT = 3.0 V  
Figure 202. Line Transient  
VOUT = 3.0 V  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = 25 °C  
5
4.5  
4
100  
5
4.5  
4
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time [μs]  
Time [μs]  
Figure 203. Line Transient  
VOUT = 3.0 V  
Figure 204. Line Transient  
VOUT = 3.0 V  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = 85 °C  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
65/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU30JA3DG-C) - continued  
Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
5
4.5  
4
100  
80  
60  
40  
20  
0
5
4.5  
4
100  
80  
60  
40  
20  
0
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 205. Line Transient  
VOUT = 3.0 V  
Figure 206. Line Transient  
VOUT = 3.0 V  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = 25 °C  
5
4.5  
4
100  
5
4.5  
4
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 207. Line Transient  
VOUT = 3.0 V  
Figure 208. Line Transient  
VOUT = 3.0 V  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = 85 °C  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
66/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU30JA3DG-C) - continued  
Unless otherwise specified, VIN = 4.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
6
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
6
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
VIN  
EN  
VIN  
EN  
VOUT  
IOUT  
VOUT  
IOUT  
0
0
0
100  
200  
300  
400  
0
100  
200  
300  
400  
Time [μs]  
Time [μs]  
Figure 209. Start Up Waveform  
VOUT = 3.0 V, IOUT = 50 mA  
VIN = 5.0 V, COUT = 10 µF  
Tj = -40 °C  
Figure 210. Start Up Waveform  
VOUT = 3.0 V, IOUT = 50 mA  
VIN = 5.0 V, COUT = 10 µF  
Tj = 25 °C  
6
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
VIN  
EN  
VOUT  
IOUT  
0
0
100  
200  
300  
400  
Time [μs]  
Figure 211. Start Up Waveform  
VOUT = 3.0 V, IOUT = 50 mA  
VIN = 5.0 V, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
67/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU33JA3DG-C)  
Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
3.5  
3
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5  
2
1.5  
1
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
0.5  
0
0
2
4
6
0
2
4
6
Input Voltage: V [V]  
Input Voltage: V [V]  
IN  
IN  
Figure 212. Output Voltage vs Input Voltage  
VOUT = 3.3 V  
Figure 213. Circuit Current vs Input Voltage  
VOUT = 3.3 V  
3.5  
0.18  
0.16  
0.14  
0.12  
0.1  
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
3
2.5  
2
0.08  
0.06  
0.04  
0.02  
0
1.5  
1
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
0.5  
0
0
0.2  
0.4  
0.6  
0
0.1  
0.2  
0.3  
Output Current: IOUT [A]  
Output Current: IOUT [A]  
Figure 214. Output Current Limit  
VOUT = 3.3 V  
Figure 215. Dropout Voltage vs Output Current  
VIN = 3.234 V, VOUT = 3.3 V  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
68/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU33JA3DG-C)- continued  
Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
3.35  
3.33  
3.31  
3.29  
3.27  
3.25  
15  
10  
5
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
0
3.8  
4.3  
4.8  
5.3  
5.8  
0
0.1  
0.2  
0.3  
Input Voltage: V [V]  
Output Current: IOUT [A]  
IN  
Figure 216. Line Regulation  
VOUT = 3.3 V, IOUT = 50 mA  
Figure 217. Load Regulation  
VOUT = 3.3 V, IOUT = 1 mA to 300 mA  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT=50mA  
IOUT=100mA  
IOUT=300mA  
Tj = -40 °C  
Tj = +25 °C  
Tj = +125 °C  
0.01 0.1  
1
10  
100 1000 10000  
0.01 0.1  
1
10  
100 1000 10000  
Frequency: f [kHz]  
Frequency: f [kHz]  
Figure 218. PSRR vs Frequency and Output Current  
CIN = 0 µF, COUT = 10 µF  
Figure 219. PSRR vs Frequency and Temparature  
CIN = 0 µF, COUT = 10 µF  
VOUT = 3.3 V  
VIN = 5 V, VOUT = 3.3 V, IOUT = 300 mA  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
69/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU33JA3DG-C) - continued  
Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
80  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
3.354  
60  
40  
20  
3.334  
3.314  
3.294  
3.274  
3.254  
3.234  
0
-20  
-40  
-60  
-80  
-100  
IOUT = 1 mA  
IOUT = 50 mA  
IOUT = 100 mA  
IOUT = 300 mA  
-40  
10  
60  
110  
160  
0
100 200 300 400 500  
Junction Temperature:Tj [°C]  
Time [μs]  
Figure 220. Output Voltage vs Junction temperature  
VOUT = 3.3 V  
Figure 221. Load Transient  
VOUT = 3.3 V  
tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF  
Tj = -40 °C  
80  
60  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
80  
60  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
40  
40  
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 222. Load Transient  
VOUT = 3.3 V  
Figure 223. Load Transient  
VOUT = 3.3 V  
tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF  
Tj = 25 °C  
tR = tF = 1 µs, IOUT = 0 mA to 100 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
70/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU33JA3DG-C) - continued  
Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
150  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
150  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-50  
-50  
-100  
-150  
-200  
-250  
-300  
-100  
-150  
-200  
-250  
-300  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 224. Load Transient  
VOUT = 3.3 V  
Figure 225. Load Transient  
VOUT = 3.3 V  
tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 25 °C  
150  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
150  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-50  
-50  
-100  
-150  
-200  
-250  
-300  
-100  
-150  
-200  
-250  
-300  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 226. Load Transient  
VOUT = 3.3 V  
Figure 227. Load Transient  
VOUT = 3.3 V  
tR = tF = 1 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 150 °C  
tR = tF = 1 µs, IOUT = 1 mA to 300 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
71/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU33JA3DG-C) - continued  
Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
60  
40  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
60  
40  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 228. Load Transient  
VOUT = 3.3 V  
Figure 229. Load Transient  
VOUT = 3.3 V  
tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 25 °C  
60  
40  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
20  
0
-20  
-40  
-60  
-80  
-100  
0
100 200 300 400 500  
Time [μs]  
Figure 230. Load Transient  
VOUT = 3.3 V  
tR = tF = 1 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
72/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU33JA3DG-C) - continued  
Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
150  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
150  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-50  
-50  
-100  
-150  
-200  
-250  
-300  
-100  
-150  
-200  
-250  
-300  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 231. Load Transient  
VOUT = 3.3 V  
Figure 232. Load Transient  
VOUT = 3.3 V  
tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 25 °C  
150  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
150  
100  
50  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
0
0
-50  
-50  
-100  
-150  
-200  
-250  
-300  
-100  
-150  
-200  
-250  
-300  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 233. Load Transient  
VOUT = 3.3 V  
Figure 234. Load Transient  
VOUT = 3.3 V  
tR = tF = 10 µs, IOUT = 0 mA to 300 mA, COUT = 10 µF  
Tj = 150 °C  
tR = tF = 10 µs, IOUT = 1 mA to 300 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
73/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU33JA3DG-C) - continued  
Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
60  
40  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
60  
40  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
VOUT  
IOUT  
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-20  
-40  
-60  
-80  
-100  
0
100 200 300 400 500  
0
100 200 300 400 500  
Time [μs]  
Time [μs]  
Figure 235. Load Transient  
VOUT = 3.3 V  
Figure 236. Load Transient  
VOUT = 3.3 V  
tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 25 °C  
60  
40  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VOUT  
IOUT  
20  
0
-20  
-40  
-60  
-80  
-100  
0
100 200 300 400 500  
Time [μs]  
Figure 237. Load Transient  
VOUT = 3.3 V  
tR = tF = 10 µs, IOUT = 90 mA to 210 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
74/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU33JA3DG-C) - continued  
Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
5
4.5  
4
100  
80  
60  
40  
20  
0
5
4.5  
4
100  
80  
60  
40  
20  
0
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 238. Line Transient  
VOUT = 3.3 V  
Figure 239. Line Transient  
VOUT = 3.3 V  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = 25 °C  
5
4.5  
4
100  
5
4.5  
4
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 240. Line Transient  
VOUT = 3.3 V  
Figure 241. Line Transient  
VOUT = 3.3 V  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = 85 °C  
tR = tF = 1 V/µs, IOUT = 50 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
75/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU33JA3DG-C) - continued  
Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
5
4.5  
4
100  
80  
60  
40  
20  
0
5
4.5  
4
100  
80  
60  
40  
20  
0
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 242. Line Transient  
VOUT = 3.3 V  
Figure 243. Line Transient  
VOUT = 3.3 V  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = 25 °C  
5
4.5  
4
100  
5
4.5  
4
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 244. Line Transient  
VOUT = 3.3 V  
Figure 245. Line Transient  
VOUT = 3.3 V  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = 85 °C  
tR = tF = 1 V/µs, IOUT = 100 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
76/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU33JA3DG-C) - continued  
Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
5
4.5  
4
100  
80  
60  
40  
20  
0
5
4.5  
4
100  
80  
60  
40  
20  
0
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 246. Line Transient  
VOUT = 3.3 V  
Figure 247. Line Transient  
VOUT = 3.3 V  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = -40 °C  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = 25 °C  
5
4.5  
4
100  
5
4.5  
4
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
VIN  
VIN  
-20  
-40  
-20  
-40  
0.5  
0
0.5  
0
VOUT  
VOUT  
0
100  
200  
300  
0
100  
200  
300  
Time(μs)  
Time(μs)  
Figure 248. Line Transient  
VOUT = 3.3 V  
Figure 249. Line Transient  
VOUT = 3.3 V  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = 85 °C  
tR = tF = 1 V/µs, IOUT = 300 mA, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
77/93  
BUxxJA3DG-C series  
Typical Performance Curves (BU33JA3DG-C) - continued  
Unless otherwise specified, VIN = 4.3 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
6
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
6
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
VIN  
EN  
VIN  
EN  
VOUT  
IOUT  
VOUT  
IOUT  
0
0
0
100  
200  
300  
400  
0
100  
200  
300  
400  
Time(μs)  
Time(μs)  
Figure 250. Start Up Waveform  
VOUT = 3.3 V, IOUT = 50 mA  
VIN = 5.0 V, COUT = 10 µF  
Tj = -40 °C  
Figure 251. Start Up Waveform  
VOUT = 3.3 V, IOUT = 50 mA  
VIN = 5.0 V, COUT = 10 µF  
Tj = 25 °C  
6
5
4
3
2
1
0
300  
250  
200  
150  
100  
50  
VIN  
EN  
VOUT  
IOUT  
0
0
100  
200  
300  
400  
Time(μs)  
Figure 252. Start Up Waveform  
VOUT = 3.3 V, IOUT = 50 mA  
VIN = 5.0 V, COUT = 10 µF  
Tj = 150 °C  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
78/93  
BUxxJA3DG-C series  
Typical Performance Curves  
Unless otherwise specified, VIN = VOUT + 1.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
10  
8
120  
100  
80  
60  
40  
20  
0
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
6
4
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +125 °C  
Tj = +150 °C  
2
0
0
2
4
6
0
0.1  
0.2  
0.3  
Input Voltage: V [V]  
Output Current: IOUT [A]  
IN  
Figure 253. Shutdown Current vs Input Voltage  
(VEN = 0 V)  
Figure 254. GND Current vs Output Current  
70  
1.4  
60  
50  
40  
30  
20  
10  
0
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
IOUT = 500 μA  
IOUT = 50 mA  
-40  
10  
60  
110  
160  
-40  
10  
60  
110  
160  
Junction Temparature: Tj [°C]  
Junction Temparature:Tj [°C]  
Figure 255. GND Current vs Junction Temparature  
Figure 256. Thermal Shutdown Activation  
VOUT = 1.2 V  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
79/93  
BUxxJA3DG-C series  
Typical Performance Curves - continued  
Unless otherwise specified, VIN = VOUT+1.0 V, VEN = 1.5 V, CIN = 0.1 µF, COUT = 1.0 µF  
1.1  
1
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Tj = -40 °C  
Tj = +25 °C  
Tj = +85 °C  
Tj = +150 °C  
EN On Threshold  
EN Off Threshold  
0.9  
0.8  
0.7  
0.6  
0.5  
-40  
10  
60  
110  
160  
0
2
4
6
Junction Temparature:Tj [°C]  
Enable Input Voltage: VEN [V]  
Figure 257. EN Threshold Voltage vs Junction Temperature  
Figure 258. Enable Input Current vs Enable Input Voltage  
10  
1
10  
1
0.1  
0.1  
IOUT = 0 mA  
IOUT = 0 mA  
IOUT = 50 mA  
IOUT = 300 mA  
IOUT = 50 mA  
IOUT = 300 mA  
0.01  
0.01  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency[Hz]  
Frequency [Hz]  
Figure 259. Output Noise Density vs Frequency  
VOUT = 1.2 V  
Figure 260. Output Noise Density vs Frequency  
VOUT = 3.3 V  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
80/93  
BUxxJA3DG-C series  
Application and Implementation  
Notice: The following information is given as a reference or hint for the application and the implementation. Therefore, it does  
not guarantee its operation on a specific function, accuracy, or external components in the application. Application  
should be designed with sufficient margin by enough understanding the characteristics of the external components,  
e.g., capacitor, and also by appropriate verification in the actual operating conditions.  
Selection of External Components  
Input Pin Capacitor  
If the battery is placed far from the regulator or the impedance of the input-side is high, higher capacitance is required for  
the input capacitor in order to prevent the voltage-drop at the input line. The input capacitor and its capacitance should be  
selected depending on the line impedance which is between the input pin and the smoothing filter circuit of the power  
supply. Therefore, an appropriate capacitance value which is selected by the consideration of the input impedance is  
different for each application. Generally, the capacitor with capacitance value of 0.1 µF (Min) with good high frequency  
characteristic is recommended for this regulator.  
In addition, to prevent regulator characteristics from getting affected by deviation or variation of the external capacitor  
characteristic, all input capacitors mentioned above is recommended to have a good DC bias characteristic and a stable  
temperature characteristic (approximately ±15 %, e.g., X7R and X8R), satisfying high absolute maximum voltage rating  
based on EIA standard. This capacitor must be placed close to the input pin and is better to be mounted on the same board  
side of the regulator.  
Output Pin Capacitor  
The output capacitor is mandatory for the regulator in order to realize stable operation. The output capacitor with  
capacitance value ≥ 0.47 µF (Min) and ESR up to 1 Ω (Max) is required between the output pin and the GND pin.  
Appropriately selected capacitance value and ESR for the output capacitor can improve the transient behavior of the  
regulator and can also keep the stability with better regulation loop. The correlation of the output capacitance value and  
ESR is shown in the graph Output Capacitance COUT, ESR Available Area on the next page. As described in the graph, this  
regulator is designed to be stable with ceramic capacitors such as MLCC, with capacitance value from 0.47 µF to 47 µF,  
and with ESR value in the range of approximately 0 Ω to 1 Ω. The frequency range of ESR can be generally considered as  
within about 10 kHz to 100 kHz.  
Note that the provided stable area of the capacitance value and ESR in the graph is obtained under a specific set of  
conditions which is based on the measurement result of a single IC on our board with a resistive load. In the actual  
environment, the stability is affected by wire impedance on the board, input power supply impedance, and by load  
impedance. Therefore, also note that a careful evaluation with actual application, actual usage environment, and actual  
conditions is necessary to confirm the actual stability of the system.  
Generally, in the transient event which exceeds the gain bandwidth of regulation loop caused by the input voltage fluctuation  
or by the load fluctuation, the transient response ability of the regulator depends on the capacitance value of the output  
capacitor. Basically, capacitance value 0.47 µF (Min) and more for the output capacitor is recommended as shown in the  
table of Output Capacitance COUT, ESR Available Area. It is expected that the bigger the capacitance value is the better the  
transient response ability will be in high frequency. Various type of capacitors can be used for this high capacity of the  
output capacitor including electrolytic capacitor, electro-conductive polymer capacitor, and tantalum capacitor. Note that  
depending on the type of capacitors, the size of ESR (1 ) absolute value, temperature dependency of capacitance value,  
and increasing ESR at cold temperature needs to be taken into consideration.  
Similar to the input pin capacitor, to avoid the influence of the deviation and variation caused by the external capacitor  
characteristic, all output capacitor mentioned above must select good DC bias characteristic and temperature characteristic  
(approximately ±15 %, e.g., X7R, X8R) satisfying high absolute maximum voltage rating based on EIA standard. These  
capacitors should be placed close to the output pin and mounted on the same board side of the regulator, not to be  
influenced by implement impedance.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
81/93  
BUxxJA3DG-C series  
Application and Implementation - continued  
1.2  
Unstable Available Area  
1
0.8  
0.6  
0.4  
0.2  
Stable Available Area  
0.47 μF ≤ COUT ≤ 47 μF  
ESR(COUT) ≤ 1 Ω  
0
0.1  
1
10  
Output Capacitance COUT [μF]  
Figure 261. Output Capacitance COUT, ESR Stable Available Area  
(-40 °C ≤ Tj ≤ +150 °C, 1.7 V ≤ VIN ≤ 6.5 V, VEN = 1.5 V, IOUT = 0 mA to 300 mA)  
Typical Application  
Parameter  
Symbol  
Reference Value for Application  
IOUT ≤ 300 mA  
Output Current Range  
Output Voltage Range  
Output Capacitor  
IOUT  
VOUT  
COUT  
VIN  
1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.0 V, 3.3 V  
1.0 µF  
Input Voltage  
5.0 V  
Input Capacitor (Note 1)  
Enable Mode Voltage  
Disable Mode Voltage  
CIN  
0.1 µF  
VENH  
VENL  
1.1 V to VIN  
0 V to 0.5 V  
(Note 1) If the inductance of power supply line is high, please adjust input capacitor value.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
82/93  
BUxxJA3DG-C series  
Application and Implementation - continued  
Surge Voltage Protection for Linear Regulators  
The following shows some helpful tips to protect ICs from the possibility of surge being input which exceeds absolute  
maximum rating.  
Positive Surge to the Input  
If there is any potential risk that positive surge higher than absolute maximum rating, e.g., 6.5 V, may be applied to the  
input, a Zener Diode should be insert between the VIN and the GND to protect the device as shown in Figure 262.  
VIN  
VOUT  
GND  
VIN  
VOUT  
COUT  
D1  
CIN  
Figure 262. Surges Higher than 6.5 V is applied to the Input  
Negative Surge to the Input  
If there is any potential risk that negative surge lower than the absolute maximum rating, e.g., -0.3 V, may be applied to  
the input, a Schottky Diode should be insert between the VIN and the GND to protect the device as shown in Figure 263.  
VIN  
VOUT  
GND  
VIN  
VOUT  
COUT  
D1  
CIN  
Figure 263. Surges Lower than -0.3 V is applied to the Input  
Reverse Voltage Protection for Linear Regulators  
A linear regulator which is one of the integrated circuits (IC) operates normally in the condition that higher input voltage is  
always supplied than the output voltage. However, there is a possibility of abnormal situation to occur where the output voltage  
becomes higher than the input voltage. As for the input and output, voltage and current condition may be reversed due to  
reverse polarity connection and certain inductor component. If the countermeasure is not implemented, it may cause damage  
to the IC. The following describe protection method of ICs in reverse voltage occasion.  
Protection Against Reverse Input/Output Voltage  
In the case where MOS FET is used as a pass transistor, a parasitic body diode generally exists between the drain-source.  
If the output voltage becomes higher than the input voltage and with its voltage difference exceeding VF of the body diode,  
the reverse current flows from the output to the input via body diode as shown in Figure 264.  
Because this body diode is parasitic element, current which flows in it is not limited by the protection function. Therefore,  
too much reverse current may cause damage to degrade or may destroy the semiconductor elements of the regulator.  
IR  
VOUT  
VIN  
Error  
AMP.  
VREF  
Figure 264. Reverse Current Path in a MOS Linear Regulator  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
83/93  
BUxxJA3DG-C series  
Protection Against Reverse Input/Output Voltage – continued  
To prevent the reverse current flow inside the IC, as an effective solution implement an external bypass diode as shown in  
Figure 265. Note that the bypass diode must be turned on prior to the body diode inside the IC. Forward voltage VF lower  
than the internal body diode should be selected as external bypass diode. Should select a diode which has a rated reverse  
voltage greater than the IC’s input maximum voltage and also which has a rated forward current greater than the anticipated  
reverse current in the actual application.  
D1  
VIN  
VOUT  
GND  
VIN  
VOUT  
COUT  
CIN  
Figure 265. Bypass Diode for Reverse Current Diversion  
A Schottky barrier diode which has a characteristic of low forward voltage (VF) matches the requirement for the external  
diode to protect the IC from the reverse current, however it also has a characteristic that the leakage (IR) caused by the  
reverse voltage can be bigger than other diodes. Therefore, it should be taken into a consideration when choosing it,  
because if IR is large, it may cause current consumption to increase, or output voltage to rise in the light-load current  
condition. IR of Schottky diode has positive temperature characteristic, which the details should be checked by the  
datasheet of the product, and careful confirmation of the behavior in the actual application is mandatory.  
Even in the condition where the input/output voltage is inverted, if the VIN pin becomes open as shown in Figure 266, or  
if the VIN pin becomes high impedance as designed in the system, it cannot damage or degrade the parasitic element. It  
is because a reverse current via pass transistor becomes extremely low. In this case, therefore, the protection external  
diode is not necessary.  
ONOFF  
IBIAS  
VIN  
VOUT  
GND  
VOUT  
COUT  
VIN  
CIN  
Figure 266. Open VIN  
Protection Against Input Reverse Voltage  
When connecting input of IC to power supply, if accidentally reverse connect the plus and minus or if input may become  
lower than the GND pin, large current which flows in the internal electrostatic breakdown prevention diode set between  
VIN and GND as shown in Figure 267 may destroy the IC.  
Simplest way to prevent this problem is to connect Schottky barrier diode or rectifier diode to power supply line in series  
as shown in Figure 268. However, it increases a power loss calculated as VF × IIN, and due to forward voltage VF of diode  
the voltage drop occurs to input voltage at the normal power supply line.  
Generally, the Schottky barrier diode has lower VF than rectifier diode and contributes to rather smaller power loss. If IC  
has load currents, the required input current to the IC is also bigger. In this case, this external diode generates heat more,  
therefore it should be taken into the consideration of a selection for diode with enough margin in power dissipation. On the  
other hands, in the reverse connection condition, a reverse current passes this diode, however, it can be negligible because  
its small amount.  
VIN  
VOUT  
COUT  
GND  
VIN  
VOUT  
D1  
-
VIN  
VOUT  
GND  
VOUT  
COUT  
VIN  
GND  
CIN  
CIN  
+
GND  
Figure 267. Current Path in Reverse Input Connection  
Figure 268. Protection against Reverse Polarity 1  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
84/93  
BUxxJA3DG-C series  
Protection Against Input Reverse Voltage - continued  
Figure 269 shows a circuit in which a P-channel MOSFET is connected in series to the power. The body diode (parasitic  
element) is located in the drain-source junction area of the MOSFET. The drop voltage in a forward connection is calculated  
by the on-state resistance of the MOSFET and the output current IO. Because it is smaller than the drop voltage by the  
diode as shown in Figure 268, as a result power loss becomes less. No current flows in a reverse connection where the  
MOSFET remains off in Figure 269.  
If the gate-source voltage exceeds maximum rating of MOSFET gate-source junction with considered derating curve,  
reduce the gate-source junction voltage by connecting resistor voltage divider as shown in Figure 270.  
Q1  
VIN  
Q1  
VOUT  
VIN  
VOUT  
GND  
VIN  
VOUT  
COUT  
VIN  
VOUT  
GND  
R1  
CIN  
R2  
CIN  
COUT  
Figure 270. Protection against Reverse Polarity 3  
Figure 269. Protection against Reverse Polarity 2  
Protection Against Reverse Output Voltage when Output Connect to an Inductor  
If the output load is inductive, electrical energy accumulated in the inductive load is released to the ground at the moment  
that the output voltage is turned off. There is an ESD protection diode between output and ground pin inside the IC and  
large current flowing in this diode may eventually destruct the IC. To prevent this situation, connect a Schottky barrier diode  
in parallel to the diode as shown in Figure 271.  
Further, if a long wire is used to connect the output pin of the IC and the load, observe the waveform on an oscilloscope to  
confirm whether the negative voltage is generated at the VOUT pin or not when the output voltage is turned off, since there  
is a possibility of the load to become inductive. An additional diode is required for a motor load that is affected by its counter  
electromotive force, as it produces an electrical current in a similar way.  
VOUT  
VIN  
VIN  
VOUT  
GND  
D1  
CIN  
XLL  
COUT  
GND  
GND  
Figure 271. Current Path in Inductive Load (Output: Off)  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
85/93  
BUxxJA3DG-C series  
Power Dissipation  
SSOP5  
(1): 1-layer PCB  
1
(Copper foil area on the reverse side of PCB: 0 mm × 0 mm)  
Board material: FR-4  
(2)0.92 W  
Board size: 114.3 mm × 76.2 mm × 1.57 mmt  
Top copper foil: ROHM recommended footprint  
+ wiring to measure, 2 oz. copper.  
0.8  
0.6  
(2): 4-layer PCB  
(1)0.47 W  
(Copper foil area on the reverse side of PCB: 74.2 mm × 74.2 mm)  
Board material: FR-4  
Board size: 114.3 mm × 76.2 mm × 1.60 mmt  
Top copper foil: ROHM recommended footprint  
+ wiring to measure, 2 oz. copper.  
2 inner layers copper foil area of PCB:  
74.2 mm x 74.2 mm, 1 oz. copper.  
0.4  
0.2  
0
Copper foil area on the reverse side of PCB:  
74.2 mm x 74.2 mm, 2 oz. copper.  
0
25  
50  
75  
100  
125  
150  
Condition (1): θJA = 264.4 °C/W, ΨJT (top center) = 34 °C/W  
Condition (2): θJA = 135.7 °C/W, ΨJT (top center) = 27 °C/W  
AmbientTemperature:Ta [°C]  
Figure 272. Power Dissipation Graph  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
86/93  
27.Jun.2022 Rev.002  
BUxxJA3DG-C series  
Thermal Design  
This product exposes a frame on the back side of the package for thermal efficiency improvement. The power consumption  
of the IC is decided by the dropout voltage condition, the load current and the current consumption. Refer to power dissipation  
curves illustrated in Figure 12 when using the IC in an environment of Ta ≥ 25 °C. Even if the ambient temperature Ta is at  
25°C, chip junction temperature (Tj) can be very high depending on the input voltage and the load current. Consider the  
design to be Tj Tjmax = 150 °C in whole operating temperature range.  
Should by any condition the maximum junction temperature Tjmax = 150 °C rating be exceeded by the temperature increase  
of the chip, it may result in deterioration of the properties of the chip. The thermal impedance in this specification is based on  
recommended PCB and measurement condition by JEDEC standard. Therefore, need to be careful because it might be  
different from the actual use condition. Verify the application and allow sufficient margins in the thermal design by the following  
method to calculate the junction temperature Tj. Tj can be calculated by either of the two following methods.  
1. The following method is used to calculate the junction temperature Tj with ambient temperature Ta.  
푇푗 = 푇푎 + × 퐽퐴 [°C]  
Where:  
Tj  
is the Junction Temperature  
Ta is the Ambient Temperature  
is the Power Consumption  
PC  
θJA is the Thermal Resistance (Junction to Ambient)  
2. The following method is also used to calculate the junction temperature Tj with top center of case’s (mold) temperature TT.  
푇푗 = 푇+ × 훹 [°C]  
퐽ꢀ  
Where:  
Tj  
TT  
PC  
is the Junction Temperature  
is the Top Center of Case’s (mold) Temperature  
is the Power consumption  
ΨJT is the Thermal Resistance (Junction to Top Center of Case)  
3. The following method is used to calculate the power consumption Pc (W).  
푃푐 = (푉 푂푈) × ꢁ푂푈ꢀ + 푉 × ꢁ퐶퐶 [W]  
퐼푁  
퐼푁  
Where:  
PC  
is the Power Consumption  
VIN is the Input Voltage  
VOUT is the Output Voltage  
IOUT is the Load Current  
ICC is the Current Consumption  
Calculation Example  
If VIN = 5.0 V, VOUT = 3.3 V, IOUT = 100 mA, ICC = 37 μA, the power consumption Pc can be calculated as follows:  
= (푉 푂푈ꢀ) × ꢁ푂푈ꢀ + 푉 × ꢁ퐶퐶  
퐼푁  
퐼푁  
(
)
5.0 푉 – 3.3 푉 × 100 푚ꢂ + 5.0 푉 × 37 휇ꢂ  
=
= 0.17 푊  
At ambient temperature Ta = 125 °C,  
the thermal impedance (Junction to Ambient) θJA = 135.7 °C/W (4-layer PCB)  
푇푗 = 푇푎푚푎푥 + × 퐽퐴  
= 125 °ꢃ + 0.17 푊 × 135.7 °ꢃ/푊  
= 148.1 °ꢃ  
When operating the IC, the top center of case’s (mold) temperature TT = 100 °C, ΨJT = 27 °C/W (4-layer PCB)  
푇푗 = 푇+ × 훹  
퐽ꢀ  
= 100 °ꢃ + 0.17 푊 × 27 °ꢃ/푊  
= 104.6 °ꢃ  
If it is difficult to ensure the margin by the calculations above, it is recommended to expand the copper foil area of the  
board, increasing the layer and thermal via between thermal land pad for optimum thermal performance.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
87/93  
BUxxJA3DG-C series  
I/O Equivalence Circuits  
Pin 1 (VIN)  
Pin 3 (EN)  
Pin 5 (VOUT)  
Output Voltage [V]  
(Typ)  
R1 [kΩ]  
(Typ)  
R2 [kΩ]  
(Typ)  
VIN  
VIN  
VIN  
1.2  
1.5  
1.8  
2.5  
3.0  
3.3  
99  
76  
76  
76  
76  
76  
76  
2.6 MΩ  
(Typ)  
VOUT  
144  
190  
290  
364  
410  
EN  
Internal  
Circuit  
R1  
40 Ω  
(Typ)  
55 kΩ  
(Typ)  
R2  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
88/93  
BUxxJA3DG-C series  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3.  
4.  
Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
7.  
Thermal Consideration  
The power dissipation under actual operating conditions should be taken into consideration and a sufficient margin  
should be allowed in the thermal design. On the reverse side of the package this product has an exposed heat pad for  
improving the heat dissipation. The amount of heat generation depends on the voltage difference between the input  
and output, load current, and bias current. Therefore, when actually using the chip, ensure that the generated heat  
does not exceed the Pd rating. If Junction temperature is over Tjmax (= 150 °C), IC characteristics may be worse due  
to rising chip temperature. Heat resistance in specification is measurement under PCB condition and environment  
recommended in JEDEC. Ensure that heat resistance in specification is different from actual environment.  
8.  
9.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
10. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
89/93  
BUxxJA3DG-C series  
Operational Notes – continued  
11. Regarding the Input Pin of the IC  
In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The  
operation of these parasitic elements can result in mutual interference among circuits, operational faults, or physical  
damage. Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an  
input pin lower than the ground voltage should be avoided. Furthermore, do not apply a voltage to the input pins  
when no power supply voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the  
input pins have voltages within the values specified in the electrical characteristics of this IC.  
12. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
13. Thermal Shutdown Protection Circuit (TSD)  
This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat  
damage.  
14. Over Current Protection Circuit (OCP)  
This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This  
protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection circuit.  
15. Enable Pin  
The EN pin is for controlling ON/OFF the output voltage. Do not make voltage level of chip enable keep floating level,  
or between VENH and VENL. Otherwise, the output voltage would be unstable or indefinite.  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
90/93  
BUxxJA3DG-C series  
Marking Diagram  
SSOP5(TOP VIEW)  
Part Number Marking  
Lot Number  
Part Number  
Output Voltage [V]  
1.2  
Part Number Marking  
ar  
BU12JA3DG-CTR  
BU12JA3DG-CTL  
BU15JA3DG-CTR  
BU15JA3DG-CTL  
BU18JA3DG-CTR  
BU18JA3DG-CTL  
BU25JA3DG-CTR  
BU25JA3DG-CTL  
BU30JA3DG-CTR  
BU30JA3DG-CTL  
BU33JA3DG-CTR  
BU33JA3DG-CTL  
1.5  
1.8  
2.5  
3.0  
3.3  
au  
ay  
ba  
bb  
bd  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
91/93  
BUxxJA3DG-C series  
Physical Dimension and Packing Information  
Package Name  
SSOP5  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
92/93  
BUxxJA3DG-C series  
Revision History  
Date  
Revision  
Changes  
15.Nov.2021  
27.Jun.2022  
001  
002  
New Release  
Add Typical Performance data  
www.rohm.com  
© 2021 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0BHB0AD00070-1-2  
27.Jun.2022 Rev.002  
93/93  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BU12P-TR-P-H

2.0mm pitch/Disconnectable Insulation displacement and Crimp style connectors
JST

BU12P-TR-PC-H

2.0mm pitch/Disconnectable Insulation displacement and Crimp style connectors
JST

BU12SD2MG-M

BUxxSD2-M系列为通用型封装SSOP5 (2.90mm x 2.80mm x 1.25mm)中搭载的200mA高性能FULL CMOS稳压器。电路电流33µA,功耗低且噪音特性、负载响应特性优异,适用于汽车音响、汽车导航等各种应用。
ROHM

BU12SD2MG-MTR

1ch 200mA CMOS LDO Regulators
ROHM

BU12TD2WNVX

1ch 200mA CMOS LDO Regulators
ROHM

BU12TD2WNVX-GTL

Fixed Positive LDO Regulator
ROHM

BU12TD3WG

Fixed Positive LDO Regulator, 1.2V, CMOS, PDSO5, SSOP-5
ROHM

BU12TD3WG-GTR

Versatile Package FULL CMOS LDO Regulator
ROHM

BU12TD3WG-TR

Versatile Package FULL CMOS LDO Regulator
ROHM

BU12TD3WG-XTR

High accuracy detection, low current consumption
ROHM

BU12UA3WNVX-TL

Versatile Package FULL CMOS LDO Regulator
ROHM

BU12UB3WG-GTL

Versatile Package FULL CMOS LDO Regulator
ROHM