BU7487SF [ROHM]

Ground Sense High Speed Low Voltage CMOS Operational Amplifiers;
BU7487SF
型号: BU7487SF
厂家: ROHM    ROHM
描述:

Ground Sense High Speed Low Voltage CMOS Operational Amplifiers

文件: 总43页 (文件大小:891K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Operational Amplifiers Series  
Ground Sense  
High Speed Low Voltage CMOS Operational  
Amplifiers  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
General Description  
Key Specifications  
BU7485G/BU7486xxx/BU7487xx are CMOS operational  
amplifiers with input ground sense and full swing output.  
This series has extended operational amplifiers  
BU7485SG/BU7486Sxxx/BU7487Sxx which can operate  
over a wider temperature range (-40°C to +105°C).  
These ICs have wide band, high slew rate, low voltage  
operation and low input bias current, making the  
operational amplifiers suitable for portable equipment  
and sensor application.  
Operating Power Supply Voltage Range  
(Single Supply):  
Slew Rate:  
+3.0V to +5.5V  
i10.0V/µs  
Temperature Range:  
BU7485G  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +105°C  
-40°C to +105°C  
-40°C to +105°C  
1pA (Typ)  
BU7486xxx  
BU7487xx  
BU7485S  
BU7486Sxxx  
BU7487Sxx  
Input Bias Current:  
Input Offset Current:  
Features  
1pA (Typ)  
High Slew Rate  
Wide Bandwidth  
Low Input Bias Current  
Output Full Swing  
Package  
W(Typ) x D(Typ) x H(Max)  
2.90mm x 2.80mm x 1.25mm  
5.00mm x 6.20mm x 1.71mm  
3.00mm x 6.40mm x 1.35mm  
2.90mm x 4.00mm x 0.90mm  
8.70mm x 6.20mm x 1.71mm  
5.00mm x 6.40mm x 1.35mm  
SSOP5  
SOP8  
Application  
SSOP-B8  
MSOP8  
SOP14  
Battery-powered Equipment  
General Purpose Electronics  
SSOP-B14  
Simplified schematic  
VDD  
Vbias  
Class  
AB control  
+IN  
-IN  
OUT  
Vbias  
VSS  
Figure 1. Simplified schematic (1 channel only)  
Product structureSilicon monolithic integrated circuit This product is not designed protection against radioactive rays.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211114001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
1/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Pin Configuration  
BU7485G, BU7485SG : SSOP5  
Pin No.  
Pin Name  
+IN  
+IN  
VSS  
-IN  
1
2
3
5
VDD  
OUT  
1
2
3
4
5
VSS  
-IN  
4
OUT  
VDD  
BU7486F, BU7486SF : SOP8  
BU7486FV, BU7486SFV : SSOP-B8  
BU7486FVM, BU7486SFVM : MSOP8  
Pin No.  
Pin Name  
OUT1  
-IN1  
1
2
3
4
8
7
6
5
VDD  
1
2
3
4
5
6
7
8
OUT1  
-IN1  
CH1  
- +  
OUT2  
+IN1  
VSS  
+IN2  
-IN2  
-IN2  
+IN1  
VSS  
CH2  
+ -  
+IN2  
OUT2  
VDD  
BU7487F, BU7487SF : SOP14  
BU7487FV, BU7487SFV : SSOP-B14  
Pin No.  
Pin Name  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT1  
-IN1  
OUT4  
-IN4  
1
2
OUT1  
-IN1  
CH1  
CH4  
- +  
-
-
+
+
3
+IN1  
VDD  
+IN2  
-IN2  
+IN4  
VSS  
+IN3  
+IN1  
VDD  
4
5
6
+IN2  
7
OUT2  
OUT3  
-IN3  
-
-
+ -  
+
+
CH2  
CH3  
8
-IN3  
-IN2  
9
OUT2  
OUT3  
8
10  
11  
12  
13  
14  
+IN3  
VSS  
+IN4  
-IN4  
OUT4  
Package  
SSOP5  
SOP8  
SSOP-B8  
MSOP8  
SOP14  
BU7487F  
SSOP-B14  
BU7485G  
BU7486F  
BU7486FV  
BU7486FVM  
BU7487FV  
BU7485SG  
BU7486SF BU7486SFV BU7486SFVM BU7487SF  
BU7487SFV  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
2/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Ordering Information  
B U 7  
4
8
x
x
x
x
x
-
x x  
Part Number  
BU7485G  
BU7485SG  
BU7486xxx  
BU7486Sxxx  
BU7487xx  
Package  
Packaging and forming specification  
E2: Embossed tape and reel  
(SOP8/SSOP-B8/SOP14/ SSOP-B14)  
TR: Embossed tape and reel  
(SSOP5/MSOP8)  
G:FVMIISSOP5  
F:FVMESOP8  
SOP14  
FV:FMVSSOP-B8  
SSOP-B14  
BU7487Sxx  
FVM:FFMSOP8  
Line-up  
Topr  
Package  
Operable Part Number  
BU7485G-TR  
SSOP5  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 2500  
SOP8  
BU7486F-E2  
SSOP-B8  
MSOP8  
SOP14  
BU7486FV-E2  
-40°C to +85°C  
BU7486FVM-TR  
BU7487F-E2  
SSOP-B14  
SSOP5  
BU7487FV-E2  
BU7485SG-TR  
BU7486SF-E2  
SOP8  
SSOP-B8  
MSOP8  
SOP14  
BU7486SFV-E2  
BU7486SFVM-TR  
BU7487SF-E2  
-40°C to +105°C  
SSOP-B14  
BU7487SFV-E2  
Absolute Maximum Ratings(Ta=25C)  
Parameter  
Ratings  
Symbol  
Unit  
V
BU7485G/BU7486xxx  
/BU7487xx  
BU7485Sx/BU7486Sxxx  
/BU7487Sxx  
Supply Voltage  
VDD-VSS  
SSOP5  
SOP8  
+7  
0.54*1*7  
0.55*2*7  
0.50*3*7  
0.47*4*7  
0.70*5*7  
0.45*6*7  
SSOP-B8  
MSOP8  
SOP14  
SSOP-B14  
Vid  
Power dissipation  
Pd  
W
Differential Input Voltage *8  
VDD – VSS  
V
V
Input Common-mode  
Voltage Range  
Vicm  
(VSS - 0.3) to VDD + 0.3  
Input Current *9  
Ii  
±10  
mA  
V
Operating Supply Voltage  
Operating Temperature  
Storage Temperature  
Vopr  
Topr  
Tstg  
+3.0 to +5.5  
-40 to +85  
-40 to +105  
C  
C  
C  
-55 to +125  
+125  
Maximum Junction Temperature  
Tjmax  
Note: Absolute maximum rating item indicates the condition which must not be exceeded.  
Application of voltage in excess of absolute maximum rating or use out absolute maximum rated  
temperature environment may cause deterioration of characteristics.  
*1  
*2  
*3  
*4  
*5  
*6  
*7  
*8  
To use at temperature above Ta25C reduce 5.4mW.  
To use at temperature above Ta25C reduce 5.5mW.  
To use at temperature above Ta25C reduce 5.0mW.  
To use at temperature above Ta25C reduce 4.7mW.  
To use at temperature above Ta25C reduce 7.0mW.  
To use at temperature above Ta25C reduce 4.5mW.  
Mounted on a FR4 glass epoxy PCB(70mm×70mm×1.6mm).  
The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input pin voltage is set to more than VSS.  
*9  
An excessive input current will flow when input voltages of more than VDD+0.6V or lesser than VSS-0.6V are applied.  
The input current can be set to less than the rated current by adding a limiting resistor.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
3/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Electrical Characteristics  
BU7485G, BU7485SGUnless otherwise specified VDD=+3V, VSS=0V, Ta=25C)  
Limits  
Typ  
Temperature  
Range  
Parameter  
Symbol  
Unit  
Condition  
Min  
-
Max  
9.5  
Input Offset Voltage *10  
Input Offset Current *10  
Input Bias Current *10  
Vio  
Iio  
Ib  
25C  
25C  
25C  
1
1
1
mV  
pA  
pA  
-
-
-
-
-
-
-
25C  
-
-
1500  
-
2000  
2400  
RL=∞  
Av=0dB, IN=0.8V  
Supply Current *11  
IDD  
μA  
Full range  
Maximum Output Voltage  
(High)  
VOH  
VOL  
Av  
25C  
25C  
25C  
25C  
25C  
25C  
25C  
25C  
25C  
25C  
25C  
25C  
VDD-0.1  
-
-
-
V
V
RL=10kΩ  
Maximum Output Voltage  
(Low)  
-
70  
0
VSS+0.1  
RL=10kΩ  
Large Signal Voltage Gain  
105  
-
-
dB  
V
RL=10kΩ  
Input Common-mode  
Voltage Range  
Vicm  
CMRR  
PSRR  
Isource  
Isink  
SR  
1.6  
VSS to VDD-1.4V  
Common-mode Rejection  
Ratio  
45  
60  
4
60  
80  
8
-
-
-
-
-
-
-
-
dB  
dB  
mA  
mA  
-
-
Power Supply Rejection  
Ratio  
Output Source Current *12  
Output Sink Current *12  
Slew Rate  
VDD-0.4V  
VSS+0.4V  
7
12  
10  
10  
50  
0.03  
-
V/μs CL=25pF  
Unity Gain Frequency  
Phase Margin  
fT  
-
MHz CL=25pF, Av=40dB  
θ
-
deg  
%
CL=25pF, Av=40dB  
Total Harmonic Distortion  
+Noise  
THD+N  
-
OUT=0.7VP-P, f=1kHz  
*10 Absolute value  
*11 Full range BU7485G: Ta=-40C to +85C BU7485SG: Ta=-40C to +105C  
*12 Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
4/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
BU7486xxx, BU7486SxxxUnless otherwise specified VDD=+3V, VSS=0V, Ta=25C)  
Limits  
Typ  
Temperature  
Range  
Parameter  
Symbol  
Unit  
Condition  
Min  
-
Max  
9.5  
Input Offset Voltage *13  
Input Offset Current *13  
Input Bias Current *13  
-
-
-
Vio  
Iio  
Ib  
1
1
1
mV  
pA  
pA  
25C  
25C  
25C  
-
-
-
-
-
-
3000  
-
4000  
4500  
25C  
RL=,All Op-Amps  
Av=0dB, IN=0.8V  
Supply Current *14  
IDD  
μA  
Full range  
Maximum Output Voltage  
(High)  
VOH  
VOL  
Av  
VDD-0.1  
-
-
-
V
V
RL=10kΩ  
RL=10kΩ  
25C  
25C  
25C  
25C  
25C  
25C  
25C  
25C  
25C  
25C  
25C  
25C  
25C  
Maximum Output Voltage  
(Low)  
-
70  
0
VSS+0.1  
Large Signal Voltage Gain  
105  
-
-
dB RL=10kΩ  
Input Common-mode  
Voltage Range  
Vicm  
CMRR  
PSRR  
Isource  
Isink  
SR  
1.6  
V
VSS to VDD-1.4V  
Common-mode Rejection  
Ratio  
-
-
45  
60  
4
60  
80  
8
-
-
-
-
-
-
-
-
-
dB  
Power Supply Rejection  
Ratio  
dB  
Output Source Current *15  
Output Sink Current *15  
Slew Rate  
mA VDD-0.4V  
mA VSS+0.4V  
V/μs CL=25pF  
7
12  
10  
10  
50  
0.03  
100  
-
Unity Gain Frequency  
Phase Margin  
fT  
-
MHz CL=25pF, Av=40dB  
deg CL=25pF, Av=40dB  
θ
-
Total Harmonic Distortion  
+Noise  
THD+N  
CS  
-
%
OUT=0.7VP-P, f=1kHz  
Channel Separation  
-
dB Av=40dB  
*13 Absolute value  
*14 Full range BU7486xxx: Ta=-40C to +85C BU7486Sxxx: Ta=-40C to +105C  
*15 Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
5/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
BU7487xx, BU7487SxxUnless otherwise specified VDD=+3V, VSS=0V, Ta=25C)  
Limits  
Typ  
Temperature  
Range  
Parameter  
Symbol  
Unit  
Condition  
Min  
-
Max  
9.5  
Input Offset Voltage *16  
Input Offset Current *16  
Input Bias Current *16  
-
-
-
Vio  
Iio  
Ib  
1
1
1
mV  
pA  
pA  
25C  
25C  
25C  
-
-
-
-
-
-
6000  
-
8000  
9000  
25C  
RL=, All Op-Amps  
Av=0dB, IN=0.8V  
Supply Current *17  
IDD  
μA  
Full range  
Maximum Output Voltage  
(High)  
VOH  
VOL  
Av  
VDD-0.1  
-
-
-
V
V
RL=10kΩ  
RL=10kΩ  
25C  
25C  
25C  
25C  
25C  
25C  
25C  
25C  
25C  
25C  
25C  
25C  
25C  
Maximum Output Voltage  
(Low)  
-
70  
0
VSS+0.1  
Large Signal Voltage Gain  
105  
-
-
dB RL=10kΩ  
Input Common-mode  
Voltage Range  
Vicm  
CMRR  
PSRR  
Isource  
Isink  
SR  
1.6  
V
VSS to VDD-1.4V  
Common-mode Rejection  
Ratio  
-
-
45  
60  
4
60  
80  
8
-
-
-
-
-
-
-
-
-
dB  
Power Supply Rejection  
Ratio  
dB  
Output Source Current *18  
Output Sink Current *18  
Slew Rate  
mA VDD-0.4V  
mA VSS+0.4V  
V/μs CL=25pF  
7
12  
10  
10  
50  
0.03  
100  
-
Unity Gain Frequency  
Phase Margin  
fT  
-
MHz CL=25pF, Av=40dB  
deg CL=25pF, Av=40dB  
θ
-
Total Harmonic Distortion  
+Noise  
THD+N  
CS  
-
%
OUT=0.7VP-P, f=1kHz  
Channel Separation  
-
dB Av=40dB  
*16 Absolute value  
*17 Full range BU7487xx: Ta=-40C to +85C BU7487Sxx: Ta=-40C to +105C  
*18 Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
6/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Description of Electrical Characteristics  
Described below are descriptions of the relevant electrical terms used in this datasheet. Items and symbols used are also  
shown. Note that item name and symbol and their meaning may differ from those on another manufacturer’s document or  
general document.  
1. Absolute maximum ratings  
Absolute maximum rating items indicate the condition which must not be exceeded. Application of voltage in excess of absolute  
maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
1.1 Supply Voltage (VDD/VSS)  
Indicates the maximum voltage that can be applied between the VDD terminal and VSS terminal without  
deterioration or destruction of characteristics of internal circuit.  
1.2 Differential Input Voltage (Vid)  
Indicates the maximum voltage that can be applied between non-inverting and inverting terminals without damaging  
the IC.  
1.3 Input Common-mode Voltage Range (Vicm)  
Indicates the maximum voltage that can be applied to the non-inverting and inverting terminals without deterioration  
or destruction of electrical characteristics. Input common-mode voltage range of the maximum ratings does not assure  
normal operation of IC. For normal operation, use the IC within the input common-mode voltage range characteristics.  
1.4 Power dissipation (Pd)  
Indicates the power that can be consumed by the IC when mounted on a specific board at the ambient temperature 25C  
(normal temperature). As for package product, Pd is determined by the temperature that can be permitted by the IC in  
the package (maximum junction temperature) and the thermal resistance of the package.  
2. Electrical characteristics  
2.1 Input Offset Voltage (Vio)  
Indicates the voltage difference between non-inverting terminal and inverting terminals. It can be translated into the  
input voltage difference required for setting the output voltage at 0 V.  
2.2 Input Offset Current (Iio)  
Indicates the difference of input bias current between the non-inverting and inverting terminals.  
2.3 Input Bias Current (Ib)  
Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias currents at  
the non-inverting and inverting terminals.  
2.4 Supply Current (IDD)  
Indicates the current that flows within the IC under specified no-load conditions.  
2.5 Maximum Output Voltage(High) / Maximum Output Voltage(Low) (VOH/VOL)  
Indicates the voltage range of the output under specified load condition. It is typically divided into maximum output  
voltage High and low. Maximum output voltage high indicates the upper limit of output voltage. Maximum output  
voltage low indicates the lower limit.  
2.6 Large Signal Voltage Gain (Av)  
Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal  
and inverting terminal. It is normally the amplifying rate (gain) with reference to DC voltage.  
Av = (Output voltage) / (Differential Input voltage)  
2.7 Input Common-mode Voltage Range (Vicm)  
Indicates the input voltage range where IC normally operates.  
2.8 Common-mode Rejection Ratio (CMRR)  
Indicates the ratio of fluctuation of input offset voltage when the input common mode voltage is changed. It is  
normally the fluctuation of DC.  
CMRR = (Change of Input common-mode voltage)/(Input offset fluctuation)  
2.9 Power Supply Rejection Ratio (PSRR)  
Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed.  
It is normally the fluctuation of DC.  
PSRR= (Change of power supply voltage)/(Input offset fluctuation)  
2.10 Output Source Current/ Output Sink Current (Isource / Isink)  
The maximum current that can be output from the IC under specific output conditions. The output source current  
indicates the current flowing out from the IC, and the output sink current indicates the current flowing into the IC.  
2.11 Slew Rate (SR)  
Indicates the ratio of the change in output voltage with time when a step input signal is applied.  
2.12 Unity Gain Frequency (fT)  
Indicates a frequency where the voltage gain of operational amplifier is 1.  
2.13 Phase Margin (θ)  
Indicates the margin of phase from 180 degree phase lag at unity gain frequency.  
2.14 Total Harmonic Distortion+Noise (THD+N)  
Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage  
of driven channel.  
2.15 Channel Separation (CS)  
Indicates the fluctuation in the output voltage of the driven channel with reference to the change of output voltage of  
the channel which is not driven.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
7/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Typical Performance Curves  
BU7485G, BU7485SG  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
BU7485SG  
BU7485G  
105  
100  
85  
0
25  
50  
75  
125  
0
25  
50  
75  
100  
125  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [°C]  
Figure 2.  
Figure 3.  
Derating curve  
Derating curve  
4
3
2
1
0
4
3
2
1
0
105C  
85C  
5.5V  
4.0V  
3.0V  
25C  
-40C  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
-50  
-25  
0
25  
50  
75  
100 125  
AMBIENT TEMPERATURE [°C]  
SUPPLYVOLTAGE [V]  
Figure 4.  
Figure 5.  
Supply Current – Supply Voltage  
Supply Current – Ambient Temperature  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7485G: -40C to +85C BU7485SG: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
8/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Typical Performance Curves - Continued  
BU7485G, BU7485SG  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
5.5V  
105C  
85C  
4.0V  
25C  
3.0V  
-40C  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
SUPPLYVOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Figure 6.  
Maximum Output Voltage High –  
Supply Voltage  
Figure 7.  
Maximum Output Voltage High –  
Ambient Temperature  
(RL=10k)  
(RL=10k)  
20  
15  
10  
5
20  
15  
10  
5
5.5V  
85C  
25C  
105C  
4.0V  
3.0V  
-40C  
0
0
-50  
-25  
0
25  
50  
75  
100 125  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Figure 8.  
Maximum Output Voltage Low –  
Supply Voltage  
Figure 9.  
Maximum Output Voltage Low –  
Ambient Temperature  
(RL=10k)  
(RL=10k)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7485G: -40C to +85C BU7485SG: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
9/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Typical Performance Curves - Continued  
BU7485G, BU7485SG  
50  
40  
30  
20  
10  
0
20  
15  
10  
5
5.5V  
-40C  
4.0V  
25C  
3.0V  
85C  
105C  
0
-50  
-25  
0
25  
50  
75  
100 125  
0
0.5  
1
1.5  
2
2.5  
3
AMBIENT TEMPERATURE [°C]  
Figure 11.  
OUTPUT VOLTAGE [V]  
Figure 10.  
Output Source Current – Output Voltage  
(VDD=3V)  
Output Source Current – Ambient Temperature  
(OUT=VDD-0.4V)  
80  
70  
60  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
-40C  
25C  
4.0V  
5.5V  
3.0V  
105C  
85C  
-50  
-25  
0
25  
50  
75  
100 125  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
AMBIENT TEMPERATURE [°C]  
OUTPUT VOLTAGE [V]  
Figure 12.  
Figure 13.  
Output Sink Current – Output Voltage  
(VDD=3V)  
Output Sink Current – Ambient Temperature  
(OUT=VSS+0.4V)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7485G: -40C to +85C BU7485SG: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
10/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Typical Performance Curves - Continued  
BU7485G, BU7485SG  
10.0  
7.5  
10.0  
7.5  
5.0  
5.0  
2.5  
2.5  
105C  
5.5V  
85C  
0.0  
0.0  
25C  
3.0V  
4.0V  
-40C  
-2.5  
-5.0  
-7.5  
-10.0  
-2.5  
-5.0  
-7.5  
-10.0  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
AMBIENT TEMPERATURE [°C]  
SUPPLYVOLTAGE [V]  
Figure 14.  
Figure 15.  
Input Offset Voltage – Supply Voltage  
(Vicm=VDD-1.4V, OUT=1.5V)  
Input Offset Voltage – Ambient Temperature  
(Vicm=VDD-1.4V, OUT=1.5V)  
15  
10  
5
140  
120  
100  
80  
-40C  
85C  
105C  
105C  
25C  
0
85C  
60  
25C  
-40C  
-5  
40  
-10  
-15  
20  
0
-1  
0
1
2
3
2
3
4
5
6
COMMON MODE INPUT VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Figure 16.  
Input Offset Voltage – Common Mode  
Input Voltage  
Figure 17.  
Large Signal Voltage Gain – Supply Voltage  
(VDD=3V)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7485G: -40C to +85C BU7485SG: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
11/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Typical Performance Curves - Continued  
BU7485G, BU7485SG  
160  
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
-40C  
25C  
85C  
105C  
5.5V  
4.0V  
3.0V  
60  
-50  
-25  
0
25  
50  
75  
100 125  
2
3
4
5
6
SUPPLYVOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Figure 18  
Figure 19.  
Large Signal Voltage Gain – Ambient Temperature  
Common Mode Rejection Ratio – Supply Voltage  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
3.0V  
5.5V  
4.0V  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [°C]  
Figure 20.  
Figure 21.  
Common Mode Rejection Ratio –  
Ambient Temperature  
Power Supply Rejection Ratio –  
Ambient Temperature  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7485G: -40C to +85C BU7485SG: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
12/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Typical Performance Curves - Continued  
BU7485G, BU7485SG  
12.0  
10.0  
8.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
5.5V  
3.0V  
5.5V  
4.0V  
4.0V  
3.0V  
6.0  
4.0  
2.0  
0.0  
0.0  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [°C]  
Figure 22.  
Figure 23.  
Slew Rate L-H – Ambient Temperature  
Slew Rate H-L – Ambient Temperature  
100  
80  
60  
40  
20  
0
200  
150  
100  
50  
Phase  
Gain  
0
1
2
3
5
00  
10  
10  
10  
4
10  
10  
1
FREQUENCY [kHz]  
Figure 24.  
Voltage GainPhaseFrequency  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7485G: -40C to +85C BU7485SG: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
13/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Typical Performance Curves - Continued  
BU7486xxx, BU7486Sxxx  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
BU7486SF  
BU7486F  
BU7486FV  
BU7486SFV  
BU7486FVM  
BU7486SFVM  
85  
105  
100  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
125  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [°C]  
Figure 25.  
Figure 26.  
Derating curve  
Derating curve  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
105C  
85C  
5.5V  
4.0V  
3.0V  
25C  
-40C  
-50  
-25  
0
25  
50  
75  
100 125  
2
3
4
5
6
AMBIENT TEMPERATURE [°C]  
SUPPLYVOLTAGE [V]  
Figure 27.  
Figure 28.  
Supply Current – Supply Voltage  
Supply Current – Ambient Temperature  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7486xxx: -40C to +85C BU7486Sxxx: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
14/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Typical Performance Curves - Continued  
BU7486xxx, BU7486Sxxx  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
105C  
85C  
5.5V  
25C  
4.0V  
-40C  
3.0V  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
SUPPLYVOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Figure 29.  
Figure 30.  
Maximum Output Voltage High –  
Supply Voltage  
Maximum Output Voltage High –  
Ambient Temperature  
(RL=10k)  
(RL=10k)  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
5.5V  
105C  
85C  
4.0V  
25C  
3.0V  
-40C  
-50  
-25  
0
25  
50  
75  
100 125  
2
3
4
5
6
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Figure 31.  
Figure 32.  
Maximum Output Voltage Low –  
Supply Voltage  
Maximum Output Voltage Low –  
Ambient Temperature  
(RL=10k)  
(RL=10k)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7486xxx: -40C to +85C BU7486Sxxx: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
15/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Typical Performance Curves - Continued  
BU7486xxx, BU7486Sxxx  
40  
35  
30  
25  
20  
15  
10  
5
40  
30  
20  
10  
0
-40C  
25C  
4.0V  
5.5V  
85C  
105C  
3.0V  
0
-50  
-25  
0
25  
50  
75  
100 125  
0
1
2
3
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Figure 34.  
Output Source Current –Ambient Temperature  
(OUT=VDD-0.4V)  
Figure 33.  
Output Source Current – Output Voltage  
(VDD=3V)  
60  
40  
20  
0
40  
30  
20  
10  
0
-40C  
25C  
4.0V  
5.5V  
105C  
85C  
3.0V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-50  
-25  
0
25  
50  
75  
100 125  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Figure 35.  
Figure 36.  
Output Sink Current – Output Voltage  
(VDD=3V)  
Output Sink Current – Ambient Temperature  
(OUT=VSS+0.4V)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7486xxx: -40C to +85C BU7486Sxxx: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
16/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Typical Performance Curves - Continued  
BU7486xxx, BU7486Sxxx  
10  
8
10.0  
7.5  
5
5.0  
25℃  
85℃  
-40℃  
4.0V  
5.5V  
3
2.5  
0
0.0  
3.0V  
105℃  
-3  
-5  
-8  
-10  
-2.5  
-5.0  
-7.5  
-10.0  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
SUPPLYVOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Figure 37.  
Figure 38.  
Input Offset Voltage – Supply Voltage  
Input Offset Voltage – Ambient Temperature  
15  
10  
5
140  
120  
100  
80  
-40℃  
25℃  
-40℃  
25℃  
85℃  
0
105℃  
105℃  
85℃  
60  
-5  
40  
-10  
-15  
20  
0
-1  
0
1
2
3
2
3
4
5
6
INPUT VOLTAGE [V]  
SUPPLY VOLTAGE [V]  
Figure 39.  
Figure 40.  
Input Offset Voltage – Common Mode  
Input Voltage  
Large Signal Voltage Gain – Supply Voltage  
(VDD=3V)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7486xxx: -40C to +85C BU7486Sxxx: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
17/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Typical Performance Curves - Continued  
BU7486xxx, BU7486Sxxx  
120  
110  
100  
90  
120  
110  
100  
90  
4.0V  
-40℃  
25℃  
5.5V  
85℃  
3.0V  
105℃  
80  
80  
70  
70  
60  
60  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
SUPPLYVOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Figure 41.  
Figure 42.  
Large Signal Voltage Gain –  
Ambient Temperature  
Common Mode Rejection Ratio – Supply Voltage  
120  
110  
100  
90  
120  
100  
80  
60  
40  
20  
0
3.0V  
4.0V  
5.5V  
80  
70  
60  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [°C]  
Figure 43.  
Figure 44.  
Common Mode Rejection Ratio –  
Ambient Temperature  
Power Supply Rejection Ratio –  
Ambient Temperature  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7486xxx: -40C to +85C BU7486Sxxx: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
18/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Typical Performance Curves - Continued  
BU7486xxx, BU7486Sxxx  
25  
20  
15  
10  
5
15  
12  
9
5.5V  
5.5V  
4.0V  
3.0V  
4.0V  
3.0V  
6
3
0
0
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [°C]  
Figure 45.  
Figure 46.  
Slew Rate L-H – Ambient Temperature  
Slew Rate H-L – Ambient Temperature  
100  
80  
60  
40  
20  
0
200  
150  
100  
50  
Phase  
Gain  
0
1
2
3
4
5
1
10  
10  
10  
10  
10  
FREQUENCY [Hz]  
Figure 47.  
Voltage GainPhaseFrequency  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7486xxx: -40C to +85C BU7486Sxxx: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
19/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Typical Performance Curves  
BU7487xx, BU7487Sxx  
800  
600  
400  
200  
0
800  
600  
400  
200  
0
BU7487F  
BU7487SF  
BU7487FV  
BU7487SFV  
105  
100  
85  
0
25  
50  
75  
100  
°C  
125  
0
25  
50  
75  
125  
°C  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE [  
]
Figure 48.  
Figure 49.  
Derating curve  
Derating curve  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
105C  
85C  
4.0V  
5.5V  
3.0V  
25C  
-40C  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
AMBIENT TEMPERATURE [°C]  
SUPPLY VOLTAGE [V]  
Figure 50.  
Figure 51.  
Supply Current – Supply Voltage  
Supply Current – Ambient Temperature  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7487xx: -40C to +85C BU7487Sxx: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
20/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Typical Performance Curves - Continued  
BU7487xx, BU7487Sxx  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
105C  
5.5V  
25C  
4.0V  
85C  
-40C  
3.0V  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Figure 52.  
Figure 53.  
Maximum Output Voltage High – Supply Voltage  
Maximum Output Voltage High – Ambient Temperature  
(RL=10k)  
(RL=10k)  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
105C  
5.5V  
85C  
4.0V  
25C  
-40C  
3.0V  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Figure 54.  
Figure 55.  
Maximum Output Voltage Low – Supply Voltage  
Maximum Output Voltage Low – Ambient Temperature  
(RL=10k)  
(RL=10k)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7487xx: -40C to +85C BU7487Sxx: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
21/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Typical Performance Curves - Continued  
BU7487xx, BU7487Sxx  
40  
35  
30  
25  
20  
15  
10  
5
40  
30  
20  
10  
0
-40C  
25C  
4.0V  
5.5V  
85C  
105C  
3.0V  
0
0
0.5  
1
1.5  
2
2.5  
3
-50  
-25  
0
25  
50  
75  
100 125  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Figure 57.  
Figure 56.  
Output Source Current – Output Voltage  
(VDD=3V)  
Output Source Current – Ambient Temperature  
(OUT=VDD-0.4V)  
60  
40  
20  
0
40  
30  
20  
10  
0
-40C  
25C  
4.0V  
5.5V  
105C  
85C  
3.0V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-50  
-25  
0
25  
50  
75  
100 125  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Figure 58.  
Figure 59.  
Output Sink Current – Output Voltage  
(VDD=3V)  
Output Sink Current – Ambient Temperature  
(OUT=VSS+0.4V)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7487xx: -40C to +85C BU7487Sxx: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
22/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Typical Performance Curves - Continued  
BU7487xx, BU7487Sxx  
3
2
3
2
-40C  
25C  
1
1
4.0V  
85C  
3.0V  
0
0
5.5V  
105C  
-1  
-2  
-3  
-1  
-2  
-3  
-50  
-25  
0
25  
50  
75  
100 125  
2
3
4
5
6
AMBIENT TEMPERATURE [°C]  
SUPPLY VOLTAGE [V]  
Figure 60.  
Figure 61.  
Input Offset Voltage – Supply Voltage  
Input Offset Voltage – Ambient Temperature  
140  
120  
100  
80  
15  
10  
5
-40℃  
25℃  
-40℃  
25℃  
85℃  
85℃  
105℃  
0
60  
105℃  
-5  
40  
-10  
-15  
20  
0
2
3
4
5
6
-1  
0
1
2
3
INPUT VOLTAGE [V]  
SUPPLYVOLTAGE [V]  
Figure 62.  
Figure 63.  
Input Offset Voltage –  
Large Signal Voltage Gain – Supply Voltage  
Common Mode Input Voltage  
(VDD=3V)  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7487xx: -40C to +85C BU7487Sxx: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
23/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Typical Performance Curves - Continued  
BU7487xx, BU7487Sxx  
120  
110  
100  
90  
120  
110  
100  
90  
-40℃  
25℃  
3.0V  
5.5V  
85℃  
4.0V  
105℃  
80  
80  
70  
70  
60  
60  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [°C]  
Figure 64.  
Figure 65.  
Large Signal Voltage Gain – Ambient Temperature  
Common Mode Rejection Ratio – Supply Voltage  
120  
110  
100  
90  
120  
100  
80  
60  
40  
20  
0
3.0V  
4.0V  
5.5V  
80  
70  
60  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [°C]  
Figure 66.  
Figure 67.  
Common Mode Rejection Ratio –  
Ambient Temperature  
Power Supply Rejection Ratio –  
Ambient Temperature  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7487xx: -40C to +85C BU7487Sxx: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
24/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Typical Performance Curves - Continued  
BU7487xx, BU7487Sxx  
16  
14  
12  
10  
8
25  
20  
15  
10  
5
5.5V  
5.5V  
4.0V  
3.0V  
3.0V  
4.0V  
6
4
2
0
0
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
AMBIENT TEMPERATURE [°C]  
AMBIENT TEMPERATURE [°C]  
Figure 68.  
Figure 69.  
Slew Rate L-H – Ambient Temperature  
Slew Rate H-L – Ambient Temperature  
100  
80  
60  
40  
20  
0
200  
150  
100  
50  
Phase  
Gain  
0
1
2
3
4
5
1
10  
10  
10  
10  
10  
FREQUENCY [Hz]  
Figure 70.  
Voltage GainPhaseFrequency  
(*)The above characteristics are measurements of typical sample, they are not guaranteed.  
BU7487xx: -40C to +85C BU7487Sxx: -40C to +105C  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
25/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Application Information  
NULL method condition for Test circuit1  
VDD, VSS, EK, Vicm Unit:V  
Parameter  
VF  
S1  
ON  
ON  
ON  
ON  
S2  
ON  
ON  
ON  
ON  
S3  
VDD VSS  
EK  
Vicm Calculation  
Input Offset Voltage  
VF1  
OFF  
ON  
3
3
3
0
0
0
0
-1.5  
1.8  
0.9  
1
2
3
4
VF2  
VF3  
VF4  
VF5  
VF6  
VF7  
-0.5  
-2.5  
Large Signal Voltage Gain  
0
Common-mode Rejection Ratio  
(Input Common-mode Voltage Range)  
OFF  
OFF  
-1.5  
-0.9  
1.8  
3
Power Supply Rejection Ratio  
0
5.5  
Calculation-  
|VF1|  
1+RF/RS  
Vio  
Av  
[V]  
=
1. Input Offset Voltage (Vio)  
2 × (1+RF/RS)  
|VF2-VF3|  
[dB]  
2. Large Signal Voltage Gain (Av)  
= 20Log  
1.8 × (1+RF/RS)  
|VF4 - VF5|  
3. Common-mode Rejection Ratio (CMRR)  
4. Power Supply Rejection Ratio (PSRR)  
CMRR  
[dB]  
= 20Log  
2.5 × (1+ RF/RS)  
|VF6 - VF7|  
PSRR  
[dB]  
= 20Log  
0.1μF  
RF=50kΩ  
500kΩ  
0.01μF  
SW1  
VDD  
15V  
EK  
RS=50Ω  
Ri=1MΩ  
Vo  
500kΩ  
0.015μF  
DUT  
0.015μF  
SW3  
NULL  
1000pF  
Ri=1MΩ  
RS=50Ω  
50kΩ  
V VF  
RL  
Vicm  
VRL  
SW2  
-15V  
VSS  
Figure 71. Test circuit 1 (one channel only)  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
26/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Switch Condition for Test circuit2  
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10 SW11 SW12  
SW No.  
Supply Current  
OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF  
OFF ON OFF OFF ON OFF OFF ON OFF OFF ON OFF  
OFF ON OFF OFF ON OFF OFF OFF OFF ON OFF OFF  
OFF OFF ON OFF OFF OFF ON OFF ON OFF OFF ON  
ON OFF OFF ON ON OFF OFF OFF ON OFF OFF ON  
Maximum Output Voltage RL=10kΩ  
Output Current  
Slew Rate  
Unity Gain Frequency  
SW3  
R2 100k  
SW4  
VDD=3V  
SW1  
SW2  
SW8 SW9  
SW10 SW11 SW12  
SW5  
SW6  
SW7  
R1  
1kΩ  
VSS  
RL  
CL  
VIN-  
VIN+  
Vo  
Figure 72. Test circuit 2  
[V]  
[V]  
OUT  
IN  
V
/ Δ t  
SR =  
Δ
1.8 V  
1 8 V  
.
ΔV  
1.8 V P-P  
0 V  
0 V  
t
t
Δ t  
Input wave  
Output wave  
Figure 73. Slew rate input output wave  
R2=100kΩ  
R2=100kΩ  
VDD  
VDD  
R1=1kΩ  
R1=1kΩ  
OUT1  
OUT2  
R1//R2  
R1//R2  
VSS  
VSS  
VIN  
100×OUT1  
OUT2  
CS=20Log  
Figure 74. Test circuit 3 (Channel Separation)  
27/39  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Application example  
Voltage follower  
Voltage gain is 0dB.  
VDD  
Using this circuit, the output voltage (OUT) is configured  
to be equal to the input voltage (IN). This circuit also  
stabilizes the output voltage (OUT) due to high input  
impedance and low output impedance. Computation for  
output voltage (OUT) is shown below.  
OUT  
IN  
VSS  
OUT=IN  
Figure 75. Voltage follower  
Inverting amplifier  
R2  
For inverting amplifier, input voltage (IN) is amplified by  
a voltage gain and depends on the ratio of R1 and R2.  
The out-of-phase output voltage is shown in the next  
expression  
VDD  
OUT=-(R2/R1)IN  
This circuit has input impedance equal to R1.  
R1  
IN  
OUT  
VSS  
Figure 76. Inverting amplifier circuit  
Non-inverting amplifier  
R1  
R2  
For non-inverting amplifier, input voltage (IN) is  
amplified by a voltage gain, which depends on the ratio  
of R1 and R2. The output voltage (OUT) is in-phase  
with the input voltage (IN) and is shown in the next  
expression.  
VDD  
VSS  
OUT  
IN  
OUT=(1 + R2/R1)IN  
Effectively, this circuit has high input impedance since  
its input side is the same as that of the operational  
amplifier.  
Figure 77. Non-inverting amplifier circuit  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
28/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Power Dissipation  
Power dissipation (total loss) indicates the power that the IC can consume at Ta=25C (normal temperature). As the IC  
consumes power, it heats up, causing its temperature to be higher than the ambient temperature. The allowable  
temperature that the IC can accept is limited. This depends on the circuit configuration, manufacturing process, and  
consumable power.  
Power dissipation is determined by the allowable temperature within the IC (maximum junction temperature) and the  
thermal resistance of the package used (heat dissipation capability). Maximum junction temperature is typically equal to the  
maximum storage temperature. The heat generated through the consumption of power by the IC radiates from the mold  
resin or lead frame of the package. Thermal resistance, represented by the symbol θjaC/W, indicates this heat dissipation  
capability. Similarly, the temperature of an IC inside its package can be estimated by thermal resistance.  
Figure 78. (a) shows the model of the thermal resistance of a package. The equation below shows how to compute for the  
Thermal resistance (θja), given the ambient temperature (Ta), maximum junction temperature (Tjmax), and power  
dissipation (Pd).  
θja = (Tjmax-Ta) / Pd  
C /W  
・・・・・ ()  
The Derating curve in Figure 78. (b) indicates the power that the IC can consume with reference to ambient temperature.  
Power consumption of the IC begins to attenuate at certain temperatures. This gradient is determined by Thermal  
resistance (θja), which depends on the chip size, power consumption, package, ambient temperature, package condition,  
wind velocity, etc. This may also vary even when the same of package is used. Thermal reduction curve indicates a  
reference value measured at a specified condition. Figure 79. (c) to (h) shows an example of the derating curve for  
BU7485G, BU7485SG, BU7486xxx, BU7486Sxxx, BU7487xx, BU7487Sxx.  
Power dissipation of LSI [W]  
Pd(max)  
θja  
(Tjmax  
Ta) / Pd C  
/ W  
P2  
P1  
=
θja2 <θja1  
θja2  
Ta[  
C  
]
Ambient temperature  
Tj(max)  
θja1  
0
50  
75  
100  
25  
125  
Chip surface temperature Tj[  
Power dissipation Pd [W]  
]
C  
Ambient temperature Ta[C]  
(b) Derating Curve  
(a) Thermal resistance  
Figure 78. Thermal resistance and Derating Curve  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
BU7485G(*19)  
BU7485SG(*19)  
0.4  
0.2  
0
85  
105  
100 125  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
AMBIENT TEMPERATURE [  
(d)BU7485SG  
]
A MBIENT TEMPERA TURE [  
(c)BU7485G  
]
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
29/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
BU7486F(*20)  
BU7486SF(*20)  
BU7486SFV(*21)  
BU7486FV(*21)  
BU7486FVM(*22)  
BU7486SFVM(*22)  
105  
100  
85  
0
25  
50  
75  
125  
0
25  
50  
75  
100  
125  
AMBIENT TEMPERATURE [  
]
A MBIENT TEMPERA TURE [  
]
(e)BU7486F/FV/FVM  
(f)BU7486SF/SFV/SFVM  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
BU7487F(*23)  
BU7487SF(*23)  
BU7487SFV(*24)  
BU7487FV(*24)  
105  
85  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
AMBIENT TEMPERATURE [°C]  
(h)BU7487SF/SFV  
A MBIENT TEMPERA TURE [  
]
(g)BU7487F/FV  
(*19)  
5.4  
(*20)  
5.5  
(*21)  
5.0  
(*22)  
4.7  
(*23)  
7.0  
(*24)  
4.5  
Unit  
mW/C  
When using the unit above Ta=25C, subtract the value above per degree C. Power dissipation is the value  
when FR4 glass epoxy board 70mm×70mm×1.6mm (copper foil area below 3%) is mounted.  
Figure 79. Derating Curve  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
30/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Operational Notes  
VDD  
1) Unused circuits  
When there are unused circuits, it is recommended that they are  
connected as in Figure .56, setting the non-inverting input terminal to a  
potential within the in-phase input voltage range (Vicm).  
Connect  
to Vicm  
Vicm  
2) Input voltage  
Applying VSS-0.3V to VDD+0.3V to the input terminal is possible  
without causing deterioration of the electrical characteristics or  
destruction, regardless of the supply voltage. However, this does not  
ensure normal circuit operation. Please note that the circuit operates  
normally only when the input voltage is within the common mode input  
voltage range of the electric characteristics.  
VSS  
Figure 80. Example of application  
circuit for unused op-amp  
3) Power supply (single / dual)  
The op-amp operates when the voltage supplied is between VDD and  
VSS. Therefore, the single supply op-amp can be used as dual supply  
op-amp as well.  
4) Power Dissipation (Pd)  
Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics including  
reduced current capability due to the rise of chip temperature. Therefore, please take into consideration the power  
dissipation (Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal  
derating curves for more information.  
5) Short-circuit between pins and erroneous mounting  
Be careful when mounting the IC on printed circuit boards. The IC may be damaged if it is mounted in a wrong orientation  
or if pins are shorted together. Short circuit may be caused by conductive particles caught between the pins.  
6) Operation in a strong electromagnetic field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
7) IC handling  
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations of the electrical  
characteristics due to piezo resistance effects.  
8) Board Inspection  
Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every  
process is recommended. In addition, when attaching and detaching the jig during the inspection phase, make sure that  
the power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the  
assembly process as well as during transportation and storage.  
9) Output capacitor  
If a large capacitor is connected between the output pin and VSS pin, current from the charged capacitor will flow into the  
output pin and may destroy the IC when the VCC pin is shorted to ground or pulled down to 0V. Use a capacitor smaller  
than 0.1uF between output pin and VSS pin.  
10) Oscillation by output capacitor  
Please pay attention to the oscillation by output capacitor and in designing an application of negative feedback loop  
circuit with these ICs.  
11) Latch up  
Be careful of input voltage that exceed the VDD and VSS. When CMOS device have sometimes occur latch up and  
protect the IC from abnormaly noise.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
31/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Physical Dimensions Tape and Reel Information  
Package Name  
SSOP5  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
32/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Package Name  
SOP8  
(Max 5.35 (include.BURR))  
(UNIT : mm)  
PKG : SOP8  
Drawing No. : EX112-5001-1  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
33/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Package Name  
SSOP-B8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
34/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Package Name  
MSOP8  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
3000pcs  
Quantity  
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1pin  
Direction of feed  
Order quantity needs to be multiple of the minimum quantity.  
Reel  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
35/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Package Name  
SOP14  
(Max 9.05 (include.BURR))  
(UNIT : mm)  
PKG : SOP14  
Drawing No. : EX113-5001  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
36/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Package Name  
SSOP-B14  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
2500pcs  
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
Direction of feed  
1pin  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
37/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Marking Diagram  
SSOP5(TOP VIEW)  
SOP8(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
1PIN MARK  
LOT Number  
SSOP-B8(TOP VIEW)  
MSOP8(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
SSOP-B14(TOP VIEW)  
SOP14(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
Product Name  
Package Type  
Marking  
BU7485  
D5  
FC  
G
SSOP5  
BU7485S  
F
SOP8  
BU7486  
FV  
SSOP-B8  
MSOP8  
SOP8  
7486  
FVM  
F
7486S  
486S  
BU7486S  
FV  
FVM  
F
SSOP-B8  
MSOP8  
SOP14  
7486S  
BU7487F  
7487  
BU7487  
FV  
F
SSOP-B14  
SOP14  
BU7487SF  
7487S  
BU7487S  
FV  
SSOP-B14  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
38/39  
Datasheet  
BU7485G BU7485SG BU7486xxx BU7486Sxxx BU7487xx BU7487Sxx  
Land pattern data  
Unit: mm  
Land length  
Land pitch  
e
Land space  
MIE  
Land width  
b2  
PKG  
SSOP5  
≧ℓ 2  
0.95  
1.27  
2.4  
1.0  
0.6  
SOP8  
SOP14  
4.60  
1.10  
0.76  
SSOP-B8  
SSOP-B14  
0.65  
0.65  
4.60  
2.62  
1.20  
0.99  
0.35  
0.35  
MSOP8  
SOP8, SSOP-B8, MSOP8  
SOP14, SSOP-B14  
SSOP5  
e
e
MIE  
b2  
2  
Revision History  
Date  
Revision  
001  
Changes  
12.JUL.2013  
New Release  
www.rohm.com  
© 2013 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSZ02201-0RAR1G200380-1-2  
12.JUL.2013 Rev.001  
39/39  
Daattaasshheeeett  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the  
ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice - GE  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice - GE  
Rev.002  
© 2014 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2014 ROHM Co., Ltd. All rights reserved.  
Datasheet  
Buy  
BU7485G - Web Page  
Distribution Inventory  
Part Number  
Package  
Unit Quantity  
BU7485G  
SSOP5  
3000  
Minimum Package Quantity  
Packing Type  
Constitution Materials List  
RoHS  
3000  
Taping  
inquiry  
Yes  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY