BU91R63CH-M [ROHM]

BU91R63CH-M3BW是1/4、1/3、1/2占空比、支持Static的COG型车载用通用LCD驱动器,最多可显示176段LCD。本产品支持高液晶电压驱动及高帧频率驱动,也可驱动高显示精度的VA液晶。还支持+105℃动作,符合车载应用要求的AEC-Q 100标准。内置显示用RAM,可减轻微控制器负荷,还无需外置部件,实现了低功耗。具备显示用RAM及寄存器的读取功能,可检测因噪声等导致的误动作。使用ITO电阻测量引脚,更方便进行COG贴装不良的管理。内置有EVR功能,可进行LCD对比度的调节。;
BU91R63CH-M
型号: BU91R63CH-M
厂家: ROHM    ROHM
描述:

BU91R63CH-M3BW是1/4、1/3、1/2占空比、支持Static的COG型车载用通用LCD驱动器,最多可显示176段LCD。本产品支持高液晶电压驱动及高帧频率驱动,也可驱动高显示精度的VA液晶。还支持+105℃动作,符合车载应用要求的AEC-Q 100标准。内置显示用RAM,可减轻微控制器负荷,还无需外置部件,实现了低功耗。具备显示用RAM及寄存器的读取功能,可检测因噪声等导致的误动作。使用ITO电阻测量引脚,更方便进行COG贴装不良的管理。内置有EVR功能,可进行LCD对比度的调节。

驱动 控制器 CD 微控制器 驱动器
文件: 总43页 (文件大小:2684K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Low Duty LCD Segment Driver  
For Automotive COG Application  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
General Description  
Key Specifications  
BU91R63CH-M is a 1/4, 1/3, 1/2 duty or Static COG type  
LCD driver that can be used for automotive applications  
and can drive up to 176 LCD segments.  
Supply Voltage Range:  
LCD Drive Power Supply Range:  
Operating Temperature Range:  
Max Segments:  
+2.7 V to +6.0 V  
+2.7 V to +6.0 V  
-40 °C to +105 °C  
176 Segments  
It can support operating temperature of up to +105 °C and  
compliant for AEC-Q100, as required for Automotive  
Application. It has integrated display RAM for reducing  
CPU load. Also, it is designed with low power  
consumption and no external component needed. It  
includes read function for display RAM and command  
register, which make it possible to detect malfunction due  
to noise. Also a defective mounting of COG can easily be  
controlled by using pins to measure ITO resistance.  
Display Duty:  
Bias:  
1/4, 1/3, 1/2, Static Selectable  
1/2, 1/3 Selectable  
Interface:  
2-wire Serial Interface  
Special Characteristics  
ESD(HBM):  
Latch-up Current:  
±2,000 V  
±100 mA  
Features  
Applications  
AEC-Q100 Compliant (Note 1)  
Instrument Clusters  
Climate Controls  
Car Audios / Radios  
Metering  
White Goods  
Healthcare Products  
1/4, 1/3, 1/2 Duty or Static Setting Selectable  
1/4 Duty Drive: Max 176 Segments  
1/3 Duty Drive: Max 132 Segments  
1/2 Duty Drive: Max 88 Segments  
Static Drive: Max 44 Segments  
Integrated Buffer AMP for LCD Driving  
Support Read Register and Display RAM Function  
Support ITO Resistance Measurement  
Integrated Oscillator Circuit  
Battery Operated Applications  
etc.  
Integrated EVR Function to Adjust LCD Contrast  
Integrated Power On Reset Circuit  
No External Components  
Package  
Au BUMP Chip  
Low Power Consumption Design  
(Note 1) Quality Information:  
There is data when LSI was put on a temporary package.  
Please use it as reference data.  
Typical Application Circuit  
[LCD module]  
44 x 4 dots  
(Top view)  
3
0
0
43  
COM  
BU91R63CH-M (Bottom view)  
VLCD VSS VDD SCL SDA  
(Note 2)  
SEG  
(Note 2) SDA of BU91R63CH-M needs pull-up  
resistor because it is an open-drain output.  
In case that SCL of MCU has open-drain structure,  
it also needs pull-up resistor.  
VLCD VSS VDD  
MCU  
SCL SDA  
Product structure: Silicon monolithic integrated circuit This product has no designed protection against radioactive rays  
.
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
1/40  
TSZ22111 14 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Block Diagram  
---  
Common  
Driver  
Segment  
Driver  
LCD Voltage Generator  
VLCD  
V0  
LCD  
BIAS  
Blink  
Timing  
Generator  
Common  
Selector  
Counter  
DDRAM  
Oscillator  
Command  
Register  
Command  
Data Decorder  
OSCIN  
VDD  
Serial Interface  
PowerOn  
Reset  
VSS  
IF Filter  
Terminal Description  
Handling  
when unused  
Terminal Name  
I/O  
Function  
POR enable setting  
T0  
T1  
I
I
VDD: POR disable (Note)  
VSS: POR enable  
Test input (ROHM use only)  
Must be connected to VSS.  
Test input (ROHM use only)  
Must be connected to VSS.  
VSS  
VSS  
T2  
I
-
-
VSS  
DUMMY  
Open  
OPEN  
OPEN  
DUMMY1  
DUMMY2  
Can be used for COG resistance measurement.  
External clock input  
OSCIN  
I
External clock and Internal clock can be selected by command  
Must be connected to VSS when using internal oscillator  
Serial data input-output terminal  
VSS  
SDA  
SCL  
VSS  
I/O  
I
I
-
-
-
Serial clock terminal  
Ground  
VDD  
I
Power supply for logic  
-
VLCD  
I
Power supply for LCD driving circuit  
SEGMENT output for LCD driving  
COMMON output for LCD driving  
-
SEG0 to SEG43  
O
OPEN  
OPEN  
COM0 to COM3  
O
(Note) Not 100 % tested. Software Reset is necessary to initialize IC in case of T0 = VDD.  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
2/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Recommended ITO Layout  
LCD module terminals  
Alignment Mark2  
Test PADs on the glass (As needed)  
ITO layout image  
DUMMY  
SEG0  
83  
1
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
Internal  
Wiring  
80  
SDA  
SDA  
SEG8  
SEG9  
SCL  
SEG10  
SEG11  
OSCIN  
SEG12  
SEG13  
SEG14  
SEG15  
70  
10  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
VDD  
60  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
20  
VSS  
SEG32  
SEG33  
SEG34  
SEG35  
SEG36  
SEG37  
SEG38  
SEG39  
50  
VLCD  
30  
SEG40  
SEG41  
SEG42  
SEG43  
COM0  
COM1  
COM2  
40  
Internal  
Wiring  
COM3  
DUMMY  
34  
33  
Alignment Mark1  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
3/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Recommended ITO Layout continued  
Terminal Resistance  
PAD No.  
3, 4  
Terminal Name  
SDA  
Maximum Resistance  
1,500 Ω  
1,500 Ω  
1,500 Ω  
1,500 Ω  
1,500 Ω  
1,500 Ω  
400 Ω  
5, 6  
SCL  
7, 8  
OSCIN  
T0  
11, 12  
13, 14  
T1  
15, 16  
T2  
17 to 20  
9, 10, 21 to 27  
28 to 31  
VDD  
VSS  
400 Ω  
VLCD  
400 Ω  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
4/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
PAD Arrangement  
Alignment Mark2  
DUMMY  
83  
SEG0  
DUMMY1  
DUMMY1  
1
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
80  
70  
60  
Size  
Item  
Chip size  
Chip thickness  
Bump height  
Unit  
X
650  
Y
3560  
µm  
µm  
µm  
Hv  
SDA  
SDA  
SCL  
230  
15 ± 3  
50 ± 20  
SEG8  
Bump hardness  
SEG9  
SCL  
SEG10  
SEG11  
OSCIN  
OSCIN  
VSS  
Alignment Mark 1  
81 µm  
SEG12  
SEG13  
SEG14  
SEG15  
10  
VSS  
T0  
T0  
T1  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
T1  
T2  
81 µm  
T2  
SEG22  
SEG23  
VDD  
VDD  
(0, 0)  
VDD  
VDD  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
20  
Markcenter coordinate  
(X, Y) = (206.6,-1685.0)  
VSS  
VSS  
VSS  
VSS  
VSS  
Alignment Mark 2  
VSS  
SEG32  
SEG33  
SEG34  
SEG35  
SEG36  
SEG37  
SEG38  
SEG39  
50  
27 µm 27 µm 27 µm  
VSS  
VLCD  
VLCD  
VLCD  
27 µm  
27 µm  
27 µm  
30  
VLCD  
DUMMY2  
SEG40  
SEG41  
SEG42  
SEG43  
COM0  
COM1  
COM2  
COM3  
DUMMY  
40  
34  
Mark center coordinate  
(X, Y) = (206.6, 1685.0)  
33  
DUMMY2  
Alignment Mark1  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
5/40  
TSZ22111 15 001  
 
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Dimension  
Table 1. Dimension (Completion Size)  
Mark  
Topic  
Specification Limit  
625 ± 40 μm  
Chip Size X  
Chip Size Y  
Chip Size: X Direction  
Chip Size: Y Direction  
Chip Thickness  
3,535 ± 40 μm  
230 ± 20 μm  
Chip Thickness  
A (PAD1 to PAD33)  
B (PAD1 to PAD33)  
C (PAD1 to PAD33)  
A’ (PAD34 to PAD83)  
B’ (PAD34 to PAD83)  
C’ (PAD34 to PAD83)  
Bump Size: X Direction  
Bump Size: Y Direction  
Average of Bump Height  
Bump Size: X Direction  
Bump Size: Y Direction  
Average of Bump Height  
60.0 ± 3.0 μm  
55.0 ± 3.0 μm  
15.0 ± 3.0 μm  
75.0 ± 3.0 μm  
39.0 ± 3.0 μm  
15.0 ± 3.0 μm  
Input  
PAD  
Output  
PAD  
Table 2. Bump Specs and Dimensions  
Topic  
Specification Limit  
Straight Bump  
Bump Structure  
Bump Co-planarity on Chip  
3.0 μm or less  
Bump Hardness (Microvicker’s Meter)  
50 Hv ± 20 Hv  
Bump Strength  
7.25 mg/μm2 or more  
Passivation opening  
Input PAD  
Output PAD  
Y
Y’  
Y
Au Bump  
Y’  
A
A’  
B’  
Aluminum  
B
Au Bump  
Bump height  
Bump height  
C
Passivation  
C’  
UBM(TiW/Au)  
UBM (TiW/Au)  
YY´ cross section  
YY´ cross section  
Aluminum  
Figure 1. PAD / Bump Information  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
6/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
PAD Coordinates  
Unit:µm  
BUMP Center  
BUMP Size  
No  
Terminal Name  
X
Y
X
Y
1
2
3
4
5
6
7
8
DUMMY1  
DUMMY1  
SDA  
SDA  
SCL  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
-248.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
227.00  
1340.00  
1270.00  
1045.00  
975.00  
905.00  
835.00  
765.00  
695.00  
625.00  
555.00  
485.00  
415.00  
345.00  
275.00  
205.00  
135.00  
65.00  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
55  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
39  
SCL  
OSCIN  
OSCIN  
VSS  
VSS  
T0  
T0  
T1  
T1  
T2  
T2  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
-5.00  
-75.00  
-145.00  
-215.00  
-285.00  
-355.00  
-425.00  
-495.00  
-565.00  
-635.00  
-705.00  
-775.00  
-845.00  
-915.00  
-1005.00  
-1636.00  
-1496.55  
-1442.55  
-1388.55  
-1334.55  
-1280.55  
-1226.55  
-1172.55  
-1118.55  
-1064.55  
-950.90  
-896.90  
-842.90  
-788.90  
-734.90  
-680.90  
-626.90  
-572.90  
-458.85  
-404.85  
-350.85  
-296.85  
-242.85  
-188.85  
-134.85  
-80.85  
VSS  
VSS  
VSS  
VSS  
VLCD  
VLCD  
VLCD  
VLCD  
DUMMY2  
DUMMY2  
DUMMY  
COM3  
COM2  
COM1  
COM0  
SEG43  
SEG42  
SEG41  
SEG40  
SEG39  
SEG38  
SEG37  
SEG36  
SEG35  
SEG34  
SEG33  
SEG32  
SEG31  
SEG30  
SEG29  
SEG28  
SEG27  
SEG26  
SEG25  
SEG24  
SEG23  
SEG22  
SEG21  
SEG20  
SEG19  
SEG18  
SEG17  
SEG16  
SEG15  
SEG14  
SEG13  
SEG12  
SEG11  
SEG10  
SEG9  
SEG8  
SEG7  
SEG6  
SEG5  
SEG4  
SEG3  
SEG2  
SEG1  
SEG0  
DUMMY  
33.20  
87.20  
141.20  
195.20  
249.20  
303.20  
357.20  
411.20  
525.25  
579.25  
633.25  
687.25  
741.25  
795.25  
849.25  
903.25  
1017.30  
1071.30  
1125.30  
1179.30  
1233.30  
1287.30  
1341.30  
1395.30  
1449.30  
Refer to PAD Arrangement for the definition of X/Y coordinates.  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
7/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Absolute Maximum Ratings (VSS = 0 V)  
Ratings  
Parameter  
Symbol  
Unit  
V
Remarks  
Power Supply  
Min  
-0.5  
Typ  
-
Max  
+7.0  
Maximum Voltage1  
VDD  
Maximum Voltage2  
LCD Drive Voltage  
VLCD  
VIN  
-0.5  
-0.5  
-
-
+7.0  
+7.0  
-
V
V
Input Voltage Range  
-
-
-
-
-
-
Human Body Model (HBM)(Note 1), (Note 2)  
Latch-up Current(Note 1), (Note 3)  
Maximum Junction Temperature  
Storage Temperature Range  
VESD  
ILU  
±2,000  
V
-
±100  
-
mA  
°C  
°C  
Tjmax  
Tstg  
-55  
-55  
-
-
+125  
+125  
(Note 1) Please use as reference data.  
(Note 2) Testing standards: JESD22-A114E  
(Note 3) Testing standards: JESD78  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Recommend Operating Conditions (VSS = 0 V)  
Ratings  
Parameter  
Symbol  
Unit  
Remarks  
Min  
-40  
2.7  
2.7  
Typ  
Max  
+105  
6.0  
Operational Temperature  
Power Supply Voltage 1  
Power Supply Voltage 2  
Topr  
VDD  
-
-
-
°C  
V
-
Power Supply  
VLCD  
6.0  
V
LCD Drive Voltage  
Electrical Characteristics  
DC Characteristics (Unless otherwise specified, Ta = -40 °C to +105 °C, VDD = 2.7 V to 6.0 V, VSS = 0 V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min  
Typ  
Max  
“H” Level Input Voltage  
“L” Level Input Voltage  
“H” Level Input Current  
“L” Level Input Current  
SDA “L” Level Output Voltage  
VIH  
VIL  
0.7VDD  
-
-
VDD  
V
SDA, SCL, OSCIN  
VSS  
0.3VDD  
V
SDA, SCL, OSCIN  
IIH  
-
-1  
0
-
-
1
-
µA  
µA  
V
SDA, SCL, OSCIN, T0, T1, T2  
SDA, SCL, OSCIN, T0, T1, T2  
ILOAD = -3 mA  
IIL  
-
VOLSDA  
RON  
RON  
IVDD1  
IVLCD1  
-
0.4  
-
SEG  
3
3
-
kΩ  
kΩ  
µA  
µA  
LCD Driver  
ILOAD = ±10 µA  
On Resistance  
COM  
-
-
-
5.0  
5.0  
Standby Current  
Display Off, Oscillation Off  
-
-
VDD = 3.3 V, VLCD = 3.3 V,  
Ta = 25 °C, Power save mode1,  
1/3 bias, Frame inversion  
IVDD2  
-
-
2.0  
5.5  
10.0  
20.0  
µA  
µA  
Operating Current  
IVLCD2  
Frame Frequency = 80 Hz setting  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
8/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Electrical Characteristics continued  
Oscillation Characteristics (Unless otherwise specified,Ta = -40 °C to +105 °C, VDD = 2.7 V to 6.0 V, VSS = 0 V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min  
56  
Typ  
Max  
104  
DISCTL 80 Hz setting,  
VDD = 2.7 V to 6.0 V,  
Ta = -40 °C to +105 °C  
DISCTL 80 Hz setting,  
VDD = 3.5 V, Ta = -40 °C to +105 °C  
80  
Frame Frequency 1  
Frame Frequency 2  
fCLK1  
Hz  
Hz  
72  
80  
88  
fCLK2  
µs  
µs  
Hz  
%
-
-
-
-
0.3  
0.3  
External Clock Rise Time  
External Clock Fall Time  
External Clock Frequency  
External Clock Duty  
trCLK  
tfCLK  
fCLK3  
TDTY  
External Clock Mode  
30,000  
30  
-
300,000  
70  
50  
Keep external clock frequency range from 30,000 Hz to 300,000 Hz.  
The calculation formula for frame frequency at external clock mode is shown in Set IC Operation (ICSET).  
[Reference Data]  
110  
100  
VDD = 6.0 V  
90  
VDD = 5.0 V  
VDD = 3.3 V  
80  
VDD = 2.7 V  
70  
60  
50  
-40 -20  
0
20  
40  
60  
80 100  
Temperature °C  
Figure 2. Frame Frequency Typical Temperature Characteristics  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
9/40  
TSZ22111 15 001  
 
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Electrical Characteristics - continued  
MPU Interface Characteristics (Unless otherwise specified, Ta = -40 °C to +105 °C, VDD = 2.7 V to 6.0 V, VSS = 0 V)  
Limits  
Parameter  
Symbol  
Unit  
Condition  
Min  
-
Typ  
Max  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
-
-
-
-
-
-
-
-
-
-
-
0.3  
Input Rise Time  
tr  
tf  
-
0.3  
Input Fall Time  
2.5  
0.6  
1.3  
100  
100  
1.3  
0.6  
0.6  
0.6  
-
-
-
-
-
-
-
-
-
SCL Cycle Time  
tCYC  
tHW  
“H” Level SCL Pulse Width  
“L” Level SCL Pulse Width  
SDA Setup Time  
tLW  
tSDS  
tSDH  
tBUF  
tHD;STA  
tSU;STA  
tSU;STO  
SDA Hold Time  
Bus Free Time  
START Condition Hold Time  
START Condition Setup Time  
STOP Condition Setup Time  
SDA  
SCL  
SDA  
tf  
tCYC  
tLW  
tBUF  
tHD;STA  
tr  
tSDH  
tHW  
tSDS  
tSU;STO  
tSU;STA  
Figure 3. Interface Timing  
I/O Equivalence Circuit  
VLCD  
VDD  
VSS  
VSS  
SDA  
SCL, T0, T1, T2,  
OSCIN  
VSS  
VSS  
DUMMY1  
VLCD  
DUMMY1  
DUMMY2  
SEG0 to SEG43  
COM0 to COM3  
DUMMY2  
VSS  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
10/40  
TSZ22111 15 001  
 
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Functional Descriptions  
Command / Data Transfer Method  
BU91R63CH-M transfers command or data by 2-wire signal (SDA, SCL).  
SDA  
SCL  
START Condition  
STOP Condition  
Figure 4. 2-wire Command/Data Transfer Format  
It is necessary to generate START and STOP Condition when transferring command or display data through the 2-wire  
serial interface.  
Slave Address  
A
Display Data  
A P  
Command  
S
0
1
1
1
1
1
0
M
A
C
R/W  
Acknowledge  
Command or data judge bit  
STOP Condition  
START Condition  
Figure 5. Interface Protcol  
The following procedure shows how to transfer Command and Display Data.  
(1) Generate “START Condition”.  
(2) Issue Slave Address.  
(3) Transfer Command and Display Data.  
(4) Generate “STOP Condition”  
Acknowledge (ACK)  
Data format is comprised of 8 bits, Acknowledge bit is returned after sending 8-bit data.  
After the transfer of 8-bit data (Slave Address, Command, Display Data), release the SDA line at the 8th falling edge of  
SCL. The SDA keeps “Low” output until the 9th falling edge of the SCL.  
(Output cannot be pulled “High” because of open drain NMOS).  
If acknowledge function is not required, keep SDA line at “Low” level from 8th falling edge to 9th falling edge  
of SCL.  
SDA  
SCL  
1 to 7  
S
1 to 7  
8
9
1 to 7  
8
9
8
9
P
START Condition  
STOP Condition  
Slave Address  
Ack  
Data  
Ack  
Data  
Ack  
Figure 6. Acknowledge Timing  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
11/40  
TSZ22111 15 001  
 
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Functional Descriptions continued  
Command Transfer Method  
Issue Slave Address (“01111100”) after generating “START Condition”.  
After issuing Slave address (“01111100”), the first byte is always command input.  
MSB (Most Significant Bit) of command is the judgment bit for Command or Display Data.  
When set “command or data judge bit” = 1, commands can be input continuously.  
When set “command or data judge bit” = 0, next byte data is Display Data.  
S
Slave Address  
A
1
Command  
A
1
Command  
Display Data  
A
Command  
A
0
P
Command  
A 1  
Command cannot be accepted in once input state of display data.  
In order to input command again it is necessary to generate “START Condition”.  
If “START Condition” or “STOP Condition” is generated during command transfer, the command being transferred is  
cancelled.  
If Slave Address is issued continuously following “START Condition” during the transfer, it remains in command input state.  
After generating START Condition”, issue Slave Address at the first data transfer.  
If Slave Address cannot be recognized in the first data transfer, Acknowledge bit is not returned and subsequent data  
transfer is not accepted. When data is in invalid status, it is restored by generating “START Conditionagain.  
Consider the MPU interface characteristics such as Input rise time and Setup/Hold time when transferring command and  
data (Refer to MPU Interface Characteristics).  
Write Display Data and Transfer Method  
For Write Mode set R/W bit to 0.  
BU91R63CH-M has Display Data RAM (DDRAM) of 44 x 4 = 176bit.  
The relationship between data input and display data, DDRAM data and address are as follows.  
Slave Address  
0111110  
Command  
0000000  
Command  
1101000  
S
0
A
0
A
1
A
a
b
c
d
e
f
g
h
A
i
j
k
l
m
n
o
p
A
P  
R/W = 0 (Write Mode)  
Display Data  
8-bit data is stored in DDRAM. ADSET command specifies the address to be written, and address is automatically  
incremented in every 4-bit data.  
Data can be continuously written in DDRAM by transmitting data continuously.  
When DDRAM data is written successively, after writing DDRAM data to 2Bh (SEG43), the address is returned to 00h  
(SEG0) by the auto-increment function.  
DDRAM address  
00h 01h 02h 03h 04h 05h 06h 07h  
29h 2Ah 2Bh  
a
b
c
d
e
f
i
j
m
n
0
1
2
3
COM0  
COM1  
BIT  
g
h
k
l
o
COM2  
COM3  
p
SEG SEG SEG SEG SEG SEG SEG SEG  
SEG SEG SEG  
41 42 43  
0
1
2
3
4
5
6
7
Display data is written to DDRAM every 4-bit data.  
No need to wait for ACK bit to complete data transfer.  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
12/40  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Functional Descriptions continued  
Read Display and Transfer Method  
For Read Mode set R/W bit to 1.  
The display data and command register value can be read during Read Mode.  
The Read Mode sequence is shown below.  
Slave Address  
0111110  
Command  
0000000  
Slave Address  
0111110  
Command  
1101000  
S
0
A
A
P
A
1
A
1
1
A
Data  
…...  
A
S
Data  
R/W(Write Mode)  
R/W(Read Mode)  
In Read Mode, the display data and the register data can be read from the DDRAM through the SDA line.  
Output data is output in synchronization with the SCL signal.  
In order to access the DDRAM, it is necessary to set the address at first using the ADSET command in Write  
Mode.  
Note that if the address is not set before reading the display data, reading will start from the current address.  
The address is automatically incremented by +2 for each 8-bit output data.  
Master side should output ACK signal every 8bit data output.  
BU91R63CH-M continues address increment and output data by receiving ACK. If ACK is not received, BU91R63CH-M  
does not continue the above read operation so that input “STOP Condition”.  
When receiving “STOP Condition”, BU91R63CH-M ends Read Mode.  
The address automatically returns to 00h after 2Bh. (Not incremented to 2Ch or 2Dh.)  
An example of the display data read sequence is shown below.  
S
P
SDA  
SCL  
Slave Address (read)  
A
D7 D6 D5 D4 D3 D2 D1 D0  
A
D7 D6 D5 D4 D3 D2 D1 D0  
A
Figure 7. Read Sequence  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
13/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Functional Descriptions continued  
Read Command Register and Transfer Method  
The command registers can be read during Read Mode. The sequence for the command register read is shown below and  
is similar to the display data read sequence.  
Slave Address  
Command  
Command  
Slave Address  
NA  
P
S
0111110  
0
A
1
110 1100  
A
ADSET  
0111110 A  
1
Data  
A
S
Set ICSET [P2] = 1  
R/W  
R/W  
Regarding address setting, refer to Address Set (ADSET) command.  
The following register settings can be read in this mode by setting address to 2Ch, 2Dh, and 2Eh.  
Address does not increment automatically after read the command register value.  
Register  
REG1  
REG2  
REG3  
D7 D6 D5 D4 D3 D2 D1 D0  
P7 P6 P5 P4 P3 P2 P1 P0  
P7 P6 P5 P4 P3 P2 P1 P0  
Address  
2Ch  
2Dh  
0
0
0
0
P3 P2 P1 P0  
2Eh  
REG1:  
REG2:  
REG3:  
P7 = Duty setting  
P6 = Duty setting  
P5 = 1/2Bias / 1/3Bias setting  
P4 = Internal clock / External clock setting  
P3 = Software Reset setting  
P2 to P0 = Blink setting  
P7 to P6 = Frame Frequency setting  
P5 to P4 = Power Save Mode setting  
P3 = Frame/Line inversion setting  
P2 = Display On/Off setting  
P1 = All Pixels ON setting  
P0 = All Pixels OFF setting  
P3 = Contrast setting  
P2 = Contrast setting  
P1 = Contrast setting  
P0 = Contrast setting  
The ADSET and ICSET setting address map is shown below.  
Write Mode  
ADSET  
ICSET  
P7 P6 P5 P4 P3 P2(Note) P1 P0  
RAM Address  
D7 D6 D5  
D[4:0]  
0000 0000 to 0001 1111  
0010 0000 to 0010 1011  
0
0
0
0
0
0
0 0000 to 1 1111  
0 0000 to 0 1011  
1
1
1
1
1
1
0
0
1
1
0
1
0
0
0
0
Read Mode  
ADSET  
ICSET  
RAM Address  
D7 D6 D5  
D[4:0]  
P7 P6 P5 P4 P3 P2(Note) P1 P0  
0000 0000 to 0001 1111  
0010 0000 to 0010 1110  
1
1
0
0
0
0
0 0000 to 1 1111  
0 0000 to 0 1110  
1
1
1
1
1
1
0
0
1
1
0
1
0
0
0
0
(Note) Please take care of ICSET [P2] setting.  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
14/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
OSC (Oscillator)  
The clock required for internal operation and liquid crystal display operation is generated by an internal oscillation circuit or  
an external clock. If internal oscillator circuit is used, OSCIN must be connected to VSS level.  
When using external clock mode, input external clock from OSCIN terminal after ICSET command setting.  
Clock input  
OSCIN  
BU91R63CH-M  
OSCIN  
BU91R63CH-M  
VSS  
VSS  
Figure 8. Internal Clock Mode  
Figure 9. External Clock Mode  
LCD Driver Bias Circuit  
This circuit generates the liquid crystal drive voltage. It also has a built-in buffer amplifier that can be driven with low power  
consumption.  
1/3 or 1/2 Bias can be set by MODESET command.  
Line or frame inversion can be set by DISCTL command.  
Refer to the LCD Driving Waveform for each LCD bias setting.  
Blinker Timing Generator  
BU91R63CH-M has Blink function.  
Blink mode can be set by BLKCTL command.  
The Blink frequency varies depending on fCLK characteristics at internal clock mode.  
Refer to Oscillation Characteristics for fCLK  
.
Reset Initialize Condition  
Initial condition after executing Software Reset is as follows.  
-
-
Display is OFF.  
DDRAM address is initialized (DDRAM Data is not initialized).  
Refer to Detailed Command Description for initial value of registers.  
Command / Function List  
Description List of Command / Function  
No.  
Command  
Function  
Software reset, internal/external clock setting  
( P2 is MSB data of DDRAM address )  
1
2
3
Set IC Operation (ICSET)  
Display Control (DISCTL)  
Address Set (ADSET)  
Frame Frequency, Power Save Mode setting  
DDRAM address setting  
Register address setting  
4
5
6
7
Mode Set (MODESET)  
Blink Control (BLKCTL)  
All Pixels Control (APCTL)  
Contrast Setting (EVRSET)  
Display ON/OFF, Bias, Duty  
Blink off/0.5 Hz/1 Hz/2 Hz/0.3 Hz/0.2 Hz Blink setting  
All Pixels ON/OFF during DISPON  
Contrast Setting  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
15/40  
TSZ22111 15 001  
 
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Detailed Command Description  
D7 (MSB) is a command or data judgment bit.  
Refer to Command / Data Transfer Method.  
C = 0: Next byte is RAM write data.  
C = 1: Next byte is command.  
Set IC Operation (ICSET)  
MSB  
D7  
C
LSB  
D0  
P0  
D6  
1
D5  
1
D4  
0
D3  
1
D2  
P2  
D1  
P1  
P2: MSB data of DDRAM address. Please refer to Address Set (ADSET) command.  
Set software reset execution.  
Setup  
P1  
0
No operation  
Software Reset Execute  
1
When “Software Reset” is executed, BU91R63CH-M is reset to initial condition.  
(Refer to Reset Initialize Condition)  
Don’t set Software Reset (P1) with P2, P0 at the same time.  
Set oscillator mode.  
Setup  
P0  
0
Reset initialize condition  
Internal Clock (internal oscillation circuit used)  
External Clock  
1
-
Internal Clock Mode: OSCIN must be connected to VSS level.  
External Clock Mode: Input external clock from OSCIN terminal.  
<Frame frequency Calculation at external clock mode>  
DISCTL 80 Hz setting: Frame frequency = external clock / 512 [Hz]  
DISCTL 130 Hz setting: Frame frequency = external clock / 315 [Hz]  
DISCTL 64 Hz setting: Frame frequency = external clock / 648 [Hz]  
DISCTL 200 Hz setting: Frame frequency = external clock / 205 [Hz]  
Command  
ICSET  
OSCIN_EN  
Internal Clock Mode  
(Internal Signal)  
External Clock Mode  
Internal oscillation  
(Internal Signal)  
External Clock  
(OSCIN)  
Figure 14. OSC MODE Switch Timing  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
16/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Detailed Command Description continued  
Display Control (DISCTL)  
MSB  
D7  
C
LSB  
D0  
P0  
D6  
0
D5  
1
D4  
P4  
D3  
P3  
D2  
P2  
D1  
P1  
Set Frame Frequency.  
Setup  
80 Hz  
P4  
0
P3  
0
Reset initialize condition  
-
130 Hz  
64 Hz  
0
1
1
0
-
200 Hz  
1
1
-
Set LCD Drive Waveform.  
Setup  
P2  
0
Reset initialize condition  
Line Inversion Mode  
Frame Inversion Mode  
1
-
Power consumption is reduced in the following order:  
Line inversion > Frame inversion  
Typically, when driving large capacitance LCD, Line inversion is more susceptible to crosstalk.  
Regarding driving waveform, refer to LCD Driving Waveform.  
Set Power Save Mode  
Setup  
P1  
0
P0  
0
Reset initialize condition  
Power Save Mode 1  
Power Save Mode 2  
Normal Mode  
-
-
0
1
1
0
-
High Power Mode  
1
1
Power consumption is increased in the following order:  
Power Save Mode 1 < Power Save Mode 2 < Normal Mode < High Power Mode  
Address Set (ADSET)  
MSB  
D7  
C
LSB  
D0  
P0  
D6  
0
D5  
0
D4  
P4  
D3  
P3  
D2  
P2  
D1  
P1  
The range of address in the Write Mode can be set from 000000 to 101011(bin).  
The range of address in the Read Mode can be set from 000000 to 101110(bin).  
MSB  
LSB  
Internal  
Address Address Address Address Address Address  
Register  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
ICSET  
P2  
ADSET  
P4  
ADSET  
P3  
ADSET  
P2  
ADSET  
P1  
ADSET  
P0  
Command  
Address [5:0]: MSB bit is specified in ICSET P2 and [4:0] are specified as ADSET P4 - P0.  
Don’t set out of range address, otherwise address is set to 000000.  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
17/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Detailed Command Description continued  
Mode Set (MODE SET)  
MSB  
D7  
C
LSB  
D0  
P0  
D6  
1
D5  
0
D4  
0
D3  
P3  
D2  
P2  
D1  
P1  
Set Display On and Off  
Setup  
P3  
0
Reset initialize condition  
Display Off (DISPOFF)  
Display On (DISPON)  
1
-
Display Off: Regardless of DDRAM data, all SEGMENT and COMMON outputs stop after writing OFF data of 1frame.  
Display Off mode is disabled after Display On command.  
Display On: SEGMENT and COMMON outputs become active, and reading operation from DDRAM to Display starts.  
Set Bias Level  
Setup  
P2  
0
Reset initialize condition  
1/3 Bias  
1/2 Bias  
1
-
Please refer to LCD Driving Waveform, for example of SEG and COM output waveform  
Set Duty  
Setup  
1/4 Duty  
1/3 Duty  
1/2 Duty  
Static  
P1  
0
P0  
0
Reset initialize condition  
-
0
1
1
0
-
1
1
-
Blink Control (BLKCTL)  
MSB  
LSB  
D7  
C
D6  
1
D5  
1
D4  
1
D3  
0
D2  
P2  
D1  
P1  
D0  
P0  
Set Blink condition.  
Blink mode (Hz)  
P2  
0
P1  
0
P0  
0
Reset initialize condition  
OFF  
0.5  
1
-
0
0
1
0
1
0
-
2
0
1
1
-
0.3  
0.2  
1
0
0
-
1
0
1
-
The Blink frequency varies depending on fCLK characteristics at internal clock mode.  
Refer to Oscillation Characteristics for fCLK  
.
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
18/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Detailed Command Description continued  
All Pixels Control (APCTL)  
MSB  
D7  
C
LSB  
D0  
P0  
D6  
1
D5  
1
D4  
1
D3  
1
D2  
P2  
D1  
P1  
Set all pixels to be turned on and off simultaneously.  
Setup  
Normal  
P1  
0
Reset initialize condition  
All Pixels ON  
1
-
Setup  
Normal  
P0  
0
Reset initialize condition  
All Pixels OFF  
1
-
All Pixels ON: All pixels are ON regardless of DDRAM data simultaneously.  
All Pixels OFF: All pixels are OFF regardless of DDRAM data simultaneously.  
This command is valid in Display On status. The data of DDRAM is not changed by this command.  
If set both P1 and P0 = “1”, All Pixels OFF is selected.  
P2 is used for P3 of Contrast Setting.  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
19/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Detailed Command Description continued  
Contrast Setting (EVRSET)  
MSB  
D7  
C
LSB  
D0  
P0  
D6  
1
D5  
1
D4  
0
D3  
0
D2  
P2  
D1  
P1  
BU91R63CH-M has an electronic volume of 16 gradations. This function allows setting the maximum potential (V0)  
of the gradation voltage for LCD driving. In the initial state after reset, the electronic volume setting is “0000”. At this  
time, the VLCD voltage becomes the V0 voltage. Set the electronic volume so that the V0 voltage is 2.7 V or higher.  
Refer to the table below for V0 output voltage.  
Contrast Setting  
(V0 voltage)  
P3(Note)  
P2  
P1  
P0  
Reset initialize condition  
1.000 x VLCD  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.975 x VLCD  
0.950 x VLCD  
0.925 x VLCD  
0.900 x VLCD  
0.875 x VLCD  
0.850 x VLCD  
0.825 x VLCD  
0.800 x VLCD  
0.775 x VLCD  
0.750 x VLCD  
0.725 x VLCD  
0.700 x VLCD  
0.675 x VLCD  
0.650 x VLCD  
0.625 x VLCD  
(Note) P3 setting uses P2 of APCTL.  
The relationship of LCD display contrast setting and VLCD voltage  
VLCD  
4.5  
Formula  
Unit  
3.0  
6.0  
5.5  
5.0  
4.0  
2.7  
1.000 x VDD  
0.975 x VDD  
0.950 x VDD  
0.925 x VDD  
0.900 x VDD  
0.875 x VDD  
0.850 x VDD  
0.825 x VDD  
0.800 x VDD  
0.775 x VDD  
0.750 x VDD  
0.725 x VDD  
0.700 x VDD  
0.675 x VDD  
0.650 x VDD  
0.625 x VDD  
6.000 5.500 5.000  
5.850 5.363 4.875  
5.700 5.225 4.750  
5.550 5.088 4.625  
5.400 4.950 4.500  
5.250 4.813 4.375  
5.100 4.675 4.250  
4.950 4.538 4.125  
4.800 4.400 4.000  
4.650 4.263 3.875  
4.500 4.125 3.750  
4.350 3.988 3.625  
4.200 3.850 3.500  
4.050 3.713 3.375  
3.900 3.575 3.250  
3.750 3.438 3.125  
4.500  
4.388  
4.275  
4.163  
4.050  
3.938  
3.825  
3.713  
3.600  
3.488  
3.375  
3.263  
3.150  
3.038  
2.925  
2.813  
4.000  
3.900  
3.800  
3.700  
3.600  
3.500  
3.400  
3.300  
3.200  
3.100  
3.000  
2.900  
2.800  
2.700  
2.600  
2.500  
3.000  
2.925  
2.850  
2.775  
2.700  
2.625  
2.550  
2.475  
2.400  
2.325  
2.250  
2.175  
2.100  
2.025  
1.950  
1.875  
2.700  
2.632  
2.565  
2.497  
2.430  
2.362  
2.295  
2.227  
2.160  
2.092  
2.025  
1.957  
1.890  
1.822  
1.755  
1.687  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Prohibited Setting  
In the case of using EVR function, ensure VLCD V0 > 0.6 V” condition is satisfied.  
IC output may become unstable if the above conditions are not satisfied.  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
20/40  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
LCD Driving Waveform  
(1/4duty, 1/3bias)  
Line Inversion  
Frame Inversion  
SEGn SEGn+1 SEGn+2 SEGn+3  
SEGn SEGn+1 SEGn+2 SEGn+3  
COM0  
COM1  
COM2  
COM3  
stateA  
stateB  
COM0  
COM1  
COM2  
COM3  
stateA  
stateB  
1frame  
1frame  
V0  
V0  
COM0  
COM1  
COM0  
COM1  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
COM2  
COM2  
VSS  
V0  
VSS  
V0  
COM3  
COM3  
VSS  
V0  
VSS  
V0  
SEGn  
SEGn  
VSS  
V0  
VSS  
V0  
SEGn+1  
SEGn+2  
SEGn+3  
SEGn+1  
SEGn+2  
SEGn+3  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
stateA  
stateA  
(COM0-SEGn)  
(COM0-SEGn)  
-V0  
V0  
-V0  
V0  
stateB  
stateB  
(COM1-SEGn)  
(COM1-SEGn)  
-V0  
-V0  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
21/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
LCD Driving Waveform continued  
(1/4duty, 1/2bias)  
Line Inversion  
Frame Inversion  
SEGn SEGn+1 SEGn+2 SEGn+3  
SEGn SEGn+1 SEGn+2 SEGn+3  
COM0  
COM1  
COM2  
COM3  
stateA  
stateB  
COM0  
COM1  
COM2  
COM3  
stateA  
stateB  
1frame  
V0  
1frame  
V0  
COM0  
COM1  
COM2  
COM0  
COM1  
COM2  
COM3  
SEGn  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
COM3  
VSS  
V0  
VSS  
V0  
SEGn  
VSS  
V0  
VSS  
V0  
SEGn+1  
SEGn+2  
SEGn+1  
SEGn+2  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
SEGn+3  
stateA  
SEGn+3  
stateA  
VSS  
VSS  
(COM0-SEGn)  
(COM0-SEGn)  
V0  
V0  
1/2 (V0)  
1/2 (V0)  
0
0
-1/2 (V0)  
-V0  
-1/2 (V0)  
-V0  
stateB  
(COM1-SEGn)  
V0  
stateB  
(COM1-SEGn)  
V0  
1/2 (V0)  
1/2 (V0)  
0
0
-1/2 (V0)  
-V0  
-1/2 (V0)  
-V0  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
22/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
LCD Driving Waveform continued  
(1/3duty, 1/3bias)  
Line Inversion  
Frame Inversion  
SEGn SEGn+1 SEGn+2 SEGn+3  
SEGn SEGn+1 SEGn+2 SEGn+3  
COM0  
COM1  
COM2  
COM3  
stateA  
stateB  
COM0  
COM1  
COM2  
COM3  
stateA  
stateB  
Save waveform as COM0  
Save waveform as COM0  
1frame  
1frame  
V0  
V0  
COM0  
COM1  
COM0  
COM1  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
COM2  
COM2  
VSS  
V0  
VSS  
V0  
COM3  
COM3  
VSS  
V0  
VSS  
V0  
SEGn  
SEGn  
VSS  
V0  
VSS  
V0  
SEGn+1  
SEGn+2  
SEGn+3  
SEGn+1  
SEGn+2  
SEGn+3  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
stateA  
stateA  
(COM0-SEGn)  
(COM0-SEGn)  
-V0  
V0  
-V0  
V0  
stateB  
stateB  
(COM1-SEGn)  
(COM1-SEGn)  
-V0  
-V0  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
23/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
LCD Driving Waveform continued  
(1/3duty, 1/2bias)  
Line Inversion  
Frame Inversion  
SEGn SEGn+1 SEGn+2 SEGn+3  
SEGn SEGn+1 SEGn+2 SEGn+3  
COM0  
COM1  
COM2  
COM3  
stateA  
stateB  
COM0  
COM1  
COM2  
COM3  
stateA  
stateB  
Same waveform as COM0  
Same waveform as COM0  
1frame  
V0  
1frame  
COM0  
COM1  
COM2  
V0  
VSS  
V0  
COM0  
VSS  
V0  
COM1  
VSS  
V0  
VSS  
V0  
COM2  
VSS  
V0  
VSS  
V0  
COM3  
COM3  
VSS  
V0  
VSS  
V0  
SEGn  
SEGn  
VSS  
V0  
VSS  
V0  
SEGn+1  
SEGn+2  
SEGn+1  
SEGn+2  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
SEGn+3  
stateA  
SEGn+3  
stateA  
VSS  
VSS  
(COM0-SEGn)  
(COM0-SEGn)  
V0  
V0  
1/2 (V0)  
1/2 (V0)  
0
0
-1/2 (V0)  
-V0  
-1/2 (V0)  
-V0  
stateB  
(COM1-SEGn)  
V0  
stateB  
(COM1-SEGn)  
V0  
1/2 (V0)  
1/2 (V0)  
0
0
-1/2 (V0)  
-V0  
-1/2 (V0)  
-V0  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
24/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
LCD Driving Waveform continued  
(1/2duty, 1/3bias)  
Line Inversion  
Frame Inversion  
SEGn SEGn+1 SEGn+2 SEGn+3  
SEGn SEGn+1 SEGn+2 SEGn+3  
COM0  
COM1  
stateA  
COM0  
COM1  
stateA  
stateB  
stateB  
COM2, 3  
Same waveform as COM0  
COM2, 3  
Same waveform as COM0  
1frame  
1frame  
V0  
V0  
COM0  
COM1  
COM0  
COM1  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
COM2  
COM2  
VSS  
V0  
VSS  
V0  
COM3  
COM3  
VSS  
V0  
VSS  
V0  
SEGn  
SEGn  
VSS  
V0  
VSS  
V0  
SEGn+1  
SEGn+2  
SEGn+3  
SEGn+1  
SEGn+2  
SEGn+3  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
stateA  
stateA  
(COM0-SEGn)  
(COM0-SEGn)  
-V0  
V0  
-V0  
V0  
stateB  
stateB  
(COM1-SEGn)  
(COM1-SEGn)  
-V0  
-V0  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
25/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
LCD Driving Waveform continued  
(1/2duty, 1/2bias)  
Line Inversion  
Frame Inversion  
SEGn SEGn+1 SEGn+2 SEGn+3  
SEGn SEGn+1 SEGn+2 SEGn+3  
COM0  
COM1  
stateA  
COM0  
COM1  
stateA  
stateB  
stateB  
COM2, 3  
Same waveform as COM0  
COM2, 3  
Same waveform as COM0  
1frame  
V0  
1frame  
V0  
COM0  
COM1  
COM2  
COM0  
COM1  
COM2  
COM3  
SEGn  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
COM3  
VSS  
V0  
VSS  
V0  
SEGn  
VSS  
V0  
VSS  
V0  
SEGn+1  
SEGn+2  
SEGn+1  
SEGn+2  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
SEGn+3  
stateA  
SEGn+3  
stateA  
VSS  
VSS  
(COM0-SEGn)  
(COM0-SEGn)  
V0  
V0  
1/2 (V0)  
1/2 (V0)  
0
0
-1/2 (V0)  
-V0  
-1/2 (V0)  
-V0  
stateB  
(COM1-SEGn)  
stateB  
(COM1-SEGn)  
V0  
V0  
1/2 (V0)  
1/2 (V0)  
0
0
-1/2 (V0)  
-V0  
-1/2 (V0)  
-V0  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
26/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
LCD Driving Waveform continued  
(Static)  
Line Inversion  
Frame Inversion  
SEGn SEGn+1 SEGn+2 SEGn+3  
SEGn SEGn+1 SEGn+2 SEGn+3  
COM0  
stateA stateB  
COM0  
stateA stateB  
COM1 to 3  
Same waveform as COM0  
COM1 to 3  
Same waveform as COM0  
1frame  
1frame  
V0  
V0  
COM0  
COM0  
(COM1 to 3)  
(COM1 to 3)  
VSS  
V0  
VSS  
V0  
SEGn  
SEGn  
VSS  
V0  
VSS  
V0  
SEGn+1  
SEGn+2  
SEGn+3  
SEGn+1  
SEGn+2  
SEGn+3  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
V0  
VSS  
VSS  
V0  
V0  
stateA  
stateA  
0
0
-V0  
V0  
-V0  
V0  
stateB  
stateB  
0
0
-V0  
-V0  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
27/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Example of Display Data  
When displaying a pattern as shown in Figure 12. Example Display Pattern on a panel with SEG / COM wiring patterns  
shown in Figure 10. Example COM Line Pattern and Figure 11. Example SEG Line Pattern, the following DDRAM data  
map is shown.  
COM0  
COM1  
COM2  
COM3  
Figure 10. Example COM Line Pattern  
SEG1 SEG3  
SEG2  
SEG5 SEG7  
SEG4 SEG6 SEG8  
SEG9  
SEG10  
Figure 11. Example SEG Line Pattern  
Figure 12. Example Display Pattern  
<DDRAM data mapping in Figure 12 display pattern>  
S
E
G
0
S
E
G
1
S
E
G
2
S
E
G
3
S
E
G
4
S
E
G
5
S
E
G
6
S
E
G
7
S
E
G
8
S
E
G
9
S
E
G
S
E
G
S
E
G
S
E
G
S
E
G
S
E
G
S
E
G
S
E
G
S
E
G
S
E
G
10 11 12 13 14 15 16 17 18 19  
COM0  
COM1  
COM2  
D0  
D1  
D2  
D3  
0
0
0
0
1
0
0
0
0
1
1
1
0
0
1
0
0
0
1
1
0
0
1
0
1
0
0
0
1
1
0
1
0
1
1
0
0
0
1
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
COM3  
Address  
00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah0Bh0Ch0Dh0Eh 0Fh 10h 11h 12h 13h  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
28/40  
TSZ22111 15 001  
 
 
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Initialize Sequence  
Follow the Power On sequence below to initialize condition.  
Power On  
STOP Condition  
START Condition  
Issue Slave Address  
Execute Software Reset by sending ICSET command.  
After Power On and before sending initialize sequence, each register value, DDRAM address and DDRAM data are random.  
Start Sequence  
Start Sequence Example1  
No.  
Input  
D7 D6 D5 D4 D3 D2 D1 D0  
Descriptions  
VDD = 0 3.3 V (tr = 1 ms)  
VLCD = 0 5.0 V  
1
Power On  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
3
Wait 100 µs  
Initialize  
-
-
-
-
-
-
-
-
-
Stop  
-
-
-
-
-
-
-
-
STOP Condition  
-
-
-
-
-
-
-
-
-
4
Start  
-
-
-
-
-
-
-
-
START Condition  
-
-
-
-
-
-
-
-
-
5
Slave Address  
0
-
1
-
1
-
1
-
1
-
1
-
0
-
0
-
Issue Slave Address  
-
6
ICSET  
1
-
1
-
1
-
0
-
1
-
0
-
1
-
0
-
Software Reset  
-
7
BLKCTL  
1
-
1
-
1
-
1
-
0
-
*
-
0
-
0
-
Blink OFF  
-
8
DISCTL  
1
-
0
-
1
-
0
-
0
-
0
-
1
-
0
-
80 Hz, Line Inversion, Normal mode  
-
9
APCTL  
1
-
1
-
1
-
1
-
1
-
0
-
0
-
0
-
Set MSB of EVRSET  
-
10  
11  
12  
13  
EVRSET  
1
-
1
-
1
-
0
-
0
-
0
-
0
-
0
-
EVRSET V0 = 1.00 x VLCD  
ICSET  
-
1
-
1
-
1
-
0
-
1
-
*
-
0
-
0
-
RAM MSB address set  
-
ADSET  
0
-
0
-
0
-
0
-
0
-
0
-
0
-
0
-
RAM address set  
-
Display Data  
Display Data  
*
*
-
*
*
-
*
*
-
*
*
-
*
*
-
*
*
-
*
*
-
*
*
-
address  
address  
00h to 01h  
02h to 03h  
Display Data  
*
-
*
-
*
-
*
-
*
-
*
-
*
-
*
-
address  
-
2Ah to 2Bh  
14  
15  
16  
17  
Stop  
-
-
-
-
-
-
-
-
STOP Condition  
-
-
-
-
-
-
-
-
-
Start  
-
-
-
-
-
-
-
-
START Condition  
-
-
-
-
-
-
-
-
-
Slave Address  
0
-
1
-
1
-
1
-
1
-
1
-
0
-
0
-
Issue Slave Address  
MODESET  
-
1
-
1
-
0
-
0
-
1
-
0
-
0
-
0
-
Display On, 1/4 Duty, 1/3 Bias  
-
18  
Stop  
-
-
-
-
-
-
-
-
STOP Condition  
(*: don’t care)  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
29/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Start Sequence- continued  
Start Sequence Example2  
Initialize  
Initialize Sequence  
DISPON Sequence  
RAMw rite Sequence  
DISPOFF Sequence  
DISPON  
RAMwrite  
DISPOFF  
BU91R63CH-M is initialized with “Initialize Sequence, starts to display with “DISPON Sequence”, updates Display data  
with “RAM Write Sequence” and stops the display with “DISPOFF Sequence”.  
Execute “DISPON Sequence” in order to restart display.  
Initialize Sequence (In case of VDDVLCD)  
Initialize Sequence (In case of VDD=VLCD)  
DATE  
D7 D6 D5 D4 D3 D2 D1 D0  
DATE  
D7 D6 D5 D4 D3 D2 D1 D0  
Input  
Description  
Input  
Description  
VDD On  
Wait 100 µs  
STOP  
VDD, VLCD On  
Wait 100 µs  
STOP  
START  
START  
Slave Adress  
0
1
1
1
1
1
1
0
1
1
1
0
0
1
0
0
Issue Slave Address  
Slave Address  
0
1
1
1
0
*
1
1
1
1
0
*
1
1
0
1
0
*
1
0
0
0
0
*
1
1
0
1
0
*
1
0
0
0
0
*
0
1
0
0
0
*
0
0
0
0
0
*
Issue Slave Address  
Execute Software Reset  
DisplayOff  
ISECT  
VLCD ON  
STOP  
Execute Software Reset  
ICSET  
MODESET  
ICSET  
Set MSB of RAMaddress  
Set RAMaddress  
Displaydata  
START  
ADSET  
DisplayData  
:
Slave Address  
0
1
1
1
0
*
1
1
1
1
0
*
1
1
0
1
0
*
1
0
0
0
0
*
1
1
0
1
0
*
1
0
0
0
0
*
0
1
0
0
0
*
0
0
0
0
0
*
Issue Slave Address  
Execute Software Reset  
DisplayOff  
ICSET  
MODESET  
ICSET  
STOP  
Set MSB of RAMaddress  
Set RAMAddress  
Displaydata  
ADSET  
DisplayData  
:
STOP  
DISPON Sequence  
DATE  
D7 D6 D5 D4 D3 D2 D1 D0  
Input  
Description  
START  
Slave Address  
ICSET  
0
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
1
0
1
0
0
1
1
0
0
1
1
0
0
1
0
1
1
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
Issue Slave Address  
Set Internal OSC mode  
Set DisplayControl  
Set BLKCTL  
DISCTL  
BLKCTL  
APCTL  
Set APCTL  
EVRSET  
MODESET  
STOP  
Set Contrast Setting  
DisplayOn  
RAM Write Sequence  
DATE  
D7 D6 D5 D4 D3 D2 D1 D0  
Input  
Description  
START  
Slave Address  
0
1
1
1
1
1
1
0
*
1
0
1
1
1
1
1
0
*
1
1
1
1
1
0
1
0
*
1
0
1
1
0
0
0
0
*
1
0
0
1
0
1
1
0
*
1
0
0
1
0
0
0
0
*
0
1
0
0
0
0
0
0
*
0
0
0
0
0
0
0
0
*
Issue Slave Address  
Set DisplayControl  
Set BLKCTL  
DISCTL  
BLKCTL  
APCTL  
Set APCTL  
EVRSET  
MODESET  
ICSET  
Set Contrast Setting  
DisplayOn  
Set MSB of RAM address  
Set RAM address  
Displaydata  
ADSET  
DisplayData  
:
STOP  
DISPOFF Sequence  
DATE  
D7 D6 D5 D4 D3 D2 D1 D0  
Input  
Description  
START  
Slave Address  
MODESET  
STOP  
0
1
1
1
1
0
1
0
1
0
1
0
0
0
0
0
Issue Slave Address  
DisplayOff  
Abnormal operation may occur in BU91R63CH-M due to the effect of noise or other external factor.  
To avoid this phenomenon, it is highly recommended to input command according to sequence described above during  
initialization, Display On/Off and refresh of RAM data.  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
30/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Cautions in Power ON/OFF  
To avoid unintended display errors, malfunctions and abnormal currents, use the following sequence when turning the  
power On and Off.  
Be sure to turn on the VDD power supply first before turning on the VLCD power supply.  
When turning off the power, be sure to turn off the VLCD power supply first, and then turn off the VDD power supply.  
Also, satisfy the conditions of t1 > 0 ns and t2 > 0 ns. Data transmission / reception may fail, so do not transfer data while  
the power supply voltage is rising or falling.  
t1  
t2  
VLCD  
VDD  
10 %  
10 %  
VDD min  
VDD min  
Figure 13. Recommended Power ON/OFF Sequence  
BU91R63CH-M has a POR circuit (Power On Reset) and Software Reset function.  
To ensure the operation, observe the following conditions when the power is turned on.  
To operate the POR circuit, start up the VDD power supply so that the following recommended conditions for tR, tF, tOFF  
and VBOT are satisfied.  
,
To enable the POR circuit, T0 must be set to VSS.  
tF  
VDD  
tR  
Recommended condition of tR, tF, tOFF, VBOT (Ta = 25 °C)  
(Note)  
(Note)  
(Note)  
(Note)  
tR  
1 ms  
tF  
1 ms  
tOFF  
VBOT  
tOFF  
VBOT  
Less than  
0.1 V  
Min 20 ms  
to 500 ms to 500 ms  
(Note) Not 100 % tested.  
Figure 14. Power ON/OFF Waveform  
If the above recommended conditions cannot be satisfied, execute the following sequence immediately after turning on the  
power. When T0 = VDD, this sequence must also be executed, since the POR circuit is disabled. However, since the  
command cannot be accepted when the power is turned off, Software Reset is not the same operation as POR.  
1.Generate STOP Condition  
VDD  
SDA  
SCL  
STOP Condition  
Figure 15. Stop Condition  
2. Generate START Condition.  
VDD  
SDA  
SCL  
START Condition  
Figure 16. Start Condition  
3.Issue Slave Address  
4.Execute Software Reset (ICSET) Command  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
31/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Display Off Operation in External Clock Mode  
BU91R63CH-M enters the DISPOFF sequence in synchronization with the frame after receiving the MODESET (Display  
Off) command. All SEGMENT and COMMON outputs stop after writing 1 frame OFF level. Therefore, when using in  
external clock mode, input of an external clock according to each frame frequency setting is required after completion of  
MODESET (Display Off) transmission. The number of external clocks required for setting each frame frequency is as  
follows according to the frame frequency setting of the DISCTL command.  
Input the external clock as below.  
DISCTL 80 Hz setting (Frame frequency = external clock / 512 [Hz]) , 1024 clk or more  
DISCTL 130 Hz setting (Frame frequency = external clock / 315 [Hz]) , 630 clk or more  
DISCTL 64 Hz setting (Frame frequency = external clock / 648 [Hz]) , 1296 clk or more  
DISCTL 200 Hz setting (Frame frequency = external clock / 205 [Hz]) , 410 clk or more  
Refer to the timing chart below.  
Command  
OSCIN  
MODESET  
To Input External Clock at Least 2  
frame or more  
Frame  
SEG  
VSS  
VSS  
VSS  
VSS  
VSS  
COM0  
COM1  
COM2  
COM3  
Display On  
Display Off  
The last display  
frame after receiving  
MODESET  
1 frame of OFF  
data write  
Figure 17. External Clock Stop Timing  
In external clock mode, the clock signal must always be supplied to BU91R63CH-M. If the clock supply is stopped, the  
display may freeze in a DC state that is not suitable for the LCD.  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
32/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Note on The Multiple Device Connection to 2-wire Serial Interface  
Do not access other devices on the same bus with the BU91R63CH-M VDD Power Off.  
MCU  
BU91R63CH-M  
Other Device  
Figure 18. Example of BUS Connection  
A capacitor is connected between the drain and gate of the SDA output NMOS transistor to control the slew rate (see the  
figure below). When power (VDD) is not applied, the gate is in a high impedance state.  
When the SDA pin transitions from Low to High while in this state, current is supplied via the slew rate control capacitor,  
and the gate voltage (Vg) rises.  
When this voltage (Vg) exceeds the threshold voltage (Vth), the output transistor is turned on and current (Ids) is drawn  
from the SDA pin.  
The SDA signal maintains the power supply voltage (VDD) by the external resistor (R), but if the voltage drop (R x Ids)  
increases due to the current (Ids), is not possible to maintain “1” as the logical value of the SDA signal level.  
Be sure to apply power (VDD) to BU91R63CH-M even when multiple devices are connected on the same bus.  
Z = 1/jωC  
VDD  
SDA  
Vg  
internal circuit  
Figure 19. SDA Output Cell Structure  
Note in Case that the SDA is Stuck LOW  
Normally, the state of SDA is controlled by the MCU, and BU91R63CH-M controls SDA to the VSS level only when “0” is  
output during ACK and Read Mode. If the data line (SDA) is stuck at LOW unexpectedly, the MCU needs to send a dummy  
byte with START and STOP conditions twice as shown below (Please set SDA to High at this time). This sequence returns  
from the SDA stuck state.  
SDA will be released in this sequence  
Stuck  
LOW  
Normal  
State  
SDA status of BU91R63CH-M  
SDA from MCU  
SCL from MCU  
Dummy Byte  
Dummy Byte  
(9 SCL pulses)  
(9 SCL pulses)  
START  
Condition  
STOP START  
Condition Condition  
STOP  
Condition  
Figure 20. Recovery sequence from SDA stuck  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
33/40  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
pins.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the  
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog  
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and  
aging on the capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5. Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
6. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing  
of connections.  
7. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
8. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
9. Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge  
acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause  
unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power  
supply or ground line.  
10. Regarding the Input Pin of the IC  
In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The operation  
of these parasitic elements can result in mutual interference among circuits, operational faults, or physical damage.  
Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an input pin lower  
than the ground voltage should be avoided. Furthermore, do not apply a voltage to the input pins when no power supply  
voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the input pins have voltages  
within the values specified in the electrical characteristics of this IC.  
11. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
© 2015 ROHM Co., Ltd. All rights reserved.  
34/40  
TSZ22111 15 001  
15.Oct.2019 Rev.002  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Operational Notes continued  
12. Disturbance Light  
In a device where a portion of silicon is exposed to light such as in a WL-CSP and chip products, IC characteristics  
may be affected due to photoelectric effect. For this reason, it is recommended to come up with countermeasures that  
will prevent the chip from being exposed to light.  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
© 2015 ROHM Co., Ltd. All rights reserved.  
35/40  
TSZ22111 15 001  
15.Oct.2019 Rev.002  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Ordering Information  
B
U
9
1
R
6
3
C
H - M 3 B W  
Part Number  
Product Rank  
M: for Automotive  
Minimum Order Quantity (MOQ)  
Orderable Part Number  
BU91R63CH-M3BW  
Minimum Order Quantity  
1,360 pcs  
Back Marking Diagram  
BU91R63CH-M  
Product control number  
Y
X
(Bump side down)  
Refer to PAD Arrangement for the definition of X/Y coordinates.  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
36/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Packing Quantity  
Packing QTY.  
(Standard QTY)  
Tray:  
Block:  
136 pcs / Tray  
680 pcs / Block (1 block = 5 trays)  
Vacuum Pack:  
680 pcs / Vacuum pack (1 vacuum pack = 1 blocks)  
Inner Box  
Outer Box  
1,360 pcs / inner Box (1 inner box = 2 vacuum packs)  
2,720 pcs / outer Box (1 outer box = 2 inner boxes)  
Pellet Drawing  
PAD No.1  
PAD No.83  
Input Side  
Output Side  
Y
X
PAD No.33  
PAD No.34  
(Bump side up)  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
37/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Package Condition  
Products should be aligned to the same direction with Bump side up.  
“Chamfering” side is aligned with X/Y direction of the chip as shown in the following drawing.  
C
RH20850376R-033A  
X
Y
Refer to PAD Arrangement for the definition of X/Y coordinates.  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
38/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Physical Dimension Tray Information  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
39/40  
TSZ22111 15 001  
BU91R63CH-M Max 176 segments (SEG44 x COM4)  
Revision History  
Data  
Revision  
001  
Changes  
10 Feb. 2016  
New Release  
P5 Add Terminal Resistance  
P6 Add Dimension  
P8 Move Operational Temperature Range to Recommend Operating Conditions  
P8 Add Maximum Junction Temperature  
P20 Add The relationship of LCD display contrast setting and VLCD Voltage  
P31 Add the description in Cautions in Power ON/OFF  
(Transcription from Operational Notes)  
P32 Add Display Off Operation in External Clock Mode  
P33 Add Note on The Multiple Device Connection to 2-wire Serial Interface  
P33 Add Note in case that the SDA is stuck LOW  
15 Oct. 2019  
002  
P34 Delete Thermal Consideration  
P35 Move Data transmission to Cautions in Power ON/OFF  
P36 Change Minimum Order Quantity  
P37 to P38 Add Packing Quantity, Pellet Drawing, Package Condition  
-
-
Change Figure number  
Correction of errors.  
www.rohm.com  
TSZ02201-0P4P0D301380-1-2  
15.Oct.2019 Rev.002  
© 2015 ROHM Co., Ltd. All rights reserved.  
40/40  
TSZ22111 15 001  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BU91R64CH-M

本产品支持高液晶电压驱动及高帧频率驱动,也可驱动高显示精度的VA液晶。而且,具备显示数据及指令寄存器读取功能,可检测出因噪声导致的误动作。除此之外,还支持MCU通信校验和、玻璃破碎、逻辑电路状态、SEG/COM端子拨动动作的异常检测。使用ITO电阻测量端子,更方便进行COG贴装不良的管理。还支持+105℃动作,符合车载应用要求的AEC-Q 100标准。
ROHM

BU91R65CH-M

本产品支持高液晶电压驱动及高帧频率驱动,也可驱动高显示精度的VA液晶。而且,具备显示数据及指令寄存器读取功能,可检测出因噪声导致的误动作。除此之外,还支持MCU通信校验和、玻璃破碎、逻辑电路状态、SEG/COM端子拨动动作的异常检测。使用ITO电阻测量端子,更方便进行COG贴装不良的管理。还支持+105℃动作,符合车载应用要求的AEC-Q 100标准。
ROHM

BU920

HIGH VOLTAGE POWER DISSIPATION
STMICROELECTR

BU920

isc Silicon NPN Darlington Power Transistor
ISC

BU92001KN

Silicon Monolithic Integrated Circuit
ROHM

BU92002GU

IrDA SIR, FIR Controller IC
ROHM

BU9206

PS / 2 Mouse Controller
ROHM

BU920P

HIGH VOLTAGE POWER DISSIPATION
STMICROELECTR

BU920PFI

HIGH VOLTAGE POWER DISSIPATION
STMICROELECTR

BU920PFI

Silicon NPN Darlington Power Transistor
ISC

BU920T

HIGH VOLTAGE POWER DISSIPATION
STMICROELECTR

BU920T

isc Silicon NPN Darlington Power Transistor
ISC