BU9735KV-E2 [ROHM]

Liquid Crystal Driver, 18-Segment, PQFP32, ROHS COMPLIANT, VQFP-32;
BU9735KV-E2
型号: BU9735KV-E2
厂家: ROHM    ROHM
描述:

Liquid Crystal Driver, 18-Segment, PQFP32, ROHS COMPLIANT, VQFP-32

驱动 接口集成电路
文件: 总26页 (文件大小:650K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TECHNICAL NOTE  
LCD Segment Driver series  
For 72/80/96 Segment type LCD  
LCD Segment Driver  
BU9735K, BU9796FS, BU9716BKV, BU9718KV  
Outline  
This is LCD segment driver for 72-96 segment type display. There is a lineup which is suitable for multi  
function display and is integrated display RAM and power supply circuit for LCD driving with 4 common  
output type: BU9735K and BU9796FS. And 3 common output type: BU9716BKV and BU9718KV.  
72Segment (18SEG×4COM) Driver BU9735K  
80Segment (20SEG×4COM) Driver BU9796FS  
96Segment (32SEG×3COM) Driver BU9716BKV/BU9718KV  
・・・・・・・P.1  
・・・・・・・P.9  
・・・・・・・P.19  
BU9735K  
72Segment (18SEG×4COM) Driver  
Feature  
______________  
__________  
1) 4wire serial interface (SCK, SD, C/D, CS)  
2) Integrated RAM for display data (DDRAM) 18 × 4bit (Max 72 Segment)  
3) LCD driving port4 Common output, 18 Segment output  
4) Display duty1/4 duty  
5) Integrated Oscillator circuit (external resister type)  
6) Integrated Power supply circuit for LCD driving (1/3 bias)  
7) Low power/ Ultra low power consumption design+2.55.5V  
Uses  
DVC, Car audio, Telephone  
Absolute Maximum Ratings Ta=25degree, VSS=0V(BU9735K)  
Parameter  
Symbol  
VDD  
Limits  
Unit  
V
Remarks  
Power Supply Voltage1  
Power Supply Voltage2  
-0.3 +7.0  
-0.3 +7.0  
Power supply  
LCD drive voltage  
VLCD  
V
When use more than Ta=25C, subtract  
4mW per degree.  
Allowable loss  
Pd  
400  
mW  
Operational temperature range  
Storage temperature range  
Input voltage range  
Topr  
Tstg  
-40 +85  
-55 +125  
Degree  
Degree  
VIN  
-0.3 to VDD*0.3  
-0.3 to VDD+0.3  
V
V
Output voltage range  
VOUT  
*This product is not designed against radioactive ray.  
Recommend operating conditions (Ta=25degree, VSS=0V) (BU9735K)  
Parameter  
Symbol  
VDD  
VLCD  
fOSC  
MIN  
2.2  
2.5  
-
TYP  
MAX  
5.5  
5.5  
-
Unit  
V
V
Remarks  
Power Supply Voltage1  
Power Supply Voltage2  
Oscillator frequency  
-
-
VLCDVCVSS  
36  
KHz  
Rf=470kΩ  
This document is not delivery specifications.  
Jun. 2008  
Electrical Characteristics (BU9735K)  
DC Characteristics (VDD=2.55.5V, VSS=0V, Ta=25degree, unless otherwise specified)  
Limit  
Typ.  
-
Symb  
ol  
Parameter  
Unit  
Condition  
Terminal  
Min.  
Max.  
VDD  
SC1, SD, SCK,  
VIH1  
VIL1  
RON  
IIH  
0.8×VDD  
“H” level input voltage  
“L” level input voltage  
LCD Driver on resistance  
______________ __________  
V
C / D, CS  
0
-
-
-
0.2×VDD  
30  
SEG118, COM14  
KΩ  
|△  
VON|=0.1V  
OSC1, SD, SCK,  
-2  
-
-
-
-
2
-
uA VIN=VDD  
uA VIN=0  
pF  
“H” level input current  
“L” level input current  
Input capacitance  
______________ __________  
C / D, CS,  
IIL  
____ ___ ____  
_________  
CI  
-
5
SD, SCK, C / D, CS  
-
0.05  
1
uA *2 Display OFF  
uA *2 Display ON  
uA *3 MPU Access  
Power consumption  
IDD  
VDD  
-
-
30  
80  
70  
200  
*1: LCD Driver on resistance is not included internal power supply impedance.  
*2: VLCD=VDD, Rf=470Kohm, except of OSC1 terminals are connected to VDD or VSS.  
*3: VLCD=VDD, Rf=470Kohm, fSCK=200KHz  
AC Characteristics (VDD=2.55.5V, VSS=0V, Ta=25degree, unless otherwise specified)  
Limit  
Parameter  
Symbol  
Unit  
Condition  
Min.  
-
Typ.  
Max.  
SCK rise time  
tTLH  
tTHL  
tCYC  
tWAIT  
tWH1  
tWL1  
tSU1  
tH1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK fall time  
-
100  
SCK cycle time  
800  
800  
300  
300  
100  
100  
300  
6400  
100  
100  
100  
100  
100  
100  
140  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Wait time for command  
SCK pulse width H”  
SCK pulse width ”L”  
SD setup time  
SD hole time  
__________  
CS pulse width ”H”  
tWH2  
tWL2  
tSU2  
tH2  
__________  
CS pulse width ”L”  
__________  
CS setup time  
__________  
CS hold time  
______________  
C / D setup time  
tSU3  
tH3  
______________  
C / D hold time  
Based on SCK 8th clock rising  
______________  
__________  
_________  
C / D - CS time*4  
tCCH  
tSCH  
tON  
Based on CS rising  
______________  
C / D - SCK time*4  
Based o SCK 8th clock falling  
SCK 8th clock rising to display start  
Display start delay time  
*4: should satisfy either one condition  
tWH2  
tWL2  
CS  
tSU2  
tTH2  
tCYC  
tWH1  
tCYC  
tWAIT  
SCK  
SCK  
tWL1  
tTLH  
tH1  
tTHL  
SD  
D7  
D6  
D0  
D7  
tSU1  
SD  
tCCH  
tSCH  
tSU3  
tTH3  
C/D  
Fig. BU9735K-1 Interface timing  
Fig. BU9735K-2 Command cycle  
2/25  
Block Diagram BU9735K)  
Pin Arrangement BU9735K)  
VLCD  
VDD  
VSS  
SEG1  
SEG  
LCD  
Segment  
Driver  
24  
23  
22  
21  
20  
19  
18  
17  
2
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG2  
SEG1  
COM4  
COM3  
COM2  
COM1  
C/D  
Display Data RAM  
(DD RAM)  
SD  
SCK  
C/D  
CS  
18bits  
Address  
Counter  
Serial  
Interface  
SEG18  
LCD Driver  
Bias Circuit  
V
C
Command/Data  
Register  
COM  
1
LCD  
Common  
Driver  
Timing  
Common  
Counter  
CS  
COM2  
COM3  
Generator  
1
2
3
4
5
6
7
8
Command  
Decoder  
4bits  
COM  
4
Fig. BU9735K-3 Block diagram  
Fig. BU9735KV-4 Pin arrangement  
Terminal description BU9735K)  
Terminal  
No.  
Type  
Function  
OSC1  
OSC2  
1
2
I
O
Int clock use mode, connect resister between OSC1 and OSC2.  
Ext clock use mode, input clock from OSC1, OSC2 keep OPEN.  
VSS  
3
VSS terminal  
VC  
VLCD  
4
5
Power supply for LCD driving  
Please keep VLCDVCVSS condition  
VDD  
SCK  
6
7
VDD terminal  
I
I
I
Serial clock input  
SD  
__________  
CS  
8
9
Serial data input  
Chip select input "L": active,  
______________  
Command data judgment input  
“L”: display data, “H”: command  
C/D  
10  
I
COM14  
SEG118  
1114  
1532  
O
O
LCD COMMON output  
LCD SEGMENT output  
3/25  
Block Description (BU9735K)  
ADDRESS COUNTER  
An address counter shows the address of DDRAM. Address data are transferred to the address  
counter automatically when an address set is written in the command/data register.  
After data are written in DDRAM, +1 or +2 is done automatically with an address counter. The  
choice of +1 or +2 is done automatically by the next condition.  
DDRAM 8bit writing (in the 8 clock of SCK, C/D= "L")  
+2  
DDRAM 4bit rewriting (in the 8 clock of SCK, C/D= "H") +1  
And, when it is counted to 11H, an address becomes 00H with an address counter by the next count  
up.  
DISPLAY DATA RAM (DDRAM)  
A display data RAM (DDRAM) is used to store display data. That capacity is 18 address × 4 bits.  
DDRAM and the relations of the display position are as the following.  
DDRAM Address  
00 01 02 03 04 05 06 07 ・・・・・ 0F 10 11  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
COM1  
COM2  
COM3  
COM4  
BIT  
4bit  
re-writing  
8bit writing  
・・・・・  
TIMING GENERATER  
A built-in oscillator circuit does oscillated by connecting Rf between OSC1, OSC2, and an indication  
timing signal is caused. And, it is possible that it is made to work by the external clock input, too.  
1
1
OSC  
OSC  
EXTERNAL CLOCK INPUT  
Rf  
2
OSC  
OSC  
2
OPEN  
(It is possible that Oscillating Frequency  
is changed with Rf. )  
Fig. BU9735K-5 Rf Oscillator Circuit  
Fig. BU9735K-6 External Clock Input  
LCD DRIVE POWER SUPPLY  
LCD drive power supply occurs by BU9735K.  
LCD voltage is given by VC, and it causes V1=(2/3) VC, V2=(1/3) VC.  
VDD  
VLCD  
VC  
VSS  
Fig. BU9735K-7 Internal Power Supply use  
4/25  
DETAILS OF COMMANDS (BU9735K)  
There is the following thing in the command (The 8×n clock of SCK is C/D= "H".) of BU9735K.  
ADDRESS SET  
MSB  
LSB  
A
0
0
0
A
A
A
A
Address data shown as AAAAA by the binary system is set on the address counter.  
Address does +2 every time indication data input (for 8bit) completes input.  
DISPLAY ON  
MSB  
LSB  
*
0
0
1
*
*
*
*
*Don't Care  
There are no relations with the contents of the display data RAM (DDRAM).  
And all display is turned on. In this case, the contents of DDRAM don't change.  
DISPLAY OFF  
MSB  
LSB  
0
1
0
*
*
*
*
*
*Don't Care  
There are no relations with the contents of the display data RAM (DDRAM).  
And all display is turned off. A built-in power supply circuit is turned off.  
And an oscillation circuit stops. In this case, the contents of DDRAM don't change.  
DISPLAY START  
MSB  
LSB  
0
1
1
*
*
*
*
*
*Don't Care  
Display is started in accordance with the contents of DDRAM.  
REWRITING OF THE DISPLAY DATA RAM (DDRAM)  
MSB  
LSB  
1
0
0
*
D
D
D
D
*Don't Care  
The binary four bits data DDDD are written in DDRAM.  
A writing address is address ordered by the address set command.  
Then, after this command is carried out, an address does + 1 automatically.  
RESET  
MSB  
1
LSB  
1
0
*
*
*
*
*
*Don't Care  
This command is to take precedence over all commands after POWER-on, and carry it out.  
BU9735K is initialized in the following condition by this command.  
Display off  
Address counter resetting  
Oscillation stop  
5/25  
Recommendation circuit example (BU9735K)  
VDD  
*1 The value (840k) of the built-in resistance  
value in the figure is reference value. Value  
varies according to terms of manufacture and  
so on.  
VLCD  
*3  
RC  
VC  
VC  
*2 The maximum value of the signal of the control  
isn't to use higher value than VDD. (Refer to the  
regulation of the input voltage in the  
specifications.)  
*1  
840k  
V1 BU9735K  
*1  
840kΩ  
3.3V  
5.0V  
V2  
*3 It can use as a resistance for the contrast  
adjustment when variable resistance is given to  
the VLCD-VC space. In this case, the  
resistance of the outside and resistance with  
built-in BU9735K become connections like a  
left figure. The value of RC is to decide the  
value, which met a system referring to the  
circuit of the left figure.  
*1  
840kΩ  
VSS  
VSS  
OSC1  
OSC2  
SCK  
SD  
CS  
C/D  
470kΩ  
*2  
From the controller  
Fig. BU9735K-8 Power supply for control circuit and LCD driving is independent case  
(Example: VLCD=5.0V and VDD=3.3V)  
INPUT OUTPUT CIRCUIT (BU9735K)  
Name  
I/O  
Circuit  
Name  
I/O  
O
Circuit  
SD  
I
SEG1  
SEG18  
VLCD  
SCK  
C/D  
CS  
VDD  
GND  
COM1  
COM4  
IN  
GND  
OUT  
VLCD  
GND  
Name  
I/O  
Circuit  
I
O
VDD  
GND  
OSC1  
OSC2  
OSC1  
VDD  
GND  
OSC2  
Fig.BU9735K-9 I/O circuit  
6/25  
Cautions on use  
(1) Absolute Maximum Ratings  
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down devices,  
thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings  
is assumed, consideration should be given to take physical safety measures including the use of fuses, etc.  
(2) Operating conditions  
These conditions represent a range within which characteristics can be provided approximately as expected. The electrical characteristics are guaranteed  
under the conditions of each parameter.  
(3) Reverse connection of power supply connector  
The reverse connection of power supply connector can break down ICs. Take protective measures against the breakdown due to the reverse connection,  
such as mounting an external diode between the power supply and the IC’s power supply terminal.  
(4) Power supply line  
Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines. In this regard, or the digital block power  
supply and the analog block power supply, even though these power supplies has the same level of potential, separate the power supply pattern for  
the digital block from that for the analog block, thus suppressing the diffraction of digital noises to the analog block power supply resulting from  
impedance common to the wiring patterns. For the GND line, give consideration to design the patterns in a similar manner.  
Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At the same time, in order to use  
an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of  
capacity dropout at a low temperature, thus determining the constant.  
(5) GND voltage  
Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure  
no terminals are at a potential lower than the GND voltage including an actual electric transient.  
(6) Short circuit between terminals and erroneous mounting  
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore,  
if a short circuit occurs due to foreign matters entering between terminals or between the terminal and the power supply or the GND terminal,  
the ICs can break down.  
(7) Operation in strong electromagnetic field  
Be noted that using ICs in the strong electromagnetic field can malfunction them.  
(8) Inspection with set PCB  
On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress. Therefore, be sure to discharge  
from the set PCB by each process. Furthermore, in order to mount or dismount the set PCB to/from the jig for the inspection process, be sure to turn OFF  
the power supply and then mount the set PCB to the jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount  
it from the jig. In addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention to the  
transportation and the storage of the set PCB.  
(9) Input terminals  
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can  
cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input terminal. Therefore, pay thorough attention  
not to handle the input terminals, such as to apply to the input terminals a voltage lower than the GND respectively, so that any parasitic element will  
operate. Furthermore, do not apply a voltage to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power  
supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of  
electrical characteristics.  
(10) Ground wiring pattern  
If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal  
GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to  
a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of  
external parts as well.  
(11) External capacitor  
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance  
due to DC bias and changes in the capacitance due to temperature, etc.  
(12) No Connecting input terminals  
In terms of extremely high impedance of CMOS gate, to open the input terminals causes unstable state. And unstable state brings the inside  
gate voltage of p-channel or n-channel transistor into active. As a result, battery current may increase. And unstable state can also causes  
unexpected operation of IC. So unless otherwise specified, input terminals not being used should be connected to the power supply or GND line.  
(13) Rush current  
When power is first supplied to the CMOS IC, it is possible that the internal logic may be unstable and rush current may flow  
instantaneously. Therefore, give special condition to power coupling capacitance, power wiring, width of GND wiring, and routing of connections.  
7/25  
Order form name selection  
B U  
9
7 3 5  
K
E 2  
ROHM form name  
Part No.  
Package type  
KV=VQFP  
Packaging and forming specification  
E2 =Reel-shaped emboss taping  
QFP32  
<Dimension>  
<Packing information>  
Tape  
Embossed carrier tape  
9.0 0.3  
7.0 0.2  
Quantity  
1500pcs  
E2  
Direction  
of feed  
24  
17  
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
25  
32  
16  
9
1
8
0.15 0.1  
0.8  
0.4 0.1  
0.15  
1Pin  
Direction of  
Reel  
Unit:mm)  
When you order , please order in times the amount of package quantity.  
8/25  
BU9796FS  
80Segment (20SEG×4COM) Driver  
Feature (BU9796FS)  
1) 2wire serial interface  
2) Integrated RAM for display data (DDRAM) 20 × 4bit (Max 80 Segment)  
3) LCD driving port4 Common output, 20 Segment output  
4) Display Duty: 1/4 duty  
5) Integrated Oscillation circuit  
6) Integrated Buffer AMP for LCD driving power supply circuit  
7) Support 1/2bias, 1/3bias select  
8) No external components  
9) Low voltage / low power consumption design: 2.55.5V  
Uses (BU9796FS)  
Telephone, FAX, Portable equipments POS, ECR, PDA etc.,  
DSC, DVC, Car audio, Home electrical appliance, Meter equipment etc.  
Absolute Maximum Ratings Ta=25degree, VSS=0V(BU9796FS)  
Parameter  
Symbol  
VDD  
Limits  
Unit  
V
Remarks  
Power Supply Voltage1  
Power Supply Voltage2  
-0.5 +7.0  
-0.5 +7.0  
Power supply  
VLCD  
V
LCD drive voltage  
When use more than Ta=25C, subtract  
6.4mW per degree.  
Allowable loss  
Pd  
VIN  
Topr  
0.64  
W
V
Input voltage range  
Operational temperature  
range  
-0.5 VDD+0.5  
-40 +85  
degree  
Storage  
range  
temperature  
Tstg  
-55 +125  
degree  
*This product is not designed against radioactive ray.  
Recommend operating conditions (Ta=25degree, VSS=0V) (BU9796FS)  
Parameter  
Symbol  
VDD  
MIN  
2.5  
0
TYP  
MAX  
5.5  
Unit  
V
Remarks  
Power Supply Voltage1  
Power Supply Voltage2  
-
-
Power supply  
LCD drive voltage  
VLCD  
VDD-2.4  
V
* Please use in the range of VDD-VLCD2.4V  
9/25  
Electrical Characteristics (BU9796FS)  
DC Characteristics (VDD=2.55.5V, VLCD=0V, VSS=0V, Ta=-4085degree, unless otherwise specified)  
Limit  
Parameter  
Symbol  
Unit  
Condition  
MIN  
TYP  
MAX  
“H” level input voltage  
“L” level input voltage  
“H” level input current  
“L” level input current  
VIH  
VIL  
0.7VDD  
-
-
VDD  
V
VSS  
0.3VDD  
V
IIH  
-
-1  
-
-
1
uA  
uA  
kΩ  
kΩ  
V
IIL  
-
-
SEG  
RON  
RON  
VLCD  
IDD1  
3
3
-
-
LCD Driver  
Iload=±10uA  
on resistance  
COM  
-
-
VDD-2.4  
5
VDD-VLCD 2.4V  
VLCD supply voltage  
Standby current  
0
-
-
uA  
Display off, Oscillation off  
VDD=3.3V, VLCD=0V, Ta=25degree  
Power save mode SR = Power save mode1,  
Power consumption  
IDD2  
-
12.5  
30  
uA  
Power save mode FR = Power save mode1  
1/3 bias, Frame inverse  
56  
80  
104  
Frame frequency  
fCLK  
Hz Power save mode FR = Normal mode  
MPU interface Characteristics (VDD=2.55.5V, VLCD=0V, VSS=0V, Ta=-4085degree, unless otherwise specified)  
Limit  
TYP.  
Parameter  
Input rise time  
Symbol  
Unit  
Condition  
MIN.  
-
-
MAX.  
0.3  
0.3  
tr  
tf  
-
-
-
-
-
-
-
-
-
-
-
us  
us  
us  
us  
us  
ns  
ns  
us  
us  
us  
us  
Input fall time  
2.5  
0.6  
1.3  
100  
100  
1.3  
0.6  
0.6  
0.6  
SCL cycle time  
“H” SCL pulse width  
“L” SCL pulse width  
SDA setup time  
SDA hold time  
tSCYC  
tSHW  
tSLW  
tSDS  
tSDH  
tBUF  
-
-
-
-
-
-
-
-
-
Buss free time  
START condition hold time tHD;STA  
START condition setup time tSU;STA  
STOP condition setup time tSU;STO  
SDA  
tf  
tr  
tcyc  
tLW  
tBUF  
SCL  
SDA  
tSDH  
tHW  
tSDS  
tHD;STA  
t r  
tSU;STO  
tSU;STA  
Fig. BU9796FS-1 interface timing  
10/25  
Block Diagram BU9796FS)  
Pin Arrangement BU9796FS)  
COM0……COM3  
SEG0……SEG19  
VDD  
LCD voltage generator  
common  
driver  
Segment  
driver  
LCD  
BIAS  
SELECTOR  
common  
counter  
blink timing  
generator  
DDRAM  
VLCD  
Command  
register  
Command  
Data Decoder  
OSCIN  
OSCILLATOR  
Power On Reset  
serial inter face  
IF FILTER  
VSS  
SDA  
SCL  
Fig. BU9796FS-2 block diagram  
Fig. BU9796FS-3 Pin arrangement  
Terminal description BU9796FS)  
Terminal  
Terminal  
TEST1  
I/O  
Function  
No.  
Test input (ROHM use only)  
Must be connect to VSS  
Test input (ROHM use only)  
26  
I
I
TEST2=”L”: POR circuit enable  
TEST2  
27  
28  
TEST2=”H”: POR circuit disenable,  
refer to “Cautions in Power ON/OFF”  
External clock input  
OSCIN  
I
Ext clock and Int clock can be changed by command.  
Must be connect to VSS when use internal oscillation circuit.  
SDA  
SCL  
VSS  
VDD  
VLCD  
30  
29  
25  
24  
23  
I/O serial data in-out terminal  
I
serial data transfer clock  
GND  
Power supply  
Power supply for LCD driving  
31,32  
1-18  
19-22  
SEG0-19  
COM0-3  
O
O
SEGMENT output for LCD driving  
COMMON output for LCD driving  
11/25  
Command Description BU9796FS)  
D7 (MSB) is bit for command or data judgment.  
Refer to Command and data transfer method.  
C0Next byte is RAM write data.  
1Next byte is command.  
Display control (DISCTL)  
MSB  
D7  
C
LSB  
D0  
P0  
D6  
0
D5  
1
D4  
P4  
D3  
P3  
D2  
P2  
D1  
P1  
Set Power save mode FR  
Setup  
P4  
0
0
1
1
P3  
Reset initialize condition  
Normal mode  
0
1
0
1
Power save mode1  
Power save mode2  
Power save mode3  
Set LCD drive waveform  
Setup  
P2  
0
1
Reset initialize condition  
Line inversion  
Frame inversion  
Set Power save mode SR  
Setup  
P1  
0
0
P0  
0
1
Reset initialize condition  
Power save mode1  
Power save mode2  
Normal mode  
1
0
High power mode  
1
1
* Please keep condition VDD-VLCD3.0V in High power mode.  
Mode Set (MODE SET)  
MSB  
D7  
C
LSB  
D0  
*
D6  
1
D5  
0
D4  
*
D3  
P3  
D2  
P2  
D1  
*
(*: Don’t Care)  
Set display ON and OFF  
Setup  
Display OFF  
Display ON  
P3  
0
1
Reset initialize condition  
Set bias level  
Setup  
P3  
0
1
Reset initialize condition  
1/3 Bias  
1/2 Bias  
12/25  
Address set (ADSET)  
MSB  
D7  
C
LSB  
D0  
P0  
D6  
0
D5  
0
D4  
P4  
D3  
P3  
D2  
P2  
D1  
P1  
The range of address can be set as 00000 to 10011(2).  
Set IC Operation (ICSET)  
MSB  
D7  
C
LSB  
D0  
P0  
D6  
1
D5  
1
D4  
0
D3  
1
D2  
*
D1  
P1  
(*: Don’t Care)  
Set software reset execution  
Setup  
P1  
0
No operation  
Software Reset execute  
1
Set oscillator mode  
setup  
P0  
0
1
Reset initialize condition  
Internal oscillation  
External clock input  
Blink control (BLKCTL)  
MSB  
D7  
C
LSB  
D0  
P0  
D6  
1
D5  
1
D4  
1
D3  
0
D2  
*
D1  
P1  
(*: Don’t Care)  
Set blink mode  
Blink mode (Hz)  
P1  
0
0
P0  
0
1
Reset initialize condition  
OFF  
0.5  
1
1
0
2
1
1
All Pixel control (APCTL)  
MSB  
LSB  
D7  
C
D6  
1
D5  
1
D4  
1
D3  
1
D2  
1
D1  
P1  
D0  
P0  
All display set ON, OFF  
APON P1  
Normal  
Reset initialize condition  
0
1
All pixel ON  
APOFF  
Normal  
P0  
0
Reset initialize condition  
All pixel OFF  
1
13/25  
Function description BU9796FS)  
Command transfer method  
1byte after Slave Address always becomes command input.  
MSB (“command or data judge bit”) of command decide to next data is command or display data.  
When set “command or data judge bit”=‘1’, next byte will be command.  
When set “command or data judge bit”=‘0’, next byte data is display data.  
S
Slave address  
Display Data  
A
A
1 Command  
A
1
Command  
Command  
A 1  
A
0
P
Command  
Once it becomes display data transfer condition, it cannot input command.  
When want to input command again, please generate “START condition” once.  
Write display and transfer method  
This device has Display Data RAM (DDRAM) of 50×4=200bit.  
The relationship between data input and display data, DDRAM data and address are as follows;  
Slave address  
Command  
S
01111100  
A
0 0000000  
A
a
b
c
d
e
f
g
h
A
i
j
k
l
m
n
o
p
A
P
Display Data  
DDRAM address  
00  
01  
02  
03  
m
n
04  
05  
06  
07  
・・・  
2Fh  
30h  
31h  
0
1
2
3
a
e
i
j
COM0  
COM1  
COM2  
COM3  
b
c
f
g
BIT  
k
l
o
d
h
p
SEG0  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG47  
SEG48  
SEG49  
Data transfer to DDRAM happens every 4bit data. So It will be finished to transfer with no need  
to wait ACK.  
Reset initialize condition  
Initial condition after execute Software Reset is as follows.  
Display is OFF.  
DDRAM address is initialized (DDRAM Data is not initialized).  
Refer to Command Description about initialize value of register.  
14/25  
Cautions in Power ON/OFF (BU9796FS)  
This device has “P.O.R” (Power-On Reset) circuit and Software Reset function.  
Please keep the following recommended Power-On conditions in order to power up properly.  
Please set power up conditions to meet the recommended tR, tF, tOFF, and Vbot spec  
below in order to ensure P.O.R operation  
* It has to set TEST2=”L” to be valid in POR circuit.  
tF  
VDD  
Recommendation condition of tR, tF, tOFF, Vbot (Ta=25℃)  
tR  
tR  
tF  
tOFF  
More than  
100ms  
Vbot  
Less than 1ms Less than 1ms  
Less than 0.1V  
tOFF  
Vbot  
Fig. BU9796FS-4 Power ON/OFF waveform  
If it is difficult to meet above conditions, execute the following sequence after Power-On.  
* It has to keep the following sequence in the case of TEST2=”H”. As POR circuit is invalid status.  
But it is not able to accept Command input in Power off status, it has to take care that  
software reset is not perfectly alternative method of POR function.  
(1) Generate STOP condition  
VDD  
SDA  
SCL  
STOP condition  
Fig. BU9796FS-5 Stop condition  
(2) Generate START condition.  
(3) Issue slave address  
(4) Execute Software Reset (ICSET) command  
15/25  
IO Equivalent Circuit (BU9796FS)  
VDD  
VLCD  
VSS  
SDA  
VSS  
SCL  
VSS  
VDD  
TEST1  
VSS  
VDD  
TEST2  
VSS  
VDD  
OSCIN  
VSS  
VLCD  
SEG/COM  
VSS  
Fig. BU9796FS-6 I/O equivalent circuit  
16/25  
Cautions on use  
(1) Absolute Maximum Ratings  
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down devices,  
thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings  
is assumed, consideration should be given to take physical safety measures including the use of fuses, etc.  
(2) Operating conditions  
These conditions represent a range within which characteristics can be provided approximately as expected. The electrical characteristics are guaranteed  
under the conditions of each parameter.  
(3) Reverse connection of power supply connector  
The reverse connection of power supply connector can break down ICs. Take protective measures against the breakdown due to the reverse connection,  
such as mounting an external diode between the power supply and the IC’s power supply terminal.  
(4) Power supply line  
Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines. In this regard, or the digital block power  
supply and the analog block power supply, even though these power supplies has the same level of potential, separate the power supply pattern for  
the digital block from that for the analog block, thus suppressing the diffraction of digital noises to the analog block power supply resulting from  
impedance common to the wiring patterns. For the GND line, give consideration to design the patterns in a similar manner.  
Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At the same time, in order to use  
an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of  
capacity dropout at a low temperature, thus determining the constant.  
(5)  
GND voltage  
Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure  
no terminals are at a potential lower than the GND voltage including an actual electric transient.  
(6)  
Short circuit between terminals and erroneous mounting  
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore,  
if a short circuit occurs due to foreign matters entering between terminals or between the terminal and the power supply or the GND terminal,  
the ICs can break down.  
(7)  
Operation in strong electromagnetic field  
Be noted that using ICs in the strong electromagnetic field can malfunction them.  
(8) Inspection with set PCB  
On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress. Therefore, be sure to discharge  
from the set PCB by each process. Furthermore, in order to mount or dismount the set PCB to/from the jig for the inspection process, be sure to turn OFF  
the power supply and then mount the set PCB to the jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount  
it from the jig. In addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention to the  
transportation and the storage of the set PCB.  
(9) Input terminals  
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can  
cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input terminal. Therefore, pay thorough attention  
not to handle the input terminals, such as to apply to the input terminals a voltage lower than the GND respectively, so that any parasitic element will  
operate. Furthermore, do not apply a voltage to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power  
supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of  
electrical characteristics.  
(10) Ground wiring pattern  
If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal  
GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to  
a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of  
external parts as well.  
(11) External capacitor  
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance  
due to DC bias and changes in the capacitance due to temperature, etc.  
(12) No Connecting input terminals  
In terms of extremely high impedance of CMOS gate, to open the input terminals causes unstable state. And unstable state brings the inside  
gate voltage of p-channel or n-channel transistor into active. As a result, battery current may increase. And unstable state can also causes  
unexpected operation of IC. So unless otherwise specified, input terminals not being used should be connected to the power supply or GND line.  
(13) Rush current  
When power is first supplied to the CMOS IC, it is possible that the internal logic may be unstable and rush current may flow  
instantaneously. Therefore, give special condition to power coupling capacitance, power wiring, width of GND wiring, and routing of connections.  
17/25  
Order form name selection  
B U  
9
7 9 6  
F S  
E 2  
Part No.  
ROHM form name  
Package type  
Packaging and forming specification  
E2 =Reel-shaped emboss taping  
FS: SSOP-A32  
SSOP-A32  
<Dimension>  
<Tape and Reel information>  
Tape  
Embossed carrier tape  
Quantity  
2000pcs  
E2  
13.6 0.2  
Direction  
of feed  
32  
17  
16  
(The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand)  
1
0.15 0.1  
0.1  
0.8  
0.36 0.1  
Direction of feed  
1pin  
Reel  
When you order , please order in times the amount of package quantity.  
Unit:mm)  
18/25  
BU9716BKVBU9718KV 96SEGMENT (32SEG×3COM) Driver  
Features (BU9716BKV/BU9718KV)  
1) LCD driving port : 3 Common output, 32 Segment output  
2) Display duty: 1/3duty  
3) Each 1/2 or 1/3 can be selected for power supply for LCD display.  
Uses (BU9716BKV/BU9718KV)  
Portable equipments POS, ECR, PDA etc.)  
DSC, DSC, Telephone etc.  
Line up (BU9716BKV/BU9718KV)  
Parameter  
Recommended operating voltage  
Package  
BU9716BKV  
4.55.5V  
VQFP-48C  
BU9718KV  
2.73.5V  
VQFP-48C  
ABSOLUTE MAXIMUM RATINGS (Ta=25degree, Vss=0V) (BU9716BKV/BU9718KV)  
Parameter  
Maximum Supply Voltage  
Input Voltage  
Symbol  
VDD  
VIN  
Pin  
Ratings  
Unit  
V
VDD  
-0.3+7.0  
OSC,CS,CK,DI,RES -0.3VDD+0.3  
V
Output Voltage  
VOUT  
ISO  
OSC  
-0.3VDD+0.3  
V
S1S32  
300  
3
mA  
mA  
Output Current  
ICO  
COM1COM3  
Power Dissipation  
Pd  
400  
mW  
Storage Temperature Range  
Tstg  
-55+125  
degree  
Note: Derating decreases at -4mW/degree for operation above Ta=25degree.  
RECOMMENDED OPERATING CONDITIONS  
BU9716BKV  
Parameter  
Symbol  
VDD  
Pin  
VDD  
VDD1  
VDD2  
MIN  
+4.5  
0
TYP  
MAX  
+5.5  
VDD  
VDD  
+85  
Unit  
Supply Voltage  
V
V
VDD1  
VDD2  
Topr  
2/3VDD  
1/3VDD  
Input Voltage  
0
V
Operating Temperature  
-40  
degree  
BU9718KV  
Parameter  
Symbol  
VDD  
VDD1  
VDD2  
fOSC  
R
Pin  
MIN  
TYP  
-
MAX  
+3.5  
Unit  
V
Supply Voltage  
VDD  
VDD1  
VDD2  
OSC  
OSC  
OSC  
+2.7  
0
0
2/3VDD VDD  
1/3VDD VDD  
V
Input Voltage  
V
External Input wave frequency  
Recommended external resistor  
Recommended external capacitor  
Operating Temperature  
-
38  
47  
100  
kHz  
kΩ  
-
-
-
C
-
1000  
-
pF  
Topr  
-40  
+85  
degree  
* This product is not designed to be protected against radiation.  
19/25  
ERECTRICAL CHARACTERISTICS  
BU9716BKV (VDD=4.5V-5.5V, Ta=25degree)  
Parameter  
Symbol  
VIH  
Pin  
Condition  
MIN  
TYP  
-
MAX  
VDD  
Unit  
V
CS,CK,DI,RES  
0.8VDD  
“H” Level Input Voltage  
CS,CK,DI,RES  
CS,CK,DI,RES  
CS,CK,DI,RES  
VIL  
IIH  
IIL  
0
0
0
-
-
-
0.2VDD  
6.0  
V
“L” Level Input Voltage  
“H” Level Input Current  
“L” Level Input Current  
VI=VDD  
VI=VSS  
uA  
uA  
6.0  
VSOH  
VCOH  
VSOL  
VCOL  
VCM1  
VSM1  
VCM2  
VSM2  
VCM3  
IQ  
S1S32  
COM1COM3  
S1S32  
IO=-20mA  
IO=-100mA  
IO=20mA  
IO=100mA  
1/2bias  
-
-
-
-
-
-
-
-
-
-
-
VDD-1.0  
VDD-1.0  
1.0  
-
V
V
“H” Level Output Voltage  
“L” Level Output Voltage  
-
-
V
COM1COM3  
COM1COM3  
S1S32  
1.0  
-
V
1/2 VDD  
2/3 VDD  
2/3 VDD  
1/3 VDD  
1/3 VDD  
30  
-
V
1/3bias  
-
-
V
Center-Level Output  
Voltage  
COM1COM3  
S1S32  
1/3bias  
V
1/3bias  
-
V
COM1COM3  
1/3bias  
-
V
Low Power Mode  
fOSC=38kHz  
70  
500  
uA  
uA  
Supply Current  
IDD  
200  
BU9718KV (VDD=2.7-3.5V, Ta=25degree)  
Parameter  
Symbol  
VIH  
Pin  
Condition  
MIN  
TYP  
-
MAX  
VDD  
Unit  
CS,CK,DI,RES  
0.8VDD  
V
V
“H” level Input Voltage  
CS,CK,DI,RES  
CS,CK,DI,RES  
CS,CK,DI,RES  
VIL  
IIH  
IIL  
0
0
0
-
-
-
0.2VDD  
6.0  
“L” Level Input Voltage  
“H” Level Input Current  
“L” Level Input Current  
VI=VDD  
VI=VSS  
uA  
uA  
6.0  
VSOH  
VCOH  
VSOL  
VCOL  
VCM1  
VSM1  
VCM2  
VSM2  
VCM3  
IQ  
S1S32  
COM1COM3  
S1S32  
IO=-20mA  
IO=-100mA  
IO=20mA  
IO=100mA  
1/2bias  
-
-
-
-
-
-
-
-
-
-
-
VDD-1.0  
VDD-1.0  
1.0  
-
V
V
“H” Level Output Voltage  
“L” Level Output Voltage  
-
-
V
COM1COM3  
COM1COM3  
S1S32  
1.0  
-
V
1/2 VDD  
2/3 VDD  
2/3 VDD  
1/3 VDD  
1/3 VDD  
0.1  
-
V
1/3bias  
-
-
V
Center-Level Output  
Voltage  
COM1COM3  
S1S32  
1/3bias  
V
1/3bias  
-
V
COM1COM3  
1/3bias  
-
V
Low Power Mode  
fOSC=38kHz  
30  
300  
uA  
uA  
Supply Current  
IDD  
100  
20/25  
AC ERECTRICAL CHARACTERISTICS  
BU9716BKV (VDD=4.5-5.5V, Ta=25degree)  
MIN  
-
TYP  
MAX  
Unit  
kΩ  
pF  
kHz  
ns  
Parameter  
Symbol  
Pin  
OSC  
R
C
47  
-
Recommended External Resistance  
Recommended External Capacitance  
Oscillator frequency guaranteed range  
Data Setup Time  
OSC  
-
1000  
-
fOSC  
tDS  
tDH  
tCS  
tCH  
tCKH  
tCKL  
tr  
OSC  
19  
100  
100  
100  
100  
100  
100  
-
38  
-
76  
CK,DI  
CK,DI  
CS,CK  
CS,CK  
CK  
-
Data Hold Time  
-
-
ns  
CS Setup Time  
-
-
ns  
CS Hold Time  
-
-
-
ns  
CK High-Level Pulse width  
CK Low-Level Pulse width  
Rise Time  
-
ns  
CK  
-
-
ns  
CS,CK,DI  
CS,CK,DI  
-
300  
300  
ns  
Fall Time  
tf  
-
-
ns  
BU9718KV (VDD=2.7V-3.5V, Ta=25degree)  
MIN TYP  
MAX  
Unit  
Condition  
Parameter  
Symbol  
fOSC  
Pin  
OSC  
10  
38  
80  
kHz R=47k,C=1000pF  
Oscillator frequency guaranteed range  
fOSC  
tDS  
tDH  
tCS  
tCH  
tCKH  
tCKL  
tr  
OSC  
-
-
-
-
-
-
-
-
-
-
100  
kHz External Input case  
Operating frequency  
Data Setup Time  
Data Hold Time  
CK,DI  
CK,DI  
CS,CK  
CS,CK  
CK  
200  
200  
200  
200  
200  
200  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
CS Setup Time  
-
CS Hold Time  
-
-
CK High-Level Pulse width  
CK Low-Level Pulse width  
Rise Time  
CK  
-
CS,CK,DI  
CS,CK,DI  
100  
100  
Fall Time  
tf  
-
Fig. BU9716BKV/BU9718KV-2 CK: Normal Low Level case  
0.8VDD  
CS  
0.2VDD  
tCKH  
tCKL  
tCH  
tCS  
0.8VDD  
0.8VDD  
0.2VDD  
0.5VDD  
0.5VDD  
tDH  
CK  
DI  
tr  
tf  
tDS  
Fig. BU9716BKV/BU9718KV-3 CK: Normal High Level case  
0.8VDD  
CS  
0.2VDD  
tCKH  
tCKL  
tCH  
tCS  
0.8VDD  
0.8VDD  
0.2VDD  
0.5VDD  
0.5VDD  
tDH  
CK  
DI  
tr  
tf  
tDS  
21/25  
BU9716BKV  
Block Diagram  
Terminal description  
VDD1  
LCD drive voltage  
occurrence circuit  
VDD2  
Pin No, Terminal I/O  
1-11  
Description  
Unused  
OPEN  
RES  
CS  
DI  
Segment output pins. It output the  
proper LCD voltage levels  
corresponding to the input data  
multiplexed with COM1 to CPM3.  
Common driver output pins.  
Frame frequency:  
Control logic  
Data latch  
CK  
13-23  
26-35  
S1-S32  
O
OSC  
Oscillation circuit  
36  
37  
38  
COM1  
COM2  
COM3  
Common driver  
Segment driver  
O
OPEN  
fO=(fOSC384Hz  
Active low reset input. Used for  
resetting all latches.  
_____________  
39  
44  
RES  
I
VDD  
VSS  
Fig. BU9716BKV /BU9718KV-3  
BU9716BKV Block Diagram  
(Include Control Code.)  
Internal Oscillator connection for  
an external resister and capacitor  
which determines fOSC.  
Chip select. Used for serial data  
transfer. Active high.  
Input data clock. Used for serial  
data transfer.  
Data input. Used for serial data  
transfer.  
Internal voltage reference  
connection.  
Connect to VDD2 at 1/2 bias  
mode.  
Internal voltage reference  
connection.  
Connect to VDD1 at 1/2 bias  
mode.  
OSC  
-
Pin assignment  
45  
46  
47  
CS  
CK  
DI  
I
I
I
VSS  
VSS  
VSS  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
COM2  
N.C.  
S22  
S21  
S20  
S19  
S18  
S17  
S16  
S15  
S14  
S13  
S12  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
COM3  
RES  
VDD  
VDD1  
VDD2  
VSS  
OSC  
CS  
VQFP-48C  
41  
42  
VDD1  
VDD2  
-
-
OPEN  
OPEN  
CK  
DI  
N.C.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
Fig. BU9716BKV /BU9718KV-4  
BU9716BKVPin assignment  
BU9718KV  
Block Diagram  
Terminal description  
VDD1  
LCD drive voltage  
occurrence circuit  
VDD2  
Pin  
No,  
RES  
CS  
DI  
Terminal  
S1-S32  
I/O  
O
Description  
Unused  
OPEN  
Control logic  
Data latch  
Segment output pins. It output the  
proper LCD voltage levels  
corresponding to the input data  
multiplexed with COM1 to CPM3.  
Common driver output pins.  
1-11  
13-23  
26-35  
CK  
OSC  
Oscillation circuit  
Common driver  
Segment driver  
36  
37  
38  
COM1  
COM2  
COM3  
Frame frequency: fO=(fOSC/  
O
OPEN  
384Hz  
Active low reset input. Used for  
resetting all latches.  
Fig. BU9716BKV /BU9718KV-5  
BU9718KV Block Diagram  
___________  
39  
44  
RES  
I
VDD  
VSS  
(Include Control Code.)  
Internal Oscillator connection for  
an external resister and capacitor  
which determines fOSC.  
Chip select. Used for serial data  
transfer. Active high.  
Input data clock. Used for serial  
data transfer.  
Data input. Used for serial data  
transfer.  
Internal voltage reference  
connection.  
Connect to VDD2 at 1/2 bias  
mode.  
Internal voltage reference  
connection.  
Connect to VDD1 at 1/2 bias  
mode.  
Pin assignment  
OSC  
-
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
45  
46  
47  
CS  
CK  
DI  
I
I
I
VSS  
VSS  
VSS  
COM2  
COM3  
RES  
VDD  
VDD1  
VDD2  
VSS  
OSC  
CS  
N.C.  
S22  
S21  
S20  
S19  
S18  
S17  
S16  
S15  
S14  
S13  
S12  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VQFP-48C  
41  
42  
VDD1  
VDD2  
-
-
OPEN  
OPEN  
CK  
DI  
N.C.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
Fig. BU9716BKV /BU9718KV-6  
BU9718KV Pin assignment  
22/25  
Timing chart  
Command / data Input  
1. CK: Normal Low level case  
CS  
CK  
DI  
D1  
D2  
D3  
D96  
0
0
0
0
0
BM  
LC  
OE  
Display Data  
Control Code  
2. CK: Normal High level case  
CS  
CK  
DI  
D1  
D2  
D3  
D96  
0
0
0
0
0
BM  
LC  
OE  
Display Data  
Control Code  
Data transfer is enabled when CS is asserted high. The value of DI is shifted into the shift register on the  
rising edge of CK. After all of the data in DI is sifted in, CS must be asserted low. The new display data  
and control code takes effect after the falling edge of CS.  
Control Code  
OE  
0
Output-Enable Control  
Normal Operation  
1
Blank Display-as if all display data =0(Oscillator is active.)  
LC  
0
Low-power Mode Control  
Normal Operation  
1
Low-power Mode: Oscillator is stopped, segment /common outputs=”L”  
BM  
0
Bias Mode Control  
13 Bias  
1
12 Bias  
DISPLAY DATA  
SEGMENT  
COM3  
COM2  
COM1  
SEGMENT  
COM3  
COM2  
COM1  
S1  
S2  
D1  
D2  
D3  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
S32  
D49  
D52  
D55  
D58  
D61  
D64  
D67  
D70  
D73  
D76  
D79  
D82  
D85  
D88  
D91  
D94  
D50  
D53  
D56  
D59  
D62  
D65  
D68  
D71  
D74  
D77  
D80  
D83  
D86  
D89  
D92  
D95  
D51  
D54  
D57  
D60  
D63  
D66  
D69  
D72  
D75  
D78  
D81  
D84  
D87  
D90  
D93  
D96  
D4  
D5  
D6  
S3  
D7  
D8  
D9  
S4  
S5  
D10  
D13  
D16  
D19  
D22  
D25  
D28  
D31  
D34  
D37  
D40  
D43  
D46  
D11  
D14  
D17  
D20  
D23  
D26  
D29  
D32  
D35  
D38  
D41  
D44  
D47  
D12  
D15  
D18  
D21  
D24  
D27  
D30  
D33  
D36  
D39  
D42  
D45  
D48  
S6  
S7  
S8  
S9  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
23/25  
Cautions on use  
(1)  
Absolute Maximum Ratings  
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down devices,  
thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings  
is assumed, consideration should be given to take physical safety measures including the use of fuses, etc.  
(2)  
Operating conditions  
These conditions represent a range within which characteristics can be provided approximately as expected. The electrical characteristics are guaranteed  
under the conditions of each parameter.  
(3)  
Reverse connection of power supply connector  
The reverse connection of power supply connector can break down ICs. Take protective measures against the breakdown due to the reverse connection,  
such as mounting an external diode between the power supply and the IC’s power supply terminal.  
(4)  
Power supply line  
Design PCB pattern to provide low impedance for the wiring between the power supply and the GND lines. In this regard, or the digital block power  
supply and the analog block power supply, even though these power supplies has the same level of potential, separate the power supply pattern for  
the digital block from that for the analog block, thus suppressing the diffraction of digital noises to the analog block power supply resulting from  
impedance common to the wiring patterns. For the GND line, give consideration to design the patterns in a similar manner.  
Furthermore, for all power supply terminals to ICs, mount a capacitor between the power supply and the GND terminal. At the same time, in order to use  
an electrolytic capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of  
capacity dropout at a low temperature, thus determining the constant.  
(5)  
GND voltage  
Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure  
no terminals are at a potential lower than the GND voltage including an actual electric transient.  
(6)  
Short circuit between terminals and erroneous mounting  
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore,  
if a short circuit occurs due to foreign matters entering between terminals or between the terminal and the power supply or the GND terminal,  
the ICs can break down.  
(7)  
Operation in strong electromagnetic field  
Be noted that using ICs in the strong electromagnetic field can malfunction them.  
(8)  
Inspection with set PCB  
On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress. Therefore, be sure to discharge  
from the set PCB by each process. Furthermore, in order to mount or dismount the set PCB to/from the jig for the inspection process, be sure to turn OFF  
the power supply and then mount the set PCB to the jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount  
it from the jig. In addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention to the  
transportation and the storage of the set PCB.  
(9)  
Input terminals  
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can  
cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input terminal. Therefore, pay thorough attention  
not to handle the input terminals, such as to apply to the input terminals a voltage lower than the GND respectively, so that any parasitic element will  
operate. Furthermore, do not apply a voltage to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power  
supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of  
electrical characteristics.  
(10)  
Ground wiring pattern  
If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal  
GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to  
a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of  
external parts as well.  
(11)  
External capacitor  
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance  
due to DC bias and changes in the capacitance due to temperature, etc.  
(12)  
No Connecting input terminals  
In terms of extremely high impedance of CMOS gate, to open the input terminals causes unstable state. And unstable state brings the inside  
gate voltage of p-channel or n-channel transistor into active. As a result, battery current may increase. And unstable state can also causes  
unexpected operation of IC. So unless otherwise specified, input terminals not being used should be connected to the power supply or GND line.  
(13) Rush current  
When power is first supplied to the CMOS IC, it is possible that the internal logic may be unstable and rush current may flow  
instantaneously. Therefore, give special condition to power coupling capacitance, power wiring, width of GND wiring, and routing of connections.  
24/25  
Order form name selection  
B U  
9
7 1 8  
K V  
ROHM form name  
Package type  
KV: VQFP  
Part No.  
BU9716B: 4.5V-5.5V  
BU9718: 2.7V-3.5V  
VQFP48C  
<Packing information>  
<Dimension>  
Container  
Tray  
Quantity  
9.0 0.2  
7.0 0.1  
1000pcs  
Direction of product is fixed in a tray.  
Direction  
of feed  
36  
25  
37  
48  
24  
13  
1
0.75  
12  
+0.05  
0.03  
0.145  
+6°  
4°  
°
4
0.08  
S
0.5 0.1  
+0.05  
0.22  
0.04  
M
0.08  
Unit:mm)  
When you order , please order in times the amount of package quantity.  
Catalog No.08T197A '08.6 ROHM ©  
Appendix  
Notes  
No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM  
CO.,LTD.  
The content specified herein is subject to change for improvement without notice.  
The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you  
wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM  
upon request.  
Examples of application circuits, circuit constants and any other information contained herein illustrate the  
standard usage and operations of the Products. The peripheral conditions must be taken into account  
when designing circuits for mass production.  
Great care was taken in ensuring the accuracy of the information specified in this document. However, should  
you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no re-  
sponsibility for such damage.  
The technical information specified herein is intended only to show the typical functions of and examples  
of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to  
use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no re-  
sponsibility whatsoever for any dispute arising from the use of such technical information.  
The Products specified in this document are intended to be used with general-use electronic equipment  
or devices (such as audio visual equipment, office-automation equipment, communication devices, elec-  
tronic appliances and amusement devices).  
The Products are not designed to be radiation tolerant.  
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or  
malfunction for a variety of reasons.  
Please be sure to implement in your equipment using the Products safety measures to guard against the  
possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as  
derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your  
use of any Product outside of the prescribed scope or not in accordance with the instruction manual.  
The Products are not designed or manufactured to be used with any equipment, device or system  
which requires an extremely high level of reliability the failure or malfunction of which may result in a direct  
threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment,  
aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear  
no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intend-  
ed to be used for any such special purpose, please contact a ROHM sales representative before purchasing.  
If you intend to export or ship overseas any Product or technology specified herein that may be controlled under  
the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact your nearest sales office.  
THE AMERICAS / EUROPE / ASIA / JAPAN  
ROHM Customer Support System  
Contact us : webmaster@ rohm.co.jp  
www.rohm.com  
TEL : +81-75-311-2121  
FAX : +81-75-315-0172  
Copyright © 2009 ROHM CO.,LTD.  
21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan  
Appendix-Rev4.0  

相关型号:

BU9742KS

Liquid Crystal Driver, 80-Segment, PQFP100, SQFP-100
ROHM

BU9742KS-DX

Liquid Crystal Driver, 80-Segment, PQFP100, SQFP-100
ROHM

BU9745ST

Liquid Crystal Driver, 80-Segment, TAB
ROHM

BU9745ST-DX

Liquid Crystal Driver, 80-Segment, TAB
ROHM

BU9750-E2

Standard Segment Drivers
ROHM

BU97500FV-E2

Multifunction Segment Drivers
ROHM

BU97500GUW-E2

Multifunction Segment Drivers
ROHM

BU97500KV

Multifunction Segment Drivers
ROHM

BU97500KV-E2

Multifunction Segment Drivers
ROHM

BU97500MUV-E2

Multifunction Segment Drivers
ROHM

BU97501KV-E2

Liquid Crystal Driver,
ROHM

BU9750FUV-E2

Standard Segment Drivers
ROHM