BV2HD045EFU-C [ROHM]

BV2HD045EFU-C是利用独有的过电流保护功能,可独立保护系统免受过电流影响的智能高边开关。普通产品仅支持启动时的浪涌电流保护,启动后的稳态电流使用微控制器和过电流检测IC等进行过电流保护,受与智能高边开关输出端的后段电路之间的相性影响,有失控的可能性。而新产品则可以独立地保护系统免受浪涌电流和稳态电流中的过电流的影响,因此,与普通产品的解决方案相比,可提供可靠性高、部件数量少的解决方案,有助于打造更安全的系统。另外,过电流保护的范围还可以通过外置部件进行自由调整,因此可使用于各种系统。;
BV2HD045EFU-C
型号: BV2HD045EFU-C
厂家: ROHM    ROHM
描述:

BV2HD045EFU-C是利用独有的过电流保护功能,可独立保护系统免受过电流影响的智能高边开关。普通产品仅支持启动时的浪涌电流保护,启动后的稳态电流使用微控制器和过电流检测IC等进行过电流保护,受与智能高边开关输出端的后段电路之间的相性影响,有失控的可能性。而新产品则可以独立地保护系统免受浪涌电流和稳态电流中的过电流的影响,因此,与普通产品的解决方案相比,可提供可靠性高、部件数量少的解决方案,有助于打造更安全的系统。另外,过电流保护的范围还可以通过外置部件进行自由调整,因此可使用于各种系统。

开关 控制器 微控制器 过电流保护
文件: 总37页 (文件大小:1410K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
IPD Series  
Automotive 2ch 45 mΩ High-Side Switch  
with Variable OCD and OCD Mask Function  
BV2HD045EFU-C  
General Description  
Key Specifications  
BV2HD045EFU-C is  
a
2-ch high-side switch for  
Power Supply Voltage Operating Range: 6 V to 28 V  
automotive application. It has built-in over current  
protection function, thermal shutdown protection function,  
open load detection function and under voltage lockout  
function. It is equipped with diagnostic output function for  
abnormality detection. An external component can  
arbitrarily set the over current limit and the time to limit to  
achieve the optimum over current protection for the load.  
On Resistance (Tj=25°C):  
Over Current Limit:  
Standby Current (Tj=25°C):  
45 mΩ (Typ)  
21 A (Min)  
0.5 μA (Max)  
Active Clamp Tolerance (Tj(START )= 25 °C): 35 mJ  
Package  
HSSOP-C16  
W (Typ) x D (Typ) x H (Max)  
4.90 mm x 6.00 mm x 1.70 mm  
Features  
Dual TSD(Note 1)  
AEC-Q100 Qualified(Note 2)  
Built-in Variable Over Current Limit Function  
Built-in Variable Over Current Mask Time Setting  
Function.  
Built-in Open Load Detection Function.  
Built-in Under Voltage Lockout Function (UVLO)  
Built-in Diagnostic Output  
Low On-Resistance RON = 45 mΩ (Typ)  
Monolithic Power Management IC with Control Unit  
(CMOS) and Power MOSFET on a Single Chip  
Low Voltage Operation (VBB = 4.3 V)  
HSSOP-C16  
(Note 1) This IC has thermal shutdown (Junction temperature detect) and  
ΔTj Protection (Power-MOS steep temperature rising detect).  
(Note 2) Grade 1  
Applications  
Resistive Load, Inductive Load, Capacitive Load  
Typical Application Circuit  
RST1PU  
RST2PU  
VBB  
CVBB  
RIN1  
RIN2  
IN1  
IN2  
OUT1  
RST1  
ST1  
ST2  
MCU  
RL  
RST2  
BV2HD045EFU-C  
DLY  
SET  
OUT2  
RL  
CDLY  
RSET  
GND  
RGND  
DGND  
Product structure : Silicon integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 14 • 001  
TSZ02201-0G5G1G400030-1-2  
10.Apr.2023 Rev.002  
1/34  
 
 
 
 
 
 
BV2HD045EFU-C  
Table of Contents  
General Description........................................................................................................................................................................1  
Features..........................................................................................................................................................................................1  
Applications ....................................................................................................................................................................................1  
Key Specifications ..........................................................................................................................................................................1  
Package..........................................................................................................................................................................................1  
Typical Application Circuit ...............................................................................................................................................................1  
Table of Contents............................................................................................................................................................................2  
Pin Configuration ............................................................................................................................................................................3  
Pin Description................................................................................................................................................................................3  
Block Diagram ................................................................................................................................................................................3  
Definition.........................................................................................................................................................................................4  
Absolute Maximum Ratings ............................................................................................................................................................5  
Thermal Resistance........................................................................................................................................................................6  
Recommended Operating Conditions.............................................................................................................................................8  
Electrical Characteristics.................................................................................................................................................................9  
Typical Performance Curves.........................................................................................................................................................11  
Measurement Circuit.....................................................................................................................................................................16  
Timing Chart (Propagation Delay Time)........................................................................................................................................18  
Function Description.....................................................................................................................................................................19  
1.  
2.  
3.  
4.  
5.  
Protection Function.........................................................................................................................................................19  
Over Current Protection..................................................................................................................................................20  
Open Load Detection......................................................................................................................................................25  
Thermal Shutdown, ΔTj Protection Detection.................................................................................................................26  
Other Protection .............................................................................................................................................................27  
Applications Example ...................................................................................................................................................................28  
I/O Equivalence Circuits................................................................................................................................................................29  
Operational Notes.........................................................................................................................................................................30  
Ordering Information.....................................................................................................................................................................32  
Marking Diagram ..........................................................................................................................................................................32  
Physical Dimension and Packing Information...............................................................................................................................33  
Revision History............................................................................................................................................................................34  
www.rohm.com  
TSZ02201-0G5G1G400030-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
2/34  
TSZ22111 • 15 • 001  
10.Apr.2023 Rev.002  
 
BV2HD045EFU-C  
Pin Configuration  
(TOP VIEW)  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
OUT1  
OUT1  
OUT1  
OUT1  
OUT2  
OUT2  
OUT2  
OUT2  
VBB  
SET  
DLY  
GND  
IN1  
VBB  
ST1  
ST2  
IN2  
EXP-PAD  
Pin Description  
Pin No.  
Pin Name  
Function  
1
VBB  
SET  
DLY  
GND  
IN1  
Power supply pin  
2
Over current limit value setting pin  
Over current mask time setting pin  
GND pin  
3
4
5
Input pin1, with internal pull-down resistor  
Diagnostic output pin1  
6
7
ST1  
ST2  
Diagnostic output pin2  
8
IN2  
Input pin2, with internal pull-down resistor  
Output pin 2  
9 to 12  
13 to 16  
EXP-PAD  
OUT2  
OUT1  
VBB  
Output pin 1  
Power supply pin  
Block Diagram  
VBB  
CH1  
Internal  
Charge  
Active  
Clamp  
Supply  
Pump  
CH2  
Gate  
Driver  
IN1  
OCD  
OUT1  
Over Current  
Detection  
IN2  
ΔTj Protection  
ST1  
ST2  
Control  
Logic  
Thermal  
Shutdown  
Open Load  
Detection  
Variable  
Over Current  
DLY  
Limit Mask  
Time Setting  
Internal Supply  
UVLO  
OCD  
OUT2  
GND SET  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
3/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Definition  
IBB  
VBB  
VDS VBB  
IIN  
IN1, IN2  
IOUT  
OUT1, OUT2  
VOUT  
IST  
ISET  
IDLY  
ST1, ST2  
VST  
SET  
DLY  
GND  
IGND  
Figure 1. Voltage and Current Definition  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
4/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Absolute Maximum Ratings (Ta = 25 °C)  
Parameter  
Symbol  
Rating  
Unit  
VBB - OUT Voltage  
VDS  
VBB  
-0.3 to Internal clamp(Note 1)  
-0.3 to +40  
V
V
Power Supply Voltage  
Set Voltage  
VSET  
VIN, VDLY  
VST  
-0.3 to VBB+0.3  
-0.3 to +7.0  
- 0.3 to +7.0  
Internal limit(Note 2)  
10  
V
Input Voltage  
V
Diagnostic Output Voltage  
Output Current  
V
IOUT  
A
Diagnostic Output Current  
Storage Temperature Range  
Maximum Junction Temperature  
IST  
mA  
°C  
°C  
Tstg  
-55 to +150  
150  
Tjmax  
Active Clamp Energy (Single Pulse)  
Tj(START) = 25 °C, IOUT = 4 A(Note 3)(Note 4)  
EAS (25 °C)  
EAS (150 °C)  
VBBLIM  
35  
20  
24  
mJ  
mJ  
V
Active Clamp Energy (Single Pulse)  
Tj(START) = 150 °C, IOUT = 4 A(Note 3)(Note 4)  
Supply Voltage  
for Short Circuit Protection(Note 5)  
Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the  
properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by  
increasing board size and copper area so as not to exceed the maximum junction temperature rating.  
(Note 1) Internally limited by output clamp voltage.  
(Note 2) Internally limited by fixed over current limit.  
(Note 3) Maximum active clamp energy using single pulse of IOUT(START) = 4 A and VBB = 14 V.  
When IC is turned off in the condition that inductive load is connected, the OUT pin is fell below 0 V. This energy is dissipated by BV2HD045EFU-C.  
This energy can be calculated with following equation:  
× 퐼푂푈푇ꢁ푆푇퐴ꢂ푇)  
퐵퐵 퐷푆  
퐵퐵 퐷푆  
ꢀ  
퐴푆 = 퐷푆  
×
× [  
× 푙푛 (1 −  
ꢃ + 퐼푂푈푇ꢁ푆푇퐴ꢂ푇)]  
ꢀ  
Following equation simplifies under the assumption of RL = 0 Ω.  
1
2
퐵퐵  
퐴푆  
=
× 퐿 × 퐼푂푈푇ꢁ푆푇퐴ꢂ푇) × ꢁ 1 −  
)
퐵퐵 퐷푆  
(Note 4) Not 100% tested.  
(Note 5) Maximum power supply voltage that can detect short circuit protection.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
5/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Thermal Resistance(Note 1)  
Thermal Resistance (Typ)  
Parameter  
Symbol  
Unit  
1s(Note 3)  
2s2p(Note 4)  
HSSOP-C16  
Junction to Ambient  
Junction to Top Characterization Parameter(Note 2)  
θJA  
142.3  
24  
29.0  
4
°C/W  
°C/W  
ΨJT  
(Note 1) Based on JESD51-2A(Still-Air). Using a BV2HD045EFU-C chip.  
(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside  
surface of the component package.  
(Note 3) Using a PCB board based on JESD51-3.  
(Note 4) Using a PCB board based on JESD51-5, 7.  
Layer Number of  
Measurement Board  
Material  
Board Size  
Single  
FR-4  
114.3 mm x 76.2 mm x 1.57 mmt  
Top  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
Thermal Via(Note 5)  
Layer Number of  
Measurement Board  
Material  
Board Size  
Pitch  
1.20 mm  
Diameter  
4 Layers  
FR-4  
114.3 mm x 76.2 mm x 1.6 mmt  
2 Internal Layers  
Φ0.30 mm  
Top  
Copper Pattern  
Bottom  
Thickness  
70 μm  
Copper Pattern  
Thickness  
35 μm  
Copper Pattern  
Thickness  
70 μm  
Footprints and Traces  
74.2 mm x 74.2 mm  
74.2 mm x 74.2 mm  
(Note 5) This thermal via connects with the copper pattern of all layers.  
1. PCB Layout (1s)  
Footprint Only  
Figure 2. PCB Layout (1s)  
Dimension  
Board finish thickness  
Board dimension  
Value  
1.57 mmt  
114.3 mm x 76.2 mm  
FR4  
Board material  
Copper thickness (Top/Bottom layers)  
0.070 mm (Cu : 2 oz)  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
6/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Thermal Resistance – continued  
2. PCB Layout (2s)  
Top Layer  
Bottom Layer  
Cross section view  
Top Layer  
Bottom Layer  
Figure 3. PCB Layout (2s)  
Dimension  
Value  
1.60 mmt  
Board finish thickness  
Board dimension  
114.3 mm x 76.2 mm  
FR4  
Board material  
Copper thickness (Top/Bottom layers)  
0.070 mm (Cu + plating)  
3. PCB Layout (2s2p)  
Top Layer  
2nd Layer  
3rd Layer  
Bottom Layer  
Cross section view  
Top Layer  
2nd/3rd/Bottom Layers  
Figure 4. PCB Layout (2s2p)  
Dimension  
Value  
Board finish thickness  
Board dimension  
Board material  
1.60 mmt  
114.3 mm x 76.2 mm  
FR4  
Copper thickness (Top/Bottom layers)  
Copper thickness (Inner layers)  
0.070 mm (Cu + plating)  
0.035 mm  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
10.Apr.2023 Rev.002  
7/34  
BV2HD045EFU-C  
Thermal Resistance – continued  
4. Transient Thermal Resistance (Single Pulse)  
1000  
100  
10  
1
footprint  
2s  
0.1  
0.01  
2s2p  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Pulse Time [s]  
Figure 5. Transient Thermal Resistance  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Power Supply Voltage Operating Range  
Operating Temperature  
VBB  
Topr  
fIN  
6
-40  
-
14  
-
28  
+150  
1
V
°C  
Input Frequency  
-
kHz  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
8/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Electrical Characteristics (Unless otherwise specified 6 V ≤ VBB ≤ 28 V, -40 °C ≤ Tj ≤ +150 °C)  
Parameter  
[Power Supply]  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
VBB = 14 V, VIN1 = 0 V, VIN2 = 0 V  
VOUT1 = VOUT2 = 0 V, Tj = 25 °C  
-
-
-
-
-
0.5  
30  
10  
µA  
µA  
Standby Current  
IBBL  
VBB = 14 V, VIN1 = 0 V, VIN2 = 0 V  
VOUT1 = VOUT2 = 0 V, Tj = 150 °C  
VBB = 14 V, VIN1 = VIN2 = 5 V  
VOUT1 = VOUT2 = open  
Operating Current  
IBBH  
6
mA  
UVLO Detection Voltage  
UVLO Hysteresis Voltage  
[Input (VIN1, VIN2)]  
VUVLO  
-
-
4.3  
0.4  
V
V
VUVHYS  
0.2  
0.3  
High-Level Input Voltage  
Low-Level Input Voltage  
Input Voltage Hysteresis  
High-Level Input Current  
Low-Level Input Current  
[Output]  
VINH  
VINL  
2.8  
-
-
-
V
V
-
-
1.5  
-
VINHYS  
IINH  
0.3  
50  
-
V
-
150  
+10  
µA  
µA  
VIN1 = VIN2 = 5 V  
VIN1 = VIN2 = 0 V  
IINL  
-10  
-
-
-
-
45  
-
60  
100  
75  
mΩ  
mΩ  
mΩ  
µA  
VBB = 8 V to 19 V, Tj = 25 °C  
VBB = 8 V to 19 V, Tj = 150 °C  
VBB = 4.5 V, Tj = 25 °C  
Output On Resistance  
Output Leak Current  
RON  
-
VIN1 = VIN2 = 0 V,  
VOUT1 = VOUT2 = 0 V, Tj = 25 °C  
VIN1 = VIN2 = 0 V,  
VOUT1 = VOUT2 = 0 V, Tj =  
150 °C  
-
0.5  
IOUTL  
-
-
10  
µA  
VBB = 14 V, RL = 6.5 Ω  
Tj = 25 °C  
Output ON Slew Rate  
SRON  
SROFF  
tOUTON  
tOUTOFF  
VDSCLP  
-
-
0.3  
0.3  
70  
50  
48  
1
V/µs  
V/µs  
µs  
VBB = 14 V, RL = 6.5 Ω  
Tj = 25 °C  
Output OFF Slew Rate  
1
VBB = 14 V, RL = 6.5 Ω  
Tj = 25 °C  
Output ON Propagation Delay Time  
Output OFF Propagation Delay Time  
Output Clamp Voltage  
-
175  
125  
55  
VBB = 14 V, RL = 6.5 Ω  
Tj = 25 °C  
-
µs  
VIN1 = VIN2 = 0 V,  
IOUT1 = IOUT2 = 10 mA  
41  
V
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
9/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Electrical Characteristics (Unless otherwise specified 6 V ≤ VBB ≤ 28 V, -40 °C ≤ Tj ≤ +150 °C) - continued  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Conditions  
[Diagnostic Output]  
VIN1 = VIN2 = 5 V,  
IST1 = IST2 = 1 mA  
Diagnostic Output Low Voltage  
Diagnostic Output Leak Current  
VSTL  
ISTL  
tSTON  
tSTOFF  
-
-
-
-
-
-
0.5  
10  
V
VIN1 = VIN2 = 0 V,  
VST1 = VST2 = 5 V  
μA  
μs  
μs  
Diagnostic Output ON  
Propagation Delay Time  
VBB = 14 V, RL = 6.5 Ω  
Tj = 25 °C  
100  
50  
250  
125  
Diagnostic Output OFF  
Propagation Delay Time  
VBB = 14 V, RL = 6.5 Ω  
Tj = 25 °C  
[Diagnostic Function]  
Output ON Detection Voltage(Note 1)  
VDSDET  
ILIMH  
ILIMSET  
VOLD  
2
21  
2.8  
2.0  
-30  
150  
-
3
4
40  
5.4  
4.0  
-
V
A
VIN1 = VIN2 = 5 V  
Fixed Over Current Limit  
30  
VIN1 = VIN2 = 5 V  
Variable Over Current Limit  
Open Load Detection Voltage  
Open Load Detection Sink Current  
Thermal Shutdown(Note 1)  
4.1  
3.0  
-10  
175  
15  
A
VIN1 = VIN2 = 5 V, RSET = 47 kΩ  
VIN1 = VIN2 = 0 V  
V
VIN1 = VIN2 = 0 V,  
VOUT1 = VOUT2 = 5 V  
IOLD  
μA  
°C  
°C  
°C  
TTSD  
200  
-
Thermal Shutdown Hysteresis(Note 1)  
TTSDHYS  
TDTJ  
ΔTj Protection Temperature(Note 1)  
-
120  
-
(Note 1) Not 100% tested.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
10/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Typical Performance Curves  
(Unless otherwise specified VBB = 14 V, VIN1 = VIN2 = 5 V, Tj = 25 °C)  
30  
25  
20  
15  
10  
5
0.3  
VIN1 = VIN2 = 0V  
0.2  
0.1  
0.0  
-0.1  
-0.2  
-0.3  
0
0
5
10  
15  
20  
25  
30  
35  
40  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Supply Voltage: VBB [V]  
Figure 6. Standby Current vs Supply Voltage  
Figure 7. Standby Current vs Junction Temperature  
10  
10  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
-50  
0
50  
100  
150  
0
5
10  
15  
20  
25  
30  
35  
40  
Supply Voltage: VBB [V]  
Junction Temperature: Tj [°C]  
Figure 8. Operating Current vs Supply Voltage  
Figure 9. Operating Current vs Junction Temperature  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
11/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Typical Performance Curves - continued  
(Unless otherwise specified VBB = 14 V, VIN1 = VIN2 = 5 V, Tj = 25 °C)  
5
4
3
2
1
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VINH  
VINL  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [°C]  
Junction Temperature: Tj [°C]  
Figure 10. UVLO Detection Voltage vs Junction Temperature  
Figure 11. Input Voltage vs Junction Temperature  
150  
125  
100  
75  
65  
55  
45  
35  
25  
75  
IINH  
50  
25  
IINL  
0
-50  
0
50  
100  
150  
0
5
10  
15  
20  
25  
30  
35  
40  
Junction Temperature: Tj [°C]  
Supply Voltage: VBB [V]  
Figure 12. Input Current vs Junction Temperature  
Figure 13. Output ON Resistance vs Supply Voltage  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
12/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Typical Performance Curves - continued  
(Unless otherwise specified VBB = 14 V, VIN1 = VIN2 = 5 V, Tj = 25 °C)  
10  
8
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
4
2
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [°C]  
Junction Temperature: Tj [°C]  
Figure 14. Output ON Resistance vs Junction Temperature  
Figure 15. Output leak Current vs Junction Temperature  
1.0  
0.8  
0.6  
175  
150  
125  
100  
tOUTON  
75  
0.4  
SROFF  
tOUTOFF  
50  
SRON  
0.2  
25  
0
0.0  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 16. Output Slew Rate vs Junction Temperature  
Figure 17. Output ON, OFF Propagation Delay Time  
vs Junction Temperature  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
13/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Typical Performance Curves - continued  
(Unless otherwise specified VBB = 14 V, VIN1 = VIN2 = 5 V, Tj = 25 °C)  
55  
53  
51  
49  
47  
45  
43  
41  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 18. Output Clamp Voltage vs Junction Temperature  
Figure 19. Diagnostic Output Low Voltage  
vs Junction Temperature  
6
5
4
3
2
1
0
250  
200  
150  
tSTON  
100  
tSTOFF  
50  
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Junction Temperature: Tj [ºC]  
Figure 20. Diagnostic Output ON, OFF  
Propagation Delay Time vs Junction Temperature  
Figure 21. Variable Over Current Limit  
vs Junction Temperature  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
14/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Typical Performance Curves - continued  
(Unless otherwise specified VBB = 14 V, VIN1 = VIN2 = 5 V, Tj = 25 °C)  
1000  
100  
10  
5
4
3
2
1
0
Tj(START)=25ºC  
Tj(START)=150ºC  
0.1  
1.0  
Output Current: IOUT[A]  
10.0  
-50  
0
50  
100  
150  
Junction Temperature: Tj [ºC]  
Figure 22. Open Load Detection Voltage  
vs Junction Temperature  
Figure 23. Active Clamp Energy vs Output Current  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
15/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Measurement Circuit  
VBB  
VBB  
VBB  
VBB  
IN1, IN2  
IN1, IN2  
SET  
ST1, ST2  
ST1, ST2  
SET  
VIN  
VST  
VIN  
OUT1, OUT2  
GND  
OUT1, OUT2  
GND  
DLY  
DLY  
Figure 24. Standby Current  
Low-Level Input Current  
Output Leak Current  
Figure 25.Operating Current  
Diagnostic Output Leak Current  
VBB  
VBB  
VBB  
VBB  
IN1, IN2  
IN1, IN2  
ST1, ST2  
ST1, ST2  
SET  
SET  
DLY  
VIN  
OUT1, OUT2  
DLY  
VIN 47 kΩ  
0.1 μF  
OUT1, OUT2  
GND  
GND  
1 kΩ  
IOUT  
Figure 26. UVLO Detection Voltage  
UVLO Hysteresis Voltage  
High-Level Input Voltage  
Low-Level Input Voltage  
Input Voltage Hysteresis  
High-Level Input Current  
Thermal Shutdown  
Figure 27. Output ON Resistance  
Output Clamp Voltage  
Thermal Shutdown Hysteresis  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
16/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Measurement Circuit - continued  
VBB  
VBB  
VBB  
VBB  
IN1, IN2  
IN1, IN2  
SET  
10 kΩ  
ST1, ST2  
ST1, ST2  
Monitor  
Monitor  
SET  
IST  
VIN  
VIN  
OUT1, OUT2  
GND  
47 kΩ  
0.1 μF  
OUT1, OUT2  
GND  
VST  
DLY  
DLY  
Monitor  
1 kΩ  
6.5 Ω  
Figure 28. Output ON Slew Rate  
Output OFF Slew Rate  
Figure 29. Diagnostic Output Low Voltage  
Output ON Propagation Delay Time  
Output OFF Propagation Delay Time  
Diagnostic Output ON Propagation Delay Time  
Diagnostic Output OFF Propagation Delay Time  
VBB  
VBB  
VBB  
VBB  
IN1, IN2  
SET  
10 kΩ  
IN1, IN2  
SET  
10 kΩ  
ST1, ST2  
ST1, ST2  
VIN  
OUT1, OUT2  
GND  
VST  
VST  
47 kΩ  
OUT1, OUT2  
GND  
DLY  
DLY  
0.1 μF  
Monitor  
Figure 30. Fixed Over Current Limit  
Variable Over Current Limit  
Figure 31. Open Load Detection Voltage  
Open Load Detection Sink Current  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
17/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Timing Chart (Propagation Delay Time)  
VBB  
VINH  
VINL  
IN1, IN2  
tOUTOFF  
SRON  
80%  
80%  
20%  
20%  
OUT1, OUT2  
tOUTON  
SROFF  
ST1, ST2  
tSTON  
tSTOFF  
Figure 32. Timing Chart  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
18/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Function Description  
1. Protection Function  
Table 1. Detection and Release Conditions of Each Protection Function and Diagnostic Output  
Mode  
Conditions  
IN1, IN2  
ST1, ST2  
Standby  
Operating  
-
Low  
High  
Low  
Low  
High  
High  
High  
High  
High  
High  
High  
High  
High  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
Normal  
Condition  
-
Detect VOUT ≥ 3.0 V (Typ)  
Release VOUT ≤ 2.6 V (Typ)  
Detect VBB ≤ 4.3 V (Max)  
Release VBB ≥ 4.7 V (Max)  
Detect Tj ≥ 175 °C (Typ)  
Release Tj ≤ 160 °C (Typ)  
Detect ΔTj ≥ 120 °C (Typ)  
Release ΔTj ≤ 80 °C (Typ)  
Detect IOUT ≥ ILIMSET  
Open Load Detect (OLD)  
Low Voltage Output OFF  
(UVLO)  
Thermal Shutdown (TSD)(Note 1)  
ΔTj Protection(Note 2)  
Over Current Protection (OCP)  
Release IOUT < ILIMSET  
(Note 1) Thermal shutdown is automatically restored to normal operation.  
(Note 2) Protect function by detecting PowerMOS sharp increase of temperature difference with control circuit.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
19/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Function Description – continued  
2. Over Current Protection  
2.1 Over Current Limiting Operation in one side channel  
This IC has two over current limiting functions, fixed over current limit (ILIMH) for protecting the IC and variable over  
current limit (ILIMSET) for protecting the load. The variable over current limit (ILIMSET) can be set by connecting an  
external resistor to the SET pin. It is also possible to set the variable over current mask time (tDLY) by connecting an  
external capacitor to the DLY pin.  
Timing chart for switching from fixed over current setting (ILIMH) to variable over current limit (ILIMSET) are shown at  
Figure 33.  
IN1, IN2  
VSET = 1 V (Typ)  
SET  
0 V  
ILIMH  
ILIMSET  
Normal Current  
IOUT1, IOUT2  
tDLY  
VDLY = 0.8 V (Typ)  
0 V  
DLY  
ST1, ST2  
Figure 33. Over Current Detection in One Side Channel Timing Chart  
When the load current (IOUT1, IOUT2) rises and exceeds variable over current limit (ILIMSET), external capacitor CDLY  
is charged by 5 μA (Typ).  
When the DLY pin voltage VDLY reaches 0.8 V (Typ) (after tDLY), CDLY is discharged. IOUT1, IOUT2 is limited to  
variable over current limit value (ILIMSET) and ST1, ST2 = High indicating an abnormal condition.  
When output current IOUT1, IOUT2 becomes less than the variable over current limit value (LIMSET), the diagnostic  
output pin (ST1, ST2) is turned to low.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
20/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Function Description – continued  
2.2 Over Current Detection in Both Outputs  
This IC can detect over current in both outputs OUT1 and OUT2 independently and limit IOUT1 and IOUT2 respectively.  
Variable current limit value (ILIMSET) and variable over current mask time (tDLY) set by external components of the SET  
pin and the DLY pin are the same for OUT1 and OUT2.  
Figure 34 shows the timing chart when over current are detected at both outputs.  
IN1  
IN2  
VSET = 1 V (Typ)  
SET  
0 V  
ILIMH  
ILIMSET  
IOUT1  
ILIMH  
ILIMSET  
IOUT2  
tDLY  
tDLY  
VDLY = 0.8 V (Typ)  
DLY  
0 V  
ST1  
ST2  
Figure 34. Timing Chart for Over Current Detection in Both Outputs  
When load current (IOUT1) of channel 1 rises and exceeds variable over current limit (ILIMSET), external capacitor  
CDLY is charged by 5 μA (Typ).  
When DLY pin voltage VDLY reaches 0.8 V (Typ) (after tDLY), CDLY is discharged. IOUT1 is limited to variable over  
current limit value (ILIMSET) and ST1 = High indicating an abnormal condition.  
When load current (IOUT2) of channel 2 rises and exceeds variable over current limit (ILIMSET), external capacitor  
CDLY is charged by 5 μA (Typ).  
When VDLY = 0.8 V (Typ) (after tDLY), CDLY is discharged. IOUT2 is limited to variable over current limit value (ILIMSET  
and ST2 = High indicating an abnormal condition.  
)
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
21/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Function Description – continued  
2.3 Over Current Detection by Other Channel while CDLY is Charging (tDLY  
)
When one side channel is detected over current detection, CDLY is charged. When the other channel detects over  
current while CDLY is charged, it is charged again after tDLY and CDLY is discharged. After tDLY has passed again since  
charging is started, the other channel is limited to the variable over current limit value (ILIMSET). In this case, the  
variable over current mask time of the channel which detected later is maximum 2tDLY + tDISC.  
Figure 35 shows the timing chart.  
IN1  
IN2  
VSET = 1 V (Typ)  
0 V  
SET  
② ③ ④  
ILIMH  
ILIMSET  
IOUT1  
ILIMH  
ILIMSET  
tDLY  
tDLY  
IOUT2  
VDLY = 0.8 V (Typ)  
0 V  
DLY  
tDISC  
ST1  
ST2  
Figure 35. Timing Chart for Over Current Detected by Other Channel during CDLY Charging (tDLY  
)
When load current (IOUT1) of channel 1 rises and exceeds variable over current limit (ILIMSET), external capacitor  
CDLY is charged by 5 μA (Typ).  
While CDLY is charging, load current (IOUT2) of channel 2 rises and exceeds variable over current limit (ILIMSET)  
When the DLY pin voltage VDLY reaches 0.8 V (Typ) (after tDLY), CDLY is discharged. IOUT1 is limited to variable  
over current limit value (ILIMSET) and ST1 = High indicating an abnormal condition.  
When IOUT2 is continuously maintained at over current detection after the tDISC (0.2 μs Typ) set internally in the IC,  
the external capacitor CDLY is charged again by 5 μA (Typ).  
When VDLY = 0.8 V (Typ) (after tDLY), CDLY is discharged. IOUT2 is limited to variable over current limit value (ILIMSET  
and ST2 = High indicating an abnormal condition.  
)
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
22/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Function Description – continued  
2.4 Setting of Variable Overcurrent Limit Value  
There are two values in the over current limit of this IC; fixed over current limit value (ILIMH) and the variable over  
current limit value (ILIMSET) that can be set by external resistance RSET. The variable over current limit value (ILIMSET  
set for the value of RSET is as follows. RSET should be set within the range of 7.5 kΩ to 330 kΩ.  
)
Table 3. Variable Over Current Limit for RSET  
Variable Over Current Limit (ILIMSET) [A]  
RSET [kΩ]  
Min  
Typ  
Max  
7.5  
10  
7.78  
11.39  
15.00  
6.95  
4.82  
3.50  
2.80  
1.98  
1.61  
1.19  
0.78  
0.51  
10.17  
7.06  
5.13  
4.10  
2.90  
2.36  
1.74  
1.30  
1.01  
13.39  
9.30  
6.76  
5.40  
3.81  
3.10  
2.29  
1.82  
1.52  
20  
33  
47  
75  
100  
150  
220  
330  
100  
10  
1
Max  
Typ  
Min  
0.1  
1
10  
100  
1000  
RSET [kΩ]  
Figure 36. Variable Over Current Limit vs RSET  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
23/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Function Description – continued  
2.5 Variable Over Current Limit Mask Time Setting  
The variable over current mask time (tDLY) can be set by using external capacitor CDLY. tDLY is the switching time from  
the over current detected timing until the over current limit value (ILIMSET) set by RSET  
.
The approximate expressions for variable over current mask time (tDLY) are shown below.  
ꢅꢆꢇ  
ꢊ6  
퐷ꢀ푌_푀푎푥 = 0.28 × ꢈꢉ  
[s]  
[s]  
[s]  
퐷ꢀ푌_푇푦푝 = 0.20 × ꢈꢉ  
ꢅꢆꢇ  
ꢊ6  
퐷ꢀ푌_푀푖ꢋ = 0.12 × ꢈꢉ  
ꢅꢆꢇ  
ꢊ6  
CDLY: External Capacitor Value  
tDLY: Variable Over Current Mask Time  
0.1  
0.01  
Max  
Typ  
Min  
0.001  
0.0001  
0.001  
0.01  
0.1  
1
CDLY [µF]  
Figure 37. Variable Over Current Mask Time vs CDLY  
2.6 The SET Pin and the DLY Pin Setting  
The DLY pin can be used by GND short(Note 1) or Open.  
DLY = GND: The variable over current limit is disabled and only fixed over current limit is operational.  
In this case, please set the SET pin OPEN or connect a resistor with 7.5 kΩ or above.  
DLY = OPEN: Variable over current mask time is 10 μs or less.  
(Note 1) Please short to GND of IC.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
24/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Function Description – continued  
3. Open Load Detection  
VBB  
VBB  
Internal  
Supply  
Clamp  
SOLD  
ROLD  
IN1, IN2  
Gate  
Driver  
OUT1, OUT2  
Control  
Logic  
VOLD  
ST1, ST2  
R1  
SW1  
R2  
VREF  
RPD  
RL  
GND  
Figure 38. Open Load Detection Block Diagram  
Open load can be detected by connecting an external resistance ROLD between power supply VBB and output (the OUT1 pin  
and the OUT2 pin).  
When output load is disconnected during input (the IN1 pin or the IN2 pin) is low, diagnostic output (the ST1 pin or the ST2  
pin) is turned to low to indicate abnormality. To reduce the standby current of the system, an open load resistance switch  
SOLD is recommended.  
When the SW1 is OFF (the OUT1 pin and the OUT2 pin no longer pulled down by the load), voltage of the OUT1pin and  
OUT2 pin does not fall to GND level. Because, when the IN1 pin and the IN2 pin are low, the voltage of the OUT1 pin and  
OUT2 pin does not become under or equal to the Output ON Detection Voltage (VDSDET). To pulled down the OUT1 pin and  
the OUT2 pin, pulled down resistance RPD is recommended. The resistance RPD is 4.3 kΩ or less for outflow current from the  
OUT1 pin and the OUT2 pin.  
3.1 When the OUT1, OUT2 is pulled down by the load (Normal function)  
The value of external resistance ROLD is decided based on used minimum power supply voltage (VBB), internal  
resistance R1 and R2 and open detection voltage VOLD. External resistance RPD is unnecessary.  
The equation for calculating the ROLD value is shown below.  
− ꢎ 푅ꢈꢁ푀푖ꢋ) + 푅ꢄꢁ푀푖ꢋ) [Ω]  
ꢍꢍ  
×ꢎ ꢂ  
ꢓꢂ  
ꢏꢁꢐꢑꢒ)  
ꢔꢁꢐꢑꢒ)  
푂ꢀ퐷  
<
ꢖꢆꢅꢁMax)  
The above formula is summarized as follows.  
푂ꢀ퐷 < 퐵퐵 × 75 × 103 − ꢗ00 × 103 [Ω]  
ROLD value is fell below the above calculated result.  
3.2 If the SW1 is OFF, the output is no longer pulled down by the load  
The value of external resistance ROLD is decided based on used minimum power supply voltage (VBB), external  
resistance RPD and open detection voltage VOLD  
.
The equation for calculating the ROLD value is shown below.  
×ꢂ  
푃ꢅ  
ꢍꢍ  
푂ꢀ퐷  
<
− 푅ꢘ퐷 [Ω]  
ꢖꢆꢅꢁMax)  
When RPD is 4.3 kΩ, the above formula is summarized as follows.  
푂ꢀ퐷 < 퐵퐵 × 1.075 × 103 − 4.ꢗ × 103 [Ω]  
ROLD value is fell below the above calculated result.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
25/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Function Description – continued  
4. Thermal Shutdown, ΔTj Protection Detection  
4.1 Thermal Shutdown Protection  
This IC has a built-in thermal shutdown protection function. When the IC temperature is 175 °C (Typ) or more, the  
output is OFF. Diagnostic output (ST1, ST2) outputs High. When the IC temperature falls below the 160 °C (Typ) or  
less, the output is automatically restored to normal operation.  
4.2 ΔTj Protection  
This IC has a built-in ΔTj protection function that turns OFF the output when the temperature difference (TDTJ  
)
between the POWER-MOS unit (TPOWER-MOS) and the control unit (TAMB) in the IC is 120 °C (Typ) or more. ΔTj  
protection also has a built-in hysteresis (TDTJHYS) that returns the output to normal state when the temperature  
difference becomes 80 °C (Typ) or less.  
Figure 39 shows the timing chart of thermal shutdown protection and ΔTj protection during output short to GND fault.  
IN1 / IN2  
ILIMH  
IOUT1 / IOUT2  
TTSD  
TPOWER-MOS  
TTSDHYS  
TAMB  
TDTJ  
TDTJHYS  
TSD  
Operation  
ΔTj Protection Operation  
ST1 / ST2  
TSD Detect  
TSD Release  
(Note 1)  
Figure 39. Thermal Shutdown Protection and ΔTj Protection Timing Chart  
(Note 1) When output voltage falls to output ON detection voltage (VDSDET) or less at the output to GND is shorted or rare short, IC is judged that the  
output voltage is abnormal. Hence, ST1, ST2 may not be able to turn low.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
26/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Function Description – continued  
5. Other Protection  
5.1 GND Open Protection  
VBB  
VBB  
Internal  
Supply  
Clamp  
IN1, IN2  
ROLD  
Gate  
Driver  
OUT1, OUT2  
Control  
Logic  
ST1, ST2  
R1  
RL  
R2  
VOLD  
GND  
Figure 40. GND Open Protection Block Diagram  
When the GND of the IC is open, the output switches OFF regardless of IN1, IN2 voltage.  
(However, the self-diagnosis output ST1, ST2 is invalid.)  
When an inductive load is connected, active clamp operates when the GND pin becomes open.  
5.2 MCU I/O Protection  
VBB  
Internal  
Supply  
Clamp  
IN1, IN2  
Gate  
Driver  
OUT1, OUT2  
Control  
Logic  
ST1, ST2  
R1  
R2  
MCU  
VOLD  
GND  
Figure 41. MCU I/O Protection  
Negative surge voltage to the IN1 pin, the IN2 pin, the ST1 pin and the ST2 pin may cause damage to the MCU's I/O  
pins. In order to prevent those damages, it is recommended to insert limiting resistors between IC pins and MCU.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
27/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Applications Example  
RST1PU  
RST2PU  
VBB  
CVBB  
RIN1  
RIN2  
IN1  
ROLD  
IN2  
OUT1  
RST1  
ST1  
ST2  
MCU  
RPD  
RL  
RST2  
BV2HD045EFU-C  
DLY  
SET  
OUT2  
RL  
CDLY  
GND  
RSET  
RGND  
DGND  
Value  
Symbol  
Purpose  
MCU Voltage: 5 V(Note 1)(Note 2)  
RIN1, RIN2  
RST1, RST2  
4.7 kΩ  
4.7 kΩ  
Limit resistance for negative surge  
Limit resistance for negative surge  
Pull up ST1 / ST2 pin to MCU power supply,  
these pins are open drain output  
RST1PU, RST2PU  
10 kΩ  
RSET  
CVBB  
CDLY  
RGND  
DGND  
RPD  
47 kΩ  
10 µF  
0.1 µF  
1 kΩ  
-
For variable over current limit value(Note 3)  
For battery line voltage spike filter  
For variable over current mask time(Note 3)  
For current limit for reverse battery connection  
BV2HD045EFU-C protection for reverse battery connection  
For output pulled down  
4.3 kΩ  
2 kΩ  
ROLD  
For open load detection  
(Note 1) Please set RIN1, RIN2 and MCU voltage according to the rule of the electrical characteristic input department VIN1 and VIN2  
.
Particularly, when you use 3.3 V MCU, please set them to satisfy High level input voltage (VINH).  
(Note 2) GND voltage of IC rises when you use RGND and DGND  
.
When GND voltage of IC rises, the input voltage IN1 and IN2 pins rise, too.  
Please set a constant to satisfy the following formula and contents of Note 1 about the input voltage.  
High level input voltage (VINH) < MCU voltage – (RIN1, RIN2) x High level input current (IINH) – GND voltage  
(Note 3) GND voltage of IC rises when you use RGND and DGND  
.
When GND voltage of IC rises, the voltage of the SET pin and the DLY pin of the variable overcurrent setting rises, too.  
Please use it in consideration of rise in GND voltage.  
It is available with a characteristic as it is showed in Figure 36 and Figure 37 when you connect RSET and CDLY to GND of IC.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
28/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
I/O Equivalence Circuits  
SET  
DLY  
VBB  
SET  
DLY  
20 Ω  
IN1, IN2  
ST1, ST2  
9 kΩ  
150 Ω  
IN1  
IN2  
ST1  
ST2  
91 kΩ  
OUT1, OUT2  
VBB  
OUT1  
OUT2  
193 kΩ  
307 kΩ  
Resistance values shown in the diagrams above are typical values.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
29/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Operational Notes  
1.  
2.  
Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power  
supply pins.  
Power Supply Lines  
Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at  
all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic  
capacitors.  
3.  
4.  
Ground Voltage  
Except for pins the output and the input of which were designed to go below ground, ensure that no pins are at a  
voltage below that of the ground pin at any time, even during transient condition.  
Ground Wiring Pattern  
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations  
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.  
5.  
6.  
Recommended Operating Conditions  
The function and operation of the IC are guaranteed within the range specified by the recommended operating  
conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical  
characteristics.  
Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power  
supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and  
routing of connections.  
7.  
Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may  
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply  
should always be turned off completely before connecting or removing it from the test setup during the inspection  
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during  
transport and storage.  
8.  
9.  
Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.  
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and  
unintentional solder bridge deposited in between pins during assembly to name a few.  
Unused Input Pins  
Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and  
extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small  
charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and  
cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the  
power supply or ground line.  
10. Ceramic Capacitor  
When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with  
temperature and the decrease in nominal capacitance due to DC bias and others.  
11. Thermal Shutdown Function (TSD)  
This IC has a built-in thermal shutdown function that prevents heat damage to the IC. Normal operation should always  
be within the IC’s maximum junction temperature rating. If however the rating is exceeded for a continued period, the  
junction temperature (Tj) will rise which will activate the TSD function that will turn OFF power output pins. When the Tj  
falls below the TSD threshold, the circuits are automatically restored to normal operation.  
Note that the TSD function operates in a situation that exceeds the absolute maximum ratings and therefore, under no  
circumstances, should the TSD function be used in a set design or for any purpose other than protecting the IC from  
heat damage.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
30/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Operational Notes – continued  
12. Over Current Protection Function (OCP)  
This IC incorporates an integrated overcurrent protection function that is activated when the load is shorted. This  
protection function is effective in preventing damage due to sudden and unexpected incidents. However, the IC should  
not be used in applications characterized by continuous operation or transitioning of the protection function.  
13. Active Clamp Operation  
The IC integrates the active clamp function to internally absorb the reverse energy which is generated when the  
inductive load is turned off. When the active clamp operates, the thermal shutdown function does not work. Decide a  
load so that the reverse energy is active clamp tolerance (refer to Figure 23. Active Clamp Energy vs Output Current)  
or under when inductive load is used.  
14. Open Power Supply Pin  
When the power supply pin (VBB) becomes open at ON (IN = High), the output is switched to OFF regardless of  
input voltage. If an inductive load is connected, the active clamp operates when VBB is open and becomes the same  
potential as that on the ground. At this time, the output voltage drops down to -48 V (Typ).  
15. Open GND Pin  
When the GND pin becomes open at ON (IN = High), the output is switched to OFF regardless of input voltage. If an  
inductive load is connected, the active clamp operates when the GND pin is open.  
www.rohm.com  
TSZ02201-0G5G1G400030-1-2  
© 2019 ROHM Co., Ltd. All rights reserved.  
31/34  
TSZ22111 • 15 • 001  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Ordering Information  
B V 2 H D 0 4 5 E F U -  
C E 2  
Package  
EFU: HSSOP-C16  
Product Rank  
C: Automotive product  
Packaging and Forming Specification  
E2: Embossed tape and reel  
Marking Diagram  
HSSOP-C16 (TOP VIEW)  
Part Number Marking  
2 H D 4 5  
LOT Number  
Pin 1 Mark  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
32/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Physical Dimension and Packing Information  
Package Name  
HSSOP-C16  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
33/34  
10.Apr.2023 Rev.002  
BV2HD045EFU-C  
Revision History  
Date  
Revision  
Changes  
18.Mar.2019  
001  
New Release  
Page 1 Delete description of the registered trademark “Dual TSD”.  
Page 3 Modify EXP-PAD description in Pin Configuration and Pin Description.  
Page 24 Note 1 about GND short is added.  
10.Apr.2023  
002  
Page 28 MCU voltage is defined in Applications Example.  
Note 1, Note 2 and Note 3 are added.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
TSZ22111 • 15 • 001  
TSZ02201-0G5G1G400030-1-2  
34/34  
10.Apr.2023 Rev.002  
Notice  
Precaution on using ROHM Products  
(Note 1)  
1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment  
,
aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life,  
bodily injury or serious damage to property (Specific Applications), please consult with the ROHM sales  
representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any  
ROHMs Products for Specific Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below.  
Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the  
use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our  
Products under any special or extraordinary environments or conditions (as exemplified below), your independent  
verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used.  
However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble  
cleaning agents for cleaning residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PAA-E  
Rev.004  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

BV2HD070EFU-C

本产品是车载用2ch高边开关。内置过电流保护功能、过热保护功能、负载开路检测功能、低电压时输出OFF功能,具有异常检出时诊断输出功能。可使用外接元件任意设定过电流限制值及限制前的时间,容易实现适合负载的过电流保护。
ROHM

BV2HM050EFV-C (新产品)

BV2HM050EFV-C是一款车载用双通道高边开关。内置过电流保护功能(间歇工作模式)、过热保护功能、负载开路检测功能、低电压时输出OFF功能,还具有检测到异常时的诊断信息输出功能。
ROHM

BV301D06006

SEALED POWER TRANFORMERS BV SERIES EI30 0.6VA . 2.8VA
ZETTLER

BV301D06010

密封变压器
ZETTLER

BV301D06012

SEALED POWER TRANFORMERS BV SERIES EI30 0.6VA . 2.8VA
ZETTLER

BV301D06015

SEALED POWER TRANFORMERS BV SERIES EI30 0.6VA . 2.8VA
ZETTLER

BV301D06015-22

密封变压器
ETC

BV301D06015A

密封变压器
ETC

BV301D06017

SEALED POWER TRANFORMERS BV SERIES EI30 0.6VA . 2.8VA
ZETTLER

BV301D06018

SEALED POWER TRANFORMERS BV SERIES EI30 0.6VA . 2.8VA
ZETTLER

BV301D06020

SEALED POWER TRANFORMERS BV SERIES EI30 0.6VA . 2.8VA
ZETTLER

BV301D06023

SEALED POWER TRANFORMERS BV SERIES EI30 0.6VA . 2.8VA
ZETTLER