LM2903F [ROHM]

LM2903F是含2个电路的接地检测比较器。工作电源电压范围较大,为3V~32V,且消耗电流较小,可用于各种用途。;
LM2903F
型号: LM2903F
厂家: ROHM    ROHM
描述:

LM2903F是含2个电路的接地检测比较器。工作电源电压范围较大,为3V~32V,且消耗电流较小,可用于各种用途。

比较器
文件: 总40页 (文件大小:4117K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Comparators  
Ground Sense Comparators  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
General Description  
Key Specifications  
Operating Supply Voltage Range  
LM393xxx and LM2903xxx series are two-channel  
ground sense comparator. LM339xxx and LM2901xxx  
series are quad. These have features of wide operating  
voltage that ranges from 3V to 32V with low supply  
current. These products are suitable for various  
applications.  
Single Supply  
Dual Supply  
Operating Temperature Range:  
LM393xxx:  
+3.0V to +32.0V  
±1.5V to ±16.0V  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +125°C  
-40°C to +125°C  
4.5mV (Max)  
LM339xxx:  
LM2903xxx:  
LM2901xxx:  
Input Offset Voltage  
Features  
Wide Operating Supply Voltage  
Ground-sensed Input and Output  
Open Collector Output  
Wide Operating Temperature  
Low Offset Voltage  
Packages  
SOP8  
W(Typ) x D(Typ) x H(Max)  
5.00mm x 6.20mm x 1.71mm  
4.90mm x 6.00mm x 1.65mm  
3.00mm x 6.40mm x 1.35mm  
3.00mm x 6.40mm x 1.20mm  
3.00mm x 4.90mm x 1.10mm  
2.90mm x 4.00mm x 0.90mm  
8.70mm x 6.20mm x 1.71mm  
8.65mm x 6.00mm x 1.65mm  
5.00mm x 6.40mm x 1.35mm  
5.00mm x 6.40mm x 1.20mm  
SOP-J8  
SSOP-B8  
TSSOP-B8  
TSSOP-B8J  
MSOP8  
Application  
General Purpose  
Current Monitor  
Battery Monitor  
Multivibrators  
SOP14  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
Pin Configuration  
LM393F, LM2903F  
LM393FJ, LM2903FJ  
LM393FV, LM2903FV  
: SOP8  
: SOP-J8  
: SSOP-B8  
LM393FVT, LM2903FVT : TSSOP-B8  
LM393FVJ, LM2903FVJ : TSSOP-B8J  
LM393FVM, LM2903FVM : MSOP8  
Pin No.  
Pin Name  
1
2
3
4
5
6
7
8
OUT1  
-IN1  
1
2
8
7
VCC  
OUT2  
-IN2  
OUT1  
-IN1  
CH1  
+IN1  
VEE  
+IN2  
-IN2  
+
-
3
4
6
5
+IN1  
VEE  
-
CH2  
+
+IN2  
OUT2  
VCC  
Product structureSilicon monolithic integrated circuit This product has no designed protection against radioactive rays.  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 14 001  
1/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
LM339F, LM2901F  
LM339FJ, LM2901FJ  
LM339FV, LM2901FV  
: SOP14  
: SOP-J14  
: SSOP-B14  
LM339FVJ, LM2901FVJ : TSSOP-B14J  
Pin No.  
Pin Name  
1
2
OUT2  
OUT1  
VCC  
-IN1  
OUT2  
OUT1  
OUT3  
OUT4  
1
2
14  
13  
3
4
5
+IN1  
-IN2  
12  
11  
10  
9
VCC  
-IN1  
+IN1  
3
4
5
VEE  
+IN4  
6
CH1  
CH4  
7
+IN2  
-IN3  
8
-IN4  
9
+IN3  
-IN4  
10  
11  
12  
13  
14  
-IN2  
6
7
+IN3  
-IN3  
CH3  
CH2  
+IN4  
VEE  
+IN2  
8
OUT4  
OUT3  
Absolute Maximum Ratings (TA=25°C)  
Parameter  
Rating  
Symbol  
VCC-VEE  
Unit  
LM393xxx  
LM339xxx LM2903xxx LM2901xxx  
Supply Voltage  
+36  
V
0.68(Note 1,9)  
0.67(Note 2,9)  
0.62(Note 3,9)  
0.62(Note 3,9)  
0.58(Note 4,9)  
0.58(Note 4,9)  
-
0.68(Note 1,9)  
0.67(Note 2,9)  
0.62(Note 3,9)  
0.62(Note 3,9)  
SOP8  
-
-
-
SOP-J8  
SSOP-B8  
TSSOP-B8  
TSSOP-B8J  
MSOP8  
SOP14  
-
-
-
-
-
0.58(Note 4,9)  
-
Power Dissipation  
PD  
W
-
0.58(Note 4,9)  
-
-
-
-
-
0.56(Note 5,9)  
1.02(Note 6,9)  
0.87(Note 7,9)  
0.85(Note 8,9)  
-
-
-
-
0.56(Note 5,9)  
1.02 (Note 6,9)  
0.87(Note 7,9)  
0.85(Note 8,9)  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
VID  
Differential Input Voltage (Note 10)  
Common-mode Input Voltage range  
Input Current(Note 11)  
+36  
V
V
VICM  
(VEE-0.3) to (VEE+36)  
-10  
II  
mA  
Single Supply  
Dual Supply  
Topr  
+3.0 to +32.0  
Vopr  
Operating Supply Voltage  
V
±1.5 to ±16.0  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
-40 to +85  
-40 to +125  
°C  
°C  
°C  
Tstg  
-55 to +150  
+150  
Tjmax  
(Note 1) Reduce 5.5mW per 1°C above 25°C.  
(Note 2) Reduce 5.4mW per 1°C above 25°C.  
(Note 3) Reduce 5.0mW per 1°C above 25°C.  
(Note 4) Reduce 4.7mW per 1°C above 25°C.  
(Note 5) Reduce 4.5mW per 1°C above 25°C.  
(Note 6) Reduce 8.2mW per 1°C above 25°C.  
(Note 7) Reduce 7.0mW per 1°C above 25°C.  
(Note 8) Reduce 6.8mW per 1°C above 25°C.  
(Note 9) Mounted on an FR4 glass epoxy PCB 70mm×70mm×1.6mm (Copper foil area less than 3%).  
(Note 10) Differential Input Voltage is the voltage difference between the inverting and non-inverting inputs. The input pin voltage is set to more than VEE  
.
(Note 11) An excessive input current will flow when input voltages of less than VEE-0.6V are applied.  
The input current can be set to less than the rated current by adding a limiting resistor.  
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit  
between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is  
operated over the absolute maximum ratings.  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
2/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Electrical Characteristics  
LM393xxx, LM2903xxx (Unless otherwise specified VCC=+5V, VEE=0V, TA=25°C)  
Limit  
Typ  
1
Temperature  
Range  
Parameter  
Symbol  
VIO  
Unit  
mV  
Condition  
VOUT=1.4V  
Min  
Max  
4.5  
5
25°C  
Full range  
25°C  
-
-
-
-
-
-
Input Offset Voltage(Note 12,13)  
-
5
-
VCC=5 to 32V, VOUT=1.4V  
50  
Input Offset Current(Note 12,13)  
Input Bias Current(Note 12,13)  
IIO  
nA  
VOUT=1.4V  
Full range  
25°C  
200  
250  
500  
50  
-
IB  
nA  
V
VOUT=1.4V  
Full range  
Input Common-mode Voltage  
Range  
VICM  
25°C  
0
-
VCC-1.5  
-
VCC=15V,  
31  
90  
1000  
120  
-
-
V/mV  
dB  
Large Signal Voltage Gain  
AV  
25°C  
VOUT=1.4 to 11.4V,  
RL=15kΩ, VRL=15V  
VOUT=Open  
25°C  
-
-
0.6  
-
1
Supply Current(Note 13)  
ICC  
ISINK  
VOL  
mA  
mA  
mV  
Full range  
1.5  
VOUT=Open, VCC=32V  
V+IN=0V, V-IN=1V,  
VOUT=1.5V  
Output Sink Current(Note 14)  
25°C  
8
16  
-
Output Saturation Voltage(Note 13)  
(Low Level Output Voltage)  
V+IN=0V, V-IN= 1V  
ISINK=4mA  
25°C  
-
-
80  
-
200  
400  
Full range  
V+IN=1V, V-IN=0V,  
VOUT=5V  
25°C  
-
-
0.1  
-
-
nA  
Output Leakage Current(Note 13)  
(High Level Output Current)  
ILEAK  
V+IN=1V, V-IN=0V,  
VOUT=32V  
Full range  
1
μA  
RL=5.1kΩ, VRL=5V,  
-
-
1
-
-
VIN=100mVP-P,  
Overdrive=5mV  
RL=5.1kΩ, VRL=5V,  
VIN=TTL,  
Response Time  
tRE  
25°C  
μs  
0.4  
Logic Swing, VREF=1.4V  
(Note 12) Absolute value  
(Note 13) LM393xxx Full range: TA=-40°C to +85°C, LM2903xxx Full range: TA=-40°C to +125°C.  
(Note 14) Consider the power dissipation of the IC under high temperature when selecting the output current value.  
There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC.  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
3/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Electrical Characteristics - continued  
LM339xxx, LM2901xxx (Unless otherwise specified VCC=+5V, VEE=0V, TA=25°C)  
Limit  
Typ  
1
Temperature  
Range  
Parameter  
Symbol  
VIO  
Unit  
mV  
Condition  
VOUT=1.4V  
Min  
Max  
4.5  
5
25°C  
Full range  
25°C  
-
-
-
-
-
-
Input Offset Voltage(Note 15,16)  
-
5
-
VCC=5 to 32V, VOUT=1.4V  
50  
Input Offset Current(Note 15,16)  
Input Bias Current(Note 15,16)  
IIO  
nA  
VOUT=1.4V  
Full range  
25°C  
200  
250  
500  
50  
-
IB  
nA  
V
VOUT=1.4V  
Full range  
Input Common-mode Voltage  
Range  
VICM  
25°C  
0
-
VCC-1.5  
-
VCC=15V,  
VOUT=1.4 to 11.4V,  
RL=15kΩ, VRL=15V  
31  
90  
1000  
120  
-
-
V/mV  
dB  
Large Signal Voltage Gain  
AV  
25°C  
25°C  
-
-
1.2  
-
2
VOUT=Open  
Supply Current(Note 16)  
ICC  
ISINK  
VOL  
mA  
mA  
mV  
Full range  
2.5  
VOUT=Open, VCC=32V  
V+IN=0V, V-IN=1V,  
VOUT=1.5V  
Output Sink Current(Note 17)  
25°C  
8
16  
-
Output Saturation Voltage(Note 16)  
(Low Level Output Voltage)  
V+IN=0V, V-IN= 1V  
ISINK=4mA  
25°C  
-
-
80  
-
200  
400  
Full range  
V+IN=1V, V-IN=0V,  
VOUT=5V  
V+IN=1V, V-IN=0V,  
VOUT=32V  
25°C  
-
-
0.1  
-
-
nA  
Output Leakage Current(Note 16)  
(High Level Output Current)  
ILEAK  
Full range  
1
μA  
RL=5.1kΩ, VRL=5V,  
-
-
1
-
-
VIN=100mVP-P,  
Overdrive=5mV  
RL=5.1kΩ, VRL=5V,  
VIN=TTL,  
Response Time  
tRE  
25°C  
μs  
0.4  
Logic Swing, VREF=1.4V  
(Note 15) Absolute value  
(Note 16) LM339xxx Full range: TA=-40°C to +85°C, LM2901xxx Full range: TA=-40°C to +125°C.  
(Note 17) Consider the power dissipation of the IC under high temperature when selecting the output current value.  
There may be a case where the output current value is reduced due to the rise in IC temperature caused by the heat generated inside the IC.  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
4/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Description of Electrical Characteristics  
The relevant electrical terms used in this datasheet are described below. Items and symbols used are also shown. Note  
that item names, symbols, and their meanings may differ from those of another manufacturer’s document or general  
document.  
1. Absolute Maximum Ratings  
Absolute maximum rating items indicate the condition which must not be exceeded. Application of voltage in excess of the  
absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of  
electrical characteristics.  
(1) Supply Voltage (VCC/VEE  
)
Indicates the maximum voltage that can be applied between the VCC pin and VEE pin without deterioration of  
characteristics of internal circuit.  
(2) Differential Input Voltage (VID)  
Indicates the maximum voltage that can be applied between the non-inverting and inverting pins without damaging  
the IC.  
(3) Input Common-mode Voltage Range (VICM  
)
Indicates the maximum voltage that can be applied to the non-inverting and inverting pins without deterioration or  
destruction of electrical characteristics. Input common-mode voltage range of the maximum ratings does not assure  
normal operation of IC. For normal operation, use the IC within the input common-mode voltage range characteristics.  
(4) Power Dissipation (PD)  
Indicates the power that can be consumed by the IC when mounted on a specific board at the ambient temperature 25°C  
(normal temperature). As for package product, PD is determined by the temperature that can be permitted by the IC in  
the package (maximum junction temperature) and the thermal resistance of the package.  
2. Electrical Characteristics  
(1) Input Offset Voltage (VIO)  
Indicates the voltage difference between non-inverting pin and inverting pin. It can be translated to the input voltage  
difference required for setting the output voltage to 0V.  
(2) Input Offset Current (IIO)  
Indicates the difference of input bias current between the non-inverting and inverting pins.  
(3) Input Bias Current (IB)  
Indicates the current that flows into or out of the input pin. It is defined by the average of input bias currents at the  
non-inverting and inverting pins.  
(4) Input Common-mode Voltage Range (VICM  
)
Indicates the input voltage range at which IC normally operates.  
(5) Large Signal Voltage Gain (AV)  
Indicates the amplification rate (gain) of output voltage against the voltage difference between non-inverting pin and  
inverting pin. It is normally the amplification rate (gain) with reference to DC voltage.  
Av = (Output Voltage) / (Differential Input Voltage)  
(6) Supply Current (ICC  
)
Indicates the current that flows within the IC under specified no-load conditions.  
(7) Output Sink Current (ISINK  
)
The maximum current that the IC can output under specific output conditions  
(8) Output Saturation Voltage, Low Level Output Voltage (VOL  
)
Signifies the voltage range that can be output under specific output conditions.  
(9) Output Leakage Current, High Level Output Current (ILEAK  
)
Indicates the current that flows into the IC under specific input and output conditions.  
(10) Response Time (tRE  
)
Response time indicates the delay time between the input and output signal which is determined by the time  
difference from the fifty percent of input signal swing to the fifty percent of output signal swing.  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
5/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Typical Performance Curves  
LM393xxx, LM2903xxx  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-40°C  
25°C  
36V  
5V  
85°C  
3V  
125°C  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
Supply Voltage [V]  
30  
40  
Ambient Temperature [°C]  
Figure 2. Supply Current vs Ambient Temperature  
Figure 1. Supply Current vs Supply Voltage  
200  
150  
100  
50  
200  
150  
100  
50  
125°C  
3V  
85°C  
5V  
25°C  
-40°C  
36V  
0
0
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 3. Output Saturation Voltage vs  
Supply Voltage (ISINK=4mA)  
Figure 4. Output Saturation Voltage vs  
Ambient Temperature (ISINK=4mA)  
(*) The above data are measurement values of a typical sample, it is not guaranteed.  
LM393xxx: -40°C to +85°C  
LM2903xxx: -40°C to +125°C  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
6/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Typical Performance Curves - continued  
LM393xxx, LM2903xxx  
2
1.5  
1
80  
60  
40  
20  
0
85°C  
36V  
-40°C  
25°C  
5V  
125°C  
0.5  
0
3V  
0
4
8
12  
16  
20  
-50 -25  
0
25  
50  
75 100 125 150  
Output Sink Current [mA]  
Ambient Temperature [°C]  
Figure 5. Output Voltage vs Output Sink Current  
(VCC=5V)  
Figure 6. Output Sink Current vs Ambient  
Temperature (VOUT=VCC  
)
4
3
4
3
2
2
1
1
25  
36V  
85℃  
125℃  
3V  
0
0
-40℃  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
5V  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 7. Input Offset Voltage vs Supply Voltage  
Figure 8. Input Offset Voltage vs Ambient  
Temperature  
(*) The above data are measurement values of a typical sample, it is not guaranteed.  
LM393xxx: -40°C to +85°C  
LM2903xxx: -40°C to +125°C  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
7/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Typical Performance Curves - continued  
LM393xxx, LM2903xxx  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
-40℃  
3V  
25℃  
85℃  
36V  
5V  
60  
60  
40  
40  
125℃  
20  
20  
0
0
0
10  
20  
Supply Voltage [V]  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Ambient Temperature [°C]  
Figure 10. Input Bias Current vs Ambient  
Temperature  
Figure 9. Input Bias Current vs Supply Voltage  
50  
40  
50  
40  
30  
30  
20  
20  
10  
10  
85℃  
36V  
3V  
5V  
125℃  
-40℃  
25℃  
0
0
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 12. Input Offset Current vs Ambient  
Temperature  
Figure 11. Input Offset Current vs Supply Voltage  
(*) The above data are measurement values of a typical sample, it is not guaranteed.  
LM393xxx: -40°C to +85°C  
LM2903xxx: -40°C to +125°C  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
8/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Typical Performance Curves - continued  
LM393xxx, LM2903xxx  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
125°C  
85°C  
36V  
5V  
25°C  
-40°C  
3V  
80  
80  
70  
70  
60  
60  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
Supply Voltage [V]  
30  
40  
Ambient Temperature [°C]  
Figure 14. Large Signal Voltage Gain vs Ambient  
Figure 13. Large Signal Voltage Gain vs Supply  
Temperature (RL=15kΩ)  
Voltage (RL=15kΩ)  
4
3
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2
1
85°C  
125°C  
0
125°C  
-1  
-2  
-3  
-4  
85°C  
-40°C  
25°C  
25°C  
-40°C  
-1  
0
1
2
3
4
5
-100  
-80  
-60  
-40  
-20  
0
Input Voltage [V]  
Overdrive Voltage [mV]  
Figure 16. Response Time (Low to High) vs  
Overdrive Voltage (VCC=5V, VRL=5V, RL=5.1kΩ)  
Figure 15. Input Offset Voltage vs Input Voltage  
(VCC=5V)  
(*) The above data are measurement values of a typical sample, it is not guaranteed.  
LM393xxx: -40°C to +85°C  
LM2903xxx: -40°C to +125°C  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
9/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Typical Performance Curves - continued  
LM393xxx, LM2903xxx  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
5mV Overdrive  
20mV Overdrive  
125°C  
85°C  
100mV Overdrive  
-40°C  
25°C  
-50 -25  
0
25  
50  
75 100 125 150  
0
20  
40  
60  
80  
100  
Overdrive Voltage [mV]  
Ambient Temperature [°C]  
Figure 18. Response Time (High to Low) vs  
Overdrive Voltage (VCC=5V, VRL=5V, RL=5.1kΩ)  
Figure 17. Response Time (Low to High) vs Ambient  
Temperature (VCC=5V, VRL=5V, RL=5.1kΩ)  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
5mV Overdrive  
20mV Overdrive  
100mV Overdrive  
-50 -25  
0
25  
50  
75 100 125 150  
Ambient Temperature [°C]  
Figure 19. Response Time (High to Low) vs Ambient  
Temperature (VCC=5V, VRL=5V, RL=5.1kΩ)  
(*) The above data are measurement values of a typical sample, it is not guaranteed.  
LM393xxx: -40°C to +85°C  
LM2903xxx: -40°C to +125°C  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
10/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Typical Performance Curves - continued  
LM339xxx, LM2901xxx  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-40°C  
25°C  
36V  
5V  
85°C  
3V  
125°C  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
Supply Voltage [V]  
30  
40  
Ambient Temperature [°C]  
Figure 21. Supply Current vs Ambient Temperature  
Figure 20. Supply Current vs Supply Voltage  
200  
150  
100  
50  
200  
150  
100  
50  
125°C  
3V  
85°C  
5V  
25°C  
-40°C  
36V  
0
0
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 22. Output Saturation Voltage vs  
Supply Voltage (ISINK=4mA)  
Figure 23. Output Saturation Voltage vs  
Ambient Temperature (ISINK=4mA)  
(*) The above data are measurement values of a typical sample, it is not guaranteed.  
LM339xxx: -40°C to +85°C  
LM2901xxx: -40°C to +125°C  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
11/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Typical Performance Curves - continued  
LM339xxx, LM2901xxx  
2
1.5  
1
80  
60  
40  
20  
0
85°C  
36V  
-40°C  
25°C  
5V  
125°C  
0.5  
0
3V  
0
4
8
12  
16  
20  
-50 -25  
0
25  
50  
75 100 125 150  
Output Sink Current [mA]  
Ambient Temperature [°C]  
Figure 24. Output Voltage vs Output Sink Current  
(VCC=5V)  
Figure 25. Output Sink Current vs Ambient  
Temperature (VOUT=VCC  
)
4
3
4
3
2
2
1
1
25℃  
36V  
85℃  
125℃  
3V  
0
0
-40℃  
-1  
-2  
-3  
-4  
-1  
-2  
-3  
-4  
5V  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
30  
40  
Ambient Temperature [°C]  
Supply Voltage [V]  
Figure 26. Input Offset Voltage vs Supply Voltage  
Figure 27. Input Offset Voltage vs Ambient  
Temperature  
(*) The above data are measurement values of a typical sample, it is not guaranteed.  
LM339xxx: -40°C to +85°C  
LM2901xxx: -40°C to +125°C  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
12/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Typical Performance Curves - continued  
LM339xxx, LM2901xxx  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
-40℃  
3V  
25℃  
85℃  
36V  
5V  
60  
60  
40  
40  
125℃  
20  
20  
0
0
0
10  
20  
Supply Voltage [V]  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Ambient Temperature [°C]  
Figure 29. Input Bias Current vs Ambient  
Temperature  
Figure 28. Input Bias Current vs Supply Voltage  
50  
40  
50  
40  
30  
30  
20  
20  
10  
10  
85℃  
36V  
3V  
5V  
125℃  
-40℃  
25℃  
0
0
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
0
10  
20  
30  
40  
-50 -25  
0
25  
50  
75 100 125 150  
Supply Voltage [V]  
Ambient Temperature [°C]  
Figure 31. Input Offset Current vs Ambient  
Temperature  
Figure 30. Input Offset Current vs Supply Voltage  
(*) The above data are measurement values of a typical sample, it is not guaranteed.  
LM339xxx: -40°C to +85°C  
LM2901xxx: -40°C to +125°C  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
13/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Typical Performance Curves - continued  
LM339xxx, LM2901xxx  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
125°C  
85°C  
36V  
5V  
25°C  
-40°C  
3V  
80  
80  
70  
70  
60  
60  
-50 -25  
0
25  
50  
75 100 125 150  
0
10  
20  
Supply Voltage [V]  
30  
40  
Ambient Temperature [°C]  
Figure 33. Large Signal Voltage Gain vs Ambient  
Figure 32. Large Signal Voltage Gain vs Supply  
Temperature (RL=15kΩ)  
Voltage (RL=15kΩ)  
4
3
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2
1
85°C  
125°C  
0
125°C  
-1  
-2  
-3  
-4  
85°C  
-40°C  
25°C  
25°C  
-40°C  
-1  
0
1
2
3
4
5
-100  
-80  
-60  
-40  
-20  
0
Input Voltage [V]  
Overdrive Voltage [mV]  
Figure 35. Response Time (Low to High) vs  
Overdrive Voltage (VCC=5V, VRL=5V, RL=5.1kΩ)  
Figure 34. Input Offset Voltage vs Input Voltage  
(VCC=5V)  
(*) The above data are measurement values of a typical sample, it is not guaranteed.  
LM339xxx: -40°C to +85°C  
LM2901xxx: -40°C to +125°C  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
14/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Typical Performance Curves - continued  
LM339xxx, LM2901xxx  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
5mV Overdrive  
20mV Overdrive  
125°C  
85°C  
100mV Overdrive  
-40°C  
25°C  
-50 -25  
0
25  
50  
75 100 125 150  
0
20  
40  
60  
80  
100  
Overdrive Voltage [mV]  
Ambient Temperature [°C]  
Figure 37. Response Time (High to Low) vs  
Overdrive Voltage (VCC=5V, VRL=5V, RL=5.1kΩ)  
Figure 36. Response Time (Low to High) vs Ambient  
Temperature (VCC=5V, VRL=5V, RL=5.1kΩ)  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
5mV Overdrive  
20mV Overdrive  
100mV Overdrive  
-50 -25  
0
25  
50  
75 100 125 150  
Ambient Temperature [°C]  
Figure 38. Response Time (High to Low) vs Ambient  
Temperature (VCC=5V, VRL=5V, RL=5.1kΩ)  
(*) The above data are measurement values of a typical sample, it is not guaranteed.  
LM339xxx: -40°C to +85°C  
LM2901xxx: -40°C to +125°C  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
15/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Application Information  
NULL method condition for Test Circuit 1  
VCC, VEE, EK, VICM, VRL Unit: V; RL Unit: Ohms  
Parameter  
Input Offset Voltage  
Input Offset Current  
VF  
SW1 SW2 SW3  
ON ON ON 5 to 32  
OFF OFF  
VCC  
VEE  
0
EK  
VICM  
0
VRL  
RL Calculation  
VF1  
VF2  
VF3  
VF4  
VF5  
VF6  
-1.4  
-1.4  
5 to 32 5.1k  
1
2
ON  
5
0
0
5
5
10k  
10k  
OFF  
ON  
ON  
Input Bias Current  
ON  
5
0
0
-1.4  
0
0
3
4
OFF  
-1.4  
Large Signal Voltage Gain  
ON  
ON  
ON  
15  
VIO  
15  
15k  
-11.4  
- Calculation -  
|VF1|  
1. Input Offset Voltage (VIO)  
=
[V]  
1 + RF/RS  
|VF2 - VF1|  
2. Input Offset Current (IIO)  
3. Input Bias Current (IB)  
IIO  
=
[A]  
RI x (1 + RF/RS)  
|VF4 - VF3|  
IB =  
[A]  
2 x RI x (1 + RF/RS)  
EK × (1+RF/RS)  
4. Large Signal Voltage Gain (AV)  
[dB]  
Av = 20Log  
|VF6 - VF5|  
RF=50kΩ  
500kΩ  
0.01μF (Note 18)  
SW1  
VCC  
15V  
EK  
RS=50Ω  
RI=10kΩ  
VOUT  
500kΩ  
DUT  
0.01uF  
0.01uF  
SW3  
NULL  
-15V  
1000pF (Note 18)  
RI=10kΩ  
RS=50Ω  
RL  
VICM  
V VF  
50kΩ  
SW2  
VRL  
VEE  
(Note 18) Use 1uF capacitor for Input Bias Current and Input Offset Current  
Figure 39. Test Circuit 1 (One Channel Only)  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
16/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Application Information continued  
Switch Condition for Test Circuit 2  
Parameter  
SW1  
SW2  
SW3  
SW4  
SW5  
SW6  
SW7  
Supply Current  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
OFF  
ON  
Output Sink Current  
VOUT=1.5V  
Output Saturation Voltage ISINK=4mA  
ON  
OFF  
ON  
Output Leakage Current  
Response Time  
VOUT=32V  
ON  
OFF  
OFF  
OFF  
OFF  
RL=5.1kΩ, VRL=5V  
OFF  
OFF  
VCC  
SW4  
SW5  
SW6  
SW7  
SW2  
SW3  
SW1  
VEE  
RL  
VRL  
V+IN  
V-IN  
VOUT  
Figure 40. Test Circuit 2 (One Channel Only)  
Input Voltage  
Input Voltage  
1.5V  
1.405V  
Δov=5mV  
VREF=1.4V  
Overdrive Voltage  
Overdrive Voltage  
VREF=1.4V  
Δov=5mV  
1.395V  
1.3V  
t
t
Input Wave  
Input Wave  
Output Voltage  
VCC  
Output Voltage  
VCC  
VCC/2  
VCC/2  
0V  
0V  
tRE (Low toHigh)  
tRE (High to Low)  
t
t
Output Wave  
Output Wave  
Figure 41. Response Time  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
17/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Application Information continued  
1. Unused Circuits  
It is recommended to apply the connection (see Figure 42) and set the non-inverting input pin at a potential within the  
Input Common-mode Voltage Range (VICM) for any unused circuit.  
VCC  
OPEN  
+
-
Keep this potential in VICM  
VICM  
VEE  
Figure 42. Example of Application Circuit for Unused Comparator  
2. Input Pin Voltage  
Regardless of the supply voltage, applying VEE+32V to the input pin is possible without causing deterioration of the  
electrical characteristics or destruction. However, this does not ensure normal circuit operation. Please note that the  
circuit operates normally only when the input voltage is within the common mode input voltage range of the electric  
characteristics.  
3. Power Supply (Single/Dual)  
The comparators operate when the voltage supplied is between VCC pin and VEE pin. Therefore, the single supply  
comparators can be used as dual supply comparators as well.  
4. IC Handling  
When pressure is applied to the IC through warp on the printed circuit board, the characteristics may fluctuate due to the  
piezoelectric effect. Be careful of warps on the printed circuit board.  
I/O Equivalent Circuit  
Symbol  
Pin No.  
Equivalent Circuit  
LM393xxx, LM2903xxx: 2,3,5,6  
LM339xxx, LM2901xxx:  
4,5,6,7,8,9,10,11  
+IN  
-IN  
LM393xxx, LM2903xxx: 1,7  
LM339xxx, LM2901xxx: 1,2,13,14  
OUT  
VCC  
LM393xxx, LM2903xxx: 8  
LM339xxx, LM2901xxx: 3  
VCC  
VEE  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
18/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Example of Circuit  
V+IN  
Reference voltage is V-IN  
VCC  
VRL  
RL  
VREF  
Time  
V+IN  
+
-
VOUT  
Reference  
Voltage  
VREF  
VEE  
VOUT  
High  
When the input voltage is bigger than reference voltage,  
output voltage is high. When the input voltage is smaller than  
reference voltage, output voltage is low.  
Low  
Time  
Reference voltage is V+IN  
V-IN  
VCC  
VRL  
VREF  
Time  
RL  
Reference  
Voltage  
+
-
VOUT  
VREF  
V-IN  
VEE  
VOUT  
High  
Low  
When the input voltage is smaller than reference voltage,  
output voltage is high. When the input voltage is bigger than  
reference voltage, output voltage is low.  
Time  
www.rohm.com  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
19/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Power Dissipation  
Power dissipation (total loss) indicates the power that the IC can consume at TA=25°C (normal temperature). As the IC  
consumes power, it heats up, causing its temperature to be higher than the ambient temperature. The allowable temperature  
that the IC can accept is limited. This depends on the circuit configuration, manufacturing process, and consumable power.  
Power dissipation is determined by the allowable temperature within the IC (maximum junction temperature) and the thermal  
resistance of the package used (heat dissipation capability). Maximum junction temperature is typically equal to the  
maximum storage temperature. The heat generated through the consumption of power by the IC radiates from the mold  
resin or lead frame of the package. Thermal resistance, represented by the symbol θJA°C/W, indicates this heat dissipation  
capability. Similarly, the temperature of an IC inside its package can be estimated by thermal resistance.  
Figure 43(a) shows the model of the thermal resistance of a package. The equation below shows how to compute for the  
Thermal resistance (θJA), given the ambient temperature (TA), maximum junction temperature (Tjmax), and power dissipation  
(PD).  
θJA  
=
(TjmaxTA) / PD  
°C/W  
The Derating curve in Figure 43(b) indicates the power that the IC can consume with reference to ambient temperature.  
Power consumption of the IC begins to attenuate at certain temperatures. This gradient is determined by Thermal resistance  
(θJA), which depends on the chip size, power consumption, package, ambient temperature, package condition, wind velocity,  
etc. This may also vary even when the same package is used. Thermal reduction curve indicates a reference value  
measured at a specified condition. Figure 43(c) to (f) show the examples of the derating curves for LM393xxx, LM2903xxx,  
LM339xxx, and LM2901xxx respectively.  
Power dissipation of LSI [W]  
PDmax  
θJA=(Tjmax-TA)/ PD °C/W  
P2  
θJA2 < θJA1  
Ambient temperature TA [ °C ]  
θJA2  
P1  
Tjmax  
θJA1  
150  
0
25  
50  
75  
100  
125  
Chip surface temperature Tj [ °C ]  
Ambient temperature TA [ °C ]  
(a) Thermal Resistance  
(b) Derating Curve  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
LM393F(Note 19)  
LM2903F(Note 19)  
LM393FJ(Note 20)  
LM2903FJ(Note 20)  
LM393FVT(Note 21)  
LM393FV(Note 21)  
LM2903FVT(Note 21)  
LM2903FV(Note 21)  
LM2903FVJ(Note 22)  
LM2903FVM(Note 22)  
LM393FVJ(Note 22)  
LM393FVM(Note 22)  
85  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
(c) LM393xxx  
(d) LM2903xxx  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
20/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
LM339FJ (Note 24)  
LM2901FJ (Note 24)  
LM339FV (Note 25)  
LM339FVJ (Note 26)  
LM2901FV (Note 25)  
LM2901FVJ (Note 26)  
LM339F (Note 23)  
LM2901F (Note 23)  
85  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
(e) LM339xxx  
(f) LM2901xxx  
Note 19  
5.5  
Note 20  
5.4  
Note 21  
5.0  
Note 22  
4.7  
Note 23  
4.5  
Note 24  
8.2  
Note 25  
7.0  
Note 26  
6.8  
Unit  
mW/°C  
Reduce the value above per 1°C above 25°C.  
Power dissipation is the value when the IC mounted on FR4 glass epoxy board 70mm ×70mm ×1.6mm (cooper foil area below 3%) is mounted.  
Figure 43. Thermal Resistance and Derating Curve  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
21/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Operational Notes  
1. Reverse Connection of Power Supply  
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when  
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply  
terminals.  
2. Power Supply Lines  
Design the PCB layout pattern to provide low impedance ground and supply lines. Separate the ground and supply lines  
of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the  
analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature  
and aging on the capacitance value when using electrolytic capacitors.  
3. Ground Voltage  
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.  
4. Ground Wiring Pattern  
When using both small-signal and large-current GND traces, the two ground traces should be routed separately but  
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal  
ground caused by large currents. Also ensure that the GND traces of external components do not cause variations on  
the GND voltage. The power supply and ground lines must be as short and thick as possible to reduce line impedance.  
5. Thermal Consideration  
Should by any chance the power dissipation rating be exceeded, the rise in temperature of the chip may result in  
deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when the  
IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating,  
increase the board size and copper area to prevent exceeding the Pd rating.  
6. Recommended Operating Conditions  
These conditions represent a range within which the expected characteristics of the IC can be approximately obtained.  
The electrical characteristics are guaranteed under the conditions of each parameter.  
7. Inrush Current  
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow  
instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply.  
Therefore, give special consideration to power coupling capacitance, power wiring, width of GND wiring, and routing of  
connections.  
8. Operation Under Strong Electromagnetic Field  
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.  
9. Testing on Application Boards  
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject  
the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should  
always be turned off completely before connecting or removing it from the test setup during the inspection process. To  
prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and  
storage.  
10. Inter-pin Short and Mounting Errors  
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in  
damaging the IC. Avoid nearby pins being shorted to each other especially to ground. Inter-pin shorts could be due to  
many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge  
deposited in between pins during assembly to name a few.  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
22/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Operational Notes continued  
11. Regarding Input Pins of the IC  
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them  
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a  
parasitic diode or transistor. For example (refer to figure below):  
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.  
When GND > Pin B, the P-N junction operates as a parasitic transistor.  
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual  
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to  
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be  
avoided.  
Resistor  
Transistor (NPN)  
Pin A  
Pin B  
Pin B  
B
E
C
Pin A  
B
C
E
P+  
P+  
P+  
P+  
P
N
P
N
N
N
N
N
N
N
Parasitic  
Element  
Parasitic  
Element  
P Substrate  
GND GND  
P Substrate  
GND  
GND  
Parasitic  
Element  
Parasitic  
Element  
Parasitic element  
or Transistor  
Figure 44. Example of Monolithic IC Structure  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
23/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Physical Dimension Tape and Reel Information  
Package Name  
SOP8  
(Max 5.35 (include.BURR))  
(UNIT : mm)  
PKG : SOP8  
Drawing No. : EX112-5001-1  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
24/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Physical Dimensions, Tape and Reel Information continued  
Package Name  
SOP-J8  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
25/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Physical Dimensions, Tape and Reel Information continued  
Package Name  
SSOP-B8  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
26/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Physical Dimensions, Tape and Reel Information continued  
Package Name  
TSSOP-B8  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
27/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Physical Dimensions, Tape and Reel Information continued  
Package Name  
TSSOP-B8J  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
28/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Physical Dimensions, Tape and Reel Information continued  
Package Name  
MSOP8  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
29/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Physical Dimensions, Tape and Reel Information continued  
Package Name  
SOP14  
(UNIT : mm)  
PKG : SOP14  
Drawing No. : EX113-5001  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
30/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Physical Dimensions, Tape and Reel Information continued  
Package Name  
SOP-J14  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
31/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Physical Dimensions, Tape and Reel Information continued  
Package Name  
SSOP-B14  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
32/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Physical Dimensions, Tape and Reel Information continued  
Package Name  
TSSOP-B14J  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
33/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Ordering Information  
L M x  
x
x
x
x
x
-
x
x
Part Number  
LM393F  
LM393FJ  
LM393FV  
LM393FVT  
LM393FVJ  
LM393FVM  
LM339F  
Package  
F
Packaging and forming specification  
E2: Embossed tape and reel  
(SOP8/SOP-J8/SSOP-B8/  
TSSOP-B8/SOP14/SOP-J14/  
SSOP-B14/TSSOP-B14J)  
TR: Embossed tape and reel  
(MSOP8)  
: SOP8  
: SOP14  
: SOP-J8  
: SOP-J14  
: SSOP-B8  
: SSOP-B14  
: TSSOP-B8  
: TSSOP-B8J  
FJ  
FV  
FVT  
FVJ  
LM339FJ  
LM339FV  
LM339FVJ  
LM2903F  
: TSSOP-B14J  
: MSOP8  
FVM  
LM2903FJ  
LM2903FV  
LM2903FVT  
LM2903FVJ  
LM2903FVM  
LM2901F  
LM2901FJ  
LM2901FV  
LM2901FVJ  
Line-up  
Operating Temperature Range  
Channel  
Package  
Orderable Part Number  
SOP8  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
LM393F-E2  
SOP-J8  
LM393FJ-E2  
LM393FV-E2  
LM393FVT-E2  
LM393FVJ-E2  
LM393FVM-TR  
LM339F-E2  
SSOP-B8  
TSSOP-B8  
TSSOP-B8J  
MSOP8  
2ch  
-40°C to +85°C  
SOP14  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
SOP8  
LM339FJ-E2  
LM339FV-E2  
LM339FVJ-E2  
LM2903F-E2  
LM2903FJ-E2  
LM2903FV-E2  
LM2903FVT-E2  
LM2903FVJ-E2  
LM2903FVM-TR  
LM2901F-E2  
LM2901FJ-E2  
LM2901FV-E2  
LM2901FVJ-E2  
4ch  
2ch  
4ch  
SOP-J8  
SSOP-B8  
TSSOP-B8  
TSSOP-B8J  
MSOP8  
-40°C to +125°C  
SOP14  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
34/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Marking Diagram  
SOP8(TOP VIEW)  
SOP-J8(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
TSSOP-B8(TOP VIEW)  
SSOP-B8(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
SOP14(TOP VIEW)  
SOP-J14(TOP VIEW)  
SSOP-B14(TOP VIEW)  
TSSOP-B8J(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
MSOP8(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
TSSOP-B14J (TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
35/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Marking Diagram continued  
Product Name  
Package Type  
Marking  
393L  
F
FJ  
SOP8  
SOP-J8  
FV  
FVT  
FVJ  
FVM  
F
SSOP-B8  
TSSOP-B8  
TSSOP-B8J  
MSOP8  
LM393  
SOP14  
LM339F  
FJ  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
SOP8  
LM339FJ  
LM339  
LM2903  
LM2901  
FV  
FVJ  
F
339L  
2903L  
03L  
FJ  
SOP-J8  
FV  
FVT  
FVJ  
FVM  
F
SSOP-B8  
TSSOP-B8  
TSSOP-B8J  
MSOP8  
2903L  
SOP14  
LM2901F  
FJ  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
LM2901FJ  
FV  
FVJ  
2901L  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
36/37  
Datasheet  
LM393xxx LM339xxx LM2903xxx LM2901xxx  
Revision History  
Date  
Revision  
001  
Changes  
8.Dec.2015  
New Release  
Add LM393xxx (FJ, FV, FVT, FVM, FVJ), LM339xxx (F, FJ, FV, FVJ)  
LM2903xxx (F, FJ, FV, FVT, FVM, FVJ), LM2901xxx (F, FJ, FV, FVJ)  
15.Jul.2016  
002  
www.rohm.com  
TSZ02201-0GOG0G200770-1-2  
15.Jul.2016 Rev.002  
©2015 ROHM Co., Ltd. All rights reserved.  
TSZ22111 15 001  
37/37  
Notice  
Precaution on using ROHM Products  
1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (Specific Applications), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHMs Products for Specific  
Applications.  
(Note1) Medical Equipment Classification of the Specific Applications  
JAPAN  
USA  
EU  
CHINA  
CLASS  
CLASSⅣ  
CLASSb  
CLASSⅢ  
CLASSⅢ  
CLASSⅢ  
2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3. Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4. The Products are not subject to radiation-proof design.  
5. Please verify and confirm characteristics of the final or mounted products in using the Products.  
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in  
the range that does not exceed the maximum junction temperature.  
8. Confirm that operation temperature is within the specified range described in the product specification.  
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Precaution for Mounting / Circuit board design  
1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must  
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,  
please consult with the ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Precautions Regarding Application Examples and External Circuits  
1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2. You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
A two-dimensional barcode printed on ROHM Products label is for ROHMs internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign  
trade act, please consult with ROHM in case of export.  
Precaution Regarding Intellectual Property Rights  
1. All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data.  
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the  
Products with other articles such as components, circuits, systems or external equipment (including software).  
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM  
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to  
manufacture or sell products containing the Products, subject to the terms and conditions herein.  
Other Precaution  
1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
4. The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice-PGA-E  
Rev.003  
© 2015 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
General Precaution  
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.  
ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s  
representative.  
3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY