LMR358FVM-E2 [ROHM]

Ground sense Low Power General Purpose Operational amplifiers; 地感低功耗通用运算放大器
LMR358FVM-E2
型号: LMR358FVM-E2
厂家: ROHM    ROHM
描述:

Ground sense Low Power General Purpose Operational amplifiers
地感低功耗通用运算放大器

运算放大器
文件: 总41页 (文件大小:705K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
Operational Amplifiers Series  
Ground Sense Low Power  
General Purpose Operational Amplifiers  
LMR321G, LMR358xxx, LMR324xxx  
General Description  
Applications  
LMR321, LMR358 and LMR324 are single, dual and  
quad low voltage operational amplifier with output full  
swing.  
Portable equipment  
Low voltage application  
Active filter  
LMR321, LMR358 and LMR324 are the most effective  
solutions for applications where low supply current  
consumption and low voltage operation.  
Key Specifications  
Operable with low voltage (single supply):  
+2.7V to +5.5V  
Features  
Low Supply Current:  
LMR321  
Operable with low voltage  
Input Ground Sense, Output Full Swing  
High open loop voltage gain  
Low supply current  
130µA(Typ.)  
210µA(Typ.)  
410µA(Typ.)  
1.0V/µs(Typ.)  
-40°C to +85°C  
5nA (Typ.)  
LMR358  
LMR324  
High Slew Rate:  
Wide Temperature Range:  
Low Input Offset Current:  
Low Input Bias Current:  
Low input offset voltage  
15nA (Typ.)  
Packages  
SSOP5  
W(Typ.) x D(Typ.) x H(Max.)  
2.90mm x 2.80mm x 1.25mm  
5.00mm x 6.20mm x 1.71mm  
4.90mm x 6.00mm x 1.65mm  
3.00mm x 6.40mm x 1.35mm  
3.00mm x 6.40mm x 1.20mm  
2.90mm x 4.00mm x 0.90mm  
3.00mm x 4.90mm x 1.10mm  
8.70mm x 6.20mm x 1.71mm  
8.65mm x 6.00mm x 1.65mm  
5.00mm x 6.40mm x 1.35mm  
5.00mm x 6.40mm x 1.20mm  
SOP8  
SOP-J8  
SSOP-B8  
TSSOP-B8  
MSOP8  
TSSOP-B8J  
SOP14  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
Simplified schematic  
VDD  
IN+  
IN-  
OUT  
class  
AB control  
VSS  
Figure 1. Simplified schematic  
Product structureSilicon monolithic integrated circuit This product is not designed protection against radioactive rays.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ2211114001  
1/38  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
Pin Configuration  
SSOP5  
Pin No.  
Symbol  
1
2
3
4
5
+IN  
VSS  
-IN  
+IN  
VSS  
-IN  
1
2
3
5
4
VDD  
OUT  
+
-
OUT  
VDD  
SOP8, SOP-J8, SSOP-B8, TSSOP-B8, MSOP8, TSSOP-B8J  
Pin No.  
Symbol  
1
2
3
4
5
6
7
8
OUT1  
-IN1  
1
2
3
4
8
7
OUT1  
-IN1  
+IN1  
VSS  
VDD  
+IN1  
VSS  
+IN2  
-IN2  
CH1  
- +  
OUT2  
-IN2  
6
5
CH2  
+ -  
+IN2  
OUT2  
VDD  
SOP14, SOP-J14, SSOP-B14, TSSOP-B14J  
Pin No.  
Symbol  
1
2
OUT1  
-IN1  
OUT4  
-IN4  
+IN4  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUT1  
-IN1  
3
+IN1  
VDD  
+IN2  
-IN2  
CH1  
- +  
CH4  
+ -  
4
+IN1  
VDD  
5
VSS  
+IN3  
6
+IN2  
-IN2  
OUT2  
- +  
CH2  
+ -  
CH3  
7
OUT2  
OUT3  
-IN3  
-IN3  
8
8
OUT3  
9
10  
11  
12  
13  
14  
+IN3  
VSS  
+IN4  
-IN4  
OUT4  
Package  
SSOP-B8  
SSOP5  
SOP8  
SOP-J8  
LMR358FJ  
TSSOP-B8  
MSOP8  
LMR321G  
LMR358F  
LMR358FV  
LMR358FVT  
LMR358FVM  
Package  
TSSOP-B8J  
LMR358FVJ  
SOP14  
SOP-J14  
SSOP-B14  
LMR324FV  
TSSOP-B14J  
LMR324FVJ  
-
-
LMR324F  
LMR324FJ  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
2/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
Ordering Information  
L M R 3  
x
x
x
x
x
-
x x  
Part Number  
LMR321G  
LMR358xxx  
LMR324xxx  
Package  
Packaging and forming specification  
E2: Embossed tape and reel  
(SOP8/SOP-J8/SSOP-B8/TSSOP-B8/  
TSSOP-B8J/SOP14/SOP-J14/SSOP-B14  
TSSOP-B14J)  
G
: SSOP5  
F
: SOP8, SOP14  
FV  
:
SSOP-B8  
SSOP-B14  
FVM : MSOP8  
FJ : SOP-J8  
SOP-J14  
TR: Embossed tape and reel  
(SSOP5/MSOP8)  
FVJ : TSSOP-B8J  
TSSOP-B14J  
FVT : TSSOP-B8  
Line-up  
Supply  
Current  
(Typ.)  
Input Offset  
Voltage  
Input  
type  
VDD  
(Min.)  
Orderable  
Part Number  
Topr  
Package  
Reel of 3000  
(Max.)  
130µA  
±4mV  
SSOP5  
LMR321G-TR  
LMR358F-E2  
SOP8  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 3000  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
Reel of 2500  
MSOP8  
LMR358FVM-TR  
LMR358FJ-E2  
LMR358FV-E2  
LMR358FVT-E2  
LMR358FVJ-E2  
LMR324F-E2  
SOP-J8  
210µA  
±5mV  
SSOP-B8  
TSSOP-B8  
TSSOP-B8J  
SOP14  
Ground  
Sense  
-40°C to + 85°C  
2.7V  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
LMR324FJ-E2  
LMR324FV-E2  
LMR324FVJ-E2  
410µA  
±9mV  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
3/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
Absolute Maximum Ratings(Ta=25)  
Parameter  
Rating  
Symbol  
Unit  
V
LMR321G  
LMR358  
LMR324  
Supply Voltage  
VDD-VSS  
SSOP5  
+7  
675*1*9  
-
-
SOP-J8  
-
-
-
-
-
-
-
-
-
-
675*1*9  
690*2*9  
625*3*9  
625*3*9  
587*4*9  
587*4*9  
-
SOP8  
-
SSOP-B8  
TSSOP-B8  
MSOP8  
-
-
Power dissipation  
Pd  
-
mW  
TSSOP-B8J  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
SOP14  
-
-
-
-
-
1025*5*9  
875*6*9  
850*7*9  
562*8*9  
Differential Input Voltage*10  
Vid  
VDD - VSS  
(VSS-0.3) to (VDD+0.3)  
+2.7 to +5.5  
V
V
Input Common-mode  
Voltage Range  
Vicm  
Vopr  
Topr  
Operable with low voltage  
Operating Temperature  
Storage Temperature  
V
-40 to +85  
Tstg  
-55 to +150  
Maximum  
Junction Temperature  
Tjmax  
+150  
Note: Absolute maximum rating item indicates the condition which must not be exceeded.  
Application of voltage in excess of absolute maximum rating or use out absolute maximum rated temperature environment  
may cause deterioration of characteristics.  
*1  
*2  
*3  
*4  
*5  
*6  
*7  
*8  
*9  
To use at temperature above Ta25reduce 5.4mW/.  
To use at temperature above Ta25reduce 5.52mW/.  
To use at temperature above Ta25reduce 5mW/.  
To use at temperature above Ta25reduce 4.7mW/.  
To use at temperature above Ta25reduce 8.2mW/.  
To use at temperature above Ta25reduce 7mW/.  
To use at temperature above Ta25reduce 6.8mW/.  
To use at temperature above Ta25reduce 4.5mW/.  
Mounted on a glass epoxy PCB(70mm×70mm×1.6mm).  
*10 The voltage difference between inverting input and non-inverting input is the differential input voltage.  
Then input terminal voltage is set to more than VSS.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
4/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
Electrical Characteristics  
LMR321 (Unless otherwise specified VDD=+5V, VSS=0V)  
Limits  
Typ.  
Temperature  
Parameter  
Symbol  
Vio  
Unit  
mV  
Condition  
Range  
Min.  
Max.  
25℃  
-
-
0.1  
-
4
5
Input Offset Voltage *11  
VDD=2.7V to 5V  
Full range  
Input Offset Voltage drift  
Input Offset Current *11  
Input Bias Current *11  
Vio/T  
25℃  
25℃  
25℃  
-
-
-
3
5
-
µV/℃  
nA  
-
-
-
Iio  
Ib  
50  
15  
100  
nA  
25℃  
Full range  
25℃  
-
-
-
-
107  
180  
260  
200  
280  
VDD=2.7V, Av=0dB  
VIN=0.95V  
-
130  
-
Supply Current *12  
IDD  
μA  
VDD=5V, Av=0dB  
VIN=2.1V  
Full range  
Maximum Output  
Voltage(High)  
VOH  
VOL  
Av  
25℃  
25℃  
25℃  
VDD-0.1 VDD-0.04  
-
V
V
RL=2kto 2.5V  
RL=2kto 2.5V  
RL=2kΩ  
Maximum Output  
Voltage(Low)  
-
VSS+0.08 VSS+0.16  
Large Signal Voltage Gain  
78  
110  
-
-
dB  
Input Common-mode  
Voltage Range  
Vicm  
CMRR  
PSRR  
Isource  
25℃  
25℃  
25℃  
25℃  
0
4.2  
V
VSS to VDD-0.8V  
Common-mode  
Rejection Ratio  
65  
65  
90  
90  
-
-
dB  
dB  
mA  
-
-
Power Supply  
Rejection Ratio  
6
-
13  
70  
-
-
-
-
OUT=VDD-0.4V  
Output Source Current *13  
OUT=0V, short current  
OUT=VSS+0.4V  
30  
-
60  
Output Sink Current *13  
Slew Rate  
Isink  
SR  
fT  
25℃  
25℃  
25℃  
mA  
V/μs  
MHz  
180  
OUT=5V, short current  
-
1.0  
-
CL=25pF  
-
-
2
1
-
-
CL=25pF, Av=40dB  
CL=200pF  
Unity Band width  
Gain Band Width  
Phase Margin  
Gain Margin  
GBW  
θ
25℃  
25℃  
25℃  
-
-
-
3
-
-
-
MHz  
deg  
dB  
f=100kHz  
45  
10  
CL=25pF, Av=40dB  
-
GM  
-
-
5.5  
39  
-
-
µVrms Av=40dB  
nV/(Hz)1/2 Av=40dB, f=1kHz  
Input Referred Noise  
Voltage  
Vn  
25℃  
25℃  
Total Harmonic Distortion  
+ Noise  
OUT=0.4VP-P  
f=1kHz  
THD+N  
-
0.0015  
-
%
*11 Absolute value  
*12 Full range: LMR321: Ta=-40to +85℃  
*13 Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
5/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
LMR358 (Unless otherwise specified VDD=+5V, VSS=0V)  
Limits  
Typ.  
Temperature  
Parameter  
Symbol  
Unit  
Condition  
Range  
Min.  
Max.  
25℃  
-
-
0.1  
-
5
5
Input Offset Voltage *14  
Input Offset Voltage drift  
Input Offset Current *14  
Input Bias Current *14  
Vio  
Vio/T  
Iio  
mV  
µV/℃  
nA  
VDD=2.7V to 5.0V  
Full range  
25℃  
25℃  
25℃  
-
-
-
3
5
-
-
-
-
50  
Ib  
15  
100  
nA  
25℃  
Full range  
25℃  
-
-
-
-
210  
360  
520  
380  
540  
VDD=2.7V, Av=0dB  
VIN=0.95V  
-
210  
-
Supply Current *15  
IDD  
μA  
VDD=5V, Av=0dB  
VIN=2.1V  
Full range  
Maximum Output  
Voltage(High)  
VOH  
VOL  
Av  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
VDD-0.1 VDD-0.04  
-
V
V
RL=2kto 2.5V  
Maximum Output  
Voltage(Low)  
-
VSS+0.08 VSS+0.16  
RL=2kto 2.5V  
Large Signal Voltage Gain  
78  
0
110  
-
-
4.2  
-
dB  
V
RL=2kΩ  
Input Common-mode  
Voltage Range  
Vicm  
CMRR  
PSRR  
Isource  
Isink  
SR  
VSS to VDD-0.8V  
Common-mode  
Rejection Ratio  
65  
65  
90  
90  
dB  
dB  
mA  
mA  
V/μs  
MHz  
MHz  
°
-
-
Power Supply  
Rejection Ratio  
-
6
-
13  
70  
-
-
-
-
OUT=VDD-0.4V  
Output Source Current *16  
Output Sink Current *16  
Slew Rate  
OUT=0V, short current  
OUT=VSS+0.4V  
30  
-
60  
180  
OUT=5V, short current  
-
1.0  
-
CL=25pF  
-
-
2
1
-
-
CL=25F, Av=40dB  
CL=200pF  
Unity Band Width  
Gain Band Width  
Phase Margin  
fT  
GBW  
θ
-
-
-
3
-
-
-
f=100kHz  
45  
10  
CL=25pF, Av=40dB  
-
Gain Margin  
GM  
dB  
-
-
5.5  
39  
-
-
µVrms Av=40dB  
nV/(Hz)1/2 Av=40dB, f=1kHz  
Input Referred Noise  
Voltage  
Vn  
Total Harmonic Distortion  
+ Noise  
OUT=0.4VP-P  
f=1kHz  
THD+N  
CS  
-
-
0.0015  
100  
-
-
%
Channel Separation  
dB  
Av=40dB  
*14 Absolute value  
*15 Full range: LMR358: Ta=-40to +85℃  
*16 Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
6/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
LMR324 (Unless otherwise specified VDD=+5V, VSS=0V)  
Limits  
Typ.  
Temperature  
Parameter  
Symbol  
Unit  
Condition  
Range  
Min.  
Max.  
25℃  
-
-
1.0  
-
9
9
Input Offset Voltage *17  
Input Offset Voltage drift  
Input Offset Current *17  
Input Bias Current *17  
Vio  
Vio/T  
Iio  
mV  
µV/℃  
nA  
VDD=2.7V to 5.0V  
Full range  
25℃  
25℃  
25℃  
-
-
-
3
5
-
-
-
-
50  
Ib  
15  
100  
nA  
25℃  
Full range  
25℃  
-
-
-
-
410  
720  
880  
800  
900  
VDD=2.7V, Av=0dB  
VIN=0.95V  
-
410  
-
Supply Current *18  
IDD  
μA  
VDD=5V, Av=0dB  
VIN=2.1V  
Full range  
Maximum Output  
Voltage(High)  
VOH  
VOL  
Av  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
25℃  
VDD-0.1 VDD-0.04  
-
V
V
RL=2kto 2.5V  
Maximum Output  
Voltage(Low)  
-
VSS+0.08 VSS+0.16  
RL=2kto 2.5V  
Large Signal Voltage Gain  
78  
0
110  
-
-
4.2  
-
dB  
RL=2kΩ  
Input Common-mode  
Voltage Range  
Vicm  
CMRR  
PSRR  
Isource  
Isink  
SR  
V
VSS to VDD-0.8V  
Common-mode  
Rejection Ratio  
65  
65  
90  
90  
dB  
-
-
Power Supply  
Rejection Ratio  
-
dB  
6
-
13  
70  
-
-
-
-
OUT=VDD-0.4V  
Output Source Current *19  
Output Sink Current *19  
Slew Rate  
mA  
mA  
V/μs  
MHz  
MHz  
deg  
OUT=0V, short current  
OUT=VSS+0.4V  
30  
-
60  
180  
OUT=5V, short current  
-
1.0  
-
CL=25pF  
-
-
2
1
-
-
CL=25pF, Av=40dB  
CL=200pF  
Unity Gain Frequency  
Gain Band width  
Phase Margin  
fT  
GBW  
θ
-
-
-
3
-
-
-
f=100kHz  
45  
10  
CL=25pF, Av=40dB  
Gain Margin  
GM  
dB  
-
-
-
5.5  
39  
-
-
µVrms  
Av=40dB  
Input Referred Noise  
Voltage  
Vn  
nV/(Hz)1/2 Av=40dB, f=1kHz  
Total Harmonic Distortion  
+ Noise  
OUT=0.4VP-P  
f=1kHz  
THD+N  
CS  
-
-
0.0015  
100  
-
-
%
Channel Separation  
dB  
Av=40dB  
*17 Absolute value  
*18 Full range: LMR324: Ta=-40to +85℃  
*19 Under the high temperature environment, consider the power dissipation of IC when selecting the output current.  
When the terminal short circuits are continuously output, the output current is reduced to climb to the temperature inside IC.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
7/38  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
Description of electrical characteristics  
Described here are the terms of electric characteristics used in this datasheet. Items and symbols used are also shown.  
Note that item name and symbol and their meaning may differ from those on another manufacture’s document or general  
document.  
1. Absolute maximum ratings  
Absolute maximum rating item indicates the condition which must not be exceeded. Application of voltage in excess of absolute  
maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.  
1.1 Power supply voltage (VDD/VSS)  
Indicates the maximum voltage that can be applied between the positive power supply terminal and negative power  
supply terminal without deterioration or destruction of characteristics of internal circuit.  
1.2 Differential input voltage (Vid)  
Indicates the maximum voltage that can be applied between non-inverting terminal and inverting terminal without  
deterioration and destruction of characteristics of IC.  
1.3 Input common-mode voltage range (Vicm)  
Indicates the maximum voltage that can be applied to non-inverting terminal and inverting terminal without  
deterioration or destruction of characteristics. Input common-mode voltage range of the maximum ratings not assures  
normal operation of IC. When normal Operation of IC is desired, the input common-mode voltage of characteristics  
item must be followed.  
1.4 Power dissipation (Pd)  
Indicates the power that can be consumed by specified mounted board at the ambient temperature 25(normal temperature).  
As for package product, Pd is determined by the temperature that can be permitted by IC chip in the package  
(maximum junction temperature) and thermal resistance of the package.  
2.Electrical characteristics item  
2.1 Input offset voltage (Vio)  
Indicates the voltage difference between non-inverting terminal and inverting terminal. It can be translated into the  
input voltage difference required for setting the output voltage at 0 V.  
2.2 Input offset voltage drift (Vio/T)  
Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation.  
2.3 Input offset current (Iio)  
Indicates the difference of input bias current between non-inverting terminal and inverting terminal.  
2.4 Input bias current (Ib)  
Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias current at  
non-inverting terminal and input bias current at inverting terminal.  
2.5 Circuit current (IDD)  
Indicates the IC current that flows under specified conditions and no-load steady status.  
2.6 Maximum Output Voltage(High) / Maximum Output Voltage(Low) (VOH/VOL)  
Indicates the voltage range that can be output by the IC under specified load condition. It is typically divided into  
maximum output voltage High and low. Maximum output voltage high indicates the upper limit of output voltage.  
Maximum output voltage low indicates the lower limit.  
2.7 Large signal voltage gain (Av)  
Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal  
and inverting terminal. It is normally the amplifying rate (gain) with reference to DC voltage.  
Av = (Output voltage fluctuation) / (Input offset fluctuation)  
2.8 Input common-mode voltage range (Vicm)  
Indicates the input voltage range where IC operates normally.  
2.9 Common-mode rejection ratio (CMRR)  
Indicates the ratio of fluctuation of input offset voltage when in-phase input voltage is changed. It is normally the  
fluctuation of DC.  
CMRR = (Change of Input common-mode voltage)/(Input offset fluctuation)  
2.10 Power supply rejection ratio (PSRR)  
Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed. It is normally the fluctuation of  
DC. PSRR= (Change of power supply voltage)/(Input offset fluctuation)  
2.11 Output source current/ output sink current (Isource/Isink)  
The maximum current that can be output under specific output conditions, it is divided into output source current and  
output sink current. The output source current indicates the current flowing out of the IC, and the output sink current  
the current flowing into the IC.  
2.12 Channel separation (CS)  
Indicates the fluctuation of output voltage with reference to the change of output voltage of driven channel.  
2.13 Slew Rate (SR)  
SR is a parameter that shows movement speed of operational amplifier. It indicates rate of variable output voltage  
as unit time.  
2.14 Unity gain frequency (fT)  
Indicates a frequency where the voltage gain of Op-Amp is 1.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
8/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
2.15 Gain Band Width (GBW)  
Indicates to multiply by the frequency and the gain where the voltage gain decreases 6dB/octave.  
2.16 Phase Margin (θ)  
Indicates the margin of phase from 180 degree phase lag at unity gain frequency.  
2.17 Gain Margin (GM)  
Indicates the difference between 0dB and the gain where operational amplifier has 180 degree phase delay.  
2.18 Total harmonic distortion + Noise (THD+N)  
Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage  
of driven channel.  
2.19 Input referred noise voltage (Vn)  
Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in  
series with input terminal.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
9/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
Typical Performance Curves  
LMR321  
1200  
160  
140  
120  
100  
80  
85℃  
1000  
800  
LMR321G  
25℃  
-40℃  
600  
400  
200  
0
60  
40  
20  
0
85  
2
3
4
5
6
0
25  
50  
75  
100  
125  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Figure 2.  
Figure 3.  
Derating curve  
Supply Current – Supply Voltage  
6
5
4
3
2
1
0
160  
140  
120  
100  
80  
5.5V  
85℃  
5.0V  
25℃  
2.7V  
-40℃  
60  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100  
2
3
4
5
6
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Figure 5.  
Maximum Output Voltage(High)  
– Supply Voltage  
Figure 4.  
Supply Current – Ambient Temperature  
(RL=2k)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
10/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
LMR321  
80  
70  
60  
50  
40  
30  
20  
10  
0
8
85℃  
5.5V  
6
5.0V  
4
25℃  
-40℃  
2
2.7V  
0
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
AM BIE NT TE MP ERA TURE [  
]
SUPPLY VOLTAGE [V]  
Figure 6.  
Figure 7.  
Maximum Output Voltage(High)  
– Ambient Temperature  
(RL=2k)  
Maximum Output Voltage(Low)  
– Supply Voltage  
(RL=2k)  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
5.5V  
-40℃  
25℃  
5.0V  
85℃  
2.7V  
0
1
2
3
4
5
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE [  
]
OUTPUT VOLTAGE [V]  
Figure 8.  
Figure 9.  
Maximum Output Voltage(Low)  
– Ambient Temperature  
(RL=2k)  
Output Source Current – Output Voltage  
(VDD=5V)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
11/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
LMR321  
200  
180  
160  
140  
120  
100  
80  
18  
16  
14  
12  
25℃  
-40℃  
85℃  
5.5V  
5.0V  
10  
8
6
60  
2.7V  
4
40  
20  
2
0
0
0
1
2
3
4
5
-50  
-25  
0
25  
50  
75  
100  
OUTPUT VO LTAG E [V]  
AMBIENT TEMPERATURE [  
]
Figure 11.  
Output Sink Current – Output Voltage  
(VDD=5V)  
Figure 10.  
Output Source Current – Ambient Temperature  
(OUT=VDD-0.4V)  
100  
80  
60  
40  
20  
0
10.0  
7.5  
5.0  
-40℃  
25℃  
5.5V  
5.0V  
2.5  
0.0  
85℃  
-2.5  
-5.0  
-7.5  
-10.0  
2.7V  
-50  
-25  
0
25  
50  
75  
100  
2
3
4
5
6
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
Figure 13.  
Figure 12.  
Input Offset Voltage – Supply Voltage  
(Vicm= VDD, OUT= 0.1V)  
Output Sink Current – Ambient Temperature  
(OUT=VSS+0.4V)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
12/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
LMR321  
10.0  
7.5  
6
4
5.0  
25℃  
5.5V  
-40℃  
2
2.5  
0.0  
0
5.0V  
2.7V  
85℃  
-2.5  
-5.0  
-2  
-4  
-6  
-7.5  
-10.0  
-1  
0
1
2
3
4
5
-50  
-25  
0
25  
50  
75  
100  
INPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Figure 14.  
Figure 15.  
Input Offset Voltage – Ambient Temperature  
(Vicm= VDD, OUT= 0.1V)  
Input Offset Voltage – Input Voltage  
(VDD=5V)  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
5.5V  
85℃  
25℃  
3.0V  
2.7V  
-40℃  
60  
60  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE [V]  
AMBIE NT TE MP ERA TURE [  
]
Figure 16.  
Figure 17.  
Large Signal Voltage Gain – Supply Voltage  
Large Signal Voltage Gain – Ambient Temperature  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
13/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
LMR321  
120  
100  
80  
60  
40  
20  
0
120  
85℃  
100  
5.0V  
5.5V  
80  
25℃  
60  
-40℃  
2.7V  
40  
20  
0
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Figure 18.  
Figure 19.  
Common Mode Rejection Ratio – Supply Voltage  
(VDD=5V)  
Common Mode Rejection Ratio – Ambient Temperature  
(VDD=3V)  
2.0  
1.5  
140  
120  
100  
80  
60  
40  
20  
0
5.5V  
5.0V  
1.0  
2.7V  
0.5  
0.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE [  
]
Figure 20.  
Figure 21.  
Slew Rate L-H – Ambient Temperature  
Power Supply Rejection Ratio – Ambient Temperature  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
14/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
LMR321  
60  
50  
40  
30  
20  
10  
0
180  
150  
120  
90  
2.0  
Phase  
Gain  
1.5  
5.5V  
1.0  
5.0V  
2.7V  
60  
0.5  
0.0  
30  
0
145
2
3
6
7
-50  
-25  
0
25  
50  
75  
100  
10  
10  
10  
10  
10  
10  
AMBIENT TEMPERATURE [  
]
FREQUENCY [Hz]  
Figure 23.  
Voltage GainPhase – Frequency  
Figure 22.  
Slew Rate H-L – Ambient Temperature  
1
0.1  
800  
700  
600  
500  
400  
300  
200  
100  
0
20Hz  
0.01  
20kHz  
0.001  
1kHz  
0.0001  
1
10  
100  
1000  
10000  
0.01  
0.1  
1
10  
FREQUENCY [Hz]  
OUTPUT VOLTAGE [Vrms]  
Figure 24.  
Figure 25.  
Total Harmonic DistortionOutput Voltage  
(VDD/VSS=+2.5V/-2.5V, Av=0dB,  
RL=2k, DIN-AUDIO, Ta=25)  
Input Referred Noise VoltageFrequency  
(VDD/VSS=+2.5V/-2.5V, Av=0dB, Ta=25)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
15/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
LMR358  
400  
350  
300  
250  
200  
150  
100  
50  
1200  
1000  
85℃  
LMR358F  
800  
LMR358FJ  
LMR358FV/FVT  
600  
400  
200  
0
LMR358FVM/FVJ  
25℃  
-40℃  
0
85  
2
3
4
5
6
0
25  
50  
75  
100  
125  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Figure 26.  
Figure 27.  
Derating curve  
Supply Current – Supply Voltage  
6
5
4
3
2
1
0
400  
350  
300  
250  
200  
150  
100  
50  
5.5V  
85℃  
5.0V  
25℃  
-40℃  
2.7V  
0
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE [  
]
SUPPLYVOLTAGE [V]  
Figure 29.  
Figure 28.  
Maximum Output Voltage(High)  
– Supply Voltage  
Supply Current – Ambient Temperature  
(RL=2k)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
16/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
LMR358  
120  
100  
80  
60  
40  
20  
0
6
5
5.5V  
85℃  
25℃  
-40℃  
4
5.0V  
3
2
1
0
2.7V  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE [  
]
SUPPLYVOLTAGE [V]  
Figure 30.  
Figure 31.  
Maximum Output Voltage(Low)  
– Supply Voltage  
Maximum Output Voltage(High)  
– Ambient Temperature  
(RL=2k)  
(RL=2k)  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
25℃  
-40℃  
2.7V  
5.5V  
5.0V  
85℃  
0
1
2
3
4
5
-50  
-25  
0
25  
50  
75  
100  
OUTPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Figure 32.  
Figure 33.  
Maximum Output Voltage(Low)  
– Ambient Temperature  
(RL=2k)  
Output Source Current – Output Voltage  
(VDD=5V)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
17/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
LMR358  
20  
18  
180  
160  
140  
120  
100  
80  
25℃  
5.5V  
16  
-40℃  
14  
12  
85℃  
5.0V  
10  
8
6
60  
2.7V  
40  
4
20  
2
0
0
-50  
-25  
0
25  
50  
75  
100  
0
1
2
3
4
5
AMBIENT TEMPERATURE [  
]
OUTPUT VOLTAGE [V]  
Figure 35.  
Output Sink Current – Output Voltage  
(VDD=5V)  
Figure 34.  
Output Source Current – Ambient Temperature  
(OUT=VDD-0.4V)  
80  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
70  
60  
50  
40  
30  
20  
10  
0
5.5V  
5.0V  
-40℃  
25℃  
85℃  
2.7V  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Figure 37.  
Figure 36.  
Input Offset Voltage – Supply Voltage  
(Vicm= VDD, OUT= 0.1V)  
Output Sink Current – Ambient Temperature  
(OUT=VSS+0.4V)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
18/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
LMR358  
2.0  
1.8  
1.6  
6
4
25℃  
1.4  
-40℃  
2
5.0V  
1.2  
5.5V  
0
1.0  
85℃  
0.8  
2.7V  
-2  
-4  
-6  
0.6  
0.4  
0.2  
0.0  
-1  
0
1
2
3
4
5
-50  
-25  
0
25  
50  
75  
100  
INPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Figure 38.  
Figure 39.  
Input Offset Voltage – Ambient Temperature  
(Vicm= VDD, OUT= 0.1V)  
Input Offset Voltage – Input Voltage  
(VDD=5V)  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
5.5V  
85℃  
25℃  
-40℃  
5.0V  
2.7V  
60  
60  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Figure 40.  
Figure 41.  
Large Signal Voltage Gain – Supply Voltage  
Large Signal Voltage Gain – Ambient Temperature  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
19/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
LMR358  
120  
100  
80  
60  
40  
20  
0
120  
5.5V  
-40℃  
100  
85℃  
5.0V  
25℃  
80  
2.7V  
60  
40  
20  
0
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE [V]  
]
AMBIENT TEMPERATURE [  
Figure 42.  
Figure 43.  
Common Mode Rejection Ratio – Supply Voltage  
(VDD=5V)  
Common Mode Rejection Ratio – Ambient Temperature  
(VDD=3V)  
2.0  
1.5  
140  
120  
100  
80  
5.5V  
5.0V  
1.0  
0.5  
0.0  
60  
2.7V  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
]
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE [  
Figure 44.  
Figure 45.  
Slew Rate L-H – Ambient Temperature  
Power Supply Rejection Ratio – Ambient Temperature  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
20/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
LMR358  
60  
50  
40  
30  
20  
10  
0
180  
150  
120  
90  
2.0  
Phase  
Gain  
1.5  
5.5V  
1.0  
5.0V  
2.7V  
60  
0.5  
30  
0.0  
0
7
-50  
-25  
0
25  
50  
75  
100  
2
3
4
5
6
1
10  
10  
10  
10  
10  
10  
]
AMBIENT TEMPERATURE [  
FREQUENCY [Hz]  
Figure 47.  
Voltage GainPhase – Frequency  
Figure 46.  
Slew Rate H-L – Ambient Temperature  
1
0.1  
800  
700  
600  
500  
400  
300  
200  
100  
0
20Hz  
0.01  
20kHz  
0.001  
0.0001  
1kHz  
1
10  
100  
1000  
10000  
0.01  
0.1  
1
10  
FREQUENCY [Hz]  
OUTPUT VOLTAGE [Vrms]  
Figure 48.  
Figure 49.  
Total Harmonic DistortionOutput Voltage  
(VDD/VSS=+2.5V/-2.5V, Av=0dB,  
RL=2k, DIN-AUDIO, Ta=25)  
Input Referred Noise VoltageFrequency  
(VDD/VSS=+2.5V/-2.5V, Av=0dB, Ta=25)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
21/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
LMR324  
600  
500  
400  
300  
200  
100  
0
1200  
LMR324FJ  
1000  
LMR324FV  
LMR324FVJ  
800  
600  
400  
200  
0
85℃  
25℃  
-40℃  
LMR324F  
85  
2
3
4
5
6
0
25  
50  
75  
100  
125  
SUPPLYVOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Figure 50.  
Figure 51.  
Derating curve  
Supply Current – Supply Voltage  
600  
6
5
4
3
2
1
0
500  
400  
300  
200  
100  
0
85℃  
5.5V  
5.0V  
2.7V  
25℃  
-40℃  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
SUPPLYVOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Figure 53.  
Maximum Output Voltage(High)  
– Supply Voltage  
Figure 52.  
Supply Current – Ambient Temperature  
(RL=2 k)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
22/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
LMR324  
120  
100  
80  
60  
40  
20  
0
6
5
5.5V  
85℃  
25℃  
5.0V  
4
3
-40℃  
2
2.7V  
1
0
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
]
AMBIENT TEMPERATURE [  
SUPPLYVOLTAGE [V]  
Figure 54.  
Figure 55.  
Maximum Output Voltage(Low)  
– Supply Voltage  
Maximum Output Voltage(High)  
– Ambient Temperature  
(RL=2k)  
(RL=2k)  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
25℃  
-40℃  
2.7V  
5.5V  
5.0V  
85℃  
0
1
2
3
4
5
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE [  
]
OUTPUT VOLTAGE [V]  
Figure 56.  
Figure 57.  
Maximum Output Voltage(Low)  
– Ambient Temperature  
(RL=2k)  
Output Source Current – Output Voltage  
(VDD=5V)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
23/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
LMR324  
200  
180  
160  
140  
120  
100  
80  
18  
16  
25℃  
-40℃  
5.5V  
14  
12  
85℃  
10  
5.0V  
8
6
60  
2.7V  
4
40  
2
0
20  
0
0
1
2
3
4
5
-50  
-25  
0
25  
50  
75  
100  
]
AMBIENT TEMPERATURE [  
OUTPUT VOLTAGE [V]  
Figure 59.  
Output Sink Current – Output Voltage  
(VDD=5V)  
Figure 58.  
Output Source Current – Ambient Temperature  
(OUT=VDD-0.4V)  
1.0  
0.8  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.6  
5.5V  
5.0V  
0.4  
0.2  
85℃  
25℃  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
2.7V  
-40℃  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE [  
]
SUPPLY VOLTAGE [V]  
Figure 61.  
Figure 60.  
Input Offset Voltage – Supply Voltage  
(Vicm= VDD, OUT= 0.1V)  
Output Sink Current – Ambient Temperature  
(OUT=VSS+0.4V)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
24/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
LMR324  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
6.0  
4.0  
85℃  
25℃  
2.0  
0.0  
2.7V  
-0.2  
-40℃  
-2.0  
-4.0  
-6.0  
-0.4  
5.5V  
5.0V  
-0.6  
-0.8  
-1.0  
-1  
0
1
2
3
4
5
-50  
-25  
0
25  
50  
75  
100  
INPUT VOLTAGE [V]  
AMBIENT TEMPERATURE [  
]
Figure 62.  
Figure 63.  
Input Offset Voltage – Ambient Temperature  
(Vicm= VDD, OUT= 0.1V)  
Input Offset Voltage – Input Voltage  
(VDD=5V)  
160  
160  
140  
120  
100  
80  
140  
120  
100  
80  
5.5V  
25℃  
85℃  
5.0V  
2.7V  
-40℃  
60  
60  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE [V]  
]
AMBIENT TEMPERATURE [  
Figure 64.  
Figure 65.  
Large Signal Voltage Gain – Supply Voltage  
Large Signal Voltage Gain – Ambient Temperature  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
25/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
LMR324  
120  
120  
100  
80  
60  
40  
20  
0
5.5V  
100  
-40℃  
85℃  
25℃  
5.0V  
80  
60  
40  
20  
0
2.7V  
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE [V]  
]
AMBIENT TEMPERATURE [  
Figure 66.  
Figure 67.  
Common Mode Rejection Ratio – Supply Voltage  
(VDD=5V)  
Common Mode Rejection Ratio – Ambient Temperature  
(VDD=3V)  
2.0  
140  
120  
100  
80  
5.5V  
1.5  
5.0V  
1.0  
60  
2.7V  
40  
0.5  
0.0  
20  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE [  
]
AMBIENT TEMPERATURE [  
]
Figure 68.  
Figure 69.  
Slew Rate L-H – Ambient Temperature  
Power Supply Rejection Ratio – Ambient Temperature  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
26/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
LMR324  
60  
50  
40  
30  
20  
10  
0
180  
150  
120  
90  
2.0  
Phase  
Gain  
1.5  
5.5V  
1.0  
5.0V  
2.7V  
60  
0.5  
0.0  
30  
0
-50  
-25  
0
25  
50  
75  
100  
102  
103  
104  
105  
106  
107  
FREQUENCY [Hz]  
AMBIENT TEMPERATURE [  
]
Figure 71.  
Voltage GainPhase – Frequency  
Figure 70.  
Slew Rate H-L – Ambient Temperature  
1
800  
700  
600  
500  
400  
300  
200  
100  
0
0.1  
20Hz  
0.01  
0.001  
20kHz  
1kHz  
0.0001  
1
10  
100  
1000  
10000  
0.01  
0.1  
1
10  
FREQUENCY [Hz]  
OUTPUT VOLTAGE [Vrms]  
Figure 72.  
Figure 73.  
Total Harmonic DistortionOutput Voltage  
(VDD/VSS=+2.5V/-2.5V, Av=0dB,  
RL=2k, DIN-AUDIO, Ta=25)  
Input Referred Noise VoltageFrequency  
(VDD/VSS=+2.5V/-2.5V, Av=0dB, Ta=25)  
(*)The data above is measurement value of typical sample, it is not guaranteed.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
27/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
Application Information  
NULL method condition for Test Circuit 1  
VDD, VSS, EK, Vicm Unit:V  
Parameter  
Input Offset Voltage  
VF  
S1  
ON  
ON  
ON  
ON  
S2  
ON  
ON  
ON  
ON  
S3  
VDD VSS  
EK  
Vicm Calculation  
VF1  
OFF  
ON  
5
5
5
0
0
0
0
-2.5  
2.1  
2.1  
1
2
3
4
VF2  
VF3  
VF4  
VF5  
VF6  
VF7  
-1.5  
-3.5  
Large Signal Voltage Gain  
0
Common-mode Rejection Ratio  
(Input Common-mode Voltage Range)  
OFF  
OFF  
-1.5  
-2.9  
1.8  
3
5
Power Supply Rejection Ratio  
4
Calculation-  
1. Input Offset Voltage (Vio)  
|VF1|  
Vio  
Av  
[V]  
=
1+RF/RS  
2. Large Signal Voltage Gain(Av)  
2 × (1+RF/RS)  
|VF2-VF3|  
[dB]  
= 20Log  
3. Common-mode Rejection Ratio (CMRR)  
4. Power Supply Rejection Ratio (PSRR)  
1.8 × (1+RF/RS)  
|VF4 - VF5|  
CMRR  
[dB]  
= 20Log  
3.8 × (1+ RF/RS)  
|VF6 - VF7|  
PSRR  
[dB]  
= 20Log  
0.1µF  
RF=50kΩ  
0.01µF  
500kΩ  
SW1  
VDD  
EK  
15V  
Vo  
RS=50Ω  
Ri=1MΩ  
500kΩ  
0.015µF  
DUT  
0.015µF  
NULL  
-15V  
SW3  
RL  
VRL  
1000pF  
Ri=1MΩ  
RS=50Ω  
50kΩ  
VF  
Vicm  
SW2  
VSS  
Figure 74. Test circuit 1 (one channel only)  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
28/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
Switch Condition for Test Circuit 2  
SW No.  
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10 SW11 SW12 SW13 SW14  
OFF OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF  
Supply Current  
Maximum Output Voltage(High) OFF OFF ON OFF OFF ON OFF OFF ON OFF OFF OFF ON OFF  
Maximum Output Voltage(Low) OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF  
Output Source Current  
Output Sink Current  
Slew Rate  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON  
OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON  
OFF OFF OFF ON OFF OFF OFF ON ON ON OFF OFF OFF OFF  
OFF ON OFF OFF ON ON OFF OFF ON ON OFF OFF OFF OFF  
ON OFF OFF OFF ON ON OFF OFF OFF OFF ON OFF OFF OFF  
Gain Bandwidth Product  
Equivalent Input Noise Voltage  
Input voltage  
VH  
VL  
t
Input wave  
Output voltage  
SR=ΔV/Δt  
90%  
VH  
C
ΔV  
10%  
VL  
Δt  
Output wave  
t
Figure 75. Test Circuit 2 (each Op-Amp)  
Figure 76. Slew Rate Input Waveform  
R2=100kΩ  
R2=100kΩ  
VDD  
VDD  
R1=1kΩ  
R1=1kΩ  
OUT1  
V
OUT2  
V
R1//R2  
=1Vrms  
R1//R2  
VSS  
VSS  
VIN  
100×OUT1  
OUT2  
CS=20Log  
Figure 77. Test circuit 3(Channel Separation)  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
29/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
Application example  
Voltage Follower  
Voltage gain is 0 dB.  
This circuit controls output voltage (OUT) equal input  
voltage (IN), and keeps OUT with stable because of high  
input impedance and low output impedance.  
OUT is shown next expression.  
VDD  
OUT=IN  
OUT  
IN  
VSS  
Figure 78. Voltage follower  
Inverting amplifier  
R2  
For inverting amplifier, IN is amplified by voltage gain  
decided R1 and R2, and phase reversed voltage is  
output.  
VDD  
OUT is shown next expression.  
OUT=-(R2/R1)IN  
R1  
IN  
Input impedance is R1.  
OUT  
R1//R2  
VSS  
Figure 79. Inverting amplifier  
Non-inverting amplifier  
R1  
R2  
VDD  
For non-inverting amplifier, IN is amplified by voltage  
gain decided R1 and R2, and phase is same with Vin.  
OUT is shown next expression.  
OUT=(1+R2/R1)IN  
This circuit performes high input impedance because  
Input impedance is operational amplifier’s input  
Impedance.  
OUT  
IN  
VSS  
Figure 80. Non-inverting amplifier  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
30/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
Adder circuit  
R3  
Adder circuit output the voltage that added up Input  
voltage. A phase of the output voltage turns over,  
because non-inverting circuit is used.  
VDD  
R1  
OUT is shown next formula.  
IN1  
OUT = -R3(IN1/R1+IN2/R2)  
When three input voltage is as above, it connects  
with input through resistance like R1 and R2.  
OUT  
R2  
IN2  
VSS  
Figure 81. Adder circuit  
Differential amplifier  
R2  
VDD  
Differential amplifier output the voltage that  
amplified a difference of input voltage.  
In the case of R1=R3=Ra, R2=R4=Rb  
OUT is shown next formula.  
R1  
R3  
IN1  
IN2  
OUT = -Rb/Ra(IN1-IN2)  
OUT  
R4  
VSS  
Figure 82. Differential amplifier  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
31/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
Power Dissipation  
Power dissipation (total loss) indicates the power that can be consumed by IC at Ta=25(normal temperature). IC is heated  
when it consumed power, and the temperature of IC ship becomes higher than ambient temperature. The temperature that  
can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited.  
Power dissipation is determined by the temperature allowed in IC chip (maximum junction temperature) and thermal  
resistance of package (heat dissipation capability).The maximum junction temperature is typically equal to the maximum  
value in the storage package (heat dissipation capability).The maximum junction temperature is typically equal to the  
maximum value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or  
lead frame of the package. The parameter which indicates this heat dissipation capability (hardness of heat release) is called  
thermal resistance, represented by the symbol θja/W. The temperature of IC inside the package can be estimated by this  
thermal resistance. Figure 83. (a) shows the model of thermal resistance of the package. Thermal resistance θja, ambient  
temperature Ta, maximum junction temperature Tjmax, and power dissipation Pd can be calculated by the equation below:  
θja = (Tjmax-Ta) / Pd  
/W  
・・・・・ ()  
Derating curve in Figure 83. (b) indicates power that can be consumed by IC with reference to ambient temperature. Power  
that can be consumed by IC begins to attenuate at certain ambient temperature. This gradient iis determined by thermal  
resistance θja. Thermal resistance θja depends on chip size, power consumption, package, ambient temperature, package  
condition, wind velocity, etc even when the same of package is used. Thermal reduction curve indicates a reference value  
measured at a specified condition. Figure 84 (c)-(e) show a derating curve for an example LMR321, LMR358, LMR324.  
Power dissipation of LSI [W]  
Pd (max)  
θja=(Tjmax-Ta)/Pd /W  
P2  
θja2 < θja1  
θ' ja2  
Ambient temperature Ta []  
P1  
θ ja2  
Tj ' (max) Tj (max)  
θ' ja1  
θ ja1  
Chip surface temperature Tj []  
0
25  
50  
75  
100  
125  
150  
Power dissipation Pd [W]  
Ambient temperature Ta []  
(a) Thermal resistance  
(b) Derating curve  
Figure 83. Thermal resistance and derating  
1200  
1200  
1000  
800  
600  
400  
200  
0
1200  
1000  
800  
600  
400  
200  
0
LMR324FJ(*25)  
1000  
LMR324FV(*26)  
LMR358F(*21)  
LMR324FVJ(*27)  
LMR358FJ(*22)  
800  
LMR321G(*20)  
LMR358FV /FVT(*23)  
LMR324F (*28)  
LMR358FVM/ FVJ(*24)  
600  
400  
200  
0
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
AMBIENT TEMPERATURE [℃]  
AMBIENT TEMPERATURE [℃]  
AMBIENT TEMPERATURE [℃]  
(c) LMR321  
(d) LMR358  
(e) LMR324  
(*20)  
5.4  
(*21)  
5.52  
(*22)  
5.4  
(*23)  
5.0  
(*24)  
4.7  
(*25)  
8.2  
(*26)  
7.0  
(*27)  
6.8  
(*28)  
4.5  
Unit  
mW/℃  
When using the unit above Ta=25, subtract the value above per degree. Permissible dissipation is the value.  
When FR4 glass epoxy board 70mm×70mm×1.6mm (cooper foil area below 3) is mounted.  
Figure 84. Thermal resistance and derating  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
32/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
VDD  
Operational Notes  
1) Processing of unused circuit  
+
-
It is recommended to apply connection (see the Figure 85.) and set the non  
inverting input terminal at the potential within input common-mode voltage range  
(Vicm), for any unused circuit.  
Connect  
to Vicm  
Vicm  
2) Applied voltage to the input terminal  
VSS  
For normal circuit operation of voltage comparator, please input voltage for its  
input terminal within input common mode voltage VDD + 0.3V. Then, regardless of  
power supply voltage, VSS-0.3V can be applied to input terminals without deterioration  
or destruction of its characteristics.  
Figure 85. The example of  
application circuit for unused op-amp  
3) Short-circuit of output terminal  
VDD  
When output terminal and VDD or VSS terminal are shorted, excessive Output  
current may flow under some conditions, and heating may destroy IC. It is  
necessary to connect a resistor as shown in Figure 86, thereby protecting against  
load shorting.  
protection  
resistor  
+
-
4) Operating power supply (split power supply/single power supply)  
The voltage comparator operates if a given level of voltage is applied between  
VDD and VSS. Therefore, the operational amplifier can be operated under  
single power supply or split power supply.  
VSS  
5) Power dissipation (pd)  
If the IC is used under excessive power dissipation. An increase in the chip  
temperature will cause deterioration of the radical characteristics of IC. For example,  
reduction of current capability. Take consideration of the effective power dissipation  
and thermal design with a sufficient margin. Pd is reference to the provided power  
dissipation curve.  
Figure 86. The example of  
output short protection  
6) Short circuits between pins and incorrect mounting  
Short circuits between pins and incorrect mounting when mounting the IC on a printed circuits board, take notice of the  
direction and positioning of the IC. If IC is mounted erroneously, It may be damaged. Also, when a foreign object is  
inserted between output, between output and VDD terminal and VSS terminal which causes short circuit, the IC may be  
damaged.  
7) Using under strong electromagnetic field  
Be careful when using the IC under strong electromagnetic field because it may malfunction.  
8) Usage of IC  
When stress is applied to the IC through warp of the printed circuit board, The characteristics may fluctuate due to the  
piezo effect. Be careful of the warp of the printed circuit board.  
9) Testing IC on the set board  
When testing IC on the set board, in cases where the capacitor is connected to the low impedance, make sure to  
discharge per fabrication because there is a possibility that IC may be damaged by stress. When removing IC from the set  
board, it is essential to cut supply voltage. As a countermeasure against the static electricity, observe proper grounding  
during fabrication process and take due care when carrying and storage it.  
10) The IC destruction caused by capacitive load  
The transistors in circuits may be damaged when VDD terminal and VSS terminal is shorted with the charged output  
terminal capacitor.When IC is used as a operational amplifier or as an application circuit, where oscillation is not activated  
by an output capacitor, the output capacitor must be kept below 0.1μF in order to prevent the damage mentioned above.  
11) Latch up  
Be careful of input voltage that exceed the VDD and VSS. When CMOS device have sometimes occur latch up operation.  
And protect the IC from abnormaly noise  
12) Decupling capacitor  
Insert the decupling capacitance between VDD and VSS, for stable operation of operational amplifier.  
Status of this document  
The Japanese version of this document is formal specification. A customer may use this translation version only for a reference  
to help reading the formal version.  
If there are any differences in translation version of this document formal version takes priority.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
33/38  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
Physical Dimensions Tape and Reel Information  
SSOP5  
<Tape and Reel information>  
°
°
+
4  
2.9± 0.2  
6
°
4
Tape  
Embossed carrier tape  
3000pcs  
5
4
Quantity  
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
1pin  
+0.05  
0.13  
0.03  
S
+0.05  
0.04  
0.42  
0.1  
0.95  
S
Direction of feed  
Reel  
Order quantity needs to be multiple of the minimum quantity.  
(Unit : mm)  
(Unit : mm)  
(Unit : mm)  
SOP8  
<Tape and Reel information>  
5.0± 0.2  
(MAX 5.35 include BURR)  
Tape  
Embossed carrier tape  
+
6
°
4
°
4
°
Quantity  
2500pcs  
8
7
6
5
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
0.595  
+0.1  
0.17  
-
0.05  
S
0.1  
S
1.27  
Direction of feed  
1pin  
Order quantity needs to be multiple of the minimum quantity.  
0.42± 0.1  
Reel  
SOP-J8  
<Tape and Reel information>  
4.9± 0.2  
(MAX 5.25 include BURR)  
Tape  
Embossed carrier tape  
+
6°  
4°  
4°  
Quantity  
2500pcs  
8
7
6
5
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
0.545  
0.2± 0.1  
S
1.27  
0.42± 0.1  
0.1  
Direction of feed  
1pin  
S
Reel  
Order quantity needs to be multiple of the minimum quantity.  
SSOP-B8  
<Tape and Reel information>  
3.0± 0.2  
(MAX 3.35 include BURR)  
8
7
6
5
Tape  
Embossed carrier tape  
Quantity  
2500pcs  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
0.15± 0.1  
S
0.1  
S
Direction of feed  
1pin  
+0.06  
(0.52)  
0.65  
0.22  
0.04  
M
0.08  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
34/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
TSSOP-B8  
<Tape and Reel information>  
3.0± 0.1  
(MAX 3.35 include BURR)  
Tape  
Embossed carrier tape  
3000pcs  
4 ± ±4  
8
7
6
5
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
1PIN MARK  
+0.05  
0.145  
0.03  
0.525  
S
0.08 S  
+0.05  
0.245  
M
0.04  
0.08  
Direction of feed  
1pin  
0.65  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
MSOP8  
<Tape and Reel information>  
2.9± 0.1  
(MAX 3.25 include BURR)  
Tape  
Embossed carrier tape  
+
6°  
4°  
Quantity  
3000pcs  
4°  
8
7
6
5
TR  
Direction  
of feed  
The direction is the 1pin of product is at the upper right when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
1PIN MARK  
1pin  
+0.05  
0.03  
0.145  
0.475  
S
+0.05  
0.04  
0.22  
0.08  
S
Direction of feed  
0.65  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
TSSOP-B8J  
<Tape and Reel information>  
3.0± 0.1  
(MAX 3.35 include BURR)  
4 ± ±4  
Tape  
Embossed carrier tape  
8
7
6
5
Quantity  
2500pcs  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
2
3
4
1PIN MARK  
+0.05  
0.525  
0.145  
0.03  
S
0.08  
S
+0.05  
0.32  
Direction of feed  
1pin  
0.04  
M
0.08  
0.65  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
SOP14  
<Tape and Reel information>  
8.7± 0.2  
(MAX 9.05 include BURR)  
Tape  
Embossed carrier tape  
Quantity  
2500pcs  
14  
8
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
7
0.15± 0.1  
1.27  
0.4± 0.1  
0.1  
Direction of feed  
1pin  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
35/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
SOP-J14  
<Tape and Reel information>  
8.65± 0.1  
(Max 9.0 include BURR)  
+6°  
4°  
4°  
Tape  
Embossed carrier tape  
2500pcs  
14  
8
Quantity  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
7
1PIN MARK  
0.515  
+0.05  
0.03  
0.22  
0.08  
M
S
+0.05  
0.42  
1.27  
0.04  
0.08  
Direction of feed  
1pin  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
SSOP-B14  
<Tape and Reel information>  
5.0 ± 0.2  
Tape  
Embossed carrier tape  
14  
8
Quantity  
2500pcs  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
7
0.15 ± 0.1  
0.1  
0.65  
Direction of feed  
1pin  
0.22 ± 0.1  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
TSSOP-B14J  
<Tape and Reel information>  
5.0± 0.1  
(Max 5.35 include BURR)  
4
± 4  
Tape  
Embossed carrier tape  
14  
8
Quantity  
2500pcs  
E2  
Direction  
of feed  
The direction is the 1pin of product is at the upper left when you hold  
reel on the left hand and you pull out the tape on the right hand  
(
)
1
7
0.55  
1PIN MARK  
+0.05  
0.145  
0.03  
S
0.08  
+0.05  
0.04  
S
Direction of feed  
1pin  
0.245  
0.65  
M
0.08  
Reel  
(Unit : mm)  
Order quantity needs to be multiple of the minimum quantity.  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
36/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
Marking Diagrams  
SSOP5(TOP VIEW)  
SOP8(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
1PIN MARK  
LOT Number  
SSOP-B8(TOP VIEW)  
MSOP8(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
SOP-J8(TOP VIEW)  
TSSOP-B8(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
TSSOP-B8J(TOP VIEW)  
SOP14(TOP VIEW)  
Part Number Marking  
LOT Number  
Part Number Marking  
LOT Number  
1PIN MARK  
1PIN MARK  
SOP-J14(TOP VIEW)  
SSOP-B14(TOP VIEW)  
Part Number Marking  
Part Number Marking  
LOT Number  
LOT Number  
1PIN MARK  
1PIN MARK  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
37/38  
TSZ2211115001  
Datasheet  
LMR321G, LMR358xxx, LMR324xxx  
TSSOP-B14J (TOP VIEW)  
Product Name  
Marking  
Part Number Marking  
Product Name  
LMR321  
Package Type  
LOT Number  
G
F
SSOP5  
L2  
L358  
SOP8  
FJ  
FV  
SOP-J8  
R358  
SSOP-B8  
TSSOP-B8  
MSOP8  
L358  
LMR358  
FVT  
FVM  
FVJ  
F
R358  
L358  
1PIN MARK  
TSSOP-B8J  
SOP14  
R358  
LMR324F  
LMR324FJ  
L324  
FJ  
SOP-J14  
SSOP-B14  
TSSOP-B14J  
LMR324  
FV  
FVJ  
R324  
Land pattern data  
SOP8, SOP14, SOP-J8, SOP-J14, SSOP-B8  
SSOP-B14, MSOP8, TSSOP-B8, TSSOP-B8J, TSSOP-B14J  
SSOP5  
0.95  
0.95  
MIE  
0.6  
ℓ2  
all dimensions in mm  
Land length  
Land pitch  
e
Land space  
MIE  
Land width  
b2  
PKG  
≧ℓ 2  
SSOP5  
0.95  
1.27  
2.4  
1.0  
0.6  
SOP8  
SOP14  
SOP-J8  
SOP-J14  
SSOP-B8  
SSOP-B14  
4.60  
1.10  
1.35  
1.20  
0.76  
1.27  
0.65  
3.90  
4.60  
0.76  
0.35  
MSOP8  
0.65  
0.65  
0.65  
0.65  
2.62  
4.60  
3.20  
4.60  
0.99  
1.20  
1.15  
1.20  
0.35  
0.35  
0.35  
0.35  
TSSOP-B8  
TSSOP-B8J  
TSSOP-B14J  
Revision History  
Date  
Revision  
001  
Changes  
30.NOV.2012  
New Release  
www.rohm.com  
TSZ02201-0RAR1G200560-1-2  
30.NOV.2012 Rev.001  
© 2012 ROHM Co., Ltd. All rights reserved.  
38/38  
TSZ2211115001  
Daattaasshheeeett  
Notice  
General Precaution  
1) Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2) All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
Precaution on using ROHM Products  
1) Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,  
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you  
intend to use our Products in devices requiring extremely high reliability (such as medical equipment, transport  
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car  
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or  
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.  
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any  
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific  
Applications.  
2) ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor  
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate  
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which  
a failure or malfunction of our Products may cause. The following are examples of safety measures:  
[a] Installation of protection circuits or other protective devices to improve system safety  
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure  
3) Our Products are designed and manufactured for use under standard conditions and not under any special or  
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way  
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any  
special or extraordinary environments or conditions. If you intend to use our Products under any special or  
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of  
product performance, reliability, etc, prior to use, must be necessary:  
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents  
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust  
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,  
H2S, NH3, SO2, and NO2  
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves  
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items  
[f] Sealing or coating our Products with resin or other coating materials  
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of  
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning  
residue after soldering  
[h] Use of the Products in places subject to dew condensation  
4) The Products are not subject to radiation-proof design.  
5) Please verify and confirm characteristics of the final or mounted products in using the Products.  
6) In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse) is applied,  
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power  
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect  
product performance and reliability.  
7) De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual  
ambient temperature.  
8) Confirm that operation temperature is within the specified range described in the product specification.  
9) ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in  
this document.  
Notice - Rev.004  
© 2013 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Precaution for Mounting / Circuit board design  
1) When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product  
performance and reliability.  
2) In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the  
ROHM representative in advance.  
For details, please refer to ROHM Mounting specification  
Precautions Regarding Application Examples and External Circuits  
1) If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the  
characteristics of the Products and external components, including transient characteristics, as well as static  
characteristics.  
2) You agree that application notes, reference designs, and associated data and information contained in this document  
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely  
responsible for it and you must exercise your own independent verification and judgment in the use of such information  
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses  
incurred by you or third parties arising from the use of such information.  
Precaution for Electrostatic  
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper  
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be  
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,  
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).  
Precaution for Storage / Transportation  
1) Product performance and soldered connections may deteriorate if the Products are stored in the places where:  
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2  
[b] the temperature or humidity exceeds those recommended by ROHM  
[c] the Products are exposed to direct sunshine or condensation  
[d] the Products are exposed to high Electrostatic  
2) Even under ROHM recommended storage condition, solderability of products out of recommended storage time period  
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is  
exceeding the recommended storage time period.  
3) Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads  
may occur due to excessive stress applied when dropping of a carton.  
4) Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of  
which storage time is exceeding the recommended storage time period.  
Precaution for Product Label  
QR code printed on ROHM Products label is for ROHM’s internal use only.  
Precaution for Disposition  
When disposing Products please dispose them properly using an authorized industry waste company.  
Precaution for Foreign Exchange and Foreign Trade act  
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,  
please consult with ROHM representative in case of export.  
Precaution Regarding Intellectual Property Rights  
1) All information and data including but not limited to application example contained in this document is for reference  
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any  
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable  
for infringement of any intellectual property rights or other damages arising from use of such information or data.:  
2) No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any  
third parties with respect to the information contained in this document.  
Notice - Rev.004  
© 2013 ROHM Co., Ltd. All rights reserved.  
Daattaasshheeeett  
Other Precaution  
1) The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
2) This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.  
3) The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written  
consent of ROHM.  
4) In no event shall you use in any way whatsoever the Products and the related technical information contained in the  
Products or this document for any military purposes, including but not limited to, the development of mass-destruction  
weapons.  
5) The proper names of companies or products described in this document are trademarks or registered trademarks of  
ROHM, its affiliated companies or third parties.  
Notice - Rev.004  
© 2013 ROHM Co., Ltd. All rights reserved.  

相关型号:

LMR358FVM-TR

Ground sense Low Power General Purpose Operational amplifiers
ROHM

LMR358FVT

Ground Sense Low Power General Purpose Operational Amplifiers
ROHM

LMR358FVT-E2

Ground sense Low Power General Purpose Operational amplifiers
ROHM

LMR358FVT-TR

Ground sense Low Power General Purpose Operational amplifiers
ROHM

LMR358G-E2

Ground sense Low Power General Purpose Operational amplifiers
ROHM

LMR358G-TR

Ground sense Low Power General Purpose Operational amplifiers
ROHM

LMR36006

4.2V 至 60V、0.6A 超小型同步降压转换器
TI

LMR36006-Q1

4.2V 至 60V、0.6A 超小型同步降压转换器
TI

LMR36006AQRNXRQ1

4.2V 至 60V、0.6A 超小型同步降压转换器 | RNX | 12 | -40 to 150
TI

LMR36006AQRNXTQ1

4.2V 至 60V、0.6A 超小型同步降压转换器 | RNX | 12 | -40 to 150
TI

LMR36006BQRNXRQ1

4.2V 至 60V、0.6A 超小型同步降压转换器 | RNX | 12 | -40 to 150
TI

LMR36006BRNXR

4.2V 至 60V、0.6A 超小型同步降压转换器 | RNX | 12 | -40 to 150
TI