ML9445A [ROHM]

ML9445A是进行位图显示的点阵图形液晶显示用LSI。在8位微处理器(以下简称“MPU”)的控制下,驱动点阵图形液晶显示面板。由于位图方式的液晶驱动所需的所有功能都已内置在1枚芯片中,因此使用ML9445A可以用更少的芯片数量来实现位图方式的点阵图形液晶显示系统。采用位图方式,显示用RAM的1位数据与显示面板1个点的亮灯和非亮灯相对应,因此可支持汉字显示等需要更高灵活性的显示。1枚芯片最大可构建65 ×180点的图形显示系统。ML9445A内置65路公共信号输出和180路段信号输出功能,可用1枚芯片实现65 × 180点的显示。;
ML9445A
型号: ML9445A
厂家: ROHM    ROHM
描述:

ML9445A是进行位图显示的点阵图形液晶显示用LSI。在8位微处理器(以下简称“MPU”)的控制下,驱动点阵图形液晶显示面板。由于位图方式的液晶驱动所需的所有功能都已内置在1枚芯片中,因此使用ML9445A可以用更少的芯片数量来实现位图方式的点阵图形液晶显示系统。采用位图方式,显示用RAM的1位数据与显示面板1个点的亮灯和非亮灯相对应,因此可支持汉字显示等需要更高灵活性的显示。1枚芯片最大可构建65 ×180点的图形显示系统。ML9445A内置65路公共信号输出和180路段信号输出功能,可用1枚芯片实现65 × 180点的显示。

驱动 微处理器
文件: 总85页 (文件大小:871K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dear customer  
LAPIS Semiconductor Co., Ltd. ("LAPIS Semiconductor"), on the 1st day of October,  
2020, implemented the incorporation-type company split (shinsetsu-bunkatsu) in which  
LAPIS established a new company, LAPIS Technology Co., Ltd. (“LAPIS  
Technology”) and LAPIS Technology succeeded LAPIS Semiconductor’s LSI business.  
Therefore, all references to "LAPIS Semiconductor Co., Ltd.", "LAPIS Semiconductor"  
and/or "LAPIS" in this document shall be replaced with "LAPIS Technology Co., Ltd."  
Furthermore, there are no changes to the documents relating to our products other than  
the company name, the company trademark, logo, etc.  
Thank you for your understanding.  
LAPIS Technology Co., Ltd.  
October 1, 2020  
FEDL9445A-01  
Issue Date: Apr. 2, 2019  
ML9445A  
180-Channel LCD Driver with Built-in RAM for LCD Dot Matrix Displays  
GENERAL DESCRIPTION  
The ML9445A is an LSI for dot matrix graphic LCD devices carrying out bit map display. This LSI can drive a dot  
matrix graphic LCD display panel under the control of an 8-bit microcomputer (hereinafter described MPU).  
Since all the functions necessary for driving a bit map type LCD device are incorporated in a single chip, using the  
ML9445A makes it possible to realize a bit map type dot matrix graphic LCD display system with only a few  
chips.  
Since the bit map method in which one bit of display RAM data turns ON or OFF one dot in the display panel, it is  
possible to carry out displays with a high degree of freedom such as Chinese character displays, etc. With one chip,  
it is possible to construct a graphic display system with a maximum of 65 × 180 dots.  
The ML9445A has 65 common signal outputs and 180 segment signal outputs and one chip can drive a display of  
up to 65 × 180 dots.  
FEATURES  
Direct display of the RAM data using the bit map method  
Display RAM data “1” ... Dot is displayed  
Display RAM data “0” ... Dot is not displayed (during forward display)  
Display RAM capacity  
65 × 180 × 2 = 23,400 bits  
LCD Drive circuits  
65 common outputs, 180 segment outputs  
MPU interface: Can select an 8-bit parallel or serial interface or I2C (Write Only)  
Built-in voltage multiplier circuit for the LCD drive power supply  
Built-in LCD drive voltage adjustment circuit  
Built-in LCD drive bias generator circuit  
Can select frame reversal drive or line reversal drive by command  
Built-in oscillator circuit (Internal RC oscillator/external clock input)  
A variety of commands  
Read/write of display data, display ON/OFF, forward/reverse display, all dots ON/all dots OFF, set page  
address, set display start address, etc.  
Power supply voltage  
Logic power supply: VDD-VSS = 2.7 V to 5.5 V  
Voltage multiplier reference voltage: VIN-VSS = 2.7 V to 5.5 V  
(2- to 5-time multiplier available)  
LCD Drive voltage: VBI-VSS = 6.0 to 18.5 V  
Package: ML9445ADVWA Gold bump chip (Bump hardness: Low, DV)  
This device is not resistant to radiation and light.  
1/84  
FEDL9445A-01  
ML9445A  
BLOCK DIAGRAM  
VDD  
V1  
V2  
SEGMENT  
Drivers  
COMMON  
Drivers  
V3  
V4  
V5  
VSS  
Common Output stae  
Selection circuit  
VS1–  
SVD2  
VS2–  
VC2+  
VC3+  
VC4+  
VC5+  
VC6+  
VS3-  
VC7+  
VH  
Display data latch circuit  
Display data RAM  
FR  
SYNC  
CL  
65 180  
2
×
×
VOUT1  
VOUT2  
DOF  
S
M/  
VIN  
VR  
VRS  
IRS  
Column address circuit  
CLS  
VCH  
TEST1  
TEST2  
TEST3  
Command decoder  
MPUInterface  
Status  
Bus holder  
2/84  
FEDL9445A-01  
ML9445A  
ABSOLUTE MAXIMUM RATINGS  
VSS = 0 V  
Parameter  
Power supply voltage  
Bias voltage  
Symbol  
VDD  
Condition  
Ta= 25°C  
Ta = 25°C  
Rated value  
–0.3 to +6.5  
–0.3 to +20  
Unit Applicable pins  
V
V
VDD  
VBI  
V1 to V5  
Voltage multiplier output  
voltage  
VOUT  
Ta= 25°C  
–0.3 to +20  
V
VOUT1 ,VOUT2  
2-time multiplication  
3-time multiplication  
4-time multiplication  
5-time multiplication  
–0.3 to +5.5  
–0.3 to +5.5  
–0.3 to +5.0  
–0.3 to +4.0  
Voltage multiplier reference  
voltage  
VIN  
V
VIN  
Input voltage  
VI  
IS  
Ta = 25°C  
Ta = 25°C  
–0.3 to VDD+0.3  
2.0 to +2.0  
125  
V
All inputs  
All outputs  
Output short-circuit current  
Chip temperature  
mA  
°C  
°C  
TC  
Storage temperature range  
TSTG  
–55 to +150  
Note: Do not use the ML9445A by short-circuiting one output pin to another output pin as well as to other pin  
(input pin, input/output pin, or power supply pin).  
RECOMMENDED OPERATING CONDITIONS  
VSS = 0 V  
Uni  
t
Parameter  
Symbol  
Condition  
MIN  
TYP  
MAX  
Applicable pins  
Power supply voltage  
Bias voltage  
VDD  
VBI  
2.7  
6.0  
5.5  
V
V
VDD  
18  
18.5  
V1 to V5  
2-time multiplication  
3-time multiplication  
4-time multiplication  
5-time multiplication  
3.0  
2.7  
2.7  
2.7  
5.5  
5.5  
Voltage multiplier reference  
voltage  
VIN  
V
VIN  
4.625  
3.7  
Voltage multiplier output  
voltage  
VOUT  
Ta  
External input  
6.0  
18  
18.5  
105  
V
VOUT1 ,VOUT2  
Operating temperature range  
–40  
°C  
Note 1: The electrical characteristics are influenced by COG trace resistance. This LSI always has to  
be evaluated before using.  
VOUT1 VOUT2  
V1 (VBI)  
VIN  
V2V5  
VDD  
VCC  
GND  
System(MPU)  
VSS  
ML9445A  
3/84  
FEDL9445A-01  
ML9445A  
Note 2: The voltages VDD, VIN, V1 to V5, VOUT1 and VOUT2 are values taking VSS = 0 V as the reference.  
Note 3: The highest bias potential is V1 and the lowest is VSS.  
Note 4: Always maintain the relationship V1 V2 V3 V4 V5 VSS among these voltages.  
Note 5: When using an external power supply, follow the procedure for power application.  
When applying external power to the VOUT1 pin only, apply VOUT1 after VDD.  
When applying external power to the VOUT2 pin only, apply VOUT2 after VDD.  
When applying external power to the V1 pin only, apply V1 after VDD.  
When applying external power to the V1 pin to V5 pin, apply V1 to V5 after VDD.  
Note that the above (Note 4) must be satisfied including transient state at power application.  
Note 6: When using an external power supply, follow the procedure for power removal described  
below.  
When external power is in use for the VOUT1 pin only, remove VOUT1 after VDD.  
When external power is in use for the VOUT2 pin only, remove VOUT2 after VDD.  
When external power is in use for the V1 pin only, remove V1 after VDD.  
When external power is in use for the V1 pin to V5 pin, remove V1 to V5 after VDD.  
Note that the above (Note 4) must be satisfied including transient state at power removal.  
4/84  
FEDL9445A-01  
ML9445A  
ELECTRICAL CHARACTERISTICS  
DC Characteristics  
[VSS =0V, VDD=2.7 to 5.5V, Ta =–40 to +105°C]  
Applicable  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
pins  
“H” Input voltage  
“L” Input voltage  
“H” Output voltage  
“L” Output voltage1  
“L” Output voltage2  
Input current 1  
VIH  
VIL  
0.8 × VDD  
VDD  
0.2 × VDD  
V
*1  
0
0.8 × VDD  
VOH  
VOL1  
VOL2  
IIL1  
IOH = –0.5 mA  
IOL = 0.5 mA  
IOL = 0.5 mA  
V
V
*2  
0.2 × VDD  
0.2 × VDD  
+1.0  
SDAACK  
–1.0  
–3.0  
*3  
*4  
VI = VDD or VI = 0 V  
µA  
Input current 2  
IIL2  
+3.0  
Ta=25°C,  
F=10kHz  
Input capacitance  
CI  
8
12  
pF  
*1  
V1 output voltage  
Ta = 25°C  
V1TC  
-0.06  
%/°C  
V1  
temperature gradient  
V1 = 12 V *5  
Reference voltage  
V1 output voltage  
VREG  
V1  
Ta = 25°C  
*6  
2.925  
10.59  
3.00  
3.075  
11.13  
V
V
VRS  
V1  
10.86  
2-time  
multiplication *7  
9
3-time  
multiplication *8  
13.5  
13.5  
Voltage multiplier  
output voltage  
VOUT  
V
VOUT1  
4-time  
multiplication *9  
5-time  
multiplication *10  
13.5  
0.6  
VOUT - V1 voltage  
Vot1  
RON  
*11  
V
VOUT2, V1  
IO = ±50 µA,  
V1=10V, 1/9bias  
SEG0 to 179,  
COMS0,  
COMS1,  
1.0  
1.5  
LCD driver ON  
resistance  
kΩ  
IO = ±50 µA,  
V1=6V, 1/4bias  
2.0  
3.0  
COM0 to 63  
Ta = 25°C  
799  
666  
832  
865  
998  
kHz  
kHz  
Internal  
oscillation  
fOSC  
*12  
Oscillator  
frequency  
External  
input  
fEXT  
100  
250  
kHz  
CL*12  
*1:  
A0, DB0 to DB5, DB6 (SCL), DB7 (SI), RD(E), WR(R/W), CS1, CS2, CLS, CL, M/S, C86, P/S, RES,  
IRS, FR, DOF, SYNC Pins  
*2:  
*3:  
*4:  
DB0 to DB7, FR, DOF, SYNC, CL Pins  
A0, RD(E), WR(R/W), CS1, CS2, CLS, M/S, C86, P/S, RES, IRS Pins  
Applicable to the pins DB0 to DB5, DB6 (SCL), DB7 (SI), CL, FR, DOF, SYNC in the high  
impedance state.  
*5:  
*6:  
Temperature gradient select : (DB2, DB1, DB0)=(0, 1, 0)  
Ta = 25°C, D7=0,α =57, (1+Rb/Ra) = 4, Voltage multiplier output voltage (VOUT) = 13.5 V (External  
input), LCD drive output = no-load, See Power Supply Circuit. (Page 39)  
5/84  
FEDL9445A-01  
ML9445A  
*7:  
*8:  
*9:  
VIN = 5.0 V, voltage multiplier capacitor C1 = 2.6 to 4.0 µF, voltage multiplier output load current  
I = 500 µA. Only a voltage multiplier circuit operates, not activating the voltage adjustment circuit  
and V/F circuit, by power control set command.  
VIN = 5.00 V, voltage multiplier capacitor C1 = 2.6 to 4.0 µF, voltage multiplier output load current  
I = 500 µA. Only a voltage multiplier circuit operates, not activating the voltage adjustment circuit  
and V/F circuit, by power control set command.  
VIN = 3.75 V, voltage multiplier capacitor C1 = 2.6 to 4.0 µF, voltage multiplier output load current  
I = 500 µA. Only a voltage multiplier circuit operates, not activating the voltage adjustment circuit  
and V/F circuit, by power control set command.  
*10: VIN = 3.0 V, voltage multiplier capacitor C1 = 2.6 to 4.0 µF, voltage multiplier output load current  
I = 500 µA. Only a voltage multiplier circuit operates, not activating the voltage adjustment circuit  
and V/F circuit, by power control set command.  
*11: V1 load current I = 400 µA. 8 V is externally input to VOUT2.  
The voltage adjustment circuit and V/F circuit operate by power control set command.  
LCD output = no load  
*12: See Table 1 for the relationship between the oscillator frequency and the frame frequency.  
Table 1. Relationship among the oscillator frequency (fOSC), external input frequency(fEXT  
display clock frequency (fLCDCK), and LCD frame frequency (fFR)  
)
Ratio of dividing frequency: 1/n , Number of Display Line : L  
Display clock frequency  
(fLCDCK  
LCD frame frequency  
(fFR  
OSC /(16*n*L)  
Parameter  
)
)
1/65 to 1/50 duty  
Fosc/16/n  
FOSC* (2/3)/16/n  
FOSC *(1/2)/16/n  
FOSC * (1/4)/16/n  
fEXT/16  
F
When the internal  
oscillator is used  
1/49 to 1/34 duty  
1/33 to 1/18 duty  
1/17 or less  
FOSC *(3/4) /(16*n*L)  
FOSC *(1/2) /(16*n*L)  
FOSC *(1/4) /(16*n*L)  
fEXT/(16*L)  
ML9445A  
When the internal oscillator is not used  
6/84  
FEDL9445A-01  
ML9445A  
Operating current consumption value  
(1) During display operation, internal power supply OFF (The current flowing through VDD with V1 to V5  
externally applied when an external power supply is used, not including the current for the LCD drive)  
[VSS=0V, Ta=25°C]  
Rated value  
Display mode  
All-white  
Symbol  
IDD  
Condition  
Unit  
Min  
Typ  
175  
155  
175  
155  
Max  
300  
250  
300  
250  
VDD = 5 V, V1- VSS = 11 V, no load  
VDD = 2.7 V, V1- VSS = 8 V, no load  
VDD = 5 V, V1- VSS = 11 V, no load  
VDD = 2.7 V, V1- VSS = 8 V, no load  
µA  
Checker pattern  
IDD  
µA  
(2) During display operation, internal power supply ON (Total of currents flowing through VDD and VIN)  
[VSS=0V, Ta=25°C]  
Rated value  
Typ  
Display  
mode  
Symbol  
Condition  
Unit  
Min  
Max  
700  
Frame reversal,  
DD, VIN = 5 V, 3-time voltage multiplication  
V
450  
300  
V1 - VSS= 11 V, no load  
Frame reversal,  
VDD, VIN = 2.7 V, 4-time voltage multiplication  
V1 - VSS= 8 V, no load  
All-white  
IDDIN  
600  
800  
µA  
16-line reversal,  
VDD, VIN = 5 V, 3-time voltage multiplication  
V1 - VSS= 11 V, no load  
600  
Frame reversal,  
V
DD, VIN = 5 V, 3-time voltage multiplication  
1450  
1700  
1500  
1700  
2000  
1700  
V1 - VSS= 11 V, no load  
Frame reversal,  
Checker  
pattern  
VDD, VIN = 2.7 V, 4-time voltage multiplication  
V1 - VSS= 8 V, no load  
IDDIN  
µA  
16-line reversal,  
VDD, VIN = 5 V, 3-time voltage multiplication  
V1 - VSS= 11 V, no load  
Power save mode current consumption  
[VSS=0V, Ta=25°C]  
Rated value  
Typ  
Parameter  
Symbol  
IDDS1  
Condition  
Unit  
Min  
Max  
20  
Sleep mode  
VDD = 3.7 V  
4
µA  
7/84  
FEDL9445A-01  
ML9445A  
Temperature Sensor Characteristics  
[VSS=0V, VDD=2.7 to 5.5V, Ta=–40 to +105°C]  
Rated value  
Unit  
Parameter  
Symbol  
VSVD2  
VGRA  
Condition  
Min  
Typ  
Max  
-40℃  
25℃  
105℃  
1.482  
1.177  
0.801  
1.506  
1.2  
0.824  
1.529  
1.224  
0.848  
V
Output voltage  
Output voltage temperature  
gradient  
-4.7  
mV/℃  
Output voltage setup  
time  
tSEN  
ISEN  
100  
ms  
25℃  
10  
30  
µA  
Operating current  
8/84  
FEDL9445A-01  
ML9445A  
Switching Characteristics  
System bus Write characteristics 1 (80-series MPU)  
VIH  
VIL  
VIH  
VIL  
A0  
tAW8  
tAH8  
CS1  
(CS2 = “H”)  
tCYC8  
tCCLW  
VIH  
VIH  
VIH  
WR  
VIL  
VIL  
tCCHW  
tDS8  
tDH8  
DB0 to DB7  
(Write)  
VIH  
VIL  
VIH  
VIL  
System bus Read characteristics 1 (80-series MPU)  
VIH  
VIL  
VIH  
VIL  
A0  
tAH8  
tAW8  
CS1  
(CS2 = “H”)  
tCYC8  
VIH  
tCCLR  
VIH  
VIH  
RD  
VIL  
VIL  
tCCHR  
tOH8  
tACC8  
VOH  
VOL  
VOH  
VOL  
DB0 to DB7  
(Read)  
9/84  
FEDL9445A-01  
ML9445A  
[VDD=2.7 to 5.5V, Ta=–40 to +105°C]  
Rated value  
Parameter  
Address hold time  
Symbol  
Condition  
Unit  
Min  
5
Max  
tAH8  
tAW8  
Address setup time  
System cycle time  
5
tCYC8  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
tDS8  
300  
60  
240  
60  
60  
40  
15  
Control L pulse width (WR)  
Control L pulse width (RD)  
Control H pulse width (WR)  
Control H pulse width (RD)  
Data setup time  
ns  
Data hold time  
tDH8  
RDAccess time  
tACC8  
tOH8  
240  
100  
CL = 100 pF  
Output disable time  
10  
Note 1: The input signal rise and fall times are specified as 15ns or less.  
When using the system cycle time for fast speed, the specified values are  
(tr + tf) (tCYC8 – tCCLW – tCCHW) or (tr + tf) (tCYC8 – tCCLR – tCCHR).  
Note 2: All timings are specified taking the levels of 20% and 80% of VDD as the reference.  
Note 3: The values of tCCLW and tCCLR are specified during the overlapping period of CS1at “L”  
(CS2 = “H”) and the “L” levels of WRand RD, respectively.  
10/84  
FEDL9445A-01  
ML9445A  
System bus Write characteristics 2 (68-series MPU)  
VIH  
VIL  
VIH  
VIL  
A0  
tAH6  
tAW6  
R/W  
VIL  
VIL  
CS1  
(CS2 = “H”)  
tCYC6  
tEWHW  
E
VIH  
VIH  
VIL  
VIL  
VIL  
tEWLW  
tDS6  
tDH6  
DB0 to DB7  
(Write)  
VIH  
VIL  
VIH  
VIL  
System bus Read characteristics 2 (68-series MPU)  
VIH  
VIL  
VIH  
VIL  
A0  
VIH  
tAW6  
tAH6  
VIH  
R/W  
CS1  
(CS2 = “H”)  
tCYC6  
tEWHR  
E
VIH  
VIH  
VIL  
VIL  
VIL  
tEWLR  
tOH6  
tACC6  
VOH  
VOL  
VOH  
VOL  
DB0 to DB7  
(Read)  
11/84  
FEDL9445A-01  
ML9445A  
[VDD=2.7 to 5.5V, Ta=–40 to +105°C]  
Rated value  
Parameter  
Address hold time  
Symbol  
Condition  
Unit  
Min  
5
Max  
tAH6  
tAW6  
tCYC6  
tDS6  
Address setup time  
System cycle time  
Data setup time  
Data hold time  
5
300  
40  
15  
tDH6  
Access time  
tACC6  
tOH6  
240  
100  
ns  
CL = 100 pF  
Output disable time  
10  
240  
60  
60  
60  
Read  
Write  
Read  
Write  
tEWHR  
tEWHW  
tEWLR  
tEWLW  
Enable H pulse width  
Enable L pulse width  
Note 1: The input signal rise and fall times are specified as 15ns or less.  
When using the system cycle time for fast speed, the specified values are  
(tr + tf) (tCYC6 – tEWLW – tEWHW) or (tr + tf) (tCYC6 – tEWLR – tEWHR).  
Note 2: All timings are specified taking the levels of 20% and 80% of VDD as the reference.  
Note 3: The values of tEWLW and tEWLR are specified during the overlapping period of CS1at “L”  
(CS2 = “H”) and the “H” level of E.  
12/84  
FEDL9445A-01  
ML9445A  
Serial interface  
tCSS  
tCSH  
CS1  
VIL  
VIL  
(CS2 = “1”)  
tSAH  
VIH  
VIL  
tSCYC  
VIH  
tSAS  
VIH  
VIL  
A0  
tSLW  
VIH  
VIH  
SCL  
VIL  
VIL  
VIL  
tf  
tSHW  
tr  
tSDH  
tSDS  
VIH  
VIL  
VIH  
VIL  
SI  
[VDD=2.7 to 4.5 V, Ta=–40 to +105°C]  
Rated value  
Parameter  
Symbol  
Condition  
Unit  
Min  
250  
100  
100  
150  
150  
100  
100  
150  
150  
Max  
Serial clock period  
SCL “H” Pulse width  
SCL “L” Pulse width  
Address setup time  
Address hold time  
Data setup time  
Data hold time  
tSCYC  
tSHW  
tSLW  
tSAS  
tSAH  
tSDS  
tSDH  
tCSS  
tCSH  
ns  
CS setup time  
CS hold time  
Note 1: The input signal rise and fall times are specified as 15ns or less.  
Note 2: All timings are specified taking the levels of 20% and 80% of VDD as the reference.  
13/84  
FEDL9445A-01  
ML9445A  
I2C interface timing  
tꢇꢁꢂꢅꢈꢉ  
VIH  
VIL  
VIH  
VIL  
VIH  
VIH  
VIL  
SDA  
SCL  
SDA  
tBUF  
tLOW  
tHIGH  
VIH  
VIH  
VIL  
VIH  
VIH  
VIL  
VIH  
VIL  
VIL VIL  
tꢀꢁꢂꢃꢄꢅ  
tꢀꢁꢂꢁꢅꢄ  
VIH  
tꢃꢆꢂꢁꢅꢄ  
VIL  
tꢃꢆꢂꢃꢄꢅ  
tꢃꢆꢂꢃꢄꢊ  
(VDD = 2.7 to 5.5 V, Ta = -40 to +105°C)  
Item  
SCL clock frequency  
Symbol  
fSCL  
Condition  
Min.  
Max.  
3.4  
Unit  
MHz  
Hold time (repeat) "STATRT"  
condition  
tHD,STA  
160  
SCL "L" pulse width  
tLOW  
tHIGH  
160  
60  
SCL "H" pulse width  
Setup time for repeat "START"  
condition  
tSU,STA  
160  
ns  
Data hold time  
tHD,DAT  
tSU,DAT  
tSU,STO  
0
70  
Data setup time  
10  
Setup time for "STOP" condition  
Bus free time between "STOP"  
condition and "START" condition  
Data valid acknowledge time  
Data bus load capacitance  
Noise pulse width tolerance  
160  
tBUF  
160  
tVD,ACK  
Cb  
240  
100  
10  
pF  
ns  
twf  
Note 1: The input signal rise and fall times are specified as 0.1µs or less.  
Note 2: All timings are specified taking the levels of 20% and 80% of VDD as the reference.  
14/84  
FEDL9445A-01  
ML9445A  
Display control output timing  
VOH  
tDFR  
CL(OUT)  
VIH  
VIL  
FR  
[VDD=2.7 to 5.5V, Ta=–40 to +105°C]  
Rated value  
Unit  
Parameter  
Symbol  
tDFR  
Condition  
Min  
Typ  
20  
Max  
80  
FR Delay time  
CL = 50 pF  
ns  
Note 1: All timings are specified taking the levels of 20% and 80% of VDD as the reference.  
Note 2: Valid only when the device operates in master mode.  
Reset input timing  
tf  
tr  
tRW  
VIH  
VIH  
VIL  
RES  
VIL  
tR  
Internal state  
Being reset  
Reset complete  
[VDD=2.7 to 5.5 V, Ta=–40 to +105°C]  
Rated value  
Unit  
Parameter  
Symbol  
Condition  
Min  
1
Typ  
Max  
1
Reset time  
Reset “L” pulse width  
Noise pulse width tolerance  
tR  
µs  
ns  
tRW1  
tRW2  
50  
Note 1: The input signal rise and fall times (tr, tf) are specified as 15 ns or less.  
Note 2: All timings are specified taking the levels of 20% and 80% of VDD as the reference.  
15/84  
FEDL9445A-01  
ML9445A  
PIN DESCRIPTION  
Number  
of pins  
Function Pin name  
I/O  
I/O  
Description  
These are 8-bit bi-directional data bus pins that can be connected to  
8-bit standard MPU data bus pins.  
When a serial interface is selected (P/S= “L”,C86= “H”):  
DB7: Serial data input pin (SI)  
DB0 to  
DB7  
DB6: Serial clock input pin (SCL)  
2*8  
When the serial interface and the I2C interface are selected,  
DB0 to DB5 pins will be in the high impedance state.  
Fix the DB0 to DB5 pins at “H” or “L” level.  
DB0 to DB7 will be in the high impedance state when the chip select is  
in the inactive state.  
Normally, the lowest bit of the MPU address bus is connected and used  
for distinguishing between data and commands.  
A0  
2
2
I
I
A0 = “H”: Indicates that DB0 to DB7 is display data.  
A1 = “L”: Indicates that DB0 to DB7 is control data.  
Initial setting is made by making RES = “L”. The reset operation is  
made during the active level of the RESsignal.  
RES  
When the parallel interface and the serial interface are selected:  
These are the chip select signals. The Chip Select of the LSI  
becomes active when CS1 is “L” and also CS2 is “H” and allows  
the input/output of data or commands.  
When the I2C interface is selected:  
These are the slave address input signals. They set the lower 2  
bits of the slave address.  
CS1(SA0)  
2*2  
I
MPU  
Interface  
CS2(SA1)  
The active level of this signal is “L” when connected to an 80-series  
MPU. This pin is connected to the RDsignal of the 80-series MPU, and  
the data bus of the ML9445A goes into the output state when this  
signal is “L”.  
RD  
2
I
The active level of this signal is “H” when connected to a 68-series  
MPU. This pin will be the Enable and clock input pin when connected  
to a 68-series MPU.  
When a serial interface and I2C interface are selected (P/S= “L”), fix  
this pin at “H” or “L” level.  
(E)  
The active level of this signal is “L” when connected to an 80-series  
MPU. This pin is connected to the WR signal of the 80-series MPU.  
The data on the data bus is latched into the ML9445A at the rising edge  
of the WRsignal.  
WR  
When connected to a 68-series MPU, this pin becomes the input pin for  
the Read/Write control signal.  
2
I
(R/W)  
R/W= “H”: Read, R/W= “L”: Write  
When a serial interface and I2C interface are selected (P/S= “L”), fix  
this pin at “H” or “L” level.  
16/84  
FEDL9445A-01  
ML9445A  
Number  
of pins  
Function Pin name  
I/O  
Description  
This is the pin for selecting the MPU interface type.  
When parallel interface is selected (P/S= “H”):  
C86 = “H”: 68-Series MPU interface.  
C86  
2
I
C86 = “L”: 80-Series MPU interface.  
When serial interface and I2C interface are selected (P/S= “L”):  
C86 = “H”: Serial interface.  
C86 = “L”: I2C interface.  
P/S= “H”: Parallel interface.  
P/S= “L”: Serial interface or I2C interface.  
The pins of the LSI have the following functions depending on the state of  
P/Sinput.  
MPU  
Interface  
Data/comman  
P/S  
Data  
Read/Write  
Serial clock  
P/S  
2
I
d
“H”  
“L”  
A0  
A0  
DB0 to DB7  
RD, WR  
SI/SDA (DB7)  
SCL(DB6)  
During serial data input, it is not possible to read the display data in the  
RAM  
The I2C bus acknowledge output signal. Normally, use it as it is  
connected with the SDA pin. Connect an external pull-up resistor  
whenever necessary, as it is an open drain pin. The pull-up connection  
destination supply voltage shall be the VDD supply voltage or less.  
SDAACK  
2
2
I
I
This is the pin for selecting whether to enable or disable the internal  
oscillator circuit for the display clock.  
Oscillator  
CLS  
CLS = “H”: The internal oscillator circuit is enabled.  
circuit  
CLS = “L”: The internal oscillator circuit is disabled (External input).  
When CLS = “L”, the display clock is input at the pin CL.  
This is the pin for selecting whether master operation or slave operation is  
made towards the ML9445A. During slave operation, the synchronization  
with the LCD display system is achieved by inputting the timing signals  
necessary for LCD display.  
M/S= “H”: Master operation  
M/S= “L”: Slave operation  
The functions of the different circuits and pins will be as follows  
depending on the states of M/Sand CLS signals.  
Display  
timing  
generator  
M/S  
2
I
circuit  
Oscillator  
circuit  
Power  
supply circuit  
Enabled  
M/  
S
CLS  
CL  
FR  
SYNC  
DOF  
“H”  
“L”  
“H”  
“L”  
Enabled  
Disabled  
Output  
Input  
Input  
Input  
Output  
Output  
Input  
Output  
Output  
Input  
Output  
Output  
Input  
“H”  
“L”  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
Input  
Input  
Input  
17/84  
FEDL9445A-01  
ML9445A  
Number  
of pins  
Function Pin name  
I/O  
I/O  
Description  
This is the clock input/output pin.  
The function of this pin will be as follows depending on the states of M/S  
and CLS signals.  
M/S  
CLS  
“H”  
“L”  
CL  
Output  
Input  
Input  
Input  
“H”  
CL  
2
“H”  
“L”  
“L”  
When the ML9445A is used in the master/slave mode, the corresponding  
CL pin has to be connected.  
Display  
timing  
generator  
This is the input/output pin for LCD display frame reversal signal.  
M/S= “H”: Output  
circuit  
FR  
2
I/O  
M/S= “L”: Input  
When the ML9445A is used in the master/slave mode, the  
corresponding FR pin has to be connected.  
This is the blanking control pin for the LCD display.  
M/S= “H”: Output  
DOF  
2
2
I/O  
I/O  
M/S= “L”: Input  
When the ML9445A is used in the master/slave mode, the  
corresponding DOFpin has to be connected.  
This is the input/output pin for LCD synchronize signal.  
When the ML9445A is used in the master/slave mode, the  
corresponding SYNC pin has to be connected.  
SYNC  
This is the pin for selecting the resistor for adjusting the voltage V1.  
IRS = “H”: The internal resistor is used.  
IRS = “L”: The internal resistor is not used. The voltage V1 is adjusted  
using the external potential divider resistors connected to the pins VR.  
This pin is effective only in the master operation. This pin is tied to the  
“H” or the “L” level during slave operation.  
IRS  
2
I
Power  
supply  
VDD  
circuit  
VSS  
10  
12  
These pins are tied to the MPU power supply pin VCC.  
These are the 0 V pins connected to the system ground (GND).  
These pins are internal logic power supply pin.  
Connect capacitors between VSS pin.  
VCH  
VIN  
3
3
These are the reference power supply pins of the voltage multiplier circuit  
for driving the LCD.  
18/84  
FEDL9445A-01  
ML9445A  
Number  
of pins  
Function Pin name  
I/O  
Description  
These are the output pins for the LCD power supply voltage adjustment  
circuit. Leave these pins open.  
These are the output pins during 1st voltage multiplication.  
VRS  
VOUT1  
VH  
2
4
4
3
I/O  
I/O  
I/O  
Connect a capacitor between these pins and VSS  
These are the power input/output pins during 2nd voltage multiplication.  
Connect a capacitor between these pins and VSS  
These are the output pins during 2nd voltage multiplication.  
Connect a capacitor between these pins and VSS  
.
.
VOUT2  
.
These are the multiple level power supply pins for the LCD power  
supply. The voltages specified for the LCD cells are applied to these  
pins after resistor network voltage division or after impedance  
transformation using operational amplifiers. The voltages are specified  
taking VSS as the reference, and the following relationship should be  
maintained among them.  
V1 V2 V3 V4 V5 VSS  
V1  
V2  
V3  
V4  
V5  
Master operation: When the power supply is ON, the following voltages  
are applied to V2 to V5 from the built-in power supply circuit. The  
selection of voltages is determined by the LCD bias set command.  
4*5  
I/O  
Bias  
V2  
1/4  
1/5  
1/6  
1/7  
1/8  
1/9  
Power  
supply  
circuit  
3/4×V1 4/5×V1 5/6×V1 6/7×V1 7/8×V1 8/9×V1  
2/4×V1 3/5×V1 4/6×V1 5/7×V1 6/8×V1 7/9×V1  
2/4×V1 2/5×V1 2/6×V1 2/7×V1 2/8×V1 2/9×V1  
1/4×V1 1/5×V1 1/6×V1 1/7×V1 1/8×V1 1/9×V1  
V3  
V4  
V5  
Voltage adjustment pins. Voltages between V1 and VSS are applied  
using a resistance voltage divider. These pins are effective only when  
the internal resistors for voltage V1 adjustment are not used (IRS = “L”).  
Do not use these pins when the internal resistors for voltage V1  
adjustment are used (IRS = “H”).  
VR  
2
I
These are the pins for connecting the negative side of the capacitors  
for 1st voltage multiplication.  
VS1–  
VS2–  
VC2+  
VC3+  
7
7
5
5
O
O
Connect capacitors between these pins and VC3+, VC5+.  
These are the pins for connecting the negative side of the capacitors  
for 1st voltage multiplication.  
Connect capacitors between these pins and VC4+, VC6+.  
These are the input pins for 1st voltage multiplication.  
This pin inputs voltage which is open or same with VIN depending on  
voltage multiplication scaling factor.  
These are the input pins for 1st voltage multiplication.  
Apply the voltage equal to VIN to the pins or leave them open, depending  
on voltage multiplication values.  
I
I/O  
19/84  
FEDL9445A-01  
ML9445A  
Number  
of pins  
Function Pin name  
VC4+  
I/O  
I/O  
Description  
These are the pins for connecting the positive side of the capacitors for  
1st voltage multiplication. Connect capacitors between VS2– and these  
pins. For 3-time voltage multiplication, the pins are configured as  
inputs for voltage multiplication.  
5
5
These are the pins for connecting the positive side of the capacitors for  
1st voltage multiplication. Connect capacitors between VS1– and these  
pins. For 2-time voltage multiplication, the pins are configured as inputs  
for voltage multiplication.  
VC5+  
I/O  
Power  
supply  
These are the pins for connecting the positive side of the capacitors for  
1st voltage multiplication.  
VC6+  
VS3-  
VC7+  
5
4
4
O
O
O
circuit  
Connect capacitors between VS2– and these pins.  
These are the pins for connecting the positive side of the capacitors for  
2nd voltage multiplication.  
Connect capacitors between VC7+ and these pins.  
These are the pins for connecting the positive side of the capacitors for  
2nd voltage multiplication.  
Connect capacitors between VS3- and these pins.  
These are the LCD segment drive outputs.  
One of the levels among V1, V3, V4, and VSS is selected depending on  
the combination of the display RAM content and the FR signal  
Output voltage  
RAM Data  
FR  
Forward display Reverse display  
H
H
L
V1  
VSS  
V3  
V3  
V4  
SEG0 to  
SEG179  
180  
O
H
L
H
L
V1  
L
V4  
VSS  
Power save  
VSS  
LCD  
Drive  
output  
The output voltage is VSS when the Display OFF command is  
executed.  
These are the LCD common drive outputs.  
One of the levels among V1, V2, V5, and VSS is selected depending on  
the combination of the scan data and the FR signal.  
Scan data  
FR  
H
Output voltage  
H
VSS  
V1  
COM0 to  
COM63  
H
L
64  
O
L
H
V2  
L
L
V5  
Power save  
VSS  
The output voltage is VSS when the Display OFF command is  
executed.  
20/84  
FEDL9445A-01  
ML9445A  
Number  
of pins  
Function Pin name  
I/O  
O
Description  
These are the common output pins only for indicators. Both pins  
output the same signal. Leave these pins open when they are not  
used. The same signal is output in both master and slave operation  
modes.  
LCD  
COMS0  
Drive  
2
COMS1  
output  
Temp  
SVD2  
sensor  
2
2*2  
O
I
This is analog voltage output pin for temperature sensor.  
TEST1  
These are the pins for testing the IC chip. It has a Internal pull-down  
resistor. Use it as it is connected to GND.  
TEST3  
Test pin  
This pins for testing the IC chip. Leave these pins open during normal  
use.  
TEST2  
I
This is a floating pin.  
Avoid this pin from shorting with pins other than DUMMY in the wiring  
on the Chip On Glass.  
DUMMY  
31  
21/84  
FEDL9445A-01  
ML9445A  
FUNCTIONAL DESCRIPTION  
MPU Interface  
Selection of interface type  
The ML9445A carries out data transfer using either the 8-bit bi-directional data bus (DB0 to DB7) or the serial data  
input line (SI/SDA). Either the 8-bit parallel data input or serial data input can be selected interfaceas shown in  
Table 2 by setting the P/Spin and C86 pin to the “H” or the “L” level.  
Table 2 Selection of interface type (parallel/serial/I2C)  
P/S  
C86  
CS1  
CS2  
A0  
RD  
WR  
DB7  
DB6  
DB0 to DB5  
H:68  
L:80  
CS1  
CS1  
CS2  
CS2  
A0  
A0  
E
R/W  
DB7  
DB7  
DB6  
DB6  
DB0 to DB5  
DB0 to DB5  
H: Parallel input  
RD  
WR  
L: Serial input  
I2C  
H: Serial  
L:I2C  
CS1  
CS2  
SA1  
A0  
SI  
SCL  
SCL  
SA0  
SDA  
A hyphen (—) indicates that the pin can be tied to the “H” or the “L” level.  
Parallel interface  
When the parallel interface is selected, (P/S= “H”), it is possible to connect this LSI directly to the MPU bus of  
either an 80-series MPU or a 68-series MPU as shown in Table 3. depending on whether the pin C86 is set to “H”  
or “L”.  
Table 3 Selection of MPU during parallel interface (80–/68–series)  
C86  
CS1  
CS2  
A0  
RD  
WR  
DB0 to DB7  
H: 68-Series MPU bus  
L: 80-Series MPU bus  
CS1  
CS1  
CS2  
CS2  
A0  
A0  
E
R/W  
DB0 to DB7  
DB0 to DB7  
RD  
WR  
The data bus signals are identified as shown in Table 4 below depending on the combination of the signals A0, RD  
(E), and WR(R/W) of Table 3.  
Table 4 Identification of data bus signals during parallel interface  
Common  
A0  
68-Series  
80-Series  
R/W  
RD  
WR  
Display data read  
Display data write  
Status read  
1
1
0
0
1
0
1
0
0
1
0
1
1
0
1
0
Control data write (command)  
22/84  
FEDL9445A-01  
ML9445A  
Serial Interface  
When the serial interface is selected (P/S= “L”, C86 =“H”), the serial data input (SI) and the serial clock input  
(SCL) can be accepted if the chip is in the active state (CS1= “L” and CS2 = “H”). The serial interface consists of  
an 8-bit shift register and a 3-bit counter. The serial data is read in from the serial data input pin in the sequence  
DB7, DB6, ... , DB0 at the rising edge of the serial clock input, and is converted into parallel data at the rising edge  
of the 8th serial clock pulse and processed further. The identification of whether the serial data is display data or  
command is judged based on the A0 input, and the data is treated as display data when A0 is “H” and as command  
when A0 is “L”. The A0 input is read in and identified at the rising edge of the (8 × n) th serial clock pulse after the  
chip has become active. Fig. 1 shows the signal chart of the serial interface. (When the chip is not active, the shift  
register and the counter are reset to their initial states. No data read out is possible in the case of the serial interface.  
It is necessary to take sufficient care about wiring termination reflection and external noise in the case of the SCL  
signal. We recommend verification of operation in an actual unit.)  
CS1  
CS2  
DB7  
1
DB5  
3
DB7  
9
DB3  
DB6 DB5 DB4 DB2  
DB6  
2
DB4 DB3 DB2 DB1 DB0  
SI  
SCL  
A0  
4
5
6
7
8
10 11 12 13 14  
Fig. 1 Signal chart during serial interface  
I2C Interface  
Slave address  
Control byte  
R/W  
COMMAND  
LSB  
P
S
0
1
1
0
0
SA1 SA0  
0
A
A
MSB  
DATA/Command  
CO RS  
Salve address: 0 1 1 0 0  
CO: Consecutive control byte setting bit  
0: Last control byte, 1: Consecutive control byte  
RS: Command/data setting bit  
0: Command data, 1: Display data  
When the I2C interface is selected (P/S= “L”, C86 =“L”), the I2C data input (SDA) and the I2C clock input (SCL)  
can be data input. For the I2C interface, each IC is assigned with a 7-bit slave address. The first one byte in the  
transfer consists of this 7-bit slave address and the R/W bit that indicates the data transfer direction. Always input  
"0" to the eighth R/W bit because the ML9445A is a write-only LSI.  
The eight bits next to the slave address is a control byte. The first one bit is CO: consecutive command setting bit  
and the next one bit is RS: command/data setting bit (the remaining six bits are the Don't care bits).  
When CO = "0": Means the last control byte.  
When CO = "1": Means the control bytes are successively input.  
When RS = "0": Means the data to be input next is the command data.  
When RS = "1": Means the data to be input next is the display data.  
The display data can be successively input.  
23/84  
FEDL9445A-01  
ML9445A  
Example of Data Setting  
When inputting two commands  
When inputting two commands  
SA0  
COMMAND  
V
IH  
S
0
1
1
0
0
1
0
A
A
1
0
A
A
A
COMMAND  
DATA/Com  
0
0
P
When inputting the command and display data  
SA1  
COMMAND  
Display data  
Display data  
S
0
0
1
1
1
0
0
0
0
A
A
A
1
0
A
A
A
A
A
A
Display data  
Display data  
P
Chip select  
The ML9445A has the two chip select pins CS1and CS2, and the MPU interface or the serial interface is enabled  
only when CS1= “L” and CS2 = “H”. When the chip select signals are in the inactive state, the DB0 to DB7 lines  
will be in the high impedance state and the inputs A0, RD, and WRwill not be effective. When the serial interface  
has been selected, the shift register and the counter are reset when the chip select signals are in the inactive state.  
When the I2C interface is selected, CS1 and CS2 become the slave address setting pins SA0 and SA1.  
Accessing the display data RAM and the internal registers  
Accessing the ML9445A from the MPU side requires merely that the cycle time (tCYC) be satisfied, and high speed  
data transfer without requiring any wait time is possible. Also, during the data transfer with the MPU, the  
ML9445A carries out a type of pipeline processing between LSIs via a bus holder associated with the internal data  
bus. For example, when the MPU writes data in the display data RAM, the data is temporarily stored in the bus  
holder, and is then written into the display data RAM before the next data read cycle. Further, when the MPU  
reads out data in the display data RAM, first a dummy data read cycle is carried out to temporarily store the data in  
the bus holder which is then placed on the system bus and is read out during the next read cycle. There is a  
restriction on the read sequence of the display data RAM, which is that the read instruction immediately after  
setting the address does not read out the data of that address, but that data is output as the data of the address  
specified during the second data read sequence, and hence care should be taken about this during reading.  
Therefore, always one dummy read is necessary immediately after setting the address or after a write cycle: (The  
status read cannot use dummy read cycles.) This relationship is shown in Figs 2(a) and 2(b).  
24/84  
FEDL9445A-01  
ML9445A  
Data write  
WR  
Dn  
Dn + 1  
Dn + 2  
Dn + 3  
Dn + 3  
DATA  
Latch  
Dn  
Dn + 1  
Dn + 2  
BUS Holder  
Write Signal  
g n  
i m i t  
e t n I  
Fig. 2(a) Write sequence of display data RAM  
Data read  
WR  
RD  
P
M
N
unknown  
Dn  
Dn + 1  
DATA  
Address  
Preset  
Read Signal  
Column  
Address  
Increment N + 1  
Dn  
Preset N  
unknown  
N + 2  
Dn + 1  
Dn + 2  
BUS Holder  
Fig. 2(b) Read sequence of display data RAM  
Dn = Data  
N = Address data  
25/84  
FEDL9445A-01  
ML9445A  
Display Data RAM  
Display data RAM  
This is the RAM storing the dot data for display and has an organization of 65 (8 pages × 8 bits +1) × 180 × 2 bits.  
It is possible to access any required bit by specifying the page address and the column address. Since the display  
data DB7 to DB0 from the MPU corresponds to the LCD display in the direction of the common lines as shown in  
Fig. 3, there are fewer restrictions during display data transfer when the ML9445A is used in a multiple chip  
configuration, thereby making it easily possible to realize a display with a high degree of freedom. Also, since the  
display data RAM read/write from the MPU side is carried out via an I/O buffer, it is done independent of the  
signal read operation for the LCD drive. Consequently, the display is not affected by flickering, etc., even when  
the display data RAM is accessed asynchronously during the LCD display operation.  
DB0  
DB1  
DB2  
DB3  
DB4  
0
1
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
0
0
0
0
0
COM0  
COM1  
COM2  
COM3  
COM4  
Display data RAM  
LCD Display  
Fig. 3 Relationship between display data RAM and LCD display  
Page address circuit / Column address circuit  
The page address of the display data RAM is specified using the page address set command as shown in Fig. 4. For  
Address incremental direction, either the column direction or page direction can be selected by the Display Data  
Input Direction Select command. Whichever direction is chosen, increment is carried out by positive one(+1) after  
write or read operation.  
When the column direction is selected for address increment, the column address is increased by +1 for every write  
or read operation. After the column address has accessed up to B3H, the page address is incremented by +1 and the  
column address shifts to 00H.  
When the page direction is selected for address increment, the page address is increased with the column address  
locked in position. When the page address has accessed up to Page17, the column address is incremented by +1,  
and the page address goes to Page 0.  
Whichever direction is selected for address increment, the page address goes back to Page 0 and column address to  
00H after access up to the column address B3H of page address Page17.  
Also, as is shown in Table 5, it is possible to reverse the correspondence relationship between the display data  
RAM column address and the segment output using the ADC command (the segment driver direction select  
command). This reduces the IC placement restrictions at the time of assembling LCD modules.  
Table 5 Correspondence relationship between the display data RAM column address  
and the segment output  
SEGMENT Output  
ADC  
SEG0  
00(H)  
B3(H)  
SEG179  
B3(H)  
DB0 = “0”  
DB0 = “1”  
Column Address  
Column Address  
00(H)  
26/84  
FEDL9445A-01  
ML9445A  
Line address circuit  
The line address circuit is used for specifying the line address corresponding to the common output when  
displaying the contents of the display data RAM as is shown in Fig. 4. Normally, the topmost line in the display is  
specified using the display start line address set command (COM0 output in the forward display state of the  
common output, and COM63 output in the reverse display state). The display area starts from the specified display  
start line address to cover the area corresponding to the lines specified by the Duty Set command in the direction  
where the line address increments.  
It is possible to carry out screen scrolling by dynamically changing the line address using the display start line  
address set command.  
Display data latch circuit  
The display data latch circuit is a latch for temporarily storing the data from the display data RAM before being  
output to the LCD drive circuits. Since the commands for selecting forward/reverse display and turning the display  
ON/OFF control the data in this latch, the data in the display data RAM will not be changed.  
Oscillator Circuit  
This is an RC oscillator that generates the display clock. The oscillator circuit is effective only when M/S= “H”  
and also CLS = “H”. The oscillations will be stopped when CLS = “L”, and the display clock has to be input to the  
CL pin.  
27/84  
FEDL9445A-01  
ML9445A  
Line  
COM  
When the common output  
state is normal display  
Page Address  
DB4 DB3 DB2 DB1 DB0  
Data  
Address  
Output  
DB0  
00(H)  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB0  
DB0  
01(H)  
02(H)  
03(H)  
04(H)  
05(H)  
06(H)  
07(H)  
08(H)  
09(H)  
0A(H)  
0B(H)  
0C(H)  
0D(H)  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Page0  
Page1  
0E(H) (Start)  
COM14  
31(H)  
32(H)  
33(H)  
34(H)  
35(H)  
36(H)  
37(H)  
38(H)  
39(H)  
3A(H)  
3B(H)  
3C(H)  
3D(H)  
3E(H)  
3F(H)  
40(H)  
41(H)  
42(H)  
43(H)  
44(H)  
45(H)  
46(H)  
47(H)  
48(H)  
49(H)  
4A(H)  
4B(H)  
4C(H)  
4D(H)  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
Page6  
Page7  
Page8  
Page9  
4E(H)  
71(H)  
72(H)  
73(H)  
74(H)  
75(H)  
76(H)  
77(H)  
78(H)  
79(H)  
7A(H)  
7B(H)  
7C(H)  
7D(H)  
7E(H)  
7F(H)  
80(H)  
81(H)  
Page14  
Page15  
1
1
0
0
0
0
0
0
0
1
Page16  
Page17  
COMS  
The 80(H) is  
displayed  
irrespective of the  
display start line  
address.  
Fig. 4 Display data RAM address map  
28/84  
FEDL9445A-01  
ML9445A  
Display Timing Generator Circuit  
This circuit generates the timing signals for the line address circuit and the display data latch circuit from the  
display clock. The display data is latched in the display data latch circuit and is output to the segment drive output  
pins in synchronization with the display clock. This circuit generates the timing signals for the line address circuit  
and the display data latch circuit from the display clock. The display data is latched in the display data latch circuit  
and is output to the segment drive output pins in synchronization with the display clock. The read out of the  
display data to the LCD drive circuits is completely independent of the display data RAM access from the MPU.  
As a result, there is no bad influence such as flickering on the display even when the display data RAM is accessed  
asynchronously during the LCD display. Also, the internal common timing and LCD frame reversal (FR), field  
start signal (SYNC) are generated by this circuit from the display clock. The drive waveforms of the frame  
reversal drive method shown in Fig. 5(a) for the LCD drive circuits are generated by this circuit. The drive  
waveforms of the line reversal drive method shown in Fig. 5(b) are also generated by the command.  
64 65  
1
2
3
4
60  
62 63  
1
2
3
4
5
5
6
61  
64 65  
6
LCDCK  
(display clock)  
FR  
V1  
V2  
COM0  
V5  
VSS  
V1  
V2  
COM1  
V5  
VSS  
RAM  
DATA  
V1  
V3  
V4  
VSS  
SEGn  
Fig. 5(a) Waveforms in the frame reversal drive method  
29/84  
FEDL9445A-01  
ML9445A  
65  
64  
1
2
3
4
5
6
60 61 62 63 64 65  
1
2
3
4
5
6
LCDCK  
(display clock)  
FR  
V1  
V2  
COM0  
V5  
VSS  
V1  
V2  
COM1  
V5  
VSS  
RAM  
DATA  
V1  
V3  
V4  
VSS  
SEGn  
Fig. 5(b) Waveforms in the line reversal drive method  
When the ML9445A is used in a multiple chip configuration, it is necessary to supply the slave side display timing  
signals (FR, CL, and DOF) from the master side.  
The statuses of the signals FR, CL, and DOFare shown in Table 6.  
Table 6 Display timing signals in master mode and slave mode  
Operating mode  
FR  
CL  
DOF  
Output  
Output  
Input  
SYNC  
Output  
Output  
Input  
Internal oscillator circuit enabled (CLS = H)  
Internal oscillator circuit disabled (CLS = L)  
Internal oscillator circuit disabled (CLS = H)  
Internal oscillator circuit disabled (CLS = L)  
Output  
Output  
Input  
Output  
Input  
Input  
Input  
Master mode  
(M/S= “H”)  
Slave mode  
(M/S= “L”)  
Input  
Input  
Input  
30/84  
FEDL9445A-01  
ML9445A  
Common Output State Selection Circuit (see Table 7)  
Since the common output scanning directions can be set using the common output state selection command in the  
ML9445A, it is possible to reduce the IC placement restrictions at the time of assembling LCD modules.  
Table 7 Common output state settings  
State  
Common Scanning direction  
COM0 COM63  
Forward Display  
Reverse Display  
COM63 COM0  
LCD Drive Circuit  
This LSI incorporates 246 sets of multiplexers for the ML9445A that generate 4-level outputs for driving the LCD.  
These output the LCD drive voltage in accordance with the combination of the display data, common scanning  
signals, and the FR signal. Fig. 6 shows examples of the segment and common output waveforms in the frame  
reversal drive method.  
31/84  
FEDL9445A-01  
ML9445A  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
VDD  
VSS  
FR  
V1  
V2  
V3  
V4  
V5  
COM0  
VSS  
COM8  
COM9  
V1  
V2  
V3  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM1  
COM2  
V4  
V5  
VSS  
V1  
V2  
V3  
V4  
V5  
VSS  
V1  
V2  
V3  
SEG0  
SEG1  
SEG2  
V4  
V5  
VSS  
V1  
V2  
V3  
V4  
V5  
VSS  
V1  
V2  
V3  
V4  
V5  
VSS  
V1  
V2  
V3  
V4  
V5  
0V  
-V5  
-V4  
COM0-SEG0  
-V3  
-V2  
-V1  
V1  
V2  
V3  
V4  
V5  
0V  
-V5  
-V4  
COM0-SEG1  
-V3  
-V2  
-V1  
Fig. 6 Output waveforms in the frame reversal drive method  
(FR waveform/common waveform/segment waveform/voltage difference  
between common and segment)  
32/84  
FEDL9445A-01  
ML9445A  
Power Supply Circuit  
The ML9445A includes a power supply circuit for generating the voltage required for driving liquid crystals,  
consisting of four blocks; the 1st voltage multiplier circuit, 2nd voltage multiplier circuit, V1 voltage adjustment  
circuit, and voltage follower circuit. The circuit is effective only when the master operates. In the power supply  
circuit, it is possible to control the ON/OFF of each of the circuits of the 1st voltage multiplier circuit, 2nd voltage  
multipliers circuit, V1 voltage adjustment circuit, and voltage follower circuit separately, by using the power  
control set command. As a result, it is possible to use some parts of functions of both the external power supply and  
the internal power supply. Table 8-1 describes the functions controlled by the 4-bit data of the power control set  
command and Table 8-2 outlines the functions of power supply blocks.  
Figure 6-2 shows the voltage relationship among the power supply circuit blocks.  
Table 8-1 Details of functions controlled by the bits of the power control set command  
Control bit  
DB3  
Function controlled by the bit  
2nd Voltage multiplier circuit control bit  
1st Voltage multiplier circuit control bit  
DB2  
DB1  
Voltage adjustment circuit (V1 voltage adjustment circuit) control bit  
Voltage follower circuit (V/F circuit) control bit  
DB0  
VOUT2  
V1  
x2  
V2  
V3  
V4  
V5  
VOUT1  
x2x5  
VH  
VIN  
VSS  
2nd Voltage  
V1 Voltage  
multiplier circuit  
1st Voltage  
multiplier circuit  
V/F circuit  
adjustment  
circuit  
Fig. 6-2 The Voltage relationship among the power supply circuit blocks.  
33/84  
FEDL9445A-01  
ML9445A  
Table 8-2 Overview of Power Supply Block Functions  
Input  
Output  
Parameter  
Function  
Voltage  
Voltage  
Generates a multiplied voltage VOUT1 by multiplying the voltage between  
VIN and GND using the charge pump. Connecting a capacitor for voltage  
multiplication allows you to multiply the voltage by 2 to 5 times.  
1st Voltage  
VIN  
VOUT1  
multiplier circuit  
Consists of a voltage adjustment circuit and a 2-time voltage multiplier  
circuit. The voltage adjustment circuit generates VRS as the base voltage  
of the 2-time voltage multiplier circuit, and then the 2-time voltage multiplier  
circuit generates VOUT2 by multiplying VRS by 2 times.  
2nd Voltage  
VH,  
VOUT1  
multiplier circuit  
VOUT2  
V1 voltage  
This circuit adjusts the V1 voltage and generates the LCD drive voltage V1. VOUT2  
Resistive division is performed between V1 and VSS with a specified bias  
V1  
adjustment circuit  
V2, V3,  
V4, V5  
Voltage follower circuit ratio, and the LCD drive voltages V2, V3, V4, and V5 are generated by the  
voltage follower.  
V1  
For the combination of power supply circuit operations, the six possible states shown in Table 9 can be set by the  
register value of the power control set command.  
Table 9 Sample combination for reference  
Circuit  
External  
voltage  
input  
2nd  
Voltage  
1st  
No.  
State used  
DB3 DB2 DB1 DB0  
V1  
Voltage  
V/F  
ON  
ON  
Adjustment  
multiplier multiplier  
Only the internal power  
supply is used  
1
2
1
0
1
1
1
1
1
1
ON  
ON  
ON  
ON  
ON  
VIN  
VIN  
Only the internal power  
supply is used (2nd Voltage  
multiplier is not used)  
OFF  
Only the internal power  
supply is used (1st Voltage  
multiplier is not used)  
3
1
0
1
1
ON  
OFF  
ON  
ON  
VOUT1  
V1 adjustment and V/F  
circuits are used  
4
5
6
0
0
0
0
0
0
1
0
0
1
1
0
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
ON  
VOUT2  
V1  
Only V/F circuits are used  
Only the external power  
supply is used  
OFF  
V1 to V5  
If combinations other than the above are used, normal operation is not guaranteed.  
34/84  
FEDL9445A-01  
ML9445A  
1, The 1st voltage multiplier circuit, 2nd voltage multipliers circuit, V1 voltage adjustment circuit, and V/F  
circuit are used(all internal power supplies)  
Use this combination when not using the power supply from the external. All voltages required for driving LCD  
are generated from the VIN voltage. All internal power supplies are used. See Figure 13-1.  
2, Only the 1st voltage multiplier circuit, V1 voltage adjustment circuit, and V/F circuit are used (2nd  
voltage multiplier circuit is not used)  
Use this combination when not using the power supply from the external. All voltages required for  
driving LCD are generated from the VIN voltage.  
The number of capacitors for voltage multiplication can be reduced by stopping the 2nd voltage multiplier circuit.  
Short VOUT1, VH, and VOUT2 to use this combination. See Figure 13-2.  
3, Only the 2nd voltage multiplier circuit, V1 voltage adjustment circuit, and V/F circuit are used (1st  
voltage multiplier circuit is not used)  
Use this combination when the VOUT1 voltage can be supplied from the external. Although the capacitor for the 1st  
voltage multiplication is not connected, set the command to use the 1st voltage multiplier circuit (DB2 = “0”).  
See Figure 13-3.  
4, Only the V1 voltage adjustment circuit and V/F circuit are used  
Use this combination when the VOUT2 voltage can be supplied from the external. The V2, V3, V4, and V5 voltages  
are generated, which are the LCD drive voltages generated by the internal V1 voltage adjustment circuit and V/F  
circuit. Connect capacitors for retaining voltages to the V1 to V5 pins. The V1 voltage can be adjusted by the V1  
voltage adjustment command and the electronic potentiometer command. See Figure 13-4.  
5, Only the V/F circuit is used  
Use this combination when the V1 voltage can be supplied from the external.  
Connect capacitors for retaining voltages to the V2, V3, V4, and V5 pins which output the LCD drive voltages  
generated by the V/F circuit. See Figure 13-5.  
6, Only the external power supply is used (all internal power supplies are OFF)  
Use this combination when the V1, V2, V3, V4, and V5 voltages can be supplied from the external.  
See Figure 13-6.  
35/84  
FEDL9445A-01  
ML9445A  
1st Voltage multiplier circuits  
The 1st voltage multiplier circuit can multiply the VIN to VSS voltage by 2, 3, 4, or 5 times.  
Fig. 7-1 to 7-4 show the circuit connections and the voltage relationships.  
Fig. 7-1 2-time voltage multiplier circuit and voltage relationships in 2-time multiplication  
VIN  
VSS  
+
C1  
C1  
VOUT = 2 × VIN  
VOUT1  
VC6+  
VC4+  
VC2+  
VS2–  
VC5+  
VC3+  
= 10V  
+
OPEN  
OPEN  
*1 VIN = 5V  
VS = 0 V  
OPEN  
OPEN  
Voltage relationship in  
2-time multiplication  
VS1–  
2-time voltage  
multiplier circuit  
Connect capacitors between VC6+ and VS2- and between VOUT1 and VSS, open the VC4+, VC2+, VC3+, and VS1-  
pins, and short the VIN and VC5+ pins to use this connection. Should be used in the range of VIN = 3 to 5.5 V.  
Fig. 7-2 3-time voltage multiplier circuit and voltage relationships in 3-time multiplication  
VIN  
VSS  
+
VOUT = 3 × VIN  
C1  
C1  
VOUT1  
VC6+  
VC4+  
VC2+  
VS2–  
VC5+  
VC3+  
= 15V  
+
OPEN  
C1  
*1 VIN = 5V  
VS = 0 V  
+
OPEN  
Voltage relationship in  
3-time multiplication  
VS1–  
3-time voltage  
multiplier circuit  
Connect capacitors between VC6+ and VS2-, between VC5+ and VS1-, and between VOUT1 and VSS, open the  
VC2+, and VC3+ pins, and short the VIN and VC4+ pins to use this connection.  
Should be used in the range of VIN = 2.7 to 5.5 V.  
36/84  
FEDL9445A-01  
ML9445A  
Fig. 7-3 4-time voltage multiplier circuit and voltage relationships in 4-time multiplication  
VIN  
VSS  
+
VOUT = 4 × VIN  
C1  
VOUT1  
VC6+  
VC4+  
VC2+  
VS2–  
VC5+  
VC3+  
= 18V  
C1  
C1  
+
+
OPEN  
*1 VIN = 4.5V  
VS = 0 V  
C1  
+
Voltage relationship in  
4-time multiplication  
VS1–  
4-time voltage  
multiplier circuit  
Connect capacitors between VC6+ and VS2-, between VC4+ and VS2-, between VC5+ and VS1-, and between  
OUT1 and VSS, open the VC2+ pin, and short the VIN and VC3+ pins.  
V
Should be used in the range of VIN = 2.7 to 4.625 V.  
Fig. 7-4 5-time voltage multiplier circuit and voltage relationships in 5-time multiplication  
VIN  
VSS  
+
VOUT = 5 × VIN  
C1  
C1  
VOUT1  
VC6+  
VC4+  
VC2+  
VS2–  
VC5+  
VC3+  
= 18.5V  
+
+
C1  
*1 VIN = 3.7V  
VS = 0 V  
C1  
C1  
+
+
Voltage relationship in  
5-time multiplication  
VS1–  
5-time voltage  
multiplier circuit  
Connect capacitors between VC6+ and VS2-, between VC4+ and VS2-, between VC5+ and VS1-, between VC3+  
and VS1-, and between VOUT1 and VSS, and short the VIN and VC2+ pins to use this connection.  
Should be used in the range of VIN = 2.7 to 3.7 V.  
*1: The voltage range of VIN should be set from 6V to 18.5V so that the voltage at the pin VOUT does not  
exceed the voltage multiplier output voltage operating range.  
37/84  
FEDL9445A-01  
ML9445A  
2nd Voltage multiplier circuits  
It consists of a voltage adjustment circuit and 2-time voltage multiplier circuit. The voltage adjustment circuit  
operates in VOUT1 voltage systems, generates VH which is the base voltage of the 2nd voltage multiplier circuit, and  
generates VOUT2 with 2-time voltage multiplication of VH.  
The connection example for 2nd voltage multiplier circuits is shown in Fig. 9.  
VSS  
+
VOUT2  
+
VH  
+
VC7+  
VS3-  
Fig. 9 Connection examples for 2nd voltage multiplier circuits  
Connect capacitors between VOUT2 and VSS, between VH and VSS, and between VC7+ and VS3-.  
When you stop the 2nd voltage multiplier circuit and operate the V1 voltage adjustment circuit with the 1st boost  
output, short the VOUT2 pin to use VH and VOUT2  
.
38/84  
FEDL9445A-01  
ML9445A  
Voltage adjustment circuit  
The voltage multiplier output VOUT produces the LCD drive voltage V1 via the voltage adjustment circuit. Since  
the ML9445A incorporates a high accuracy constant voltage generator, a 128-level electronic potentiometer  
function, and also resistors for voltage V1 adjustment, it is possible to build a high accuracy voltage adjustment  
circuit with very few components.  
(a) When the internal resistors for voltage V1 adjustment are used  
It is possible to control the LCD power supply voltage V1 and adjust the intensity of LCD display using commands  
and without needing any external resistors, if the internal voltage V1 adjustment resistors and the electronic  
potentiometer function are used. The voltage V1 can be obtained by the following equation A-1 or A-2 in the  
range of V1<VOUT.  
Electronic potentiometer setting, DB7=0  
V1 = (1 + (Rb/Ra)) VEV = (1 + (Rb/Ra)) (1 – (α/600)) VREG (Eqn. A-1)  
Electronic potentiometer setting, DB7=1  
V1 = (1 + (Rb/Ra)) VEV = (1 + (Rb/Ra)) (1 – (α/300)) VREG (Eqn. A-2)  
With the setting of the most significant bit for the electronic potentiometer setting, the values of V for each step  
can be changed. DB7=1 has 2-time V than DB7=0.  
VEV (Constant voltage supply +  
electronic potentiometer)  
V1  
VRS  
(VREG)  
VR  
Internal Rb  
Internal Ra  
Fig. 10 V1 voltage adjustment circuit (equivalent circuit)  
VREG is a constant voltage generated inside the IC and VRS pin output voltage.  
Here, α is the electronic potentiometer function which allows one level among 128 levels to be selected by merely  
setting the data in the 7-bit electronic potentiometer register. The values of α set by the electronic potentiometer  
register are shown in Table 10.  
Table 10 Relationship between electronic potentiometer register and α  
α
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
127  
126  
125  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
0
1
For the V1 voltage setting using the electronic potentiometer function, the nominal value of the V1 output voltage  
accuracy is ±2.5%.  
39/84  
FEDL9445A-01  
ML9445A  
This value is shown under the following conditions: Ta=25, 4-time the voltage V1 adjustment internal resistor  
ratio, external resistor Vout=18.5V, no V1 load, and display OFF. Rb/Ra is the voltage V1 adjustment internal  
resistor ratio and can be adjusted to one of 8 levels by the voltage V1 adjustment internal resistor ratio set  
command. The reference values of the ratio (1 + Rb/Ra) according to the 3-bit data set in the voltage V1  
adjustment internal resistor ratio setting register are listed in Table 11.  
Table 11 Voltage V1 adjustment internal resistor ratio setting register values and the ratio  
(1+Rb/Ra) (Nominal)  
Register  
(1 + Rb/Ra)  
DB2  
0
DB1  
0
DB0  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Note: Use V1 gain in the range from 2.5 to 6 times. Because this LSI has temperature gradient, V1  
voltage rises at lower temperatures. When using V1 gain of 6 times, adjust the built-in electronic  
potentiometer so that V1 voltage does not exceed 18.5 V.  
When V1 is set using the built-in resistance ratio, the accuracies are shown in Table 12.  
Table 12 Relation between V1 Output Voltage Accuracy and V1 Gain Using Built-in Resistor  
V1 gain  
Parameter  
Unit  
2.5 times  
3 times  
±2.5  
9
3.5 times  
4 times  
±2.5  
12  
4.5 times  
5 times  
±2.5  
15  
5.5 times  
6 times  
±2.5  
18  
V1 output voltage accuracy  
V1 maximum output voltage  
±2.5  
±2.5  
±2.5  
±2.5  
%
V
7.5  
10.5  
13.5  
16.5  
Note: The V1 maximum output voltages in Table 12 are nominal values when Tj = 25°C, and electronic  
potentiometer α = 0. The V1 output voltage accuracy in Table 12 are values when V1 load current  
I = 0 µA, 18.5 V is externally input to VOUT, and display is turned OFF.  
(b) When external resistors are used (voltage V1 adjustment internal resistors are not used)  
It is also possible to set the LCD drive power supply voltage V1 without using the internal resistors for voltage V1  
adjustment but connecting external resistors (Ra' and Rb') between VSS & VR and between VR & V1. Even in this  
case, it is possible to control the LCD power supply voltage V1 and adjust the intensity of LCD display using  
commands if the electronic potentiometer function is used.  
The voltage V1 can be obtained by the following equation B-1 or B-2 in the range of V1<VOUT by setting the  
external resistors Ra' and Rb' appropriately.  
When the Electronic potentiometer setting DB7=0  
V1 = (1 + (Rb'/Ra')) VEV = (1 + (Rb'/Ra')) (1 – (α/600)) VREG (Eqn. B-1)  
When the Electronic potentiometer setting DB7=1  
V1 = (1 + (Rb'/Ra')) VEV = (1 + (Rb'/Ra')) (1 – (α/300)) VREG (Eqn. B-2)  
40/84  
FEDL9445A-01  
ML9445A  
External Rb'  
VR  
External Ra'  
VSS  
V1  
+
VEV (Constant voltage supply +  
electronic potentiometer)  
Fig. 11 V1 voltage adjustment circuit (equivalent circuit)  
Setting example: Setting V1 = 7 V at Tj = 25°C  
When the electronic potentiometer register value is set to the middle value of (DB7, DB6, DB5, DB4, DB3, DB2,  
DB1, DB0) = (0, 1, 0, 0, 0, 0, 0, 0), the value of α will be 63 and that of VREG will be 3.0 V, and hence the  
equation B-1 becomes as follows:  
V1 = (1 + (Rb'/Ra')) (1 – (α/600)) VREG  
7 = (1 + (Rb'/Ra')) (1 – (63/600)) 3.0 (Eqn. B-3)  
Further, if the current flowing through Ra' and Rb' is set as 5 µA, the value of Ra' + Rb' will be - Ra' + Rb' = 1.4  
M(Eqn. B-4)  
and hence,  
Rb'/Ra' = 1.61, Ra' = 537 k, Rb' = 863 k.  
In this case, the variability range of voltage V1 using the electronic potentiometer function will be as given in  
Table 13.  
Table 13 Example 1 of V1 variable-voltage range using electronic potentiometer function  
V1  
Min  
Typ  
Max  
Unit  
[V]  
Variable-voltage range  
6.17 (α = 127)  
7.0 (α = 31)  
7.82 (α = 0)  
(c) When external resistors are used (voltage V1 adjustment internal resistors are not used) and a variable resistor  
is also used  
It is possible to set the LCD drive power supply voltage V1 using fine adjustment of Ra' and Rb' by adding a  
variable resistor to the case of using external resistors in the above case. Even in this case, it is possible to control  
the LCD power supply voltage V1 and adjust the intensity of LCD display using commands if the electronic  
potentiometer function is used.  
The voltage V1 can be obtained by the following equation C-1 and C-2 in the range of V1<VOUT by setting the  
external resistors R1, R2 (variable resistor), and R3 appropriately and making fine adjustment of R2 (R2).  
When the Electronic potentiometer setting DB7=0  
V1 = (1 + (R3 + R2 R2)/(R1 + R2)) VEV  
= (1 + (R3 + R2 R2)/(R1 + R2)) (1 – (α/600)) VREG (Eqn. C-1)  
When the Electronic potentiometer setting DB7=1  
V1 = (1 + (R3 + R2 R2)/(R1 + R2)) VEV  
= (1 + (R3 + R2 R2)/(R1 + R2)) (1 – (α/300)) VREG (Eqn. C-2)  
41/84  
FEDL9445A-01  
ML9445A  
External R3  
External R2  
Rb'  
Ra'  
VR  
R2  
V1  
External R1  
VEV (Constant voltage supply +  
electronic potentiometer)  
VSS  
Fig. 12 V1 voltage adjustment circuit (equivalent circuit)  
Setting example: Setting V1 in the range 5 V to 9 V using R2 at Tj = 25°C .  
When the electronic potentiometer register value is set to (DB5, DB4, DB3, DB2, DB1, DB0) = (1, 0, 0, 0, 0, 0),  
the value of α will be 63 and that of VREG will be 3.0 V, and hence in order to make V1 = 9 V when R2 = 0, the  
equation C-1 becomes as follows:  
9 = (1 + (R3 + R2)/R1) (1 – (63/600)) (3.0) (Eqn. C-2)  
In order to make V1 = 5 V when R2 = R2,  
5 = (1 + R3/(R1+R2)) (1 – (63/600)) (3.0) (Eqn. C-3)  
Further, if the current flowing between VSS and V1 is set as 5 µA, the value of R1 + R2 + R3 becomes-  
R1 + R2 + R3 = 1.8 M(Eqn. C-4)  
and hence,  
R1 = 537 k, R2 = 430 k, R3 = 833 k.  
In this case, the variability range of voltage V1 using the electronic potentiometer function and the increment size  
will be as given in Table 14.  
Table 14 Example 2 of V1 variable-voltage range using electronic potentiometer function and  
variable resistor  
V1  
Min  
Typ  
Max  
Unit  
[V]  
Variable-voltage range  
4.40(α = 127)  
7.0 (α = 63)  
10.06 (α = 0)  
In Figures 11 and 12, the voltage VEV is obtained by the following equation by setting the electronic  
potentiometer between 0 and 127.  
VEV = (1 - (α/600)) VREG  
α = 0 : VEV = (1 – (0/600)) 3.0 V = 3.0 V  
α = 63 : VEV = (1 – (63/600)) 3.0 V = 2.680 V  
α = 127 : VEV = (1 – (127/600)) 3.0 V = 2.365 V  
The increment size of the electronic potentiometer at VEV when VREG = 3.0 is :  
3.0 – 2.365  
=  
= 5 mV (Nominal)  
127  
42/84  
FEDL9445A-01  
ML9445A  
When the electronic potentiometer register value is set to DB7= 1  
VEV=(1-(α/300))VREG  
α=0  
α=63  
α=127  
VEV = 1 – 0/300))・3.0V = 3.0V  
VEV = 1 – 63/300))・3.0V = 2.360V  
VEV = 1 – 127/300))・3.0V = 1.730V  
When VREG = 3.0 V  
The increment size is :  
3.0 V – 1.730 V  
=  
= 10 mV (Nominal)  
127  
* When using the voltage V1 adjustment internal resistors or the electronic potentiometer function, it is necessary  
to set at least the voltage adjustment circuit and the voltage follower circuits both in the operating state using  
the power control setting command. Also, when the voltage multiplier circuit is OFF, it is necessary to supply  
a voltage externally to the VOUT pin.  
* The pin VR is effective only when the voltage V1 adjustment internal resistors are not used (pin IRS = “L”).  
Leave this pin open when the voltage V1 adjustment internal resistors are being used (pin IRS = “H”).  
* Since the input impedance of the pin VR is high, it is necessary to take noise countermeasures such as using  
short wiring length or a shielded wire .  
* The supply current increases in proportion to the panel capacitance. When power consumption increases, the  
V
OUT level may fall. The voltage (VOUT – V1) should be more than 3 V.  
LCD Drive voltage generator circuits  
The voltage V1 is converted by resistive divider to produce V2, V3, V4, and V5 voltages. V2, V3, V4, and V5  
voltages are impedance – converted by the voltage follower, and is supplied to the LCD voltage generator circuits.  
A bias ratio is chosen by the bias set command.  
Table 15 Relationship between LCD bias set command and V2,V3,V4,V5  
LCD Bias Set Command Register Value (DB2, DB1, DB0)  
Voltage  
(0, 0, 0)  
1/4 bias  
(0, 0, 1)  
1/5 bias  
(0, 1, 0)  
1/6 bias  
(0, 1, 1)  
1/7 bias  
(1, 0, 0)  
1/8 bias  
(1, 0, 1)  
1/9 bias  
V2  
V3  
V4  
V5  
3/4V1  
2/4V1  
2/4V1  
1/4V1  
4/5V1  
3/5V1  
2/5V1  
1/5V1  
5/6V1  
4/6V1  
2/6V1  
1/6V1  
6/7V1  
5/7V1  
2/7V1  
1/7V1  
7/8V1  
6/8V1  
2/8V1  
1/8V1  
8/9V1  
7/9V1  
2/9V1  
1/9V1  
43/84  
FEDL9445A-01  
ML9445A  
Application circuits  
Fig. 13-1 to 13-6 show reference examples of power supply circuits.  
(Two V1 pins are described in the following examples for explanation, but they are the same.)  
Fig. 13-1 When all internal power supplies are used  
VIN = VDD, 5-time voltage multiplication.  
VIN = VDD, 5-time voltage multiplication.  
The internal V1 voltage adjustment resistor is used.  
The internal V1 voltage adjustment resistor is not used.  
VDD  
VDD  
S
S
IRS  
M/  
IRS  
M/  
C1  
+
C1  
+
VC7+  
VS3-  
VC7+  
VS3-  
VIN  
VIN  
C1  
C1  
+
+
C1  
C1  
+
+
VC6+  
VC4+  
VC2+  
VS2-  
VC5+  
VC3+  
VS1-  
VC6+  
VC4+  
VC2+  
VS2-  
VC5+  
VC3+  
VS1-  
C1  
C1  
+
+
C1  
C1  
+
+
R1 R2 R3  
V1  
OPEN  
VR  
VSS  
VR  
VSS  
VSS  
VSS  
C3  
C3  
C3  
C3  
C2  
C2  
C2  
C2  
C3  
C3  
C3  
C3  
C2  
C2  
C2  
C2  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
VOUT2  
VH  
VOUT1  
V1  
V2  
V3  
VOUT2  
VH  
VOUT1  
V1  
V2  
V3  
V4  
V5  
V4  
V5  
Fig. 13-2 When using the 1st voltage multiplier circuit, voltage adjustment circuit, and V/F circuit  
(2nd voltage multiplier circuit is stopped)  
VIN = VDD, 5-time voltage multiplication.  
The internal V1 voltage adjustment resistor is not used.  
VDD  
S
IRS  
M/  
OPEN  
OPEN  
VC7+  
VS3-  
VIN  
C1  
C1  
+
+
VC6+  
VC4+  
VC2+  
VS2-  
VC5+  
VC3+  
VS1-  
C1  
C1  
+
+
R1 R2 R3  
V1  
VR  
VSS  
VSS  
VOUT2  
VH  
VOUT1  
V1  
V2  
V3  
C3  
C3  
C2  
C2  
C2  
C2  
+
+
+
+
+
+
V4  
V5  
44/84  
FEDL9445A-01  
ML9445A  
Fig. 13-3 When using the 2nd voltage multiplier circuit, voltage adjustment circuit, and V/F circuit  
(1st voltage multiplier circuit is stopped)  
The voltage multiplier circuits are not used.  
The internal V1 voltage adjustment resistor is used.  
VDD  
S
IRS  
M/  
C1  
+
VC7+  
VS3-  
VIN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
VC6+  
VC4+  
VC2+  
VS2-  
VC5+  
VC3+  
VS1-  
OPEN  
VR  
VSS  
VSS  
C3  
C3  
+
+
VOUT2  
VH  
VOUT1  
VOUT1  
V1  
V2  
V3  
V4  
C3  
C2  
C2  
C2  
C2  
+
+
+
+
+
V5  
Fig. 13-4 When using only the voltage adjustment circuit and V/F circuit  
(The 1st and 2nd voltage multiplier circuits are stopped)  
The voltage multiplier circuits are not used.  
The internal V1 voltage adjustment resistor is used.  
VDD  
S
IRS  
M/  
OPEN  
OPEN  
VC7+  
VS3-  
VIN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
VC6+  
VC4+  
VC2+  
VS2-  
VC5+  
VC3+  
VS1-  
OPEN  
VR  
VSS  
VSS  
External  
VOUT2  
VH  
VOUT1  
OPEN  
OPEN  
Power  
Supply  
C1  
C2  
C2  
C2  
C2  
+
+
+
+
+
V1  
V2  
V3  
V4  
V5  
45/84  
FEDL9445A-01  
ML9445A  
Fig. 13-5 When using only V/F circuit  
(The 1st and 2nd voltage multiplier circuits and the voltage adjustment circuit are stopped)  
The voltage multiplier circuits are not used.  
The internal V1 voltage adjustment resistor is used.  
VDD  
S
IRS  
M/  
OPEN  
OPEN  
VC7+  
VS3-  
VIN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
VC6+  
VC4+  
VC2+  
VS2-  
VC5+  
VC3+  
VS1-  
OPEN  
VR  
VSS  
VSS  
OPEN  
OPEN  
OPEN  
VOUT2  
VH  
VOUT1  
V1  
V2  
V3  
External  
C2  
C2  
C2  
C2  
+
+
+
+
Power  
Supply  
V4  
V5  
Fig. 13-6 When not using the internal power supply (all supplied from the external)  
The voltage multiplier circuits are not used.  
The internal V1 voltage adjustment resistor is used.  
VDD  
S
IRS  
M/  
OPEN  
OPEN  
VC7+  
VS3-  
VIN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
VC6+  
VC4+  
VC2+  
VS2-  
VC5+  
VC3+  
VS1-  
OPEN  
VR  
VSS  
VSS  
OPEN  
OPEN  
OPEN  
VOUT2  
VH  
VOUT1  
V1  
External  
V2  
Power  
Supply  
V3  
V4  
V5  
46/84  
FEDL9445A-01  
ML9445A  
Capacitor Setting Reference Values  
The optimal values for the capacitors C1 and C2 shown in the reference examples of power supply circuits vary  
depending on the size of the liquid crystal panel.  
Determine the capacitance by displaying a pattern with a heavy load and selecting a value that stabilizes the LCD  
drive voltage. Table 16 shows the setting reference values for capacitors.  
Table 16 Capacitor Setting Reference Values  
Symbol  
C1  
C2  
Descriptions  
Capacity for supply voltage regulation  
Liguid crystal drive voltage retaining(smoothing) capacitor  
Capacity for set-up circuits  
Reference setting value [  
1.0 4.7  
0.47  
1.0  
μF]  
4.7  
4.7  
C3  
If the LCD panel is so large that the satisfactory display quality cannot be obtained by changing the capacitor  
values, stop the internal power supply circuit, and supply the LCD drive voltage from the external.  
Notes on COG Mounting  
When mounting the COG, there are resistance components caused by ITO wiring between the IC or external  
connecting parts (capacitor, resistor) and the power supply. These resistance components may degrade the liquid  
crystal display quality or may malfunction the IC. When designing a liquid crystal module, take the following three  
points into account and evaluate them under the practical prerequisites.  
1, Trace resistance of voltage multiplying system pins  
This IC's voltage multiplier circuits are switched with a transistor with very low ON resistance. In mounting the  
COG, ITO's trace resistance gets into the switching transistor in series and controls the voltage multiplication  
ability. Pay attention to the proper wiring to each capacitor, including making the ITO wiring as thick as possible.  
2, Trace resistance of power supply pins  
When current flow occurs momentarily as in case of the display switching, the supply voltage may drop  
momentarily in synchronization with the occurrence of current flow. If the ITO's wiring resistance to the power  
supply pin is high at this time, the supply voltage fluctuates greatly inside the IC and may malfunction the IC.  
Try to reduce the wiring impedance of the power supply line as much as possible to supply stabilized power to the  
IC.  
3, Creation of module sample with changed sheet resistance  
Evaluate the sample with the ITO trace resistance value changed, and select a sheet resistance material which has  
as much operating margin as possible.  
4, Recommended ITO resistance value  
VDD,VSS,VIN :≦ 50Ω  
VS1-,VS2-,VC4+,VC5+,VC6+,VS3-,VC7+ : ≦ 50Ω  
VOUT1,VOUT2:≦ 50Ω  
VCH,VH,V1,V2,V3,V4,V5 : ≦ 100Ω  
DB0DB7,A0,CS1,RD,WR:≦ 1kΩ  
RES,SVD2 : ≦ 10kΩ  
47/84  
FEDL9445A-01  
ML9445A  
Examples of Settings for the Power Supply Circuit  
Setting example: Setting VDD=VIN=5V, all internal power supplies are used, V1 voltage=13.475V】  
1st voltage multiplier circuit is used (3-time voltage multiplier) (see Figure 7-2)  
2nd voltage multiplier circuit is used (see Figure 9)  
Power control register: (DB4, DB3, DB2, DB1, DB0) = (1, 1, 1, 1)  
Voltage V1 adjustment internal resistance ratio: (1+Rb/Ra) =5.5  
Voltage V1 adjustment internal resistance ratio register: (DB2, DB1, DB0) = (1, 1, 0)  
The electronic potentiometer set: α=55  
Electronic potentiometer register: (DB7, DB6, DB5, DB4, DB3, DB2, DB1, DB0) = (1, 1, 0, 0, 1, 0, 0, 0)  
Vout1output voltage 5voltag  
Vout2output voltage 18V  
V1output =1 + Rb/Ra))・(1 ・((αα・(a))・VREG  
=5.5 × (1-55/300) × 3  
=13.475V  
Adjustment of 9.515V to 16.5V can be performed by setting change of electronic potentiometer register.  
48/84  
FEDL9445A-01  
ML9445A  
Application circuits  
TEST1  
VSS_O  
SDAACK  
SYNC  
FR  
OPEN  
OPEN  
OPEN  
OPEN  
OPEN  
CL  
DOF  
CS1  
CS1  
CS2  
RES  
A0  
RES  
A0  
VSS_O  
WR  
RD  
WR  
RD  
VDD_O  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
VCH  
SVD2  
SVD2  
OPEN  
TEST2  
VDD_O  
M/S  
CLS  
C86  
P/S  
IRS  
TEST3  
VSS  
VSS  
VDD  
VDD  
VIN  
OPEN  
OPEN  
VC3+  
VC5+  
VS1-  
VC2+  
VC4+  
VS2-  
VC6+  
VOUT1  
VH  
VS3-  
VC7+  
VOUT2  
VR  
OPEN  
OPEN  
VRS  
V1  
V2  
V3  
V4  
V5  
Master Operation: M/S="H"  
Parallel Data Input: P/S="H"  
80-Series MPU Interface: C86="L"  
Internal Oscillation circuit: CLS="H"  
V1 Adjusting - Internal Resistor is used : IRS="H"  
1st voltage multiplier circuit is used (see Figure 7-2)  
2nd voltage multiplier circuit is used  
C0=0.1uF, C1=1.0uF, C2=1.0uF, C3=4.7uF  
49/84  
FEDL9445A-01  
ML9445A  
Cascade Connection Example  
It is possible to expand the display area by using the ML9445A in a multiple chip configuration.  
LCDPanel  
360×65 Dots  
COM  
SEG  
ML9445A  
Master  
M/S  
SEG  
ML9445A  
Slave  
M/S  
COM  
FR  
SYNC  
CL  
DOF  
VDD  
VSS  
*
*
*
When the internal oscillator circuit is used.  
It is recommended to supply the LCD drive power supply from the external.  
It is possible to use the master-side internal power supply to supply the power to the slave. However,  
in this case, the required voltage may not be obtained due to the ITO trace resistance or the LCD  
panel load. Make a thorough evaluation before using this configuration.  
Initial setting  
Note: If electric charge remains in smoothing capacitor connected between the LCD driver voltage output pins (V1  
to V5) and the VSS pin, a malfunction might occur: the display screen gets dark for an instant when powered  
on.  
To avoid a malfunction at power-on, it is recommended to follow the flowchart in the “EXAMPLES OF  
SETTINGS FOR THE INSTRUCTIONS” section in page 63.  
50/84  
FEDL9445A-01  
ML9445A  
LIST OF OPERATION  
DBn  
No Operation  
A0 RD WR  
Comment  
7 6 5 4 3 2 1 0  
1 0 1 0 1 1 1 0  
1 0 1 0 1 1 1 1  
Display OFF  
0
0
1
1
0
0
LCD Display:  
OFF when DB0 = 0 ON when DB0 = 1  
1
Display ON  
Forward or reverse LCD display mode  
Forward when DB0 = 0  
Reverse when DB0 = 1  
Forward  
Reverse  
1 0 1 0 0 1 1 0  
1 0 1 0 0 1 1 1  
1 0 1 0 0 1 0 0  
1 0 1 0 0 1 0 1  
1 1 0 0 0 1 0 0  
1 1 0 0 0 1 0 1  
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
2
3
4
Display  
LCD  
OFF(Normal display)  
ON  
LCD  
All-on display  
Normal display when DB0 = 0  
All-on display when DB0 = 1  
Selects the common output scanning direction.  
Forward when DB= 0  
Reverse when DB0 = 1  
Common output state  
select  
Display start line set  
(2-byte command)  
1 0 0 0 1 0 1 0  
* * address  
0
0
1
1
0
0
The display starting line address in the display  
RAM is set.  
5
6
Page address set  
(2-byte command)  
1 0 1 1 0 0 0 0  
* * * address  
0
0
0
1
1
1
0
0
0
The page address in the display RAM is set.  
Column address set  
(upper bits)  
0 0 0 1 address  
(upper bits)  
The upper 4 bits of the column address in the  
display RAM is set.  
7
Column address set  
(lower bits)  
0 0 0 0 address  
(lower bits)  
The lower 4 bits of the column address in the  
display RAM is set.  
8
9
Display data write  
Display data read  
Write data  
Read data  
1
1
1
0
0
1
Writes data to the display data RAM.  
Reads data from the display data RAM.  
Display RAM data input direction.  
Column direction when DB0=1  
Page direction when DB0=1  
1 0 0 0 0 1 0 0  
1 0 0 0 0 1 0 1  
0
0
1
1
0
0
Display data input direction  
select  
10  
Correspondence to the segment output for the  
display data RAM address.  
Forward when DB0 = 0  
Forward  
1 0 1 0 0 0 0 0  
1 0 1 0 0 0 0 1  
0
0
1
1
0
0
11 ADC select  
Reverse  
Reverse when DB0 = 1  
n-line inversion drive  
register set  
(2-byte command)  
0 0 1 1 0 0 0 0  
* * * Invert line count  
12  
0
1
0
Line invert drive. Set the line count.  
Resets the line invert drive.  
n-line OFF when DB0 = 0  
n-line ON when DB1 = 1  
n-line  
13 inversion  
OFF  
ON  
1 1 1 0 0 1 0 0  
1 1 1 0 0 1 0 1  
0
0
1
1
0
0
drive  
0 1 1 0 1 1 0 1  
* * Number of Duty  
* * Start line  
0
0
0
1
1
1
0
0
0
Display Duty set  
(3-byte command)  
14  
Display duty set.  
Incrementing column address  
During a write: +1  
During a read: 0  
15 Read-modify-write  
16 end  
1 1 1 0 0 0 0 0  
0
1
0
1 1 1 0 1 1 1 0  
1 0 1 0 1 0 1 0  
0
0
1
1
0
0
Releases the read-modify-write state.  
Built-in oscillator circuit operation.  
OFF when DB0 = 0  
ON when DB1 = 1  
OFF  
ON  
17 Built-in OSC  
1 0 1 0 1 0 1 1  
0 1 1 1 Frequency  
0
0
1
1
0
0
Built-in oscillator frequency  
select  
18  
19  
Built-in oscillator frequency select.  
Power control set  
(2-byte command)  
0 0 1 0 1 0 0 0  
* * * * State  
0
0
1
1
0
0
Select built-in power supply operation state.  
51/84  
FEDL9445A-01  
ML9445A  
0 0 1 0 0  
Resistance  
ratio setting  
Voltage V1 adjustment  
internal resistance ratio set  
20  
0
1
0
Selects the internal resistor ratio.  
DBn  
No Operation  
A0 RD WR  
Comment  
7 6 5 4 3 2 1 0  
0 1 0 1 0 0 0 0  
* * * * * bias  
1 0 0 0 0 0 0 1  
Electronic volume  
LCD bias set  
21  
0
0
0
0
1
1
1
1
0
0
0
0
Sets the LCD drive voltage bias ratio.  
(2-byte command)  
Electronic volume set  
(2-byte command)  
Sets data in the electronic potentiometer  
register to adjust the V1 output voltage.  
22  
Discharges power supply circuit connection  
capacitor.  
OFF when DB0 = 0  
OFF  
1 1 1 0 1 0 1 0  
1 1 1 0 1 0 1 1  
0
0
1
1
0
0
23 Discharge  
ON  
ON when DB1 = 1  
Power save  
OFF when DB0 = 0  
ON when DB1 = 1  
OFF  
ON  
1 0 1 0 1 0 0 0  
1 0 1 0 1 0 0 1  
0
0
1
1
0
0
24 Power save  
Temperature gradient  
select  
Setting of temperature gradient of LCD  
voltage.  
25  
0 1 0 0 1 gradient  
* * * * * gradient  
0
0
1
0
0
1
26 Status read  
Issues the temperature gradient select bit.  
27 Reset  
1 1 1 0 0 0 1 0  
0 1 1 0 1 0 0 0  
0 1 1 0 1 0 0 1  
1 1 0 0 0 0 0 0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
Reset command  
Temperature  
sensor  
OFF  
ON  
Temperature sensor  
OFF when DB0 = 0 ON when DB0 = 1  
28  
DB=0 : COM0  
DB=1 : COM0  
COM1→ →COM63  
Common output direction  
select  
29  
30  
COM32COM33→→COM31COM63  
1 1 0 0 0 0 0 1  
0 1 0 1 0 1 0 1  
Multiplier clock frequency  
select (2-byte command)  
Multiplier clock frequency select  
Non-operation command  
* * * * * * Frequency  
31 NOP  
1 1 1 0 0 0 1 1  
*: Invalid data (input: Don’t care, output: Unknown)  
52/84  
FEDL9445A-01  
ML9445A  
DESCRIPTIONS OF OPERATION  
Display ON/OFF (Write)  
This is the command for controlling the turning on or off the LCD panel. The LCD display is turned on when a “1”  
is written in bit DB0 and is turned off when a “0” is written in this bit.  
A0  
0
DB7  
1
DB6  
0
DB5  
1
DB4  
0
DB3  
1
DB2  
1
DB1  
1
DB0  
1
Display ON  
Display OFF  
0
1
0
1
0
1
1
1
0
Forward/Reverse Display Mode (Write)  
It is possible to toggle the display on and off condition without changing the contents of the display data RAM. In  
this case, the contents of the display data RAM will be retained.  
A0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
RAM Data  
Display on when “H”  
Display on when “L”  
Forward  
Reverse  
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
1
LCD Display All-on ON/OFF (Write)  
Using this command, it is possible to forcibly turn ON all displays irrespective of the contents of the display data  
RAM. In this case, the contents of the display data RAM will be retained. Also, all displays can be in white in  
combination with a display inversion command.  
A0  
0
DB7  
1
DB6  
0
DB5  
1
DB4  
0
DB3  
0
DB2  
1
DB1  
0
DB0  
0
All-on display OFF  
(Normal display)  
All-on display ON  
0
1
0
1
0
0
1
0
1
The power save mode will be entered into when the Display all-on ON command is executed in the display OFF  
condition.  
Common Output State Select (Write)  
This command is used for selecting the scanning direction of the common output pins.  
Scanning direction  
COM0 COM63  
COM63 COM0  
A0  
0
DB7  
1
DB6  
1
DB5  
0
DB4  
0
DB3  
0
DB2  
1
DB1  
0
DB0  
0
Forward  
Reverse  
0
1
1
0
0
0
1
0
1
*: Invalid data  
53/84  
FEDL9445A-01  
ML9445A  
Display Start Line Set (2-byte command)  
This command specifies the display starting line address in the display data RAM.  
Normally, the topmost line in the display is specified using the display start line set command.  
It is possible to scroll the display screen by dynamically changing the address using the display start line set  
command. This command is a 2-byte command to be used together with the Display Start Line Set Mode Set  
Command and Display Start Line Set Register Set Command. So, be sure to set the both commands continuously.  
Display Start Line Set Mode Set (Write)  
When this command is input, the Display Start Line Set Command becomes valid. Once the display start line set  
mode is selected, any command other than the Display Start Line Set Command cannot be used. This status is  
released when any data is stored in the register by the Display Start Line Set Command.  
A0  
0
DB7  
1
DB6  
0
DB5  
0
DB4  
0
DB3  
1
DB2  
0
DB1  
1
DB0  
0
Display Start Line Set Register Set (Write)  
Setting of data to low order 7 bits of the display start line register by this command allows specification of the  
display start line address of the display data RAM. In addition, the most significant bit is for data setting of COM  
output pins only for indicators (COMS), and the data of 80H for 0 and 81H for 1 is for indicators.  
After the display start line register is set by inputting this command, the display start line mode is released.  
Line  
COMS  
Data  
A0  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
address  
00H  
01H  
02H  
03H  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
80H  
7EH  
7FH  
00H  
01H  
02H  
03H  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
81H  
7EH  
7FH  
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
Sequence of setting the Display Start Line  
Set Display Start Line Register  
The display start line set mode is released  
54/84  
FEDL9445A-01  
ML9445A  
Page Address Set (2-byte command)  
This command specifies the page address which corresponds to the lower address when accessing the display data  
RAM from the MPU side.  
It is possible to access any required bit in the display data RAM by specifying the page address and the column  
address. This command is a 2-byte command to be used together with the Page Address Mode Set Command and  
Page Address Resister Set Command. So, be sure to set the both commands continuously.  
Page Address Mode Set (Write)  
When this command is input, the Page Address Mode Set Command becomes valid. Once the Page Address Mode  
is selected, any command other than the Page Address Resister Set Command cannot be used. This status is  
released when any data is stored in the register by the Page Address Resister Set Command.  
A0  
0
DB7  
1
DB6  
0
DB5  
1
DB4  
1
DB3  
0
DB2  
0
DB1  
0
DB0  
0
Page Address Register Set (Write)  
When a 5-bit data is set in the page address register by this command, the line address takes the following value.  
After the page address register is set by inputting this command, the display page address set mode is released.  
Page address  
Page 0  
A0  
0
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
*
*
*
*
*
*
*
*
*
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
Page 1  
0
Page 3  
0
Page 16  
Page 17  
0
0
*
*
*
*
*
*
1
1
0
0
0
0
0
0
0
1
*: Invalid data  
Note: Do not specify values that do not exist as an address.  
Sequence of setting the Page Address Register  
Set Page Address Register  
The display start line set mode is released  
55/84  
FEDL9445A-01  
ML9445A  
Column Address Set (Write)  
This command specifies the column address of the display data RAM. The column address is specified by  
successively writing the upper 4 bits and the lower 4 bits.  
A0  
0
DB7  
0
DB6  
0
DB5  
0
DB4  
1
DB3  
a7  
DB2  
a6  
DB1  
a5  
DB0  
a4  
Upper bits  
Lower bits  
0
0
0
0
0
a3  
a2  
a1  
a0  
Column address  
a7  
0
a6  
a5  
a4  
0
a3  
0
a2  
a1  
a0  
0
00H  
01H  
02H  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
B2H  
B3H  
1
1
0
0
1
1
1
1
0
0
0
0
1
1
0
1
Note: Do not specify values that do not exist as an address.  
Display Data Write (Write)  
This command writes an 8-bit data at the specified address of the display data RAM. After writing, column address  
or page address is automatically incremented +1 by the Display Data Input Direction Select command. This  
enables the MPU to write the display data continuously.  
A0  
1
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
Write data  
Display Data Read (Read)  
This command read the 8-bit data from the specified address of the display data RAM. Since the column address is  
automatically incremented (by +1) after reading the data, the MPU can read successive display data from the  
display data RAM. Further, one dummy read operation is necessary immediately after setting the column data or  
page data. The display data cannot be read out when the serial interface is being used.  
A0  
1
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
Read data  
Display Data Input Direction Select (Write)  
This command sets the direction where the display RAM address number is automatically incremented.  
A0  
0
DB7  
1
DB6  
0
DB5  
0
DB4  
0
DB3  
0
DB2  
1
DB1  
0
DB0  
Column  
Page  
0
1
0
1
0
0
0
0
1
0
56/84  
FEDL9445A-01  
ML9445A  
ADC Select (Segment driver direction select) (Write)  
Using this command it is possible to reverse the relationship of correspondence between the column address of the  
display data RAM and the segment driver output. It is possible to reverse the sequence of the segment driver  
output pin by the command.  
A0  
0
DB7  
1
DB6  
0
DB5  
1
DB4  
0
DB3  
0
DB2  
0
DB1  
0
DB0  
0
Forward  
Reverse  
0
1
0
1
0
0
0
0
1
n-line Inversion Drive Register Set (2-byte command)  
This command sets the number of inversion lines of the liquid crystal AC drive to the register and starts line  
inversion drive. This command is a 2-byte command to be used together with the n-line inversion drive register  
mode set command and the n-line inversion drive register set command. So, be sure to set the both commands  
continuously.  
n-line Inversion Drive Register Mode Set (Write)  
When this command is input, the n-line inversion drive register set command becomes valid.  
Once the n-line inversion drive register mode is selected, any command other than the n-line inversion drive  
register set command cannot be used. This status is released when any data is stored in the register by the n-line  
inversion drive register set command.  
A0  
0
DB7  
0
DB6  
0
DB5  
1
DB4  
1
DB3  
0
DB2  
0
DB1  
0
DB0  
0
n-line Inversion Drive Register Set (Write)  
Setting of 5-bit data in the n-line inversion drive register by this command allows specification of the number of  
inversion lines. The n-line inversion drive register mode is released after the n-line inversion drive register is set by  
inputting this command.  
Number of line reversal  
A0  
*
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
1
2
3
*
*
*
*
*
*
*
*
*
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
*
*
*
*
*
*
*
*
*
*
31  
32  
1
1
1
1
1
1
1
1
0
1
*: Invalid data  
57/84  
FEDL9445A-01  
ML9445A  
Sequence of setting the Display Start Line  
n-Line Inversion Drive Register  
n-Line Inversion Drive set mode is released  
n-line Inversion Drive ON/OFF (Write)  
This command provides ON/OFF control of n-line inverting drive.  
A0  
0
DB7  
1
DB6  
1
DB5  
1
DB4  
0
DB3  
0
DB2  
1
DB1  
DB0  
0
OFF  
ON  
0
0
0
1
1
1
0
0
1
1
Display Duty Set (3-byte command)  
This command allows change display duty.  
Setting of the start line and duty of common output allows display of arbitrary location and the number of lines.  
COM output only for indicators (COMS) is output always after end line output. In addition, if the built-in oscillator  
circuit is used, execute master clock division depending on the setting. 1/65 to 1/50 duty: No division, 1/49 to 1/34  
duty: 2/3 division, 1/33 to 1/18: 1/2 division, 1/18 duty or less: 1/4 division  
This command is a 3-byte command to be used in combination with the display duty mode set command, display  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢂꢆꢅꢄꢉꢆꢂꢄꢊꢋꢌꢌꢍꢎꢀꢏꢄꢉꢂꢍꢅꢂꢄꢐꢈꢎꢆꢄꢅꢆꢇꢈꢉꢂꢆꢅꢄꢉꢆꢂꢄꢊꢋꢌꢌꢍꢎꢀꢑꢄꢍꢎꢀꢄꢂꢒꢆꢅꢆꢓꢋꢅꢆꢄꢔꢆꢄꢉꢁꢅꢆꢄꢂꢋꢄꢁꢉꢆꢄꢂꢒꢆꢄꢂꢒꢅꢆꢆꢄꢊꢋꢌꢌꢍꢎꢀꢉꢄ  
continuously.  
Display Duty Mode Set (Write)  
When this command is input, the display duty register set command and start line register set command become  
valid. Once the display duty mode is selected, any command other than the display duty register set command/start  
line register set command cannot be used. This status is released when any data is stored in the register by the  
display duty register set command and start line register set command.  
A0  
0
DB7  
0
DB6  
1
DB5  
1
DB4  
0
DB3  
1
DB2  
1
DB1  
0
DB0  
1
58/84  
FEDL9445A-01  
ML9445A  
Display Duty Register Set (Write)  
When a 6-bit data is set in the display duty register by this command, the display duty address takes the following  
value.  
Display Duty  
A0  
0
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
1/3  
1/4  
1/5  
*
*
*
*
*
*
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
*
0
0
1
0
1/64  
1/65  
0
0
*
*
*
*
1
1
1
1
1
1
1
1
1
1
0
1
*: Invalid data  
Start Line Register Set (Write)  
When a 6-bit data is set in the start line register by this command, the start line address takes the following value.  
When the status of common output is reversed, the commons in parentheses first will start. After the start line  
register is set by inputting this command, the display duty set mode is released.  
Start Line  
A0  
0
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
COM0 (COM63)  
COM1 (COM62)  
COM2 (COM61)  
COM3 (COM60)  
*
*
*
*
*
*
*
*
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
0
0
COM62 (COM1)  
COM63 (COM0)  
0
0
*
*
*
*
1
1
1
1
1
1
1
1
1
1
0
1
*: Invalid data  
Sequence of setting the Display Duty Set Register  
Set Display Duty Register  
The display start line set mode is released  
59/84  
FEDL9445A-01  
ML9445A  
Read Modify Write (Write)  
This command is used in combination with the end command. When this command is issued once, the page  
address and column address are not changed when the display data read command is issued, but is incremented (by  
+1) only when the display data write command is issued. (The incremental direction can be set by the display data  
input direction select command.) This condition is maintained until the end command is issued. When the end  
command is issued, the column address is restored to the address that was effective at the time the read modify  
write command was issued last. Using this function, it is possible to reduce the overhead on the MPU when  
repeatedly changing the data in special display area such as a blinking cursor.  
A0  
0
DB7  
1
DB6  
1
DB5  
1
DB4  
0
DB3  
0
DB2  
0
DB1  
0
DB0  
0
End (Write)  
This command releases the read-modify-write mode and restores the page address and column address to the value  
at the beginning of the mode.  
A0  
0
DB7  
1
DB6  
1
DB5  
1
DB4  
0
DB3  
1
DB2  
1
DB1  
1
DB0  
0
Restored  
....  
N
N + 1 N + 2  
N + m  
N
N + 3  
Column address  
or  
Page address  
Read-modify-write mode set  
End  
Built-in Oscillator Circuit ON/OFF (Write)  
This command starts the built-in oscillator circuit operation. It is enabled only in the master operation mode (M/S  
=HIGH) when built-in oscillator circuit is valid (CLS=HIGH).  
A0  
0
DB7  
1
DB6  
0
DB5  
1
DB4  
0
DB3  
1
DB2  
0
DB1  
1
DB0  
0
OFF  
ON  
0
1
0
1
0
1
0
1
1
60/84  
FEDL9445A-01  
ML9445A  
Operation Clock Frequency Select (Write)  
This command sets the dividing rate of the internal operation clock for the built-in oscillator frequency fosc. It is  
enabled only when the built-in oscillator circuit in ON. It is divided together with the display Duty set division.  
When the built-in oscillator circuit is OFF, the external clock fEXT to be input to CL pin directly becomes the  
internal operation clock.  
Ratio of dividing  
A0  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
frequency  
1/4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1/4.5  
1/5  
1/5.5  
1/6  
1/7  
1/8  
1/10  
1/12  
1/14  
1/16  
1/18  
1/20  
1/24  
1/28  
1/32  
Frame frequencies for typical numbers of display lines are listed below.  
Frame Frequency [Hz]  
DB3  
DB2  
DB1  
DB0  
65 Line  
200  
178  
160  
145  
133  
114  
100  
80  
50 Line  
260  
231  
208  
189  
173  
149  
130  
104  
87  
49 Line  
34 Line  
255  
227  
204  
185  
170  
146  
127  
102  
85  
33 Line  
197  
18 Line  
361  
321  
289  
263  
241  
206  
181  
144  
120  
103  
90  
17 Line  
191  
170  
153  
139  
127  
109  
96  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
177  
157  
141  
129  
118  
101  
88  
175  
158  
143  
131  
113  
98  
71  
79  
76  
67  
59  
66  
64  
57  
74  
51  
73  
56  
55  
50  
65  
44  
64  
49  
48  
44  
58  
39  
57  
44  
80  
42  
40  
52  
35  
51  
39  
72  
38  
33  
43  
29  
42  
33  
60  
32  
29  
37  
25  
36  
28  
52  
27  
25  
33  
22  
32  
25  
45  
24  
The table above shows the values at 25°C  
61/84  
FEDL9445A-01  
ML9445A  
The calculation formula for frame frequencies is shown below. It depends on the number of Duty sets.  
Duty  
1/65 to 1/50 duty  
1/49 to 1/34 duty  
1/33 to 1/18 duty  
1/17 or less  
LCD frame frequency (fFR  
)
FOSC /(16*n*L)  
FOSC *(2/3) /(16*n*L)  
FOSC *(1/2) /(16*n*L)  
FOSC *(1/4) /(16*n*L)  
Ratio of dividing frequency: n , Number of Display Line : L  
Power Control Set (2-byte command)  
This command set the functions of the power supply circuits. This command is a 2-byte command to be used  
together with the Power Control Mode Set Command and Power Control Register Set Command.  
Power Control Mode Set (Write)  
When this command is issued, the power control register set command becomes effective. Once the power control  
mode is set, it is not possible to issue any command other than the power control register set command. This  
condition is released after data has been set in the register using the power control register set command.  
A0  
0
DB7  
0
DB6  
0
DB5  
1
DB4  
0
DB3  
1
DB2  
0
DB1  
0
DB0  
0
Power Control Register Set (Write)  
When a power supply circuit is set in the power control register by this command, the line address takes the  
following value. After the display start line is set by inputting this command, the power control set mode is  
released.  
A0  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
2nd voltage multiplier circuit: OFF  
2nd voltage multiplier circuit: ON  
0
1
1st voltage multiplier circuit: OFF  
0
1
1st voltage multiplier circuit: ON  
0
*
*
*
*
Voltage adjustment circuit: OFF  
Voltage adjustment circuit: ON  
0
1
Voltage follower circuits: OFF  
Voltage follower circuits: ON  
0
1
*: Invalid data  
Sequence of setting the Power Control Register  
Set Power Control Register  
The power control mode is released  
62/84  
FEDL9445A-01  
ML9445A  
Voltage V1 Adjustment Internal Resistor Ratio Set  
This command sets the ratios of the internal resistors for adjusting the voltage V1.  
Resistor ratio  
A0  
0
DB7  
0
DB6  
0
DB5  
1
DB4  
0
DB3  
0
DB2  
0
DB1  
0
DB0  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
0
0
0
1
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
0
1
1
0
0
0
1
0
0
1
0
0
0
0
0
1
0
0
1
0
1
0
0
0
1
0
0
1
1
0
0
0
0
1
0
0
1
1
1
Note: Because this LSI has temperature gradient, V1 rises at lower temperatures. When using V1 gain  
of 6 times, adjust the built-in electronic potentiometer so that V1 does not exceed 18.5 V.  
LCD Bias Set (2-byte command)  
This command is used for selecting the bias ratio of the voltage necessary for driving the LCD device or panel.  
This command is a 2-byte command to be used together with the LCD Bias Set Command and LCD Bias Register  
Set Command.  
LCD Bias Mode Set (Write)  
When this command is issued, the LCD bias register set command becomes effective. Once the LCD bias mode is  
set, it is not possible to issue any command other than the LCD bias register set command. This condition is  
released after data has been set in the register using the power LCD bias register set command.  
A0  
0
DB7  
0
DB6  
1
DB5  
0
DB4  
1
DB3  
0
DB2  
0
DB1  
0
DB0  
0
63/84  
FEDL9445A-01  
ML9445A  
LCD Bias Register Set (Write)  
The bias ratio is set with setting of data to the LCD bias register with this command. After this command is input  
and the LCD bias register is set, the LCD bias mode is released.  
LCD bias  
1/4 bias  
1/5 bias  
1/6 bias  
1/7 bias  
1/8 bias  
1/9 bias  
A0  
0
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
0
DB1  
0
DB0  
0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
*: Invalid data  
(1,1,0) and (1,1,1) settings are forbidden.  
Sequence of setting the LCD Bias Register  
Set LCD Bias Register  
The LCD bias mode is released  
64/84  
FEDL9445A-01  
ML9445A  
Electronic Potentiometer (2-byte command)  
This command is used for controlling the LCD drive voltage V1 output by the voltage adjustment circuit of the  
internal LCD power supply and for adjusting the intensity of the LCD display. This is a two-byte command  
consisting of the Electronic potentiometer mode set command and the Electronic potentiometer register set  
command, both of which should always be issued successively as a pair.  
Electronic potentiometer mode set (Write)  
When this command is issued, the electronic potentiometer register set command becomes effective.  
Once the electronic potentiometer mode is set, it is not possible to issue any command other than the Electronic  
potentiometer register set command. This condition is released after data has been set in the register using the  
Electronic potentiometer register set command.  
A0  
0
DB7  
1
DB6  
0
DB5  
0
DB4  
0
DB3  
0
DB2  
0
DB1  
0
DB0  
1
Electronic potentiometer register set (Write)  
By setting a 7-bit data in the electronic potentiometer register using this command, it is possible to set the LCD  
drive voltage V1 to one of the 128 voltage levels.  
The electronic potentiometer mode is released after some data has been set in the electronic potentiometer register  
using this command.  
V
α
A0  
0
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
127  
126  
125  
124  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
0
0
small  
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
127  
126  
125  
124  
large  
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
Sequence of setting the electronic potentiometer register:  
The electronic potentiometer mode is released  
65/84  
FEDL9445A-01  
ML9445A  
Discharge ON/OFF (Write)  
This command discharges the capacitors connected to the power supply circuit.  
A0  
0
DB7  
1
DB6  
1
DB5  
1
DB4  
0
DB3  
1
DB2  
0
DB1  
DB0  
0
OFF  
ON  
1
1
0
1
1
1
0
1
0
1
This command short circuits each liquid crystal potential (V1 to V5) and Vss. When voltage is supplied to each  
liquid crystal drive potential externally, be sure to turn off the external power before executing this command.  
Power Save ON/OFF (Write)  
This command establishes the power save mode, thereby ensuring a substantial reduction of current consumption.  
A0  
0
DB7  
1
DB6  
0
DB5  
1
DB4  
0
DB3  
1
DB2  
0
DB1  
0
DB0  
0
OFF  
ON  
0
1
0
1
0
1
0
0
1
In the power save status, the display data and operation status before power save activation are held, and the  
display data RAM can be accessed from MPU.  
The power save OFF command is to release the power save status, and it returns to the status before the power save  
activation. If built-in power supply is used, it is turned on after the power save OFF command execution, and after  
a fixed time period for stabilization of the output voltage, the display operation is started.  
The internal conditions in the power save mode are as follows:  
(1) Stop of internal oscillator circuit.  
(2) Stop of LCD power supply circuit.  
(3) Stop of liquid crystal drive circuit (VSS level output is issued as the segment and common driver output).  
(4) Operation of VCH generation circuit and temperature sensor circuit.  
Temperature Gradient Set  
This command sets the temperature gradient characteristics of the liquid crystal drive voltage output from the  
built-in power supply circuit from eight states to one state. The temperature gradient of the liquid crystal drive  
voltage can be set according to the liquid crystal temperature gradient to be used.  
Temperature gradient [%/°C]  
A0  
0
DB7  
0
DB6  
1
DB5  
0
DB4  
0
DB3  
1
DB2  
0
DB1  
0
DB0  
0
0.00  
-0.03  
-0.06  
-0.08  
-0.10  
-0.13  
-0.15  
-0.18  
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
0
0
0
1
0
0
1
0
1
1
0
0
1
0
0
1
1
0
0
0
0
1
0
0
1
1
0
1
0
0
1
0
0
1
1
1
0
0
0
1
0
0
1
1
1
1
66/84  
FEDL9445A-01  
ML9445A  
Status Read (Read)  
This command reads out the temperature gradient select bit set on the register.  
A0  
DB7  
*
DB6  
*
DB5  
*
DB4  
*
DB3  
*
DB2  
T1  
DB1  
T2  
DB0  
T3  
0
*: Invalid data  
Reset (Write)  
This command initializes the display start line number, column address, page address, common output state,  
voltage V1 adjustment internal resistor ratio and the electronic potentiometer function, and also releases the  
read-modify-write mode or the test mode. This command does not affect the contents of the display data RAM.  
The reset operation is made after issuing the reset command.  
The initialization after switching on the power is carried out by the reset signal input to the RESpin.  
A0  
0
DB7  
1
DB6  
1
DB5  
1
DB4  
0
DB3  
0
DB2  
0
DB1  
1
DB0  
0
Temperature Sensor ON/OFF (Write)  
ON/OFF of a temperature sensor is specified with this command.  
A0  
0
DB7  
0
DB6  
1
DB5  
1
DB4  
DB3  
DB2  
0
DB1  
DB0  
OFF  
ON  
0
0
1
1
0
0
0
1
0
0
1
1
0
The temperature sensor circuit is controlled independently from Power Save Command.  
Common Output Direction Select (Write)  
This command sets the direction of the common output pin.  
Direction  
Normal Type  
Comb Type  
A0  
0
DB7  
1
DB6  
1
DB5  
0
DB4  
0
DB3  
0
DB2  
0
DB1  
0
DB0  
0
0
1
1
0
0
0
0
0
1
Normal Type: COM0COM1…. COM63  
Comb Type: COM0COM32COM1COM33…. COM31COM63  
67/84  
FEDL9445A-01  
ML9445A  
Multiplier Clock Frequency Select (2-byte command)  
This command selects the multiplier clock frequency of the 1st and 2nd voltage multiplier circuits. This command is  
a 2-byte command to be used together with the multiplier clock frequency select mode set command and the  
multiplier clock frequency select register set command. So, be sure to set the both commands continuously.  
Multiplier Clock Frequency Select mode set (Write)  
When this command is input, the multiplier clock frequency select register set command becomes valid. Once the  
multiplier clock frequency select mode is selected, any command other than the multiplier clock frequency select  
register set command cannot be used. This status is released when any data is stored in the register by the multiplier  
clock frequency select register set command.  
A0  
0
DB7  
0
DB6  
1
DB5  
0
DB4  
1
DB3  
0
DB2  
1
DB1  
0
DB0  
1
Multiplier Clock Frequency register set (Write)  
Setting of data in the multiplier clock frequency select register by this command allows specification of the  
multiplier clock frequency. The multiplier clock frequency select mode is released when the multiplier clock  
frequency select register is set by inputting this command.  
Frequency  
A0  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
Internal Clock  
fOSC/64  
External Clock  
fEXT/8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
*
fOSC/32  
fEXT/4  
fOSC/16  
fEXT/2  
Sequence of setting the multiplier clock frequency register:  
The Multiplier Clock Frequency mode is released  
NOP (Write)  
This is a No Operation command.  
A0  
0
DB7  
1
DB6  
1
DB5  
1
DB4  
0
DB3  
0
DB2  
0
DB1  
1
DB0  
1
68/84  
FEDL9445A-01  
ML9445A  
Initialized Condition Using the RES pin  
This LSI goes into the initialized condition when the RESinput goes to the “L” level. The initialized condition  
consists of the following conditions.  
(1) Display OFF  
(2) Forward display mode  
(3) All-on display off  
(4) Common output state: Forward  
(5) Display start line: Set to 1st line, Indicator address: Set to 80H  
(6) Page address: Set to 0 page  
(7) Column address: Set to 0 address  
(8) Display data input direction: Column direction  
(9) ADC select: Incremented (ADC command DB0 = “L”)  
(10) n-line inversion drive: OFF  
(11) n-line reversal number register: (DB4, DB3, DB2, DB1, DB0) = (1, 0, 0, 0, 0)  
(12) Display duty set: 1/65Duty, Start Line COM0  
(13) Read-modify-write: OFF  
(14) Built-in oscillation circuit: OFF  
(15) Oscillation frequency register: (DB4, DB3, DB2, DB1, DB0) = (0, 0, 0, 0)  
(16) Power control register: (DB4, DB3, DB2, DB1, DB0) = (0, 0, 0, 0)  
(17) Voltage V1 adjustment internal resistor ratio register: (DB2, DB1, DB0) = (1, 0, 0)  
(18) LCD Power supply bias ratio: 1/9 bias  
(19) The electronic potentiometer register set mode is released.  
Electronic potentiometer register: (DB5, DB4, DB3, DB2, DB1, DB0) = (1, 0, 0, 0, 0, 0)  
(20) Discharge: OFF  
(21) Power save: OFF  
(22) Temperature gradient resistor: (DB2, DB1, DB0) = (0, 0, 0) (0.00%/°C)  
(23) Register data in the serial interface: Clear  
(24) Temperature sensor: OFF  
(25) Common Output Direction: Normal  
(26) Multiplier Clock Frequency: (DB1, DB0)=(0,0)  
On the other hand, when the reset command is used, only the conditions (6) to (7), (13) above are set. As is shown  
in the “MPU Interface (example for reference)”, the RESpin is connected to the Reset pin of the MPU and the  
initialization of this LSI is made simultaneously with the resetting of the MPU. This LSI always has to be reset  
using the RESpin at the time the power is switched ON. Also, excessive current can flow through this LSI when  
the control signal from the MPU is in the high impedance state. It is necessary to take measures to ensure that the  
input pins of this LSI do not go into the high impedance state after the power has been switched ON.  
69/84  
FEDL9445A-01  
ML9445A  
EXAMPLES OF SETTINGS FOR THE INSTRUCTIONS  
Initial setup  
*6  
*7  
*(a)  
Function setting using command input (user settings)  
LCD Bias Set  
*12  
*13  
*14  
*15  
*16  
When the external LCD power supply  
circuit is used  
External LCD power supply entry  
Voltage V1 Adjustment Internal Resistor Ratio Set  
Electronic Potentiometer  
Temperature Gradient Set  
Power Control Set  
Wait for stabilization of the external  
LCD power supply  
*(b)  
Initial setting state complete  
*(a): Carry out power control set within 5ms after releasing the reset state.  
The 5ms duration changes depending on the panel characteristics and the value of the smoothing  
capacitor. We recommend verification of operation using an actual unit.  
*(b): When trace resistance in COG mounting does not exist, wait for over 300 ms.  
Since this value varies with trace resistance, V1, smoothing capacitors, or voltage multiplier  
capacitors in COG mounting, confirm operation on an actual circuit board when using this LSI.  
Notes: Sections to be referred to  
*1:  
*2:  
*3:  
*4:  
*5:  
*6:  
*7:  
*8:  
Functional description “Reset circuit”  
Description of operation “Forward/Reverse Display Mode”  
Description of operation “LCD Display All-on ON/OFF”  
Description of operation “Common Output Status Select”  
Description of operation “Display Start Line Set”  
Description of operation “ADC Select”  
Description of operation “Display Duty Set”  
Description of operation “n-line Inversion Drive Register Set”  
70/84  
FEDL9445A-01  
ML9445A  
*9:  
Description of operation “n-line Inversion Drive ON/OFF”  
*10: Description of operation “Built-in Oscillator Frequency Select”  
*11: Description of operation “Built-in Oscillator Circuit ON/OFF”  
*12: Description of operation “LCD Bias Set”  
*13: Functional description “Power supply circuit”,  
Operation description “Voltage V1 adjustment internal resistor ratio set”  
*14: Functional description “Power supply circuit”,  
Operation description “Electronic Potentiometer”  
*15: Operation description “Temperature Gradient Set”  
*16: Functional description “Power supply circuit”,  
Operation description “Power Control set”  
71/84  
FEDL9445A-01  
ML9445A  
Data Display  
Function stabilization using command input (user settings)  
Page address set  
*18  
Function stabilization using command input (user settings)  
Column address set  
*19  
Notes: Sections to be referred to  
*17: Description of operation “Display Data Input direction Select”  
*18: Description of operation “Page Address Set”  
*19: Description of operation “Column Address Set”  
*20: Description of operation “Display Data Write”  
*21: Description of operation “Display ON/OFF”  
72/84  
FEDL9445A-01  
ML9445A  
Power Supply OFF (*22)  
When an external LCD power supply circuit is used  
External LCD power supply OFF  
Function stabilization using command input (user settings)  
Discharge ON  
*24  
VDD-VSS Power supply OFF  
Notes: Sections to be referred to  
*22: The power supply of this LSI is switched OFF after switching OFF the internal power supply.  
Function description “Power supply circuit”  
If the power supply of this LSI is switched OFF when the internal power supply is still ON, since  
the state of supplying power to the built-in LCD drive circuits continues for a short duration, it  
may affect the display quality of the LCD panel. Always follow the power supply switching OFF  
sequence.  
*23: Description of operation “Power Save”  
*24:  
Description of operation “Discharge”  
73/84  
FEDL9445A-01  
ML9445A  
Refresh  
Although the ML9445A holds operation state by commands, excessive external noise might change the internal  
state.  
On a chip-mounting and system level, it is necessary to take countermeasures against preventing noise from  
occurring. It is recommended to use the refresh sequence periodically to control sudden noise.  
- Display Forward/Reverse  
- Set “LCD ALL-on display“ OFF  
- Common output state select  
- Display start line set  
- ADC select  
- Display Duty set  
- n-line inversion drive register set  
- n-line inversion drive ON/OFF  
- LCD bias set  
- Voltage V1 adjustment internal resistance  
ratio set  
- Electronic potentiometer  
- Temperature gradient select  
- Power control set  
- Release the read-modify-write sate (END)  
(*25)  
- Set “NOP” operation  
- Display data input direction select  
- Page address set  
- Column address set  
- Display data write  
- Display ON  
*25: Regardless of presence of setting of “Read-modify-write” command, please carry out “END”  
command.  
74/84  
FEDL9445A-01  
ML9445A  
MPU INTERFACE  
The ML9445A series ICs can be connected directly to the 80-series and 68-series MPUs.  
Further, by using the serial interface, it is possible to operate the LSI with a minimum number of signal lines.  
In addition, it is possible to expand the display area by using the ML9445A series LSIs in a multiple chip  
configuration. In this case, it is possible to select the individual LSI to be accessed using the chip select signals.  
80-Series MPU  
VCC  
VDD  
VDD  
A0  
A1 to A7  
IORQ  
A0  
CS1  
C86  
Decoder  
CS2  
DB0 to DB7  
RD  
DB0 to DB7  
RD  
WR  
WR  
RES  
RES  
S
P/  
VSS  
GND  
RESET  
VSS  
68-Series MPU  
VCC  
VDD  
VDD  
A0  
CS1  
A0  
A1 to A15  
VMA  
C86  
Decoder  
CS2  
DB0 to DB7  
E
W
DB0 to DB7  
E
W
R/  
R/  
RES  
RES  
S
P/  
VSS  
GND  
RESET  
VSS  
Serial interface  
VCC  
VDD  
VDD  
A0  
CS1  
Port 3  
Port 4  
C86  
Port 5  
CS2  
Port1  
SI  
Port2  
RES  
SCL  
RES  
VSS  
S
P/  
GND  
RESET  
VSS  
75/84  
FEDL9445A-01  
ML9445A  
PAD CONFIGURATIONML9445A)  
Pad layout  
Chip size 12.7 x 1.26 mm  
Chip thickness : 400µm ±20µm  
197  
432  
B
Y
196  
181  
433  
X
(0,0)  
448  
A
1
Bump and alignment mark dimensions (pattern face)  
180  
PAD No.1180  
: 35 µm×72 µm  
: 84 µm×30µm  
: 30 µm×84 µm  
: 84 µm×30 µm  
PAD No.181196  
PAD No.197432  
PAD No.433448  
Alignment marks A and B : See below  
[Mark A]  
[Mark B]  
Coordinate position  
Coordinate position  
30μm  
30μm  
30μm  
47μm  
55μm  
30μm  
30μm  
30μm  
47μm  
55μm  
Aluminum (top metal) Passivation  
Aluminum (top metal) Passivation  
Alignment marks  
Mark A  
X-coordinate ( m)  
Y-coordinate ( m)  
µ
µ
6215  
-488  
-6228  
508  
Mark B  
76/84  
FEDL9445A-01  
ML9445A  
Pad center coordinates  
Pad  
X-coordinate Y-coordinate  
m) m)  
Pad  
number  
41  
X-coordinate Y-coordinate  
Pad name  
number  
Pad name  
(
µ
(
µ
(
µ
m)  
(µm)  
1
DUMMY  
TEST1  
TEST1  
VSS  
-6059  
-5979  
-5919  
-5839  
-5759  
-5699  
-5619  
-5559  
-5479  
-5419  
-5339  
-5279  
-5199  
-5139  
-5059  
-4999  
-4919  
-4859  
-4779  
-4719  
-4639  
-4579  
-4499  
-4419  
-4359  
-4279  
-4219  
-4139  
-4059  
-3999  
-3919  
-3859  
-3779  
-3719  
-3639  
-3579  
-3499  
-3439  
-3359  
-3299  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
DB6  
DB6  
-3193  
-3133  
-3001  
-2941  
-2838  
-2778  
-2718  
-2615  
-2555  
-2475  
-2415  
-2335  
-2255  
-2195  
-2115  
-2055  
-1975  
-1915  
-1835  
-1775  
-1695  
-1635  
-1555  
-1495  
-1391  
-1331  
-1271  
-1211  
-1151  
-1091  
-1031  
-971  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
2
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
3
DB7  
4
DB7  
5
SDAACK  
SDAACK  
SYNC  
SYNC  
FR  
VCH  
VCH  
VCH  
SVD2  
SVD2  
TEST2  
TEST2  
VDD  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
FR  
CL  
CL  
DOF  
DOF  
CS1  
CS1  
CS2  
CS2  
RES  
RES  
A0  
M/  
M/  
S
S
CLS  
CLS  
C86  
C86  
P/  
P/  
S
S
IRS  
IRS  
TEST3  
TEST3  
VSS  
A0  
VSS  
WR  
WR  
RD  
VSS  
RD  
VSS  
VDD  
VSS  
DB0  
DB0  
DB1  
DB1  
DB2  
DB2  
DB3  
DB3  
DB4  
DB4  
DB5  
DB5  
VSS  
VSS  
VSS  
VSS  
VSS  
-911  
VSS  
-851  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
-771  
-711  
-651  
-591  
-531  
-471  
77/84  
FEDL9445A-01  
ML9445A  
Pad  
number  
81  
X-coordinate Y-coordinate  
X-coordinate Y-coordinate  
Pad name  
Pad number Pad name  
(
µ
m)  
(
µ
m)  
(
µ
m)  
(µm)  
VDD  
VDD  
-411  
-351  
-271  
-211  
-151  
-91  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
VC6+  
VC6+  
VC6+  
VC6+  
VC6+  
VOUT1  
VOUT1  
VOUT1  
VOUT1  
DUMMY  
DUMMY  
VH  
2469  
2529  
2589  
2649  
2709  
2789  
2849  
2909  
2969  
3049  
3109  
3189  
3249  
3309  
3369  
3449  
3509  
3569  
3629  
3709  
3769  
3829  
3889  
3969  
4029  
4089  
4169  
4229  
4309  
4369  
4449  
4509  
4589  
4669  
4729  
4789  
4849  
4929  
4989  
5049  
5109  
5189  
5249  
5309  
5369  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
82  
83  
VIN  
84  
VIN  
85  
VIN  
86  
VIN  
87  
VIN  
-31  
88  
VIN  
29  
89  
VIN  
89  
90  
VIN  
149  
91  
DUMMY  
VC3+  
VC3+  
VC3+  
VC3+  
VC3+  
VC5+  
VC5+  
VC5+  
VC5+  
VC5+  
VS1-  
VS1-  
VS1-  
VS1-  
VS1-  
VS1-  
VS1-  
VC2+  
VC2+  
VC2+  
VC2+  
VC2+  
VC4+  
VC4+  
VC4+  
VC4+  
VC4+  
VS2-  
VS2-  
VS2-  
VS2-  
VS2-  
VS2-  
VS2-  
229  
92  
309  
93  
369  
VH  
94  
429  
VH  
95  
489  
VH  
96  
549  
VS3-  
VS3-  
VS3-  
VS3-  
VC7+  
VC7+  
VC7+  
VC7+  
VOUT2  
VOUT2  
VOUT2  
DUMMY  
DUMMY  
VR  
97  
629  
98  
689  
99  
749  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
809  
869  
949  
1009  
1069  
1129  
1189  
1249  
1309  
1389  
1449  
1509  
1569  
1629  
1709  
1769  
1829  
1889  
1949  
2029  
2089  
2149  
2209  
2269  
2329  
2389  
VR  
VRS  
VRS  
DUMMY  
V1  
V1  
V1  
V1  
V2  
V2  
V2  
V2  
V3  
V3  
V3  
V3  
78/84  
FEDL9445A-01  
ML9445A  
Pad  
number  
171  
X-coordinate Y-coordinate  
m) m)  
Pad  
number  
216  
X-coordinate Y-coordinate  
Pad name  
Pad name  
(
µ
(
µ
(
µ
m)  
(µm)  
V4  
5449  
5509  
5569  
5629  
5709  
5769  
5829  
5889  
5969  
6049  
6215  
6215  
6215  
6215  
6215  
6215  
6215  
6215  
6215  
6215  
6215  
6215  
6215  
6215  
6215  
6215  
6025  
5975  
5925  
5875  
5825  
5775  
5725  
5675  
5625  
5575  
5525  
5475  
5425  
5375  
5325  
5275  
5225  
5175  
5125  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-488  
-390  
-340  
-290  
-240  
-190  
-140  
-90  
COM7  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
COM0  
COMS0  
SEG0  
5075  
5025  
4975  
4925  
4875  
4825  
4775  
4725  
4675  
4475  
4425  
4375  
4325  
4275  
4225  
4175  
4125  
4075  
4025  
3975  
3925  
3875  
3825  
3775  
3725  
3675  
3625  
3575  
3525  
3475  
3425  
3375  
3325  
3275  
3225  
3175  
3125  
3075  
3025  
2975  
2925  
2875  
2825  
2775  
2725  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
V4  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
V4  
V4  
V5  
V5  
V5  
V5  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
COM31  
COM30  
COM29  
COM28  
COM27  
COM26  
COM25  
COM24  
COM23  
COM22  
COM21  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
COM20  
COM19  
COM18  
COM17  
COM16  
COM15  
COM14  
COM13  
COM12  
COM11  
COM10  
COM9  
COM8  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
-40  
SEG8  
10  
SEG9  
60  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
SEG33  
SEG34  
SEG35  
110  
160  
210  
260  
310  
360  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
79/84  
FEDL9445A-01  
ML9445A  
Pad  
number  
261  
X-coordinate Y-coordinate  
m) m)  
Pad  
number  
306  
X-coordinate Y-coordinate  
Pad name  
Pad name  
(
µ
(
µ
(
µ
m)  
(µm)  
SEG36  
SEG37  
SEG38  
SEG39  
SEG40  
SEG41  
SEG42  
SEG43  
SEG44  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
SEG50  
SEG51  
SEG52  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG60  
SEG61  
SEG62  
SEG63  
SEG64  
SEG65  
SEG66  
SEG67  
SEG68  
SEG69  
SEG70  
SEG71  
SEG72  
SEG73  
SEG74  
SEG75  
SEG76  
SEG77  
SEG78  
SEG79  
SEG80  
2675  
2625  
2575  
2525  
2475  
2425  
2375  
2325  
2275  
2225  
2175  
2125  
2075  
2025  
1975  
1925  
1875  
1825  
1775  
1725  
1675  
1625  
1575  
1525  
1475  
1425  
1375  
1325  
1275  
1225  
1175  
1125  
1075  
1025  
975  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
SEG81  
SEG82  
425  
375  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
SEG83  
325  
SEG84  
275  
SEG85  
225  
SEG86  
175  
SEG87  
125  
SEG88  
75  
SEG89  
25  
SEG90  
-25  
SEG91  
-75  
SEG92  
-125  
-175  
-225  
-275  
-325  
-375  
-425  
-475  
-525  
-575  
-625  
-675  
-725  
-775  
-825  
-875  
-925  
-975  
-1025  
-1075  
-1125  
-1175  
-1225  
-1275  
-1325  
-1375  
-1425  
-1475  
-1525  
-1575  
-1625  
-1675  
-1725  
-1775  
SEG93  
SEG94  
SEG95  
SEG96  
SEG97  
SEG98  
SEG99  
SEG100  
SEG101  
SEG102  
SEG103  
SEG104  
SEG105  
SEG106  
SEG107  
SEG108  
SEG109  
SEG110  
SEG111  
SEG112  
SEG113  
SEG114  
SEG115  
SEG116  
SEG117  
SEG118  
SEG119  
SEG120  
SEG121  
SEG122  
SEG123  
SEG124  
SEG125  
925  
875  
825  
775  
725  
675  
625  
575  
525  
475  
80/84  
FEDL9445A-01  
ML9445A  
Pad  
number  
351  
X-coordinate Y-coordinate  
m) m)  
Pad  
number  
396  
X-coordinate Y-coordinate  
Pad name  
Pad name  
(
µ
(
µ
(
µ
m)  
(µm)  
SEG126  
SEG127  
SEG128  
SEG129  
SEG130  
SEG131  
SEG132  
SEG133  
SEG134  
SEG135  
SEG136  
SEG137  
SEG138  
SEG139  
SEG140  
SEG141  
SEG142  
SEG143  
SEG144  
SEG145  
SEG146  
SEG147  
SEG148  
SEG149  
SEG150  
SEG151  
SEG152  
SEG153  
SEG154  
SEG155  
SEG156  
SEG157  
SEG158  
SEG159  
SEG160  
SEG161  
SEG162  
SEG163  
SEG164  
SEG165  
SEG166  
SEG167  
SEG168  
SEG169  
SEG170  
-1825  
-1875  
-1925  
-1975  
-2025  
-2075  
-2125  
-2175  
-2225  
-2275  
-2325  
-2375  
-2425  
-2475  
-2525  
-2575  
-2625  
-2675  
-2725  
-2775  
-2825  
-2875  
-2925  
-2975  
-3025  
-3075  
-3125  
-3175  
-3225  
-3275  
-3325  
-3375  
-3425  
-3475  
-3525  
-3575  
-3625  
-3675  
-3725  
-3775  
-3825  
-3875  
-3925  
-3975  
-4025  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
SEG171  
SEG172  
SEG173  
SEG174  
SEG175  
SEG176  
SEG177  
SEG178  
SEG179  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
COM54  
COM55  
COM56  
COM57  
COM58  
-4075  
-4125  
-4175  
-4225  
-4275  
-4325  
-4375  
-4425  
-4475  
-4675  
-4725  
-4775  
-4825  
-4875  
-4925  
-4975  
-5025  
-5075  
-5125  
-5175  
-5225  
-5275  
-5325  
-5375  
-5425  
-5475  
-5525  
-5575  
-5625  
-5675  
-5725  
-5775  
-5825  
-5875  
-5925  
-5975  
-6025  
-6215  
-6215  
-6215  
-6215  
-6215  
-6215  
-6215  
-6215  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
495  
360  
310  
260  
210  
160  
110  
60  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
10  
81/84  
FEDL9445A-01  
ML9445A  
Pad  
number  
441  
X-coordinate Y-coordinate  
m) m)  
Pad  
number  
X-coordinate Y-coordinate  
Pad name  
Pad name  
(
µ
(
µ
(
µ
m)  
(µm)  
COM59  
COM60  
COM61  
COM62  
COM63  
COMS1  
DUMMY  
DUMMY  
-6215  
-6215  
-6215  
-6215  
-6215  
-6215  
-6215  
-6215  
-40  
-90  
442  
443  
444  
445  
446  
447  
448  
-140  
-190  
-240  
-290  
-340  
-390  
82/84  
FEDL9445A-01  
ML9445A  
REVISION HISTORY  
Page  
Document No.  
Date  
Description  
Previous Current  
Edition  
Edition  
FEDL9445A-01  
Apr. 2, 2019  
Final edition 1  
83/84  
FEDL9445A-01  
ML9445A  
Notes  
1) The information contained herein is subject to change without notice.  
2) Although LAPIS Semiconductor is continuously working to improve product reliability and quality,  
semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent  
personal injury or fire arising from failure, please take safety measures such as complying with the derating  
characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe  
procedures. LAPIS Semiconductor shall have no responsibility for any damages arising out of the use of our  
Products beyond the rating specified by LAPIS Semiconductor.  
3) Examples of application circuits, circuit constants and any other information contained herein are provided  
only to illustrate the standard usage and operations of the Products.The peripheral conditions must be taken  
into account when designing circuits for mass production.  
4) The technical information specified herein is intended only to show the typical functions of the Products and  
examples of application circuits for the Products. No license, expressly or implied, is granted hereby under  
any intellectual property rights or other rights of LAPIS Semiconductor or any third party with respect to the  
information contaiꢎꢆꢀꢄ ꢈꢎꢄ ꢂꢒꢈꢉꢄ ꢀꢋꢊꢁꢌꢆꢎꢂꢑꢄ ꢂꢒꢆꢅꢆꢓꢋꢅꢆꢄ ꢕꢖꢗꢘꢙꢄ ꢙꢆꢌꢈꢊꢋꢎꢀꢁꢊꢂꢋꢅꢄ ꢉꢒꢍꢐꢐꢄ ꢒꢍꢚꢆꢄ ꢎꢋꢄ ꢅꢆꢉꢛꢋꢎꢉꢈꢔꢈꢐꢈꢂꢃꢄ  
whatsoever for any dispute, concerning such rights owned by third parties, arising out of the use of such  
technical information.  
5) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication,  
consumer systems, gaming/entertainment sets) as well as the applications indicated in this document.  
6) The Products specified in this document are not designed to be radiation tolerant.  
7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please  
contact and consult with a LAPIS Semiconductor representative: transportation equipment (i.e. cars, ships,  
trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical  
systems, servers, solar cells, and power transmission systems.  
8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment,  
nuclear power control systems, and submarine repeaters.  
9) LAPIS Semiconductor shall have no responsibility for any damages or injury arising from non-compliance  
with the recommended usage conditions and specifications contained herein.  
10) LAPIS Semiconductor has used reasonable care to ensure the accuracy of the information contained in this  
document. However, LAPIS Semiconductor does not warrant that such information is error-free and LAPIS  
Semiconductor shall have no responsibility for any damages arising from any inaccuracy or misprint of such  
information.  
11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the  
RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office.  
LAPIS Semiconductor shall have no responsibility for any damages or losses resulting non-compliance with  
any applicable laws or regulations.  
12) When providing our Products and technologies contained in this document to other countries, you must abide  
by the procedures and provisions stipulated in all applicable export laws and regulations, including without  
limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.  
13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS  
Semiconductor.  
Copyright 2019 LAPIS Semiconductor Co., Ltd.  
2-4-8 Shinyokohama, Kouhoku-ku,  
Yokohama 222-8575, Japan  
http://www.lapis-semi.com/en/  
84/84  

相关型号:

ML9470-11

Static,1/2Duty 80 Output LCD Driver
ETC

ML9470-12

ML9470是静态显示时可直接驱动多达80段、动态(1/2DUTY)显示时可直接驱动多达160段的LCD驱动器。
ROHM

ML9471

Ml9471是带有1/3、1/4及1/5Duty切换引脚的动态显示用LCD驱动器,选择1/5Duty时可直接驱动多达400段、选择1/4Duty时可直接驱动多达320段、选择1/3Duty时可直接驱动多达240段的LCD。
ROHM

ML9473

ML9473是带有1/3、1/4及1/5Duty切换引脚的动态显示用LCD驱动器,选择1/5Duty时可直接驱动多达300段、选择1/4Duty时可直接驱动多达240段、选择1/3Duty时可直接驱动多达180段的LCD。
ROHM

ML9477

ML9477是带有1/3Duty和1/4Duty切换功能的动态显示用LCD驱动器,选择1/4Duty时可直接驱动多达128段,选择1/3Duty时可直接驱动多达96段的LCD。
ROHM

ML9478C

ML9478C由80位移位寄存器、320位数据锁存器、80组LCD驱动器、以及公共信号生成电路组成。静态显示时可直接驱动多达80段、1/2Duty显示时可直接驱动多达160段、1/3Duty显示时可直接驱动多达240段、1/4Duty显示时可直接驱动多达320段的LCD。三线串行接口和I2C接口可选。
ROHM

ML9479E

ML9479E由80位移位寄存器、640位数据锁存器、160组LCD驱动器、以及公共信号生成电路组成。静态显示时可直接驱动多达160段、1/2Duty显示时可直接驱动多达320段、1/3Duty显示时可直接驱动多达480段、1/4Duty显示时可直接驱动多达640段的LCD。三线串行接口和I2C接口可选。
ROHM

ML9480

ML9480由40位移位寄存器、160位数据锁存器、40组LCD驱动器、以及公共信号生成电路组成。静态显示时可直接驱动多达40段、1/2Duty显示时可直接驱动多达80段、1/3Duty显示时可直接驱动多达120段、1/4Duty显示时可直接驱动多达160段的LCD。三线串行接口和I2C接口可选。
ROHM

ML9484

ML9484由50位移位寄存器、200位数据锁存器、50组LCD驱动器、以及公共信号生成电路组成。静态显示时可直接驱动多达50段、1/2Duty显示时可直接驱动多达100段、1/3Duty显示时可直接驱动多达150段、1/4Duty显示时可直接驱动多达200段的LCD。
ROHM

ML961B8S

Laser Diode, 1480nm
MITSUBISHI

ML9620

CAN Controller IC
OKI

ML9701A

Laser Diode, 1580nm
MITSUBISHI