RGT20TM65D [ROHM]

RGT20TM65D是一款低VCE(sat)的场截止沟槽型IGBT。适用于逆变器、UPS、功率调节器、焊接等用途。;
RGT20TM65D
型号: RGT20TM65D
厂家: ROHM    ROHM
描述:

RGT20TM65D是一款低VCE(sat)的场截止沟槽型IGBT。适用于逆变器、UPS、功率调节器、焊接等用途。

双极性晶体管 调节器
文件: 总12页 (文件大小:1237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RGT20TM65D  
650V 10A Field Stop Trench IGBT  
Datasheet  
lOutline  
TO-220NFM  
VCES  
IC (100°C)  
VCE(sat) (Typ.)  
PD  
650V  
6A  
1.65V  
25W  
(1)(2)(3)  
lInner Circuit  
lFeatures  
(2)  
(3)  
1) Low Collector - Emitter Saturation Voltage  
2) Low Switching Loss  
(1) Gate  
(2) Collector  
(3) Emitter  
*1  
(1)  
3) Short Circuit Withstand Time 5μs  
*1 Built in FRD  
4) Built in Very Fast & Soft Recovery FRD  
(RFN - Series)  
lPackaging Specifications  
5) Pb - free Lead Plating ; RoHS Compliant  
Packaging  
Tube  
lApplication  
Reel Size (mm)  
-
General Inverter  
Tape Width (mm)  
Type  
-
1,000  
UPS  
Basic Ordering Unit (pcs)  
Power Conditioner  
Welder  
Packing Code  
Marking  
C9  
RGT20TM65D  
lAbsolute Maximum Ratings (at TC = 25°C unless otherwise specified)  
Parameter  
Collector - Emitter Voltage  
Symbol  
VCES  
VGES  
IC  
Value  
Unit  
V
650  
Gate - Emitter Voltage  
±30  
V
TC = 25°C  
10  
A
Collector Current  
TC = 100°C  
IC  
6
A
*1  
Pulsed Collector Current  
Diode Forward Current  
Diode Pulsed Forward Current  
Power Dissipation  
30  
A
ICP  
TC = 25°C  
IF  
IF  
13  
A
TC = 100°C  
7
A
*1  
30  
25  
A
IFP  
TC = 25°C  
PD  
PD  
Tj  
W
W
°C  
°C  
TC = 100°C  
12  
Operating Junction Temperature  
Storage Temperature  
-40 to +175  
-55 to +175  
Tstg  
*1 Pulse width limited by Tjmax.  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
2019.06 - Rev.B  
1/11  
Datasheet  
RGT20TM65D  
lThermal Resistance  
Values  
Parameter  
Symbol  
Unit  
Min.  
Typ.  
Max.  
5.84  
6.70  
Rθ(j-c)  
Rθ(j-c)  
Thermal Resistance IGBT Junction - Case  
Thermal Resistance Diode Junction - Case  
-
-
-
-
C/W  
C/W  
lIGBT Electrical Characteristics (at Tj = 25°C unless otherwise specified)  
Values  
Typ.  
Parameter  
Symbol  
Conditions  
Unit  
V
Min.  
650  
Max.  
-
Collector - Emitter Breakdown  
Voltage  
BVCES IC = 10μA, VGE = 0V  
ICES VCE = 650V, VGE= 0V  
IGES VGE = ±30V, VCE = 0V  
VGE(th) VCE = 5V, IC = 6.7mA  
-
-
Collector Cut - off Current  
-
-
10  
±200  
7.0  
μA  
nA  
V
Gate - Emitter Leakage  
Current  
-
Gate - Emitter Threshold  
Voltage  
5.0  
6.0  
IC = 10A, VGE = 15V,  
VCE(sat) Tj = 25°C  
Tj = 175°C  
Collector - Emitter Saturation  
Voltage  
-
-
1.65  
2.15  
2.1  
-
V
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
2019.06 - Rev.B  
2/11  
Datasheet  
RGT20TM65D  
lIGBT Electrical Characteristics (at Tj = 25°C unless otherwise specified)  
Values  
Typ.  
610  
25  
Parameter  
Symbol  
Conditions  
Unit  
pF  
Min.  
Max.  
Cies VCE = 30V,  
Coes VGE = 0V,  
Input Capacitance  
Output Capacitance  
Reverse transfer Capacitance  
Total Gate Charge  
Gate - Emitter Charge  
Gate - Collector Charge  
Turn - on Delay Time  
Rise Time  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Cres  
Qg  
f = 1MHz  
9
VCE = 300V,  
22  
Qge IC = 10A,  
Qgc VGE = 15V  
td(on)  
6
nC  
ns  
9
12  
IC = 10A, VCC = 400V,  
VGE = 15V, RG = 10Ω,  
Tj = 25°C  
tr  
td(off)  
tf  
18  
Turn - off Delay Time  
Fall Time  
32  
Inductive Load  
104  
13  
td(on)  
tr  
td(off)  
tf  
Turn - on Delay Time  
Rise Time  
IC = 10A, VCC = 400V,  
VGE = 15V, RG = 10Ω,  
Tj = 175°C  
18  
ns  
Turn - off Delay Time  
Fall Time  
34  
Inductive Load  
140  
IC = 30A, VCC = 520V,  
VP = 650V, VGE = 15V,  
RG = 50Ω, Tj = 175oC  
Reverse Bias Safe Operating  
Area  
RBSOA  
FULL SQUARE  
-
VCC 360V,  
tsc  
VGE = 15V,  
Tj = 25oC  
Short Circuit Withstand Time  
5
-
-
μs  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
2019.06 - Rev.B  
3/11  
Datasheet  
RGT20TM65D  
lIGBT Electrical Characteristics (at Tj = 25°C unless otherwise specified)  
Values  
Typ.  
Parameter  
Symbol  
Conditions  
IF = 8A,  
Unit  
V
Min.  
Max.  
VF  
Tj = 25°C  
Diode Forward Voltage  
-
-
1.4  
1.2  
1.9  
-
Tj = 175°C  
Diode Reverse Recovery  
Time  
trr  
-
-
-
-
-
-
42  
5.2  
-
-
-
-
-
-
ns  
A
IF = 8A,  
VCC = 400V,  
diF/dt = 200A/μs,  
Tj = 25°C  
Diode Peak Reverse  
Recovery Current  
Irr  
Diode Reverse Recovery  
Charge  
Qrr  
trr  
0.12  
116  
8.1  
μC  
ns  
A
Diode Reverse Recovery  
Time  
IF = 8A,  
VCC = 400V,  
diF/dt = 200A/μs,  
Tj = 175°C  
Diode Peak Reverse  
Recovery Current  
Irr  
Diode Reverse Recovery  
Charge  
Qrr  
0.51  
μC  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
2019.06 - Rev.B  
4/11  
Datasheet  
RGT20TM65D  
lElectrical Characteristic Curves  
Fig.1 Power Dissipation  
vs. Case Temperature  
30  
Fig.2 Collector Current  
vs. Case Temperature  
12  
10  
8
25  
20  
15  
10  
5
6
4
2
Tj ≤ 175ºC,  
VGE ≥ 15V  
0
0
0
25 50 75 100 125 150 175  
Case Temperature : TC [°C ]  
0
25 50 75 100 125 150 175  
Case Temperature : TC [°C ]  
Fig.3 Forward Bias Safe Operating Area  
1000  
Fig.4 Reverse Bias Safe Operating Area  
40  
100  
30  
20  
10  
10μs  
10  
100μs  
1
0.1  
Tj ≤ 175ºC,  
VGE = 15V  
TC = 25ºC  
Single Pulse  
0
0.01  
0
200  
400  
600  
800  
1
10  
100  
1000  
Collector To Emitter Voltage : VCE [V]  
Collector To Emitter Voltage : VCE [V]  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
2019.06 - Rev.B  
5/11  
Datasheet  
RGT20TM65D  
lElectrical Characteristic Curves  
Fig.5 Typical Output Characteristics  
Fig.6 Typical Output Characteristics  
30  
30  
T= 25ºC  
Tj = 175ºC  
VGE = 12V  
25  
20  
15  
10  
5
25  
VGE = 20V  
VGE = 15V  
VGE = 20V  
VGE = 15V  
20  
VGE = 12V  
15  
VGE = 10V  
VGE = 10V  
10  
5
VGE = 8V  
VGE = 8V  
0
0
0
1
2
3
4
5
0
1
2
3
4
5
Collector To Emitter Voltage : VCE [V]  
Collector To Emitter Voltage : VCE [V]  
Fig.8 Typical Collector To Emitter Saturation  
Voltage vs. Junction Temperature  
Fig.7 Typical Transfer Characteristics  
4
20  
VGE = 15V  
VCE = 10V  
IC = 20A  
3
15  
10  
IC = 10A  
2
IC = 5A  
1
5
Tj = 175ºC  
Tj = 25ºC  
0
0
25 50 75 100 125 150 175  
0
2
4
6
8
10 12  
Gate To Emitter Voltage : VGE [V]  
Junction Temperature : Tj [°C ]  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
2019.06 - Rev.B  
6/11  
Datasheet  
RGT20TM65D  
lElectrical Characteristic Curves  
Fig.9 Typical Collector To Emitter Saturation  
Voltage vs. Gate To Emitter Voltage  
Fig.10 Typical Collector To Emitter Saturation  
Voltage vs. Gate To Emitter Voltage  
20  
20  
Tj = 175ºC  
Tj = 25ºC  
IC = 20A  
IC = 20A  
15  
15  
IC = 10A  
IC = 10A  
IC = 5A  
IC = 5A  
10  
10  
5
0
5
0
5
10  
15  
20  
5
10  
15  
20  
Gate To Emitter Voltage : VGE [V]  
Gate To Emitter Voltage : VGE [V]  
Fig.11 Typical Switching Time  
vs. Collector Current  
Fig.12 Typical Switching Time  
vs. Gate Resistance  
1000  
1000  
tf  
tf  
100  
10  
1
100  
td(off)  
td(off)  
tr  
tr  
10  
td(on)  
td(on)  
VCC = 400V, VGE = 15V,  
RG = 10Ω, Tj = 175ºC  
Inductive load  
VCC = 400V, IC = 10A,  
VGE = 15V, Tj = 175ºC  
Inductive load  
1
0
5
10  
15  
20  
0
10  
20  
30  
40  
50  
Collecter Current : IC [A]  
Gate Resistance : RG [Ω]  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
2019.06 - Rev.B  
7/11  
Datasheet  
RGT20TM65D  
lElectrical Characteristic Curves  
Fig.13 Typical Switching Energy Losses  
vs. Collector Current  
Fig.14 Typical Switching Energy Losses  
vs. Gate Resistance  
10  
10  
1
1
Eoff  
Eon  
Eoff  
0.1  
0.1  
0.01  
VCC = 400V, IC = 10A,  
VGE = 15V, Tj = 175ºC  
Inductive load  
Eon  
VCC = 400V, VGE = 15V,  
RG = 10Ω, Tj = 175ºC  
Inductive load  
0.01  
0
5
10  
15  
20  
0
10  
20  
30  
40  
50  
Collecter Current : IC [A]  
Gate Resistance : RG [Ω]  
Fig.15 Typical Capacitance  
vs. Collector To Emitter Voltage  
Fig.16 Typical Gate Charge  
15  
10000  
1000  
100  
10  
Cies  
10  
5
Coes  
Cres  
f = 1MHz,  
VGE = 0V,  
Tj = 25ºC  
VCE = 300V,  
IC = 10A,  
Tj = 25ºC  
1
0
0.01  
0.1  
1
10  
100  
0
10  
20  
30  
Collector To Emitter Voltage : VCE [V]  
Gate Charge : Qg [nC]  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
2019.06 - Rev.B  
8/11  
Datasheet  
RGT20TM65D  
lElectrical Characteristic Curves  
Fig.17 Typical Diode Forward Current  
vs. Forward Voltage  
Fig.18 Typical Diode Revese Recovery Time  
vs. Forward Current  
30  
25  
20  
200  
VCC = 400V,  
diF/dt = 200A/μs  
Inductive load  
150  
Tj = 175ºC  
15  
100  
Tj = 175ºC  
10  
Tj = 25ºC  
50  
5
Tj = 25ºC  
0
0
0
1
2
3
0
5
10  
15  
20  
Forward Voltage : VF [V]  
Forward Current : IF [A]  
Fig.19 Typical Diode Reverse Recovery  
Current vs. Forward Current  
Fig.20 Typical Diode Rrverse Recovery  
Charge vs. Forward Current  
10  
1
VCC = 400V,  
diF/dt = 200A/μs  
Inductive load  
Tj = 175ºC  
8
0.8  
6
0.6  
Tj = 25ºC  
Tj = 175ºC  
4
0.4  
2
0.2  
VCC = 400V,  
diF/dt = 200A/μs  
Inductive load  
Tj = 25ºC  
0
0
0
5
10  
15  
20  
0
5
10  
15  
20  
Forward Current : IF [A]  
Forward Current : IF [A]  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
2019.06 - Rev.B  
9/11  
Datasheet  
RGT20TM65D  
lElectrical Characteristic Curves  
Fig.21 IGBT Transient Thermal Impedance  
10  
0.1  
D = 0.5  
0.2  
1
0.1  
Single Pulse  
PDM  
0.01  
0.02  
0.05  
t1  
t2  
Duty = t1/t2  
Peak Tj = PDM×Zθ(j-c)+TC  
0.01  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
Pulse Width : t1 [s]  
Fig.22 Diode Transient Thermal Impedance  
10  
0.1 0.2 D = 0.5  
1
Single Pulse  
0.01  
0.02  
PDM  
0.1  
0.05  
t1  
t2  
Duty = t1/t2  
Peak Tj = PDM×Zθ(j-c)+TC  
0.01  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
Pulse Width : t1 [s]  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
2019.06 - Rev.B  
10/11  
Datasheet  
RGT20TM65D  
lInductive Load Switching Circuit and Waveform  
Gate Drive Time  
90%  
D.U.T.  
D.U.T.  
10%  
VGE  
VG  
90%  
10%  
Fig.23 Inductive Load Circuit  
tf  
IC  
td(off)  
td(on)  
tr  
trr , Qrr  
ton  
toff  
IF  
VCE  
diF/dt  
Irr  
VCE(sat)  
Fig.25 Diode Reverse Recovery Waveform  
Fig.24 Inductive Load Waveform  
www.rohm.com  
© 2019 ROHM Co., Ltd. All rights reserved.  
2019.06 - Rev.B  
11/11  
Notice  
N o t e s  
1) The information contained herein is subject to change without notice.  
2) Before you use our Products, please contact our sales representative and verify the latest specifica-  
tions.  
3) Although ROHM is continuously working to improve product reliability and quality, semicon-  
ductors can break down and malfunction due to various factors.  
Therefore, in order to prevent personal injury or fire arising from failure, please take safety  
measures such as complying with the derating characteristics, implementing redundant and  
fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no  
responsibility for any damages arising out of the use of our Poducts beyond the rating specified by  
ROHM.  
4) Examples of application circuits, circuit constants and any other information contained herein are  
provided only to illustrate the standard usage and operations of the Products. The peripheral  
conditions must be taken into account when designing circuits for mass production.  
5) The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly,  
any license to use or exercise intellectual property or other rights held by ROHM or any other  
parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of  
such technical information.  
6) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communi-  
cation, consumer systems, gaming/entertainment sets) as well as the applications indicated in  
this document.  
7) The Products specified in this document are not designed to be radiation tolerant.  
8) For use of our Products in applications requiring a high degree of reliability (as exemplified  
below), please contact and consult with a ROHM representative : transportation equipment (i.e.  
cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety  
equipment, medical systems, servers, solar cells, and power transmission systems.  
9) Do not use our Products in applications requiring extremely high reliability, such as aerospace  
equipment, nuclear power control systems, and submarine repeaters.  
10) ROHM shall have no responsibility for any damages or injury arising from non-compliance with  
the recommended usage conditions and specifications contained herein.  
11) ROHM has used reasonable care to ensure the accuracy of the information contained in this  
document. However, ROHM does not warrants that such information is error-free, and ROHM  
shall have no responsibility for any damages arising from any inaccuracy or misprint of such  
information.  
12) Please use the Products in accordance with any applicable environmental laws and regulations,  
such as the RoHS Directive. For more details, including RoHS compatibility, please contact a  
ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting  
non-compliance with any applicable laws or regulations.  
13) When providing our Products and technologies contained in this document to other countries,  
you must abide by the procedures and provisions stipulated in all applicable export laws and  
regulations, including without limitation the US Export Administration Regulations and the Foreign  
Exchange and Foreign Trade Act.  
14) This document, in part or in whole, may not be reprinted or reproduced without prior consent of  
ROHM.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2015 ROHM Co., Ltd. All rights reserved.  
R1107  
A

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY