SCT4013DR [ROHM]

SCT4013DR是一款有助于应用产品实现小型化和更低功耗的SiC MOSFET。该产品采用带有驱动器源极引脚的封装形式,可更大程度地激发出SiC MOSFET的高速开关性能。ROHM的第4代SiC MOSFETSCT4系列是改善了短路耐受时间并实现了业界超低导通电阻的第4代产品。与以往产品相比,该系列产品的导通电阻降低了约40%,开关损耗降低了约50%。另外,还支持更容易处理的15V栅-源电压,使应用产品的设计更容易。;
SCT4013DR
型号: SCT4013DR
厂家: ROHM    ROHM
描述:

SCT4013DR是一款有助于应用产品实现小型化和更低功耗的SiC MOSFET。该产品采用带有驱动器源极引脚的封装形式,可更大程度地激发出SiC MOSFET的高速开关性能。ROHM的第4代SiC MOSFETSCT4系列是改善了短路耐受时间并实现了业界超低导通电阻的第4代产品。与以往产品相比,该系列产品的导通电阻降低了约40%,开关损耗降低了约50%。另外,还支持更容易处理的15V栅-源电压,使应用产品的设计更容易。

开关 栅 驱动 驱动器
文件: 总17页 (文件大小:1464K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SCT4013DR  
N-channel SiC power MOSFET  
Datasheet  
lOutline  
TO-247-4L  
VDSS  
750V  
13mΩ  
105A  
312W  
RDS(on) (Typ.)  
*1  
ID  
(1)  
(2)  
(3)  
(4)  
PD  
lInner circuit  
Features  
(1)  
1) Low on-resistance  
2) Fast switching speed  
3) Fast reverse recovery  
4) Easy to parallel  
(1) Drain  
(2) Power Source  
(3) Driver Source  
(4) Gate  
*1  
(4)  
(3)  
*1 Body Diode  
(2)  
5) Simple to drive  
Please note Driver Source and Power Source are  
not exchangeable. Their exchange might lead to  
malfunction.  
6) Pb-free lead plating ; RoHS compliant  
lPackaging specifications  
Application  
Tube  
Packing  
Solar inverters  
Reel size (mm)  
Tape width (mm)  
Basic ordering unit (pcs)  
Taping code  
-
DC/DC converters  
Switch mode power supplies  
Induction heating  
Motor drives  
-
30  
Type  
C15  
Marking  
SCT4013DR  
lAbsolute maximum ratings (Tvj = 25°C unless otherwise specified.)  
Parameter  
Symbol  
VDSS  
Value  
750  
Unit  
V
Drain - source voltage  
Tc = 25°C  
105  
A
Continuous drain  
and source current  
*1  
VGS = VGS_on  
ID, IS  
Tc = 100°C  
74  
A
*2  
VGS = VGS_on Tc = 25°C  
Pulsed drain current  
233  
A
ID,pulse  
*1,*3  
Body diode pulsed forward current  
Body diode surge forward current  
Gate - source voltage (DC)  
105  
A
IS,pulse  
Tc = 25°C  
VGS = 0 V  
*1,*4  
233  
A
IS,pulse  
VGSS_DC  
-4 to +21  
-4 to +23  
V
*5  
Gate - source surge voltage (tsurge < 300ns)  
Recommended turn-on gate - source drive voltage  
Recommended turn-off gate - source drive voltage  
Virtual junction temperature  
V
VGSS_surge  
*6  
+15 to +18  
0
V
V
VGS_on  
VGS_off  
Tvj  
175  
°C  
°C  
Tstg  
Range of storage temperature  
-40 to +175  
www.rohm.com  
©2023 ROHM Co., Ltd. All rights reserved.  
TSZ2211114001  
TSQ50214-SCT4013DR  
4.Apr.2023 - Rev.003  
1/15  
SCT4013DR  
Datasheet  
Electrical characteristics (Tvj = 25°C unless otherwise specified)  
Values  
Typ.  
Parameter  
Symbol  
V(BR)DSS  
Conditions  
VGS = 0 V, I =  
Unit  
V
Min.  
750  
Max.  
-
18.6mA  
D
Drain - Source breakdown  
voltage  
Tvj = 25°C  
VGS = 0 V, VDS  
-
=750V  
Zero Gate voltage  
Drain current  
IDSS Tvj = 25°C  
Tvj = 150°C  
-
-
1
10  
-
80  
-
μA  
IGSS+ VGS  
=
=
, VDS = 0V  
, VDS = 0V  
Gate - Source leakage current  
Gate - Source leakage current  
Gate threshold voltage  
+21V  
-4V  
-
100  
-100  
4.8  
nA  
nA  
V
IGSS- VGS  
-
-
*7  
VDS = 10V, I =  
30.8mA  
= 58A  
2.8  
-
VGS(th)  
RDS(on)  
RG  
D
VGS = 18V, ID  
Tvj = 25°C  
Static Drain - Source  
on - state resistance  
*8  
-
-
-
13.0  
22.2  
1
16.9  
mΩ  
Ω
Tvj = 150°C  
-
-
Gate input resistance  
f = 1MHz, open drain  
lThermal resistance  
Values  
Typ.  
Parameter  
Symbol  
Unit  
K/W  
Min.  
-
Max.  
0.48  
*9  
Thermal resistance, junction - case  
0.37  
RthJC  
lTypical Transient Thermal Characteristics  
Symbol  
Rth1  
Value  
4.0 ×10  
1.6 ×10  
1.7 ×10  
Unit  
K/W  
Symbol  
Cth1  
Value  
1.2 ×10  
4.6 ×10  
2.6 ×10  
Unit  
-2  
-1  
-1  
-3  
-3  
-2  
Rth2  
Cth2  
Ws/K  
Rth3  
Cth3  
Rth,n  
Rth1  
Tj  
Tc  
PD  
Cth1  
Cth2  
Cth,n  
Ta  
www.rohm.com  
©2023 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT4013DR  
4.Apr.2023 - Rev.003  
2/15  
SCT4013DR  
Datasheet  
Electrical characteristics (Tvj = 25°C unless otherwise specified)  
Values  
Typ.  
32  
Parameter  
Symbol  
Conditions  
VDS = 10V, ID  
Unit  
S
Min.  
Max.  
*8  
Transconductance  
= 58A  
-
-
-
-
-
-
-
-
gfs  
Ciss VGS = 0V  
Coss VDS  
Input capacitance  
4580  
203  
=
Output capacitance  
Reverse transfer capacitance  
500V  
pF  
pF  
Crss  
f = 1MHz  
VGS = 0V  
10  
Effective output capacitance,  
energy related  
Co(er)  
-
263  
-
VDS  
VDS  
=
=
0V to 500V  
500V  
*8  
Total Gate charge  
Gate - Source charge  
Gate - Drain charge  
Turn - on delay time  
Rise time  
-
-
-
-
-
-
-
-
-
170  
39  
-
-
-
-
-
-
-
-
-
Qg  
ID =  
58A  
*8  
nC  
Qgs  
VGS  
=
18V  
See Fig. 1-1, 1-2.  
*8  
42  
Qgd  
VDS  
=
500V  
*8  
17  
td(on)  
ID =  
58A  
*8  
32  
tr  
VGS  
=
+18V / 0V  
6.8Ω, L = 250μH  
ns  
RG =  
*8  
Turn - off delay time  
Fall time  
82  
td(off)  
Eon includes diode  
reverse recovery  
Lσ = 50nH, Cσ = 10pF  
See Fig. 2-1, 2-2, 2-3.  
*8  
17  
tf  
*8  
Turn - on switching loss  
Turn - off switching loss  
500  
310  
Eon  
μJ  
*8  
Eoff  
www.rohm.com  
©2023 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT4013DR  
4.Apr.2023 - Rev.003  
3/15  
SCT4013DR  
Datasheet  
lBody diode electrical characteristics (Source-Drain) (Tvj = 25°C unless otherwise specified)  
Values  
Parameter  
Forward voltage  
Symbol  
Conditions  
VGS = 0V, IS  
Unit  
Min.  
-
Typ.  
3.3  
Max.  
-
*8  
= 58A  
V
VSD  
IF =  
58A  
*8  
Reverse recovery time  
-
-
-
16  
290  
36  
-
-
-
ns  
trr  
VR =  
500V  
*8  
Reverse recovery charge  
Peak reverse recovery current  
nC  
A
Qrr  
di/dt = 3300A/μs  
Lσ = 50nH, Cσ = 10pF  
See Fig. 3-1, 3-2.  
*8  
Irrm  
*1 Limited by maximum Tvj and for Max. RthJC  
.
*2 Pulse width and duty cycle are limited by Tvj,max  
.
*3 Only for body-diode, Repititive pulse, PW ≤ 1.5μs, Duty cycle ≤ 5%  
*4 When used as a protective function, PW 10μs  
*5 Example of acceptable VGS waveform  
tsurge  
+VGSS_surge  
+VGSS_DC  
tsurge  
-VGSS_DC  
-VGSS_surge  
Please note especially when using driver source that VGSS_surge must be in the range of  
absolute maximum rating.  
Please be advised not to use SiC-MOSFETs with VGS below 10V as doing so may cause  
thermal runaway.  
*6  
*7 Tested after applying VGS = 21V for 100ms.  
*8 Pulsed  
Measured conformable to JESD51-14.  
*9  
See the application note "rthjc_measurement_and_usage_an-e.pdf". Link  
URL: https://fscdn.rohm.com/en/products/databook/applinote/discrete/common/rthjc_measurement_and_usage_an-e.pdf  
www.rohm.com  
©2023 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT4013DR  
4.Apr.2023 - Rev.003  
4/15  
SCT4013DR  
Datasheet  
lElectrical characteristic curves  
Fig.1 Power Dissipation Derating Curve  
350  
Fig.2 Maximum Safe Operating Area  
1000  
Operation in this area is limited by RDS(on)  
PW  
300  
250  
200  
150  
100  
50  
<100ns*  
100  
10  
1
1μs*  
10μs*  
100μs  
PW decrease  
1ms  
Tc = 25ºC  
Single Pulse  
10ms  
*Calculation (PW 10μs)  
0
0.1  
25  
75  
125  
175  
0.1  
1
10  
100 1000 10000  
Case Temperature : TC [°C]  
Drain - Source Voltage : VDS [V]  
Fig.3 Typical Transient Thermal  
Impedance vs. Pulse Width  
1
0.1  
0.01  
Duty =  
1
0.5  
0.2  
Duty increase  
0.1  
0.05  
0.02  
0.01  
Single pulse  
0.001  
0.0001  
Tc = 25ºC  
1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1  
Pulse Width : PW [s]  
www.rohm.com  
©2023 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT4013DR  
4.Apr.2023 - Rev.003  
5/15  
SCT4013DR  
Datasheet  
lElectrical characteristic curves  
T = 25ºC Typical Output  
Characteristics(I)  
T = 25ºC Typical Output  
Characteristics(II)  
Fig.4  
Fig.5  
50  
vj  
vj  
100  
Tvj = 25oC  
tp 200μs  
80  
60  
40  
20  
0
40  
30  
20  
10  
0
Tvj = 25oC  
tp 200μs  
VGS = 6~18V, 2V step  
VGS increase  
VGS = 6~18V, 2V step  
VGS increase  
0
2
4
6
8
10  
0
1
2
3
4
5
Drain - Source Voltage : VDS [V]  
Drain - Source Voltage : VDS [V]  
T = 25ºC 3rd Quadrant Characteristics  
Fig.6  
0
vj  
Tvj = 25oC  
tp 200μs  
-20  
-40  
VGS = -4V  
VGS = 0V  
VGS = 15V  
VGS = 18V  
-60  
VGS increase  
-80  
-100  
-10  
-8  
-6  
-4  
-2  
0
Drain - Source Voltage : VDS [V]  
www.rohm.com  
©2023 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT4013DR  
4.Apr.2023 - Rev.003  
6/15  
SCT4013DR  
Datasheet  
lElectrical characteristic curves  
T = 150ºC Typical Output  
Characteristics(I)  
T = 150ºC Typical Output  
Characteristics(II)  
Fig.7  
Fig.8  
50  
vj  
vj  
100  
Tvj = 150oC  
Tvj = 150oC  
tp 200μs  
tp 200μs  
80  
60  
40  
20  
0
40  
30  
20  
10  
0
VGS = 6~18V, 2V step  
VGS increase  
VGS = 6~18V, 2V step  
VGS increase  
0
2
4
6
8
10  
0
1
2
3
4
5
Drain - Source Voltage : VDS [V]  
Drain - Source Voltage : VDS [V]  
Tvj = 150ºC 3rd Quadrant  
Characteristics  
Fig.10 Body Diode Forward Voltage  
vs. Gate - Source Voltage  
Fig.9  
0
6
Tvj = 150oC  
tp 200μs  
ID = 58A  
tp 200μs  
5
4
3
2
1
0
-20  
-40  
VGS = -4V  
VGS = 0V  
VGS = 15V  
VGS = 18V  
Tvj=150ºC  
-60  
VGS increase  
-80  
Tvj=25ºC  
-100  
-10  
-8  
-6  
-4  
-2  
0
-4  
0
4
8
12  
16  
20  
Drain - Source Voltage : VDS [V]  
Gate - Source Voltage : VGS [V]  
www.rohm.com  
©2023 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT4013DR  
4.Apr.2023 - Rev.003  
7/15  
SCT4013DR  
Datasheet  
lElectrical characteristic curves  
Fig.11 Typical Transfer Characteristics (I)  
100  
Fig.12 Typical Transfer Characteristics (II)  
100  
80  
60  
40  
20  
0
VDS = 10V  
tp ≤ 200μs  
VDS = 10V  
tp ≤ 200μs  
10  
1
Tvj increase  
Tvj increase  
Tvj = 150oC  
0.1  
Tvj = 150oC  
Tvj = 75oC  
Tvj = 25oC  
Tvj = -25oC  
Tvj = 75oC  
Tvj = 25oC  
Tvj = -25oC  
0.01  
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
Gate - Source Voltage : VGS [V]  
Gate - Source Voltage : VGS [V]  
Fig.13 Gate Threshold Voltage  
vs. Virtual Junction Temperature  
Fig.14 Transconductance vs. Drain Current  
6
100  
VDS = 10V  
tp ≤ 200μs  
ID = 30.8mA  
10V  
=
VDS  
5
4
3
2
1
0
10  
1
Tvj = 150oC  
Tvj = 75oC  
Tvj = 25oC  
Tvj increase  
Tvj = -25oC  
0.1  
-50  
0
50  
100  
150  
200  
0.1  
1
10  
100  
Virtual Junction Temperature :  
Tvj [ºC]  
Drain Current : ID [A]  
www.rohm.com  
©2023 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT4013DR  
4.Apr.2023 - Rev.003  
8/15  
SCT4013DR  
Datasheet  
lElectrical characteristic curves  
Fig.16 Static Drain - Source On - State  
Resistance vs. Virtual Junction  
Temperature  
Fig.15 Static Drain - Source On - State  
Resistance vs. Gate - Source Voltage  
0.05  
0.05  
Tvj = 25oC  
tp ≤ 200μs  
VGS = 18V  
tp ≤ 200μs  
0.04  
0.04  
0.03  
0.02  
0.01  
0.00  
ID = 91A  
ID = 58A  
ID = -58A  
ID = 91A  
ID = 58A  
0.03  
ID = -58A  
0.02  
0.01  
ID increase  
ID increase  
0.00  
-50  
0
50  
100  
150  
200  
8
10 12 14 16 18 20 22  
Gate - Source Voltage : VGS [V]  
Virtual Junction Temperature :  
Tvj [ºC]  
Fig.18 Normalized Drain - Source Breakdown  
Voltage vs. Virtual Junction  
Temperature  
1.1  
Fig.17 Static Drain - Source On - State  
Resistance vs. Drain Current  
1
Tvj = 150oC  
Tvj = 125oC  
Tvj = 75oC  
Tvj = 25oC  
Tvj = -25oC  
0.1  
1.0  
0.01  
Tvj increase  
VGS = 0 V  
VGS = 18V  
tp ≤ 200μs  
18.6 mA  
ID =  
0.9  
0.001  
-50  
0
50  
100  
150 200  
1
10  
100  
Drain Current : ID [A]  
Virtual Junction Temperature :  
Tvj [ºC]  
www.rohm.com  
©2023 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT4013DR  
4.Apr.2023 - Rev.003  
9/15  
SCT4013DR  
Datasheet  
lElectrical characteristic curves  
Fig.19 Typical Capacitance  
vs. Drain - Source Voltage  
C
oss Stored Energy  
Fig.20  
35  
10000  
1000  
100  
Tvj = 25ºC  
30  
25  
20  
15  
10  
5
Ciss  
Coss  
10  
Tvj = 25oC  
f = 1MHz  
VGS = 0V  
1
Crss  
0
0
100  
200  
300  
400  
500  
0.1  
1
10  
100  
1000  
Drain - Source Voltage : VDS [V]  
Drain - Source Voltage : VDS [V]  
Fig.21 Dynamic Input Characteristics  
20  
Tvj = 25°C  
VDD= 500V  
ID = 58A  
15  
10  
5
0
0
100  
200  
Total Gate Charge : Qg [nC]  
www.rohm.com  
©2023 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT4013DR  
4.Apr.2023 - Rev.003  
10/15  
SCT4013DR  
Datasheet  
lElectrical characteristic curves  
Fig.22 Typical Switching Time  
vs. External Gate Resistance  
Fig.23 Typical Switching Loss  
vs. Drain - Source Voltage  
250  
1400  
Tvj = 25°C  
ID = 58A  
Tvj = 25°C  
ID = 58A  
1200  
VDD= 500V  
200  
VGS= +18V/0V  
td(off)  
VGS= +18V/0V  
RG = 6.8Ω  
1000  
L = 250μH  
L = 250μH  
150  
800  
600  
400  
200  
0
100  
Eon  
tr  
50  
Eoff  
td(on)  
tf  
0
0
5
10  
15  
20  
100  
200  
300  
400  
500  
External Gate Resistance : RG [Ω]  
Drain - Source Voltage : VDS [V]  
Fig.24 Typical Switching Loss  
vs. Drain Current  
Fig.25 Typical Switching Loss  
vs. External Gate Resistance  
1400  
1400  
Tvj = 25°C  
Tvj = 25°C  
VDD= 500V  
VGS= +18V/0V  
ID = 58A  
VDD= 500V  
1200  
1200  
Eon  
RG = 6.8Ω  
1000  
VGS= +18V/0V  
L = 250μH  
1000  
800  
600  
400  
200  
0
L = 250μH  
800  
600  
400  
200  
0
Eon  
Eoff  
Eoff  
0
5
10  
15  
20  
0
20  
40  
60  
80  
100  
Drain Current : ID [A]  
External Gate Resistance : RG [Ω]  
www.rohm.com  
©2023 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT4013DR  
4.Apr.2023 - Rev.003  
11/15  
SCT4013DR  
Datasheet  
Measurement circuits and waveforms  
Fig.1-1 Gate Charge Measurement Circuit  
Fig.1-2 Gate Charge Waveform  
Fig.2-1 Switching Characteristics Measurement Circuit  
Fig.2-2 Waveforms for Switching Time  
Fig.2-3 Waveforms for Switching Energy Loss  
Eon  
=
I VDS dt  
Eoff  
=
ID VDS dt  
׬
׬
D
Vsurge  
Irr  
VDS  
ID  
Fig.3-1 Reverse Recovery Time Measurement Circuit  
Fig.3-2 Reverse Recovery Waveform  
www.rohm.com  
©2023 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT4013DR  
4.Apr.2023 - Rev.003  
12/15  
SCT4013DR  
Datasheet  
lPackage Dimensions  
Unit: mm  
www.rohm.com  
©2023 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT4013DR  
4.Apr.2023 - Rev.003  
13/15  
SCT4013DR  
Datasheet  
Unit: mm  
www.rohm.com  
©2023 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT4013DR  
4.Apr.2023 - Rev.003  
14/15  
SCT4013DR  
Datasheet  
lDie Bonding Layout  
: Die position  
・Front view of the packaging.  
・Dimensions are design values.  
・If the heat sink is to be installed, it should be in contact with the die bonding point.  
Unit: mm  
www.rohm.com  
©2023 ROHM Co., Ltd. All rights reserved.  
TSZ2211115001  
TSQ50214-SCT4013DR  
4.Apr.2023 - Rev.003  
15/15  
Notice  
N o t e s  
1) The information contained herein is subject to change without notice.  
2) Before you use our Products, please contact our sales representative and verify the latest specifica-  
tions.  
3) Although ROHM is continuously working to improve product reliability and quality, semicon-  
ductors can break down and malfunction due to various factors.  
Therefore, in order to prevent personal injury or fire arising from failure, please take safety  
measures such as complying with the derating characteristics, implementing redundant and  
fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no  
responsibility for any damages arising out of the use of our Poducts beyond the rating specified by  
ROHM.  
4) Examples of application circuits, circuit constants and any other information contained herein are  
provided only to illustrate the standard usage and operations of the Products. The peripheral  
conditions must be taken into account when designing circuits for mass production.  
5) The technical information specified herein is intended only to show the typical functions of and  
examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly,  
any license to use or exercise intellectual property or other rights held by ROHM or any other  
parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of  
such technical information.  
6) The Products specified in this document are not designed to be radiation tolerant.  
7) For use of our Products in applications requiring a high degree of reliability (as exemplified  
below), please contact and consult with a ROHM representative : transportation equipment (i.e.  
cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety  
equipment, medical systems, and power transmission systems.  
8) Do not use our Products in applications requiring extremely high reliability, such as aerospace  
equipment, nuclear power control systems, and submarine repeaters.  
9) ROHM shall have no responsibility for any damages or injury arising from non-compliance with  
the recommended usage conditions and specifications contained herein.  
10) ROHM has used reasonable care to ensure the accuracy of the information contained in this  
document. However, ROHM does not warrants that such information is error-free, and ROHM  
shall have no responsibility for any damages arising from any inaccuracy or misprint of such  
information.  
11) Please use the Products in accordance with any applicable environmental laws and regulations,  
such as the RoHS Directive. For more details, including RoHS compatibility, please contact a  
ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting  
non-compliance with any applicable laws or regulations.  
12) When providing our Products and technologies contained in this document to other countries,  
you must abide by the procedures and provisions stipulated in all applicable export laws and  
regulations, including without limitation the US Export Administration Regulations and the Foreign  
Exchange and Foreign Trade Act.  
13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of  
ROHM.  
Thank you for your accessing to ROHM product informations.  
More detail product informations and catalogs are available, please contact us.  
ROHM Customer Support System  
http://www.rohm.com/contact/  
www.rohm.com  
© 2012 ROHM Co., Ltd. All rights reserved.  
R1107  
S
Daattaasshheeeett  
General Precaution  
1. Before you use our Products, you are requested to carefully read this document and fully understand its contents.  
ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any  
ROHM’s Products against warning, caution or note contained in this document.  
2. All information contained in this document is current as of the issuing date and subject to change without any prior  
notice. Before purchasing or using ROHM’s Products, please confirm the latest information with a ROHM sales  
representative.  
3. The information contained in this document is provided on an “as is” basis and ROHM does not warrant that all  
information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or  
liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or  
concerning such information.  
Notice – WE  
Rev.001  
© 2015 ROHM Co., Ltd. All rights reserved.  

相关型号:

SCT4013DW7 (新产品)

SCT4013DW7是一款750V、98A的Nch SiC功率MOSFET。该产品采用沟槽结构实现了更低的导通电阻,ROHM的第4代SiC MOSFETSCT4系列是改善了短路耐受时间并实现了业界超低导通电阻的第4代产品。与以往产品相比,该系列产品的导通电阻降低了约40%,开关损耗降低了约50%。另外,该产品还支持更容易处理的15V栅-源电压,使应用产品的设计更容易。
ROHM

SCT4018KE (新产品)

SCT4018KE是有助于应用产品实现小型化和更低功耗的SiC MOSFET。ROHM的第4代SiC MOSFETSCT4系列是改善了短路耐受时间并实现了业界超低导通电阻的第4代产品。与以往产品相比,该系列产品的导通电阻降低了约40%,开关损耗降低了约50%。另外,该产品还支持更容易处理的15V栅-源电压,使应用产品的设计更容易。
ROHM

SCT4018KR

SCT4018KR是一款有助于应用产品实现小型化和更低功耗的SiC MOSFET。该产品采用带有驱动器源极引脚的封装形式,可更大程度地激发出SiC MOSFET的高速开关性能。ROHM的第4代SiC MOSFETSCT4系列是改善了短路耐受时间并实现了业界超低导通电阻的第4代产品。与以往产品相比,该系列产品的导通电阻降低了约40%,开关损耗降低了约50%。另外,还支持更容易处理的15V栅-源电压,使应用产品的设计更容易。
ROHM

SCT4018KW7 (新产品)

SCT4018KW7是一款1200V、75A的Nch SiC功率MOSFET。该产品采用沟槽结构实现了更低的导通电阻,ROHM的第4代SiC MOSFETSCT4系列是改善了短路耐受时间并实现了业界超低导通电阻的第4代产品。与以往产品相比,该系列产品的导通电阻降低了约40%,开关损耗降低了约50%。另外,该产品还支持更容易处理的15V栅-源电压,使应用产品的设计更容易。
ROHM

SCT4026DE

SCT4026DE是一款有助于应用产品实现小型化和更低功耗的SiC MOSFET。ROHM的第4代SiC MOSFETSCT4系列是改善了短路耐受时间并实现了业界超低导通电阻的第4代产品。与以往产品相比,该系列产品的导通电阻降低了约40%,开关损耗降低了约50%。另外,该产品还支持更容易处理的15V栅-源电压,使应用产品的设计更容易。
ROHM

SCT4026DEHR

SCT4026DEHR是一款750V、56A的Nch SiC功率MOSFET。该产品采用沟槽结构实现了更低的导通电阻,是符合AEC-Q101标准的高可靠性车规级产品。ROHM的第4代SiC MOSFETSCT4系列是改善了短路耐受时间并实现了业界超低导通电阻的第4代产品。与以往产品相比,该系列产品的导通电阻降低了约40%,开关损耗降低了约50%。另外,该产品还支持更容易处理的15V栅-源电压,使应用产品的设计更容易。
ROHM

SCT4026DR

SCT4026DR是有助于应用产品实现小型化和更低功耗的SiC MOSFET。该产品采用带有驱动器源极引脚的封装形式,可更大程度地激发出SiC MOSFET的高速开关性能。ROHM的第4代SiC MOSFETSCT4系列是改善了短路耐受时间并实现了业界超低导通电阻的第4代产品。与以往产品相比,该系列产品的导通电阻降低了约40%,开关损耗降低了约50%。另外,还支持更容易处理的15V栅-源电压,使应用产品的设计更容易。
ROHM

SCT4026DRHR

SCT4026DRHR是一款750V、56A的Nch SiC功率MOSFET。该产品采用沟槽结构实现了更低的导通电阻,是符合AEC-Q101标准的高可靠性车规级产品。ROHM的第4代SiC MOSFETSCT4系列是改善了短路耐受时间并实现了业界超低导通电阻的第4代产品。与以往产品相比,该系列产品的导通电阻降低了约40%,开关损耗降低了约50%。另外,该产品还支持更容易处理的15V栅-源电压,使应用产品的设计更容易。
ROHM

SCT4026DW7 (新产品)

SCT4026DW7是一款750V、51A的Nch SiC功率MOSFET。该产品采用沟槽结构实现了更低的导通电阻,ROHM的第4代SiC MOSFETSCT4系列是改善了短路耐受时间并实现了业界超低导通电阻的第4代产品。与以往产品相比,该系列产品的导通电阻降低了约40%,开关损耗降低了约50%。另外,该产品还支持更容易处理的15V栅-源电压,使应用产品的设计更容易。
ROHM

SCT4026DW7HR

SCT4026DW7HR是一款750V、51A的Nch SiC功率MOSFET。该产品采用沟槽结构实现了更低的导通电阻,是符合AEC-Q101标准的高可靠性车规级产品。ROHM的第4代SiC MOSFETSCT4系列是改善了短路耐受时间并实现了业界超低导通电阻的第4代产品。与以往产品相比,该系列产品的导通电阻降低了约40%,开关损耗降低了约50%。另外,该产品还支持更容易处理的15V栅-源电压,使应用产品的设计更容易。
ROHM

SCT4036KE

SCT4036KE是一款有助于应用产品实现小型化和更低功耗的SiC MOSFET。ROHM的第4代SiC MOSFETSCT4系列是改善了短路耐受时间并实现了业界超低导通电阻的第4代产品。与以往产品相比,该系列产品的导通电阻降低了约40%,开关损耗降低了约50%。另外,还支持更容易处理的15V栅-源电压,使应用产品的设计更容易。
ROHM

SCT4036KEHR

SCT4036KEHR是一款1200V、43A的Nch SiC功率MOSFET。该产品采用沟槽结构实现了更低的导通电阻,是符合AEC-Q101标准的高可靠性车规级产品。ROHM的第4代SiC MOSFETSCT4系列是改善了短路耐受时间并实现了业界超低导通电阻的第4代产品。与以往产品相比,该系列产品的导通电阻降低了约40%,开关损耗降低了约50%。另外,该产品还支持更容易处理的15V栅-源电压,使应用产品的设计更容易。
ROHM