K1C6416B2E-FI70T [SAMSUNG]

DRAM;
K1C6416B2E-FI70T
型号: K1C6416B2E-FI70T
厂家: SAMSUNG    SAMSUNG
描述:

DRAM

动态存储器
文件: 总50页 (文件大小:1160K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
K1C6416B2E  
UtRAM2  
64Mb (4M x 16 bit) UtRAM2  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.  
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,  
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,  
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL  
INFORMATION IN THIS DOCUMENT IS PROVIDED  
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar  
applications where Product failure could result in loss of life or personal or physical harm, or any military or  
defense application, or any governmental procurement to which special terms or provisions may apply.  
* Samsung Electronics reserves the right to change products or specification without notice.  
Revision 0.1  
Nov 2008  
- 1 -  
Preliminary  
K1C6416B2E  
UtRAM2  
Document Title  
8Mx16 bit Synchronous Burst Uni-Transistor Random Access Memory 2  
Revision History  
Revision No.  
History  
Draft Date  
Remark  
0.0  
Initial  
Oct. 15, 2008  
Preliminary  
- Design Target  
Nov. 14, 2008  
Preliminary  
0.1  
ISBD 30 -> 50uA  
Revision 0.1  
Nov 2008  
- 2 -  
Preliminary  
K1C6416B2E  
UtRAM2  
Table of Contents  
64Mb (4M x 16 bit) UtRAM2  
1. GENERAL DESCRIPTION........................................................................................................................................... 5  
2. FEATURES & FUNCTION BLOCK DIAGRAM............................................................................................................. 5  
3. PRODUCT FAMILY............................................................................................................................................... 5  
4. BALL DESCRIPTIONS.......................................................................................................................................... 6  
5. POWER UP SEQUENCE............................................................................................................................................. 7  
6. ABSOLUTE MAXIMUM RATINGS ......................................................................................................................... 8  
7. RECOMMENDED DC OPERATING CONDITIONS................................................................................................ 8  
8. CAPACITANCE..................................................................................................................................................... 8  
9. DC AND OPERATING CHARACTERISTICS ......................................................................................................... 9  
10. CRE (CONTROL REGISTER ENABLE)..................................................................................................................... 10  
10.1. Bus Configuration Register...................................................................................................................................... 10  
10.2. Refresh Configuration Register ............................................................................................................................... 11  
10.3. Burst Length (BCR[2:0]) Default = Continuous Burst .............................................................................................. 11  
10.4. Burst Wrap (BCR[3]) Default = No Wrap ................................................................................................................. 11  
10.5. Drive Strength (BCR[5:4]) Default = 1/2 Drive Strength .......................................................................................... 12  
10.6. WAIT Configuration (BCR[8]) Default = 1 CLK Prior ............................................................................................... 12  
10.7. WAIT Polarity (BCR[10]) Default = Active HIGH...................................................................................................... 12  
10.8. Operating Mode (BCR[15]) Default = Asynchronous Operation.............................................................................. 12  
10.9. Latency Counter (BCR[13:11]) Default = 3 Clock Latency ...................................................................................... 12  
10.10. Initial Access Latency (BRC[14]) Default = Variable ............................................................................................. 12  
10.11. Partial Array Refresh (RCR[2:0]) Default = Full Array Refresh.............................................................................. 14  
10.12. Deep Power-Down (RCR[4]) Default = DPD Disabled .......................................................................................... 14  
10.13. Device Identification Register ................................................................................................................................ 14  
10.14. Software Access.................................................................................................................................................... 17  
11. BUS OPERATING MODES........................................................................................................................................ 18  
11.1. Asynchronous Mode (default mode)........................................................................................................................ 18  
11.1.1 Asynchronous (Page) read operation.................................................................................................................... 18  
11.1.2 Asynchronous write operation............................................................................................................................... 18  
11.2. Functional Description (Asynch. mode) ............................................................................................................. 18  
12. Burst Mode Operation................................................................................................................................................. 19  
12.1. synchronous Mode .................................................................................................................................................. 19  
12.1.1 Synchronous Burst Read Operation...................................................................................................................... 19  
12.1.2 Synchronous Burst Write Operation...................................................................................................................... 19  
12.2. Functional Description (Synch. mode) ............................................................................................................... 20  
12.3. Mixed-Mode Operation ............................................................................................................................................ 21  
12.4. Burst Suspend ......................................................................................................................................................... 21  
12.5. Boundary Crossing .................................................................................................................................................. 21  
12.6. WAIT Operation....................................................................................................................................................... 21  
12.7. LB / UB Operation.................................................................................................................................................... 21  
13. LOW-POWER OPERATION....................................................................................................................................... 22  
13.1. Temperature Compensated Self Refresh................................................................................................................ 22  
13.2. Partial Array Refresh ............................................................................................................................................... 22  
13.3. Deep Power-Down Operation.................................................................................................................................. 22  
13.4. AC Input/Output Reference Waveform & AC Output Load Circuit........................................................................... 22  
14. TIMING REQUIREMENTS ......................................................................................................................................... 23  
14.1. Asynchronous READ Cycle Timing Requirements ............................................................................................. 23  
14.2. Asynchronous WRITE Cycle Timing Requirements............................................................................................ 23  
14.3. Brst READ Cycle Timing Requirements............................................................................................................. 24  
14.4. Burst WRITE Cycle Timing Requirements............................................................................................................... 24  
15. TIMING DIAGRAMS................................................................................................................................................... 25  
15.1. Asynchronous READ............................................................................................................................................... 25  
Revision 0.1  
Nov 2008  
- 3 -  
Preliminary  
K1C6416B2E  
UtRAM2  
Table of Contents  
15.2. Asynchronous READ Using ADV ............................................................................................................................ 26  
15.3. PAGE MODE READ................................................................................................................................................ 27  
15.4. Single-Access Burst READ Operation—Variable Latency ...................................................................................... 28  
15.5. 4-Word Burst READ Operation—Variable Latency ................................................................................................. 29  
15.6. Single-Access Burst READ Operation—Fixed Latency........................................................................................... 30  
15.7. 4-Word Burst READ Operation—Fixed Latency...................................................................................................... 31  
15.8. 4-Word Burst READ Operation— Row Boundary Crossing .................................................................................... 32  
15.9. READ Burst Suspend .............................................................................................................................................. 33  
15.10. CS-Controlled Asynchronous WRITE.................................................................................................................... 34  
15.11. LB/UB-Controlled Asynchronous WRITE .............................................................................................................. 35  
15.12. WE-Controlled Asynchronous WRITE................................................................................................................... 36  
15.13. Asynchronous WRITE Using ADV......................................................................................................................... 37  
15.14. Burst WRITE Operation—Variable Latency Mode................................................................................................. 38  
15.15. Burst WRITE Operation—Fixed Latency Mode..................................................................................................... 39  
15.16. 4-Word Burst WRITE Operation— Row Boundary Crossing................................................................................. 40  
15.17. Burst WRITE Followed by Burst READ ................................................................................................................. 41  
15.18. Burst READ Interrupted by Burst READ or WRITE............................................................................................... 42  
15.19. Burst WRITE Interrupted by Burst WRITE or READ—Variable Latency Mode..................................................... 43  
15.20. Burst WRITE Interrupted by Burst WRITE or READ—Fixed Latency Mode ......................................................... 44  
15.21. Asynchronous WRITE Followed by Burst READ................................................................................................... 45  
15.22. Asynchronous WRITE (ADV LOW) Followed By Burst READ .............................................................................. 46  
15.23. Burst READ Followed by Asynchronous WRITE (WE-Controlled)........................................................................ 47  
15.24. Burst READ Followed by Asynchronous WRITE Using ADV ................................................................................ 48  
15.25. Asynchronous WRITE Followed by Asynchronous READ—ADV LOW ................................................................ 49  
15.26. Asynchronous WRITE Followed by Asynchronous READ .................................................................................... 50  
Revision 0.1  
Nov 2008  
- 4 -  
Preliminary  
K1C6416B2E  
UtRAM2  
1. GENERAL DESCRIPTION  
SAMSUNG’s UtRAM products are designed to meet the request from the customers who want to cope with the fast growing mobile applica-  
tions that need high-speed random access memory. UtRAM is the solution for the mobile market with its low cost, high density and high per-  
formance feature. K1C6416B2E is fabricated by SAMSUNGs advanced CMOS technology using one transistor memory cell. The device  
supports the traditional SRAM like asynchronous operation (asynchronous page read and asynchronous write), the NOR flash like synchro-  
nous operation (synchronous burst read and asynchronous write) and the fully synchronous operation (synchronous burst read and synchro-  
nous burst write). These operation modes are defined through the Confifuration Register Setting. It supports the special features for the  
standby power saving. Those are the PAR(Partial Array Refresh) mode, DPD(Deep Power Down) mode and internal TCSR(Temperature  
Compensated Self Refresh). It also supports variable and fixed latency, driver strength settings, Burst sequence (wrap or No-wrap) options  
and a device ID register (DIDR).  
2. FEATURES & FUNCTION BLOCK DIAGRAM  
• Process technology: CMOS  
• Organization: 4M x 16 bit  
Clk gen.  
Pre-charge circuit  
• Power supply voltage: 1.7V~1.95V  
• Three state outputs  
• Supports Configuration Register Set  
- CRE pin set up  
- Software set up  
V
V
V
CC  
CCQ  
SS  
Memory  
Array  
VSSQ  
• Supports power saving modes  
- PAR (Partial Array Refresh)  
- DPD (Deep Power Down)  
- Internal TCSR (Temperature Compensated Self Refresh)  
• Supports driver strength optimization  
• Support 2 operation modes  
- Asynchronous mode (4-Page)  
- Synchronous mode  
Row  
select  
Row  
Addresses  
I/O Circuit  
Data  
cont  
DQ0~DQ7  
Column Select  
• Random access time:70ns  
• Page access time:20ns  
Data  
cont  
DQ8~DQ15  
• Synchronous burst operation  
- Max. clock frequency : 104MHz  
- Fixed and Variable read latency  
- 4 / 8 / 16 / 32 and Continuous burst  
- Wrap / No-wrap  
Data  
cont  
Column Address  
- Latency : 3(Variable) @ 104MHz  
3(Variable) @ 80MHz  
2(Variable) @ 66MHz  
- Burst stop  
- Burst read suspend  
CLK  
CS  
ADV  
OE  
Control Logic  
WE  
UB  
LB  
CRE  
- Burst write data masking  
WAIT  
3. PRODUCT FAMILY  
Current Consumption  
CLK Freq.  
(Max.)  
Product Family  
Operating Mode  
Operating Temp.  
Vcc / Vccq  
Standby  
Operating  
(ISB1, Max.)  
(ICC2P, Max.)  
Asynch. Mode  
Synch. Mode  
K1C6416B2E-I  
Industrial(-40~85°C)  
1.7~1.95V  
104MHz  
180uA  
40mA  
Revision 0.1  
Nov 2008  
- 5 -  
Preliminary  
K1C6416B2E  
UtRAM2  
4. BALL DESCRIPTIONS  
Symbol  
Type  
Description  
Address inputs: Inputs for addresses during READ and WRITE operations. Addresses are internally latched  
during READ and WRITE cycles. The address lines are also used to define the value to be loaded into the  
BCR or the RCR.  
A[21:0]  
Input  
Clock: Synchronizes the memory to the system operating frequency during synchronous operations. When  
configured for synchronous operation, the address is latched on the first rising CLK edge when ADV is active.  
CLK is static LOW during asynchronous access READ and WRITE operations and during PAGE READ  
ACCESS operations.  
CLK  
(note1)  
Input  
Address valid: Indicates that a valid address is present on the address inputs. Addresses can be latched on  
the rising edge of ADV during asynchronous READ and WRITE operations. ADV can be held LOW during  
asynchronous READ and WRITE operations.  
ADV  
(note1)  
Input  
Input  
Control register enable: When CRE is HIGH, WRITE operations load the RCR or BCR, and READ operations  
access the RCR, BCR, or DIDR.  
CRE  
Chip Select: Activates the device when LOW. When CS is HIGH, the device is disabled and goes into standby  
or deep power-down mode.  
CS  
OE  
WE  
Input  
Input  
Input  
Output enable: Enables the output buffers when LOW. When OE is HIGH, the output buffers are disabled.  
Write enable: Determines if a given cycle is a WRITE cycle. If WE is LOW, the cycle is a WRITE to either a  
configuration register or to the memory array.  
LB  
UB  
Input  
Input  
Lower byte enable. DQ[7:0]  
Upper byte enable. DQ[15:8]  
DQ[15:0]  
Input/Output Data inputs/outputs.  
Wait: Provides data-valid feedback during burst READ and WRITE operations. The signal is gated by CS.  
WAIT  
(note1)  
Output  
WAIT is used to arbitrate collisions between refresh and READ/WRITE operations. WAIT is asserted and  
should be ignored during asynchronous and page mode operations. WAIT is High-Z when CS is HIGH.  
RFU  
VCC  
-
Reserved for future use.  
Supply  
Supply  
Supply  
Supply  
Device power supply: (1.70V–1.95V) Power supply for device core operation.  
I/O power supply: (1.70V–1.95V) Power supply for input/output buffers.  
VSS must be connected to ground.  
VCCQ  
VSS  
VSSQ  
VSSQ must be connected to ground.  
NOTE :  
1) When using asynchronous mode exclusively, the CLK and ADV inputs can be tied to VSS. WAIT will be asserted but should be ignored during asynchronous  
mode operations.  
Revision 0.1  
- 6 -  
Nov 2008  
Preliminary  
K1C6416B2E  
UtRAM2  
5. POWER UP SEQUENCE  
After VCC and VCCQ reach minimum operating voltage(1.7V), drive CS High. Then the device gets into the Power Up mode. Wait for minimum  
150µs to get into the normal operation mode. During the Power Up mode, the standby current can not be guaranteed. To get the appropriate  
device operation, be sure to keep the following power up sequence. Asynch. mode is default mode and is set up after power up.  
VCC(Min)  
VCC  
VCCQ(Min)  
VCCQ  
150us  
Min. 0ns  
CS  
Revision 0.1  
- 7 -  
Nov 2008  
Preliminary  
K1C6416B2E  
UtRAM2  
6. ABSOLUTE MAXIMUM RATINGS  
Item  
Symbol  
VIN, VOUT  
VCC, VCCQ  
PD  
Ratings  
-0.2 to VCCQ+0.3V  
-0.2 to 2.5V  
1.0  
Unit  
V
Voltage on any pin relative to Vss  
Power supply voltage relative to Vss  
Power Dissipation  
V
W
Storage temperature  
TSTG  
-65 to 150  
-40 to 85  
°C  
°C  
Operating Temperature  
TA  
NOTE :  
1) Stresses greater than "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to be used under  
recommended operating condition. Exposure to absolute maximum rating conditions longer than 1 second may affect reliability.  
7. RECOMMENDED DC OPERATING CONDITIONS  
Item  
Symbol  
VCC  
Min  
1.7  
Typ  
1.8  
1.8  
0
Max  
1.95  
Unit  
V
Power supply voltage(Core)  
Power supply voltage(I/O)  
Ground  
VCCQ  
VSS, VSSQ  
VIH  
1.7  
1.95  
V
0
0
V
VCCQ+0.22)  
0.4  
Input high voltage  
Input low voltage  
VCCQ-0.4  
-0.23)  
-
V
VIL  
-
V
NOTE :  
1) TA = -40 to 85°C, otherwise specified.  
2) Overshoot: VCCQ +1.0V in case of pulse width 20ns. Overshoot is sampled, not 100% tested.  
3) Undershoot: -1.0V in case of pulse width 20ns. Undershoot is sampled, not 100% tested.  
8. CAPACITANCE  
Item  
Symbol  
CIN  
Test Condition  
VIN=0V  
Min  
Max  
8
Unit  
pF  
Input capacitance  
Input/Output capacitance  
-
-
CIO  
VIO=0V  
8
pF  
NOTE :  
1) Freq.=1MHz, TA=25°C  
2) Capacitance is sampled, not 100% tested.  
Revision 0.1  
Nov 2008  
- 8 -  
Preliminary  
K1C6416B2E  
UtRAM2  
9. DC AND OPERATING CHARACTERISTICS  
Item  
Symbol  
Test Conditions  
VIN=Vss to VCCQ  
Min  
-1  
Typ  
Max  
1
Unit  
µA  
Input Leakage Current  
Output Leakage Current  
ILI  
-
-
ILO  
CS=VIH, CRE=VIL, OE=VIH or WE=VIL, VIO=VSS to VCCQ  
-1  
1
µA  
Cycle time=min tRC/min tWC, IIO=0mA4), 100% duty, CS=VIL,  
CRE=VIL, VIN=VIL or VIH  
6)  
ICC2  
-
-
-
-
-
-
-
-
-
-
40  
mA  
mA  
Average Operating  
Current (Async)  
Cycle time=min tRC+3 min tPC, IIO=0mA4), 100% duty, CS=VIL,  
CRE=VIL, VIN=VIL or VIH  
ICC2P  
40  
104Mhz:TBD  
VIN = VCCQ or 0V  
CS=VIL, IIO=0mA4)  
ICC3I  
80Mhz:TBD mA  
66Mhz:TBD  
104Mhz:TBD  
80Mhz:TBD mA  
66Mhz:TBD  
Average Operating  
Current (Burst)  
ICC3R  
104Mhz:TBD  
ICC3W  
80Mhz:TBD mA  
66Mhz:TBD  
Output Low Voltage  
Output High Voltage  
VOL  
VOH  
IOL=0.2mA  
IOH=-0.2mA  
-
-
-
-
-
-
-
-
-
-
-
0.2  
-
V
V
0.8xVCCQ  
< 40°C  
< 85°C  
-
-
-
-
-
-
-
-
120  
180  
115  
110  
105  
165  
155  
145  
µA  
µA  
CS=VCCQ, CRE=0V, Other inputs=0V or VCCQ  
1)  
Standby Current(CMOS)  
ISB1  
(Toggle is not allowed)5)  
1/2 Block  
< 40°C 1/4 Block  
1/8 Block  
µA  
CS=VCCQ, CRE=0V, Other inputs=0V or VCCQ  
2)  
Partial Refresh Current  
ISBP  
(Toggle is not allowed)5)  
1/2 Block  
< 85°C 1/4 Block  
1/8 Block  
µA  
µA  
CRE=0V, CS=VCCQ, Other inputs=0V or VCCQ (Toggle is not  
Deep Power Down Current  
ISBD  
-
-
50  
allowed)5)  
NOTE :  
1) ISB1 is measured after 60ms after CS high. CLK should be fixed at high or at Low.  
2) Full Array Partial Refresh Current(ISBP) is same as Standby Current(ISB1).  
3) Internal TCSR (Temperature Compensated Self Refresh) is used to optimize refresh cycle below 40°C.  
4) IIO=0mA; This parameter is specified with the outputs disabled to avoid external loading effects.  
5) VIN=0V; all inputs should not be toggle.  
6) This parameter is for page disable mode, Clock should not be inserted between ADV low and WE low during Write operation.  
Revision 0.1  
Nov 2008  
- 9 -  
Preliminary  
K1C6416B2E  
UtRAM2  
10. CRE (CONTROL REGISTER ENABLE)  
The configuration register values are written via Address pins. In an asynchronous WRITE, the values are latched into the configuration regis-  
ter on the rising edge of ADV, CS, or WE, whichever occurs first; LB and UB are “Don’t Care.” For reads, address inputs other than A[19:18]  
are “Don’t Care,” and register bits 15:0 are output as data (ADV HIGH) on A[15:0]. Immediately after performing a configuration register READ  
or WRITE operation, reading the memory array is highly recommended.  
10.1 Bus Configuration Register  
The BCR defines how the device interacts with the system memory bus. The BCR is accessed with CRE HIGH and A[19:18] = 10b, or through  
the register access software sequence with A = 0001h on the third cycle.  
A19~A18  
A15  
A14  
A13~A11  
A10  
A8  
A5~A4  
A3  
A2~A0  
RS  
OM  
IL  
LC  
WP  
WC  
DS  
BW  
BL  
Initial Latency  
IL  
Latency Count  
Register Select  
Operating Mode  
A19  
A18  
0
RS  
A15  
0
OM  
A14  
0
A13  
0
A12  
A11  
0
LC  
0
1
0
RCR  
BCR  
DIDR  
Synch.  
Variable (default)  
Fixed  
0
0
1
1
0
0
1
1
0
0
1
Asynch (default)  
1
0
1
1
1
0
0
2
0
1
3 (default)  
1
0
4
5
6
7
1
1
1
0
1
1
Driver Strength  
Burst Wrap  
Burst Length  
Wait Polarity  
WP  
Wait Config.  
A10  
A8  
WC  
A5  
A4  
DS  
A3  
BW  
A2  
A1  
A0  
BL  
0
Active Low  
0
at data  
0
0
Full Drive  
0
Wrap  
0
0
1
4 word  
Active High  
(default)  
1 CLK prior  
(default)  
1/2 Drive  
(default)  
No Wrap  
(default)  
1
1
0
1
1
0
1
0
8 word  
1
1
0
1
1/4 Drive  
Reserved  
0
1
1
0
1
0
16 word  
32 word  
Continuous  
(default)  
1
1
1
NOTE:  
1) A6, A7, A9, A16, A17, A20 ~ A22 are reserved and should be ’1’  
2) The registers are set automatically to default value.  
3) Refresh command will be denied during continuous operation. CS low should not be longer than tBC(max. 2.5us)  
Revision 0.1  
Nov 2008  
- 10 -  
Preliminary  
K1C6416B2E  
UtRAM2  
10.2 Refresh Configuration Register  
The refresh configuration register (RCR) defines how the device performs its self refresh. Altering the refresh parameters can reduce current  
consumption during standby mode. The RCR is accessed with CRE HIGH and A[19:18] = 00b; or through the register access software  
sequence with A = 0000h on the third cycle.  
A19~A18  
A7  
A4  
A2~A0  
RS  
PAGE  
DPD  
PAR  
Register Select  
A18  
Page  
Deep Power Down  
Partial Refresh  
A19  
RS  
A7  
PAGE  
A4  
DPD  
A2  
A1  
A0  
PAR  
0
1
0
0
0
1
RCR  
BCR  
DIDR  
0
1
Disable(default)  
Enable  
0
1
Enable  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Full Array (default)  
Bottom 1/2 Array  
Bottom 1/4 Array  
Bottom 1/8 Array  
None of Array  
Disable (default)  
Top 1/2 Array  
Top 1/4 Array  
Top 1/8 Array  
NOTE:  
1) A3, A5, A6, A8~A15, A16, A17, A20 ~ A22 are reserved and should be ’1’  
2) The registers are set automatically to default value.  
10.3 Burst Length (BCR[2:0]) Default = Continuous Burst  
Burst lengths define the number of words the device outputs during burst READ and WRITE operations. The device supports a burst length of  
4, 8, 16, 32 words or continuous.  
10.4 Burst Wrap (BCR[3]) Default = No Wrap  
The burst-wrap option determines if a 4-, 8-, 16-, or 32-word READ or WRITE burst wraps within the burst length, or steps through sequential  
addresses.  
Table 1. Sequence and Burst Length  
4 word  
Starting  
Address  
8 word  
16 word  
32 word  
Burst Length  
Continuous  
Burst  
Burst Wrap  
Burst  
Burst Length  
Burst Length  
Length  
BCR[3] Wrap Decimal Linear  
Linear  
Linear  
Linear  
Linear  
0-1-2-3  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15  
1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-0  
2-3-4-5-6-7-8-9-10-11-12-13-14-15-0-1  
0 - 1 - 2 ~ 29-30-31  
1 - 2 - 3 ~ 30-31 - 0  
2 - 3 - 4 ~ 31 - 0 - 1  
0 - 1 - 2 - 3 - 4 - 5 ~  
1 - 2 - 3 - 4 - 5 - 6 ~  
2 - 3 - 4 - 5 - 6 - 7 ~  
0
1-2-3-0  
1
2-3-0-1  
2
3-0-1-2  
3-4-5-6-7-0-1-2  
~
3-4-5-6-7-8-9-10-11-12-13-14-15-0-1-2  
~
3 - 4 - 5 ~ 0 - 1 - 2  
~
3 - 4 - 5 - 6 - 7 - 8 ~  
~
3
~
WRAP  
Yes  
7-0-1-2-3-4-5-6  
7-8-9-10-11-12-13-14-15-0-1-2-3-4-5-6  
7 - 8 - 9 ~ 4 - 5 - 6  
~
7 - 8 - 9 - 10-11-12 ~  
~
7
~
~
15-0-1-2-3-4-5-6-7-8-9-10-11-12-13-14  
15-16-17 ~ 12- 13- 14  
~
15-16-17-18-19-20 ~  
~
15  
~
31- 0 - 1 ~ 28-29-30  
0 - 1 - 2 ~ 29-30-31  
1 - 2 - 3 ~ 30-31-32  
2 - 3 - 4 ~ 31-32-33  
31-32-33-34-35-36 ~  
0 - 1 - 2 - 3 - 4 - 5 ~  
1 - 2 - 3 - 4 - 5 - 6 ~  
2 - 3 - 4 - 5 - 6 - 7 ~  
31  
0
0-1-2-3  
1-2-3-4  
2-3-4-5  
3-4-5-6  
0- 1- 2- 3- 4- 5- 6 -7  
1- 2- 3- 4- 5- 6- 7- 8  
2- 3- 4- 5- 6- 7- 8- 9  
0- 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12-13-14-15  
1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12-13-14-15-16  
2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12-13-14-15-16-17  
1
2
3- 4- 5- 6- 7- 8- 9-10  
~
3- 4- 5- 6- 7- 8- 9- 10- 11- 12-13-14-15-16-17-18  
~
3 - 4 - 5 ~ 32-33-34  
~
3 - 4 - 5 - 6 - 7 - 8 ~  
~
3
~
No  
WRAP  
No  
7-8-9-10-11-12-13-14  
7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22  
7 - 8 - 9 ~ 36-37-38  
~
7 - 8 - 9 - 10-11-12 ~  
7
~
~
~
15-16-17-18-19-20-21-22-23-24-25-26-27-28-29-30  
15-16-17 ~ 44-45-46  
15-16-17-18-19-20 ~  
~
15  
~
~
31-32-33 ~ 60-61-62  
31-32-33-34-35-36 ~  
31  
Revision 0.1  
Nov 2008  
- 11 -  
Preliminary  
K1C6416B2E  
UtRAM2  
10.5 Drive Strength (BCR[5:4]) Default = 1/2 Drive Strength  
The optimization of output driver strength is possible to adjust for the different data loadings. The device can minimize the noise generated on  
the data bus during read operation. The device supports full, 1/2 and 1/4 driver strength. The device’s default mode is 1/2 driver strength. Out-  
puts are configured at 1/2 drive strength during testing.  
Table 2. Drive Strength  
Driver Strength  
Impedance(typ.)  
Full  
1 / 2  
1 / 4  
25~30  
50Ω  
100Ω  
CL = 15pF to 30pF  
104 MHz at light load  
Recommendation  
CL = 30pF to 50pF  
CL = 15pF or lower  
NOTE :  
1) Impedance values are typical values, not 100% tested.  
10.6 WAIT Configuration (BCR[8]) Default = 1 CLK Prior  
The WAIT signal is output signal indicating the status of the data on the bus whether or not it is valid. WAIT configuration is to decide the tim-  
ing when WAIT asserts or desserts. WAIT asserts (or desserts) one clock prior to the data when A8 is set to 1. (WAIT asserts (or desserts) at  
data clock when A8 is set to 0). WAIT polarity is to decide the WAIT signal level at which data is valid or invalid. Data is valid if WAIT signal is  
high when A10 is set to 0. (Data is valid if WAIT signal is low when A10 is set to 1). All the timing diagrams in this SPEC are illustrated based  
on following setup; A[10]:0 and A[8]:1.  
Below timing shows WAIT signal’s movement when word boundary crossing happens in No-wrap mode  
10.7 WAIT Polarity (BCR[10]) Default = Active HIGH  
The WAIT polarity bit indicates whether an asserted WAIT output should be HIGH or LOW. This bit will determine whether the WAIT signal  
requires a pull-up or pull-down resistor to maintain the de-asserted state.  
Figure 1: WAIT Configuration During Burst Operation  
No-Wrap. Row Boundary Crossing. LATENCY : 2. WP : Low Enable  
CLOCK  
Row Boundary Crossing period  
(Only exists in No-wrap mode or Continuous mode)  
D510 D511  
D512 D513 D514 D515  
D509  
I / O  
1CLK  
1CLK  
1CLK  
WAIT  
BCR[8]:1  
de-assertion  
de-assertion  
assertion  
WAIT  
BCR[8]:0  
de-assertion  
de-assertion  
assertion  
NOTE: Non-default BCR setting: WAIT active LOW.  
10.8 Operating Mode (BCR[15]) Default = Asynchronous Operation  
The operating mode bit selects either synchronous burst operation or the default asynchronous mode of operation.  
10.9 Latency Counter (BCR[13:11]) Default = 3 Clock Latency  
The latency counter bits determine how many clocks occur between the beginning of a READ or WRITE operation and the first data value  
transferred. For allowable latency codes.  
10.10 Initial Access Latency (BRC[14]) Default = Variable  
Variable initial access latency outputs data after the number of clocks set by the latency counter. However, WAIT must be monitored to detect  
delays caused by collisions with refresh operations. Fixed initial access latency outputs the first data at a consistent time that allows for worst-  
case refresh collisions. The latency counter must be configured to match the initial latency and the clock frequency. It is not necessary to mon-  
itor WAIT with fixed initial latency. The burst begins after the number of clock cycles configured by the latency counter.  
Revision 0.1  
- 12 -  
Nov 2008  
Preliminary  
K1C6416B2E  
UtRAM2  
Table 3. Variable Latency Configuration Codes  
Latency  
Max Input CLK Frequency (MHz)  
BCR[13:11]  
Latency Configuration  
Normal  
Refresh Collision  
104  
66(15ns)  
104(9.62ns)  
-
80  
52(19,2ns)  
80(12.5ns)  
-
66  
40(25ns)  
66(15ns)  
-
010  
011  
2(3 clocks)  
3(4 clocks)-default  
Reserved  
2
3
-
4
6
-
Others  
Table 4. Fixed Latency Configuration Codes  
Max Input CLK Frequency (MHz)  
BCR[13:11]  
Latency Configuration  
Latency Count (N)  
104  
33 (30ns)  
80  
66  
010  
011  
2 (3 clocks)  
3 (4 clocks)  
4 (5 clocks)  
5 (6 clocks)  
6 (7 clocks)  
Reserved  
2
3
4
5
6
-
20 (50ns)  
40 (25ns)  
52 (19.2ns)  
66 (15ns)  
80 (12.5ns)  
-
20 (50ns)  
33 (30ns)  
40 (25ns)  
52 (19.2ns)  
66 (15ns)  
-
52 (19.2ns)  
66 (15ns)  
80 (12.5ns)  
104 (9.62ns)  
-
100  
101  
110  
Others  
NOTE:  
1) Latency is the number of clock cycles from the initiation of a burst operation until data appears. Data is transferred on the next clock cycle.  
Figure 2: Latency Counter (Variable Initial Latency, No Refresh Collision)  
VIH  
CLK  
VIL  
VIH  
ADV  
VIL  
VIH  
VIL  
VALID  
A[21:0]  
ADDRESS  
Code 2  
VIH  
VIL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ[15:0]  
Code 3 (Default)  
Code 4  
VIH  
VIL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ[15:0]  
DQ[15:0]  
VIH  
VIL  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Undefined  
Don’t Care  
Figure 3: Latency Counter (Fixed Latency)  
N-1  
Cycles  
Cycle N  
VIH  
VIL  
CLK  
A[21:0]  
ADV  
tAA  
VIH  
VIL  
Valid  
Address  
tAADV  
tCO  
VIH  
VIL  
VIH  
VIL  
CS  
tACLK  
VOH  
VOL  
DQ[15:0]  
(READ)  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
tSP  
tHD  
VOH  
VOL  
DQ[15:0]  
(WRITE)  
Valid  
Input  
Valid  
Input  
Valid  
Input  
Valid  
Input  
Valid  
Input  
Burst Identified  
(ADV = LOW)  
Undefined  
Don’t Care  
Revision 0.1  
Nov 2008  
- 13 -  
Preliminary  
K1C6416B2E  
UtRAM2  
10.11 Partial Array Refresh (RCR[2:0]) Default = Full Array Refresh  
The PAR bits restrict refresh operation to a portion of the total memory array. This feature allows the device to reduce standby current by  
refreshing only that part of the memory array required by the host system. The refresh options are full array, one-half array, one-quarter array,  
one-eighth array, or none of the array. The mapping of these partitions can start at either the beginning or the end of the address map.  
Table 5. Address Patterns for PAR (RCR[4] = 1)  
RCR[2]  
RCR[1]  
RCR[0]  
Active Section  
Full die  
Address Space  
000000h-3FFFFFh  
000000h-1FFFFFh  
000000h-0FFFFFh  
000000h-07FFFFh  
0
Size  
Density  
64Mb  
32Mb  
16Mb  
8Mb  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
4 Meg x 16  
2 Meg x 16  
1 Meg x 16  
512K x 16  
0 Meg x 16  
2 Meg x 16  
1 Meg x 16  
512K x 16  
One-half die  
One-quarter of die  
One-eighth of die  
None of die  
0Mb  
One-half of die  
One-quarter of die  
One-eighth of die  
200000h-3FFFFFh  
300000h-3FFFFFh  
380000h-3FFFFFh  
32Mb  
16Mb  
8Mb  
10.12 Deep Power-Down (RCR[4]) Default = DPD Disabled  
The deep power-down bit enables and disables all refresh-related activity. This mode is used if the system does not require the storage pro-  
vided by this memory. Any stored data will become corrupted when DPD is enabled. When refresh activity has been re-enabled, the device will  
require 150µs to perform an initialization procedure before normal operations can resume. Deep power-down is enabled by setting RCR[4] =  
0 and taking CS HIGH. DPD can be enabled using CRE or the software sequence to access the RCR. Taking CS LOW for at least 10µs dis-  
ables DPD and sets RCR[4] = 1. it is not necessary to write to the RCR to disable DPD. BCR and RCR values (other than BCR[4]) are pre-  
served during DPD.  
Figure 4: DPD Entry and Exit Timing Parameters & Initialization and DPD Timing Parameters  
tDPD  
tDPDX  
tPU  
Symbol  
tDPD  
Min  
10  
Max  
Unit  
µs  
CS  
Write  
RCR[4] = 0  
tDPDX  
tPU  
10  
µs  
DPD Enabled  
DPD EXIT  
Device Initialization  
150  
µs  
10.13 Device Identification Register  
The DIDR provides information on the device manufacturer, generation and the specific device configuration. This register is read-only. The  
DIDR is accessed with CRE HIGH and A[19:18] = 01b, or through the register access software sequence with A= 0002h on the third cycle.  
Table 6. Device Identification Register Mapping  
Bit Field  
DIDR[15]  
DIDR[14:11]  
Device version  
Bit  
DIDR[10:8])  
DIDR[7:5]  
DIDR[4:0]  
Field name  
Row Length  
Device density  
UtRAM generation  
Vendor ID  
Bit  
Bit  
Setting  
Bit  
Bit  
Setting  
Length  
Version  
Density  
Generation  
Setting  
Setting  
Setting  
Options  
512 words  
1b  
6th  
101b  
64Mb  
010b  
UtRAM2  
010b  
01100  
Revision 0.1  
Nov 2008  
- 14 -  
Preliminary  
K1C6416B2E  
UtRAM2  
Figure 5: Configuration Register WRITE, Asynchronous Mode, Followed by READ ARRAY Operation  
tCPH  
Initiate control register access  
CS  
tCW  
A[21:0]  
OPCODE  
Address  
Address  
(Except A[19:18])  
tAVS  
Select  
A[19:18]  
CRE  
Register  
tAVH  
tAVS  
tVP  
ADV  
OE  
tWP  
Write address value to control register  
WE  
LB/UB  
DQ[15:0]  
Data Valid  
Don’t Care  
NOTE:  
1) A[19:18] = 00b to load RCR, and 10b to load BCR.  
Figure 6: Configuration Register WRITE, Synchronous Mode Followed by READ ARRAY Operation  
0
1
2
3
4
5
6
7
CLK  
CS  
tCPH  
tCSP  
Latch control register value  
OPCODE  
A[21:0]  
Address  
Address  
(Except A[19:18])  
tSP  
Latch control register address  
Select  
A[19:18]  
CRE  
Register  
tHD  
tSP  
tSP  
tSP  
tHD  
ADV  
OE  
tHD  
WE  
WAIT  
tCSW  
DQ[15:0]  
Don’t Care  
NOTE:  
1) Non-default BCR settings for synchronous mode configuration register WRITE followed by READ ARRAY operation: Latency code two (three clocks);  
WAIT active LOW; WAIT asserted during delay.  
2) A[19:18] = 00b to load RCR, and 10b to load BCR.  
3) CS must remain LOW to complete a burst-of-one WRITE. WAIT must be monitored—additional WAIT cycles caused by refresh collisions  
require a corresponding number of additional CS LOW cycles.  
Revision 0.1  
Nov 2008  
- 15 -  
Preliminary  
K1C6416B2E  
UtRAM2  
Figure 7: Register READ, Asynchronous Mode Followed by READ ARRAY Operation  
A[22:0]  
ADDRESS  
(except A[19:18])  
tAVS  
tAVH  
tAA  
1
Select Register  
A[19:18]  
ADDRESS  
CRE  
ADV  
tAVS  
tAA  
tVP  
tAAVD  
tCPH  
tHZ  
CS  
OE  
Initiate Register Access  
tCO  
tOE  
tOLZ  
tLZ  
tOHZ  
tBHZ  
WE  
tBA  
LB/UB  
tLZ  
DQ[15:0]  
CR Valid  
Data Valid  
Don’t Care  
Undefined  
NOTE :  
1) A[19:18] = 00b to read RCR, 10b to read BCR, and 01b to read DIDR.  
Figure 8: Register READ, Synchronous Mode Followed by READ ARRAY Operation  
CLK  
Latch Control Register Value  
A[22:0]  
ADDRESS  
ADDRESS  
(except A[19:18])  
tSP  
Latch Control Register Address  
2
A[19:18]  
tHD  
tSP  
CRE  
ADV  
tHD  
tHD  
tSP  
tCBPH3  
tABA  
CS  
OE  
tCSP  
tHZ  
tOHZ  
tBOE  
tHD  
tSP  
LB/UB  
tACLK  
tKOH  
tOLZ  
tCW  
WAIT  
High-Z  
High-Z  
Data  
Valid  
DQ[15:0]  
CR Valid  
Undefined  
Don’t Care  
NOTE :  
1) Non-default BCR settings for synchronous mode register READ followed by READ ARRAY operation: Latency code two (three clocks);  
WAIT active LOW; WAIT asserted during delay.  
2) A[19:18] = 00b to read RCR, 10b to read BCR, and 01b to read DIDR.  
3) CS must remain LOW to complete a burst-of-one WRITE. WAIT must be monitored—additional WAIT cycles caused by refresh collisions require a  
corresponding number of additional CS LOW cycles.  
Revision 0.1  
Nov 2008  
- 16 -  
Preliminary  
K1C6416B2E  
UtRAM2  
10.14 Software Access  
Software access of the registers uses a sequence of asynchronous READ and asynchronous WRITE operations. The contents of the configu-  
ration registers can be modified and all registers can be read using the software sequence. The configuration registers are loaded using a  
four-step sequence consisting of two asynchronous READ operations followed by two asynchronous WRITE operations. The read sequence  
is virtually identical except that an asynchronous READ is performed during the fourth operation. The address used during all READ and  
WRITE operations is the highest address of the device being accessed (3FFFFF); the contents of this address are not changed by using this  
sequence. The data value presented during the third operation (WRITE) in the sequence defines whether the BCR, RCR, or the DIDR is to be  
accessed. If the data is 0000h, the sequence will access the RCR; if the data is 0001h, the sequence will access the BCR; if the data is 0002h,  
the sequence will access the DIDR. During the fourth operation, DQ[15:0] transfer data in to or out of bits 15–0 of the registers. The use of the  
software sequence does not affect the ability to perform the standard (CRE-controlled) method of loading the configuration registers. However,  
the software nature of this access mechanism eliminates the need for CRE. If the software mechanism is used, CRE can simply be tied to  
VSS. The port line often used for CRE control purposes is no longer required.  
Figure 9: Load Configuration Register  
ADDRESS  
Max  
ADDRESS  
Max  
ADDRESS  
Max  
ADDRESS  
Max  
Address  
CS  
OE  
WE  
LB/UB  
DATA  
XXXXh  
XXXXh  
CR Value In  
RCR: 0000h  
BCR: 0001h  
Don’t Care  
Figure 10: Read Configuration Register  
ADDRESS  
Max  
ADDRESS  
Max  
ADDRESS  
Max  
ADDRESS  
Max  
Address  
CS  
OE  
WE  
LB/UB  
DATA  
XXXXh  
XXXXh  
CR Value Out  
RCR: 0000h  
BCR: 0001h  
DIDR: 0002h  
Don’t Care  
Revision 0.1  
Nov 2008  
- 17 -  
Preliminary  
K1C6416B2E  
UtRAM2  
11. BUS OPERATING MODES  
The bus interface supports asynchronous and burst mode read and write transfers. The specific interface supported is defined by the value  
loaded into the BCR.  
11.1 Asynchronous Mode (default mode)  
11.1.1 Asynchronous (Page) read operation  
Asynchronous read operation starts when CS, OE and UB or LB are asserted. ADV can be taken HIGH to capture the address. First data will  
be driven out of the DQ bus after random access time(tAA) and second, third and fourth data can be driven out after page access time(tPA)  
when using the page addresses (A0, A1). WE should be de-asserted during read operation. The CLK input must be held static LOW during  
read operation. WAIT will be driven while the device is enabled and its state should be ignored.  
11.1.2 Asynchronous write operation  
Asynchronous write operation starts when CS, WE and UB or LB are asserted. The data to be written is latched on the rising edge of CS, WE,  
or LB/UB (whichever occurs first). OE is don’t care during write operation and WE will override OE. WE LOW time must be limited to tCSM.  
The CLK input must be held static LOW during write operation. WAIT signal is Hi-Z.  
Figure 11: READ Operation (ADV = LOW, WE = HIGH).  
Figure 12: WRITE Operation(ADV = LOW, OE = HIGH)  
< tCSM  
CS  
CS  
Address  
WE  
Address Valid  
< tCSM  
Address  
Add0  
Add1 Add2 Add3  
tAA  
tAPA tAPA tAPA  
OE  
LB/UB  
LB/UB  
tWC = WRITE Cycle Time  
Data  
High-Z  
Data Valid  
DATA  
D0  
D1  
D2  
D3  
Don’t Care  
Undefined  
Don’t Care  
11.2 Functional Description (Asynch. mode)  
Asynchfonous Mode  
UB /  
LB  
Power  
CLK  
ADV  
CS  
OE  
WE  
CRE  
WAIT DQ[15:0] Notes  
BCR[15] = 1  
Read  
Active  
Active  
Standby  
Idle  
L
L
L
L
L
L
L
L
L
X
X
X
H
L
L
L
L
L
L
L
Low-Z Data out  
4
4
Write  
Low-Z  
High-Z  
Low-Z  
Data in  
High-Z  
X
Standby  
No operation  
X
X
H
L
X
X
X
X
5,6  
4,6  
Configuration register  
write  
Active  
Active  
L
L
L
L
L
X
L
L
X
L
L
H
X
H
H
X
X
L
Low-Z  
Low-Z  
High-Z  
High-Z  
Configuration register  
read  
Config.  
Reg.out  
Deep Power-  
down  
DPD  
H
X
X
High-Z  
7
NOTE:  
1) CLK must be LOW during async read and async write modes; and to achieve standby power during standby and DPD modes. CLK must be static  
(HIGH or LOW) during burst suspend.  
2) The WAIT polarity is configured through the bus configuration register (BCR[10]).  
3) When LB and UB are in select mode (LOW), DQ[15:0] are affected. When only LB is in select mode, DQ[7:0] are affected. When only UB is in the select mode,  
DQ[15:8] are affected.  
4) The device will consume active power in this mode whenever addresses are changed.  
5. When the device is in standby mode, address inputs and data inputs/outputs are internally isolated from any external influence.  
6. VIN = VCCQ or 0V; all device balls must be static (unswitched) in order to achieve standby current.  
7. DPD is initiated when CS transitions from LOW to HIGH after writing RCR[4] to 0. DPD is maintained until CS transitions from HIGH to LOW.  
Revision 0.1  
- 18 -  
Nov 2008  
Preliminary  
K1C6416B2E  
UtRAM2  
12. Burst Mode Operation  
12.1 synchronous Mode  
12.1.1 Synchronous Burst Read Operation  
Burst Read command is implemented when ADV is detected low at clock rising edge. WE should be de-asserted. Burst operation re-starts  
whenever ADV is detected low at clock rising edge even in the middle of operation.  
12.1.2 Synchronous Burst Write Operation  
Burst Write command is implemented when ADV & WE are detected low at clock rising edge. Burst Write operation re-starts whenever ADV  
is detected low at clock rising edge even in the middle of Burst Write operation.  
Figure 13: Burst Mode READ (4-word burst)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
CLK  
CS  
A[22:0]  
ADV  
Latency Code 3 (4 clocks)  
OE  
WE  
LB/UB  
WAIT  
DQ[15:0]  
READ Burst Identified  
(WE = HIGH)  
READ Burst Identified  
(WE = HIGH)  
Don’t Care  
Undefined  
NOTE :  
1) Non-default BCR settings for burst mode READ (4-word burst): Fixed or variable latency;  
2) Latency code 3 (4 clocks); WAIT active LOW; WAIT asserted during delay.  
3) Diagram in the figure above is representative of variable latency with no refresh collision or fixed-latency access.  
Figure 14: Burst Mode WRITE (4-word burst)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
CLK  
CS  
A[22:0]  
ADV  
Latency Code 3 (4 clocks)  
WE  
LB/UB  
WAIT  
DQ[15:0]  
WRITE Burst Identified  
(WE = LOW)  
READ Burst Identified  
(WE = HIGH)  
Don’t Care  
NOTE:  
1) Non-default BCR settings for burst mode WRITE (4-word burst): Fixed or variable latency;  
2) Latency code 3 (4 clocks); WAIT active LOW; WAIT asserted during delay  
Revision 0.1  
Nov 2008  
- 19 -  
Preliminary  
K1C6416B2E  
UtRAM2  
The size of a burst can be specified in the BCR either as a fixed length or continuous. Fixed-length bursts consist of four, eight, sixteen, or  
thirty-two words. The initial latency for READ operations can be configured as fixed or variable (WRITE operations always use fixed latency).  
Variable latency allows minimum latency at high clock frequencies, but the controller must monitor WAIT to detect any conflict with refresh  
cycles. Fixed latency outputs the first data word after the worst-case access delay, including allowance for refresh collisions. The initial latency  
time and clock speed determine the latency count setting. Fixed latency is used when the controller cannot monitor WAIT. Fixed latency also  
provides improved performance at lower clock frequencies.  
Figure 15: Refresh Collision During Variable-Latency READ Operation  
VIH  
CLK  
VIL  
VIH  
CS  
VIL  
VIH  
Valid  
Address  
A[22:0]  
VIL  
VIH  
VIL  
ADV  
OE  
VIH  
VIL  
VIH  
VIL  
WE  
VIH  
LB/UB  
WAIT  
VIL  
VOH  
High-Z  
VOL  
VOH  
VOL  
D3  
D0  
D1  
D2  
DQ[15:0]  
Additional WAIT states inserted to allow refresh completion.  
Undefined  
Don’t Care  
NOTE:  
1) Non-default BCR settings for refresh collision during variable-latency READ operation:  
2) Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
12.2 Functional Description (Synch. mode)  
Burst Mode  
UB /  
LB  
Power  
CLK  
ADV  
CS  
OE  
WE  
CRE  
WAIT DQ[15:0]  
Notes  
BCR[15] = 0  
Async read  
Async write  
Standby  
Active  
Active  
Standby  
Idle  
L
L
L
L
L
L
L
L
L
X
X
X
H
L
L
L
L
L
L
L
Low-Z Data out  
4,8  
4
Low-Z  
High-Z  
Low-Z  
Data in  
High-Z  
X
X
X
H
L
X
X
X
X
5,6  
4,6  
No operation  
Initial burst read  
Initial burst write  
Active  
Active  
L
L
L
L
X
H
H
L
L
L
L
Low-Z  
Low-Z  
X
X
4,9  
4,9  
X
Data in or  
Data out  
Burst continue  
Burst suspend  
Active  
Active  
Active  
H
X
L
L
L
L
X
H
X
X
X
L
X
X
H
L
X
X
Low-Z  
Low-Z  
Low-Z  
4,9  
4,9  
X
L
High-Z  
Configuration register  
write  
Configuration register  
read  
High-Z  
9,10  
Config.  
reg.out  
Active  
L
L
L
H
X
H
X
L
Low-Z  
High-Z  
9,10  
7
Deep power-  
down  
DPD  
X
H
X
X
High-Z  
NOTE:  
1) CLK must be LOW during async read and async write modes; and to achieve standby power during standby and DPD modes. CLK must be static  
(HIGH or LOW) during burst suspend.  
2) The WAIT polarity is configured through the bus configuration register (BCR[10]).  
3) When LB and UB are in select mode (LOW), DQ[15:0] are affected. When only LB is in select mode, DQ[7:0] are affected. When only UB is in the select mode,  
DQ[15:8] are affected.  
4) The device will consume active power in this mode whenever addresses are changed.  
5) When the device is in standby mode, address inputs and data inputs/outputs are internally isolated from any external influence.  
6) VIN = VCCQ or 0V; all device balls must be static (unswitched) in order to achieve standby current.  
7) DPD is initiated when CS transitions from LOW to HIGH after writing RCR[4] to 0. DPD is maintained until CS transitions from HIGH to LOW.  
8) When the BCR is configured for sync mode, sync READ and WRITE, and async WRITE are supported by all vendors. (Some vendors also support  
asynchronous READ.)  
9) Burst mode operation is initialized through the bus configuration register (BCR[15]).  
10) Initial cycle. Following cycles are the same as BURST CONTINUE. CS must stay LOW for the equivalent of a single-word burst (as indicated by WAIT).  
Revision 0.1  
- 20 -  
Nov 2008  
Preliminary  
K1C6416B2E  
UtRAM2  
12.3 Mixed-Mode Operation  
The device supports a combination of synchronous READ and asynchronous WRITE operations when the BCR is configured for synchronous  
operation. The asynchronous WRITE operations require that the clock (CLK) remain LOW during the entire sequence. The ADV signal can be  
used to latch the target address, CS can remain LOW when transitioning between mixed-mode operations with fixed latency enabled; how-  
ever, the CS LOW time must not exceed tCSM. Mixed-mode operation facilitates a seamless interface to legacy burst mode Flash memory  
controllers.  
12.4 Burst Suspend  
To access other devices on the same bus without the timing penalty of the initial latency for a new burst, burst mode can be suspended. Bursts  
are suspended by stopping CLK. CLK can be stopped HIGH or LOW. If another device will use the data bus while the burst is suspended, OE  
should be taken HIGH to disable the outputs. otherwise, OE can remain LOW. Note that the WAIT output will continue to be active, and as a  
result no other devices should directly share the WAIT connection to the controller. To continue the burst sequence, OE is taken LOW, then  
CLK is restarted after valid data is available on the bus. The CS LOW time is limited by refresh considerations. CS must not stay LOW longer  
than tCSM. If a burst suspension will cause CS to remain LOW for longer than tCSM, CS should be taken HIGH and the burst restarted with a  
new CS LOW/ADV LOW cycle.  
12.5 Boundary Crossing  
Continuous bursts or No wrap burst have the ability to start at a specified address and burst to the end of the address. It goes back to the first  
address and continues the burst operation. WAIT will be asserted at the boundary of the row and be desserted after crossing boundary of the  
row.  
12.6 WAIT Operation  
The WAIT output is typically connected to a shared systemlevel WAIT signal. The shared WAIT signal is used by the processor to coordinate  
transactions with multiple memories on the synchronous bus. Once a READ or WRITE operation has been initiated, WAIT goes active to indi-  
cate that additional time is required before data can be transferred. For READ operations, WAIT will remain active until valid data is output  
from the device. For WRITE operations, WAIT will indicate to the memory controller when data will be accepted into this device. When WAIT  
transitions to an inactive state, the data burst will progress on successive clock edges. CS must remain asserted during WAIT cycles (WAIT  
asserted and WAIT configuration BCR[8] = 1). Bringing CS HIGH during WAIT cycles may cause data corruption. (Note that for BCR[8] = 0,  
the actual WAIT cycles end one cycle after WAIT de-asserts. When using variable initial access latency (BCR[14] = 0), the WAIT output per-  
forms an arbitration role for READ operations launched while an on-chip refresh is in progress. If a collision occurs, WAIT is asserted for addi-  
tional clock cycles until the refresh has completed. When the refresh operation has completed, the READ operation will continue normally.  
WAIT will be asserted but should be ignored during asynchronous READ and WRITE operations. By using fixed initial latency (BCR[14] = 1),  
this device can be used in burst mode without monitoring the WAIT signal. However, WAIT can still be used to determine when valid data is  
available at the start of the burst.  
Figure 16: Wired or WAIT Configuration  
UtRAM2  
WAIT  
External  
Pull-Up  
Pull-Down  
Resistor  
READY  
WAIT  
RDY  
Processor  
Other  
Other  
Device  
Device  
12.7 LB / UB Operation  
The LB enable and UB enable signals support byte-wide data WRITEs. During WRITE operations, any disabled bytes will not be transferred  
to the RAM array and the internal value will remain unchanged. During an asynchronous WRITE cycle, the data to be written is latched on the  
rising edge of CS, WE, LB, or UB, whichever occurs first. LB and UB must be LOW during READ cycles. When both the LB and UB are dis-  
abled (HIGH) during an operation, the device will disable the data bus from receiving or transmitting data. Although the device will seem to be  
deselected, it remains in an active mode as long as CS remains LOW.  
Revision 0.1  
- 21 -  
Nov 2008  
Preliminary  
K1C6416B2E  
UtRAM2  
13. LOW-POWER OPERATION  
13.1 Temperature Compensated Self Refresh  
Temperature compensated self refresh (TCSR) allows for adequate refresh at different temperatures. This UtRAM2 device includes an on-  
chip temperature sensor that automatically adjusts the refresh rate according to the operating temperature. The device continually adjusts the  
refresh rate to match that temperature.  
13.2 Partial Array Refresh  
Partial array refresh (PAR) restricts refresh operation to a portion of the total memory array. This feature enables the device to reduce standby  
current by refreshing only that part of the memory array required by the host system. The refresh options are full array, one-half array, one-  
quarter array, one-eighth array, or none of the array. The mapping of these partitions can start at either the beginning or the end of the address  
map. READ and WRITE operations to address ranges receiving refresh will not be affected. Data stored in addresses not receiving refresh will  
become corrupted. When re-enabling additional portions of the array, the new portions are available immediately upon writing to the RCR.  
13.3 Deep Power-Down Operation  
Deep power-down (DPD) operation disables all refresh-related activity. This mode is used if the system does not require the storage provided  
by the UtRAM2 device. Any stored data will become corrupted when DPD is enabled. When refresh activity has been re-enabled, the UtRAM2  
device will require 150µs to perform an initialization procedure before normal operations can resume. During this 150µs period, the current  
consumption will be higher than the specified standby levels, but considerably lower than the active current specification. DPD can be enabled  
by writing to the RCR using CRE or the software access sequence; DPD starts when CS goes HIGH. DPD is disabled the next time CS goes  
LOW and stays LOW for at least 10µs.  
13.4 AC Input/Output Reference Waveform & AC Output Load Circuit  
Test Points  
VccQ  
1
50  
2
2
Output  
Test Points  
Input  
VccQ/2  
VccQ/2  
VccQ/2  
DUT  
30pF  
VssQ  
NOTE :  
1) AC test inputs are driven at VCCQ for a logic 1 and VSSQ for a logic 0. Input rise and fall times (10% to 90%) <1.6ns.  
2) Input timing begins at VCCQ/2 and Output timing ends at VCCQ/2.  
3) All tests are performed with the outputs configured for default setting of half drive strength (BCR[5:4] = 01b)  
Revision 0.1  
Nov 2008  
- 22 -  
Preliminary  
K1C6416B2E  
UtRAM2  
14. TIMING REQUIREMENTS  
14.1 Asynchronous READ Cycle Timing Requirements  
Parameter  
Address access time  
Symbol  
tAA  
Min  
Max  
70  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
us  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
ADV access time  
tAADV  
tAPA  
tAVS  
tAVH  
tBA  
70  
Page access time  
20  
Address setup to ADV HIGH  
Addredd hold from ADV going HIGH  
LB/UB access time  
5
2
70  
8
LB/UB disable to DQ High-Z output  
LB/UB enable to Low-Z output  
Maximum CS pulse width  
CS LOW to WAIT valid  
tBHZ  
tBLZ  
tCSM  
tCSW  
tCO  
1
2
4
10  
1
2.5  
7.5  
70  
Chip select access time  
CS LOW to ADV HIGH  
tCVS  
tHZ  
7
Chip disable to DQ and WAIT High-Z output  
Chip enable to Low-Z output  
Output enable to valid output  
Output hold from address change  
Output disable to DQ High-Z output  
Output ebable to Low-Z output  
Page READ cycle time  
8
20  
8
1
2
tLZ  
10  
5
tOE  
tOH  
tOHZ  
tOLZ  
tPC  
1
2
5
20  
70  
5
READ cycle time  
tRC  
ADV pulse width LOW  
tVP  
14.2 Asynchronous WRITE Cycle Timing Requirements  
Parameter  
Address and ADV LOW setup time  
Address setup to ADV going HIGH  
Addredd hold from ADV going HIGH  
Address valid to end of WRITE  
LB/UB select to end of WRITE  
CS LOW to WAIT valid  
Symbol  
tAS  
Min  
0
Max  
7.5  
8
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
tAVS  
tAVH  
tAW  
5
2
70  
70  
1
tBW  
tCSW  
tCPH  
tCVS  
tCW  
tDH  
CS HIGH between subsequent async operations  
CS LOW to ADV HIGH  
5
1,4  
2
7
Chip enable to end of WRITE  
Data HOLD from WRITE time  
Data WRITE setup time  
70  
0
3
tDW  
tHZ  
20  
Chip disable to WAIT High-Z output  
Chip enable to Low-Z output  
End WRITE to Low-Z output  
ADV pulse width  
tLZ  
10  
5
1
2
tOW  
tVP  
5
ADV setup to end of WRITE  
WRITE cycle time  
tVS  
70  
70  
tWC  
tWHZ  
tWP  
tWPH  
tWR  
1
2
WRITE to DQ High-Z output  
WRITE pulse width  
8
55  
10  
0
WRITE pulse width HIGH  
WRITE recovery time  
NOTE:  
1) The High-Z timings measure a 100mV transition from either VOH or VOL toward VCCQ/2.  
2) The Low-Z timings measure a 100mV transition away from the High-Z (VCCQ/2) level toward either VOH or VOL.  
3) WE LOW time must be limited to tCSM (2.5µs).  
4) A refresh opportunity must be provided every tCSM. A refresh opportunity is satisfied by the condition either clocked CS high or CS HIGH for longer than 15ns. CS must not remain  
LOW longer than tCSM.  
Revision 0.1  
Nov 2008  
- 23 -  
Preliminary  
K1C6416B2E  
UtRAM2  
14.3 Brst READ Cycle Timing Requirements  
104MHz  
80MHz  
66MHz  
Parameter  
Symbol  
Unit  
Notes  
Min  
Max  
Min  
Max  
Min  
Max  
Address access time (fixed latency)  
ADV access time (fixed latency)  
Addredd hold from ADV going HIGH  
Burst to READ access time (variable latency)  
CLK to output delay  
tAA  
tAADV  
tAVH  
70  
70  
70  
70  
70  
70  
ns  
ns  
ns  
ns  
ns  
ns  
2
2
2
tABA  
35.9  
7
46.5  
9
56.5  
11  
tACLK  
tBOE  
Burst OE LOW to output delay  
20  
20  
20  
CS HIGH between subsequent burst or mixed mode  
operations  
tCBPH  
5
6
8
ns  
3
3
Maximum CS pulse width  
CS or ADV LOW to WAIT valid  
CLK period  
tCSM  
tCSW  
tCLK  
tCO  
2.5  
7.5  
2.5  
7.5  
2.5  
7.5  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
1
1
9.62  
12.5  
15  
Chip select access time (fixed latency)  
CS setup time to active CLK edge  
Hold time from active CLK edge  
Chip desable to DQ and WAIT High-Z output  
CLK rise or fall time  
70  
70  
70  
tCSP  
tHD  
3
2
4
2
5
2
tHZ  
8
1.6  
7
8
1.8  
9
8
1
tKHKL  
tKHTL  
tKOH  
tKP  
2.0  
11  
CLK to WAIT valid  
2
2
3
2
2
4
2
2
5
Output HOLD from CLK  
CLK HIGH or LOW time  
Output disable to DQ High-Z output  
Output enable to Low-Z output  
Setup time to active CLK edge  
ADV HIGH to CLK Rising  
tOHZ  
tOLZ  
tSP  
8
8
8
1
2
5
3
2
5
4
2
5
5
2
tAHCR  
14.4 Burst WRITE Cycle Timing Requirements  
104MHz  
80MHz  
66MHz  
Parameter  
Symbol  
Unit  
Notes  
Min  
0
Max  
Min  
0
Max  
Min  
0
Max  
Address and ADV LOW setup time  
Addredd hold from ADV going HIGH  
tAS  
ns  
ns  
tAVH  
2
2
2
CS HIGH between subseuent burst or mixed mode  
operations  
tCBPH  
5
6
8
ns  
3
3
Maximum CS pulse width  
CS LOW to WAIT valid  
tCSM  
tCSW  
tCLK  
tCSP  
tHD  
2.5  
7.5  
2.5  
7.5  
2.5  
7.5  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
9.62  
3
1
12.5  
4
1
15  
5
Clock period  
CS setup to CLK active edge  
Hold time from active CLK edge  
Chip disable to WAIT High-Z output  
Last clock to ADV LOW (fixed latency)  
CLK rise or fall time  
2
2
2
tHZ  
8
8
8
1
tKADV  
tKHKL  
tKHTL  
tKP  
15  
15  
15  
1.6  
7
1.8  
9
2.0  
11  
Clock to WAIT valid  
2
3
3
2
2
4
4
2
2
5
5
2
CLK HIGH or LOW time  
Setup time to activate CLK edge  
ADV HIGH to CLK Rising  
tSP  
tAHCR  
NOTE:  
1) The High-Z timings measure a 100mV transition from either VOH or VOL toward VCCQ/2.  
2) The Low-Z timings measure a 100mV transition away from the High-Z (VCCQ/2) level toward either VOH or VOL.  
3) A refresh opportunity must be provided every tCSM. A refresh opportunity is satisfied by the condition either clocked CS is high or CS HIGH for longer than  
15ns. CS must not remain LOW longer than tCSM.  
Revision 0.1  
Nov 2008  
- 24 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15. TIMING DIAGRAMS  
15.1 Asynchronous READ  
(CRE=VIL, WE=VIH)  
tRC  
Address  
ADV  
Valid Address  
tAVS  
tAVH  
tAA  
tCO  
tOH  
tHZ  
CS  
tBA  
UB/, LB  
OE  
tBHZ  
tOHZ  
tOE  
tOLZ  
tBLZ  
High-Z  
Valid output  
DQ[15:0]  
tLZ  
tHZ  
tCSW  
High-Z  
High-Z  
WAIT  
Undefined  
Don’t Care  
NOTE :  
1) Don’t care must be in VIL or VIH.  
2) tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.  
3) At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.  
4) tOE(max) is met only when OE becomes enabled after tAA(max).  
5) If invalid address signals shorter than min. tRC are continuously repeated for over 2.5us, the device needs a normal read timing(tRC) or needs to  
sustain standby state for min. tRC at least once in every 2.5us.  
Revision 0.1  
Nov 2008  
- 25 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.2 Asynchronous READ Using ADV  
(CRE=VIL, WE=VIH)  
Valid Address  
Address  
tAA  
tAVH  
tAVS  
ADV  
tAADV  
tVP  
tCVS  
CS  
tCO  
tHZ  
tBA  
UB/ LB  
tBHZ  
tOE  
OE  
tOLZ  
tBLZ  
tLZ  
tOHZ  
DQ[15:0]  
High-Z  
High-Z  
Valid output  
tHZ  
tCSW  
High-Z  
WAIT  
Undefined  
Don’t Care  
NOTE :  
1) Don’t care must be in VIL or VIH.  
2) tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.  
3) At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.  
4) tOE(max) is met only when OE becomes enabled after tAA(max).  
5) If invalid address signals shorter than min. tRC are continuously repeated for over 2.5us, the device needs a normal read timing(tRC) or needs to  
sustain standby state for min. tRC at least once in every 2.5us.  
Revision 0.1  
Nov 2008  
- 26 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.3 PAGE MODE READ  
(CRE=VIL, WE=VIH)  
tRC  
Address  
A[1:0]  
Valid Address  
Valid  
Address  
Valid  
Address  
Valid  
Address  
Valid Address  
tAA  
tPC  
ADV  
CS  
tCSM  
tCO  
tBA  
tHZ  
UB/ LB  
OE  
tBHZ  
tOHZ  
tOE  
tOLZ  
tBLZ  
tAPA  
tOH  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ[15:0]  
WAIT  
High-Z  
High-Z  
tLZ  
tHZ  
tCSW  
High-Z  
Undefined  
Don’t Care  
NOTE :  
1) Don’t care must be in VIL or VIH.  
2) tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.  
3) At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.  
4) tOE(max) is met only when OE becomes enabled after tAA(max).  
5) If invalid address signals shorter than min. tRC are continuously repeated for over 2.5us, the device needs a normal read timing(tRC) or needs to  
sustain standby state for min. tRC at least once in every 2.5us.  
Revision 0.1  
Nov 2008  
- 27 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.4 Single-Access Burst READ Operation—Variable Latency  
(CRE=VIL)  
tCLK  
VIH  
CLK  
VIL  
tSP  
tHD  
VIH  
VIL  
A[22:0]  
Valid Address  
tSP  
tHD  
VIH  
VIL  
ADV  
CS  
tAVH  
tHZ  
tHD  
tAHCR  
tCSP  
VIH  
VIL  
tOHZ  
tBOE  
VIH  
VIL  
OE  
tOLZ  
tSP  
tHD  
VIH  
VIL  
WE  
tSP  
tHD  
VIH  
VIL  
LB/UB  
WAIT  
tKHTL  
tCSW  
VOH  
VOL  
High-Z  
High-Z  
tACLK  
tKOH  
VOH  
VOL  
High-Z  
Valid Output  
DQ[15:0]  
READ Burst Identified  
(WE = HIGH)  
Undefined  
Don’t Care  
NOTE :  
1) Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
2) Don’t care must be in VIL or VIH.  
Revision 0.1  
Nov 2008  
- 28 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.5 4-Word Burst READ Operation—Variable Latency  
(CRE=VIL)  
tKP tKP  
tCLK  
tKHKL  
VIH  
VIL  
CLK  
tHD  
tSP  
VIH  
VIL  
A[22:0]  
Valid Address  
tSP tHD  
VIH  
VIL  
ADV  
tAVH  
tHD  
tHD  
tSP  
tAHCR  
VIH  
VIL  
LB/UB  
tCSP  
tABA  
tCSM  
tCBPH  
VIH  
VIL  
CS  
OE  
tHZ  
tBOE  
VIH  
VIL  
tOHZ  
tKHTL  
tSP  
tHD  
VIH  
VIL  
WE  
tCSW  
VOH  
VOL  
High-Z  
WAIT  
tKOH  
tACLK  
VIH  
VIL  
Valid  
Output  
Valid  
Valid  
Valid  
DQ[15:0]  
IN/OUT  
High-Z  
Output Output Output  
READ Burst Identified  
(WE = HIGH)  
Undefined  
Don’t Care  
NOTE :  
1) Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
2) Don’t care must be in VIL or VIH.  
Revision 0.1  
Nov 2008  
- 29 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.6 Single-Access Burst READ Operation—Fixed Latency  
(CRE=VIL)  
tCLK  
VIH  
CLK  
VIL  
tSP  
tHD  
VIH  
VIL  
A[22:0]  
Valid Address  
tHD  
tSP  
VIH  
VIL  
ADV  
CS  
tAVH  
tHD  
tHZ  
tCSP  
tAHCR  
VIH  
VIL  
tOHZ  
tBOE  
VIH  
VIL  
OE  
tOLZ  
tSP  
tHD  
VIH  
VIL  
WE  
tHD  
tSP  
VIH  
VIL  
LB/UB  
WAIT  
tKHTL  
tCSW  
High-Z  
VOH  
VOL  
tACLK  
tKOH  
VOH  
VOL  
DQ[15:0]  
High-Z  
Valid Output  
READ Burst Identified  
(WE = HIGH)  
Undefined  
Don’t Care  
NOTE :  
1)Non-default BCR settings: Fixed latency; latency code four (five clocks); WAIT active LOW; WAIT asserted during delay.  
2) Don’t care must be in VIL or VIH.  
Revision 0.1  
Nov 2008  
- 30 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.7 4-Word Burst READ Operation—Fixed Latency  
(CRE=VIL)  
tKP tKP  
tCLK  
tKHKL  
VIH  
CLK  
VIL  
tHD  
tSP  
VIH  
A[22:0]  
ADV  
Valid Address  
VIL  
tAA  
tSP tHD  
tAVH  
VIH  
VIL  
tAHCR  
tAADV  
tHD  
tHD  
tSP  
VIH  
VIL  
LB/UB  
CS  
tCBPH  
tCSP  
tCSM  
VIH  
VIL  
tCO  
tHZ  
tBOE  
VIH  
VIL  
OE  
tOHZ  
tOLZ  
tKHTL  
tSP  
tHD  
VIH  
VIL  
WE  
tCSW  
VOH  
VOL  
High-Z  
WAIT  
tKOH  
tACLK  
VIH  
VIL  
DQ[15:0]  
IN/OUT  
Valid  
Output  
Valid  
Valid  
Valid  
High-Z  
Output Output Output  
READ Burst Identified  
(WE = HIGH)  
Undefined  
Don’t Care  
NOTE :  
1) Non-default BCR settings: Fixed latency; latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
2) Don’t care must be in VIL or VIH.  
Revision 0.1  
Nov 2008  
- 31 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.8 4-Word Burst READ Operation— Row Boundary Crossing  
(CRE=VIL)  
tCLK  
tKHKL  
VIH  
CLK  
VIL  
tHD  
tSP  
VIH  
A[22:0]  
ADV  
Valid Address  
VIL  
tAA  
tSP tHD  
tAVH  
VIH  
VIL  
tAHCR  
tAADV  
tHD  
tSP  
VIH  
VIL  
LB/UB  
CS  
tHD  
tCBPH  
tCSP  
tCSM  
VIH  
VIL  
tHZ  
tCO  
tBOE  
VIH  
VIL  
OE  
tOHZ  
tOLZ  
tKHTL  
tSP  
tHD  
VIH  
VIL  
WE  
tCSW  
VOH  
VOL  
High-Z  
WAIT  
tKOH  
tACLK  
VIH  
VIL  
High-Z  
DQ[15:0]  
IN/OUT  
Valid  
Output  
Valid  
Output  
Valid  
Valid  
Output Output  
READ Burst Identified  
(WE = HIGH)  
End of Row  
Undefined  
Don’t Care  
NOTE :  
1) Non-default BCR settings: Fixed latency; latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
2) Don’t care must be in VIL or VIH.  
Revision 0.1  
Nov 2008  
- 32 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.9 READ Burst Suspend  
(CRE=VIL)  
tCLK  
NOTE 2  
VIH  
CLK  
VIL  
tHD  
tSP  
VIH  
VIL  
Valid  
Valid  
Address  
A[21:0]  
ADV  
CS  
Address  
tSP tHD  
tAVH  
VIH  
VIL  
tAHCR  
tCSM  
tCBPH  
tHZ  
tCSP  
VIH  
VIL  
NOTE 3  
tOHZ  
tOHZ  
VIH  
VIL  
OE  
WE  
tSP tHD  
VIH  
VIL  
tSP  
VIH  
VIL  
LB/UB  
tBOE  
tOLZ  
tCSW  
tCSW  
VOH  
VOL  
High-Z  
WAIT  
tKOH  
tBOE  
tOLZ  
VOH  
VOL  
High-Z  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
Valid  
Output  
DQ[15:0]OUT  
tACLK  
Undefined  
Don’t Care  
NOTE :  
1) Non-default BCR settings for READ burst suspend: Fixed or variable latency; latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
2) CLK can be stopped LOW or HIGH, but must be static, with no LOW-to-HIGH transitions during burst suspend.  
3) OE can stay LOW during burst suspend. If OE is LOW, DQ[15:0] will continue to output valid data.  
4) Don’t care must be in VIL or VIH.  
Revision 0.1  
- 33 -  
Nov 2008  
Preliminary  
K1C6416B2E  
UtRAM2  
15.10 CS-Controlled Asynchronous WRITE  
(CRE=VIL)  
tWC  
VIH  
A[22:0]  
Valid Address  
VIL  
tWR  
tAW  
tAS  
VIH  
ADV  
VIL  
tCPH  
tCW  
tBW  
VIH  
CS  
VIL  
VIH  
UB/LB  
VIL  
VIH  
OE  
VIL  
tWPH  
tWP  
VIH  
WE  
VIL  
tDH  
tDW  
VIH  
DQ[15:0]  
High-Z  
Valid Input  
IN  
VIL  
tWHZ  
tLZ  
VOH  
VOL  
DQ[15:0]  
OUT  
tHZ  
tCSW  
VIH  
VIL  
High-Z  
High-Z  
WAIT  
Don’t Care  
NOTE :  
1) Don’t care must be in VIL or VIH.  
2) A write occurs during the overlap(tWP) of low CS and low WE. A write begins when CS goes low and WE goes low with asserting UB or LB for single byte  
operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest transition when CS goes high or WE goes high  
or UB/LB goes high. The tWP is measured from the beginning of write to the end of write.  
3) tCW is measured from the CS going low to the end of write.  
4) tAS is measured from the address valid to the beginning of write.  
5) tWR is measured from the end of write to the address change. tWR is applied in case a write ends with CS or WE going high.  
Revision 0.1  
Nov 2008  
- 34 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.11 LB/UB-Controlled Asynchronous WRITE  
(CRE=VIL)  
tWC  
VIH  
A[22:0]  
Valid Address  
VIL  
tAW  
tAS  
tWR  
VIH  
VIL  
ADV  
CS  
tCW  
tBW  
VIH  
VIL  
VIH  
VIL  
UB/LB  
OE  
VIH  
VIL  
tWPH  
High-Z  
tCSW  
tWP  
VIH  
VIL  
WE  
tDH  
tDW  
VIH  
VIL  
DQ[15:0]  
IN  
Valid Input  
tWHZ  
tLZ  
VOH  
VOL  
DQ[15:0]  
OUT  
tHZ  
VIH  
VIL  
High-Z  
High-Z  
WAIT  
Don’t Care  
NOTE :  
1) Don’t care must be in VIL or VIH.  
2) A write occurs during the overlap(tWP) of low CS and low WE. A write begins when CS goes low and WE goes low with asserting UB or LB for single byte  
operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest transition when CS goes high or WE goes high  
or UB/LB goes high. The tWP is measured from the beginning of write to the end of write.  
3) tCW is measured from the CS going low to the end of write.  
4) tAS is measured from the address valid to the beginning of write.  
5) tWR is measured from the end of write to the address change. tWR is applied in case a write ends with CS or WE going high.  
Revision 0.1  
Nov 2008  
- 35 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.12 WE-Controlled Asynchronous WRITE  
(CRE=VIL)  
tWC  
VIH  
A[22:0]  
Valid Address  
VIL  
tAW  
tWR  
VIH  
ADV  
VIL  
tCW  
tBW  
VIH  
CS  
VIL  
VIH  
UB/LB  
VIL  
VIH  
OE  
VIL  
tAS  
tWPH  
tWP  
VIH  
WE  
VIL  
tDH  
tDW  
VIH  
DQ[15:0]  
High-Z  
Valid Input  
IN  
VIL  
tWHZ  
tLZ  
tOW  
VOH  
VOL  
DQ[15:0]  
OUT  
tHZ  
tCSW  
High-Z  
VIH  
VIL  
High-Z  
WAIT  
Don’t Care  
NOTE :  
1) Don’t care must be in VIL or VIH.  
2) A write occurs during the overlap(tWP) of low CS and low WE. A write begins when CS goes low and WE goes low with asserting UB or LB for single byte  
operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest transition when CS goes high or WE goes high  
or UB/LB goes high. The tWP is measured from the beginning of write to the end of write.  
3) tCW is measured from the CS going low to the end of write.  
4) tAS is measured from the address valid to the beginning of write.  
5) tWR is measured from the end of write to the address change. tWR is applied in case a write ends with CS or WE going high.  
Revision 0.1  
Nov 2008  
- 36 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.13 Asynchronous WRITE Using ADV  
(CRE=VIL)  
VIH  
A[22:0]  
Valid Address  
VIL  
tAVS  
tAVH  
tVS  
tVP  
VIH  
VIL  
tAS  
tAS  
ADV  
CS  
tAW  
tCW  
VIH  
VIL  
tBW  
VIH  
VIL  
UB/LB  
OE  
VIH  
VIL  
tWP  
tWPH  
VIH  
VIL  
WE  
tDH  
tDW  
VIH  
VIL  
DQ[15:0]  
IN  
High-Z  
Valid Input  
tWHZ  
tLZ  
tOW  
VOH  
VOL  
DQ[15:0]  
OUT  
tHZ  
tCSW  
High-Z  
VIH  
VIL  
High-Z  
WAIT  
Don’t Care  
NOTE :  
1) Don’t care must be in VIL or VIH.  
2) A write occurs during the overlap(tWP) of low CS and low WE. A write begins when CS goes low and WE goes low with asserting UB or LB for single byte  
operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest transition when CS goes high or WE goes high  
or UB/LB goes high. The tWP is measured from the beginning of write to the end of write.  
3) tCW is measured from the CS going low to the end of write.  
4) tAS is measured from the address valid to the beginning of write.  
5) tWR is measured from the end of write to the address change. tWR is applied in case a write ends with CS or WE going high.  
Revision 0.1  
Nov 2008  
- 37 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.14 Burst WRITE Operation—Variable Latency Mode  
(CRE=VIL)  
tKHKL  
tKP  
tCLK  
tKP  
VIH  
VIL  
CLK  
tHD  
tSP  
VIH  
VIL  
A[22:0]  
Valid Address  
tAS3  
tAVH  
tKADV  
tSP tHD  
VIH  
VIL  
ADV  
tAHCR  
tSP tHD  
tAS3  
VIH  
VIL  
LB/UB  
tCSM  
tCBPH  
tCSP  
tHD  
VIH  
VIL  
CS  
OE  
VIH  
VIL  
tSP tHD  
VIH  
VIL  
WE  
tKHTL  
tHZ  
tCSW  
High-Z  
VOH  
VOL  
High-Z  
WAIT  
NOTE 2  
tSP  
tHD  
VIH  
VIL  
D2  
DQ[15:0]  
D1  
D3  
D4  
WRITE Burst Identified  
(WE = LOW)  
Don’t Care  
NOTE :  
1) Non-default BCR settings for burst WRITE operation in variable latency mode: Latency code two (three clocks); WAIT active LOW;  
WAIT asserted during delay; burst length four; burst wrap enabled.  
2) WAIT asserts for LC cycles for both fixed and variable latency. LC = Latency Code (BCR[13:11]).  
3) tAS required if tCSP > 20ns.  
4) Don’t care must be in VIL or VIH.  
Revision 0.1  
Nov 2008  
- 38 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.15 Burst WRITE Operation—Fixed Latency Mode  
(CRE=VIL)  
tKHKL  
tKP  
tCLK  
tKP  
VIH  
VIL  
CLK  
tSP  
tHD  
VIH  
VIL  
A[22:0]  
Valid Address  
tAS3  
tAVH  
tKADV  
tSP tHD  
VIH  
VIL  
ADV  
tAHCR  
tSP tHD  
tAS3  
VIH  
VIL  
LB/UB  
tCSM  
tCBPH  
tCSP  
tHD  
VIH  
VIL  
CS  
OE  
VIH  
VIL  
tSP tHD  
VIH  
VIL  
WE  
tKHTL  
tHZ  
tCSW  
High-Z  
VOH  
VOL  
High-Z  
WAIT  
NOTE 2  
tSP  
tHD  
VIH  
VIL  
D2  
DQ[15:0]  
D1  
D3  
D4  
WRITE Burst Identified  
(WE = LOW)  
Don’t Care  
NOTE :  
1) Non-default BCR settings for burst WRITE operation in fixed latency mode: Fixed latency; latency code two (three clocks); WAIT active LOW;  
WAIT asserted during delay; burst length four; burst wrap enabled.  
2) WAIT asserts for LC cycles for both fixed and variable latency. LC = Latency Code (BCR[13:11]).  
3) tAS required if tCSP > 20ns.  
4) Don’t care must be in VIL or VIH.  
Revision 0.1  
Nov 2008  
- 39 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.16 4-Word Burst WRITE Operation— Row Boundary Crossing  
(CRE=VIL)  
tKP  
tCLK  
tKP  
tKHKL  
VIH  
VIL  
CLK  
tHD  
tSP  
VIH  
VIL  
A[22:0]  
Valid Address  
tSP tHD  
tAVH  
VIH  
VIL  
ADV  
LB/UB  
CS  
tAHCR  
tHD  
tSP  
VIH  
VIL  
tHD  
tCBPH  
tCSP  
A
VIH  
VIL  
tHZ  
VIH  
VIL  
OE  
tSP  
tHD  
VIH  
VIL  
WE  
tKHTL  
tCSW  
VOH  
VOL  
High-Z  
WAIT  
tSP  
tHD  
VIH  
VIL  
DQ[15:0]  
IN/OUT  
High-Z  
D1  
D2  
D3  
D4  
End of Row  
WRITE Burst Identified  
(OE = HIGH)  
Undefined  
Don’t Care  
NOTE :  
1) Non-default BCR settings: Fixed latency; latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.  
2) Don’t care must be in VIL or VIH.  
3) D2 can be written when CS goes high at Point A.  
Revision 0.1  
Nov 2008  
- 40 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.17 Burst WRITE Followed by Burst READ  
(CRE=VIL)  
tCLK  
VIH  
CLK  
VIL  
tSP  
tHD  
tSP  
tHD  
VIH  
VIL  
Valid  
Valid  
A[22:0]  
Address  
Address  
tSP  
tKADV3  
tHD  
tSP  
tSP  
tHD  
tAVH  
VIH  
ADV  
tSP  
tHD  
tAHCR  
tAHCR  
VIL  
VIH  
LB/UB  
VIL  
tCSP  
tCBPH  
tHD  
VIH  
VIL  
CS  
OE  
NOTE2  
tCSP  
tOHZ  
VIH  
VIL  
tSP  
tHD  
VIH  
VIL  
tSP  
tHD  
WE  
tBOE  
tCSW  
tCSW  
VOH  
VOL  
High-Z  
WAIT  
tKOH  
tSP  
tHD  
tACLK  
VOH  
VIH  
VIL  
Valid  
Valid  
Valid  
Valid  
High-Z  
D0  
D1  
D2  
D3  
High-Z  
DQ[0:15]  
Output Output Output Output  
VOL  
Undefined  
Don’t Care  
NOTE :  
1) Non-default BCR settings for burst WRITE followed by burst READ: Fixed or variable latency; latency code two (three clocks); WAIT active LOW;  
WAIT asserted during delay.  
2) A refresh opportunity must be provided every tCSM. A refresh opportunity is satisfied by either of the following two conditions: a) clocked CS HIGH, or  
b) CS HIGH for longer than 15ns. CS can stay LOW between burst READ and burst WRITE operations, but CS must not remain LOW longer than tCSM.  
See burst interrupt diagrams for cases where CS stays LOW between bursts.  
3) Only fixed latency requires tKADV.  
4) Don’t care must be in VIL or VIH.  
Revision 0.1  
Nov 2008  
- 41 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.18 Burst READ Interrupted by Burst READ or WRITE  
(CRE=VIL)  
READ Burst interrupted with new READ or WRITE. See Note 2.  
tCLK  
VIH  
VIL  
CLK  
tHD  
tHD  
tSP  
tSP  
VIH  
VIL  
Valid  
Valid  
A[22:0]  
Address  
Address  
tSP tHD  
tSP tHD  
tAVH  
VIH  
VIL  
ADV  
CS  
tAHCR  
tAHCR  
tCSM (Note 3)  
tCSP  
tHD  
VIH  
VIL  
tSP tHD  
tSP tHD  
VIH  
VIL  
WE  
tKHTL  
tBOE  
VOH  
VOL  
tBOE  
High-Z  
WAIT  
tOHZ  
tCSW  
VIH  
VIL  
OE  
2nd Cycle READ  
tSP  
VIH  
VIL  
LB/UB  
2nd Cycle READ  
tKOH  
tKOH  
tACLK  
High-Z  
VOH  
VOL  
DQ[15:0]OUT  
2nd Cycle WRITE  
Valid  
Output  
Valid  
Valid  
Valid  
Valid  
High-Z  
Output Output Output Output  
tACLK  
VIH  
VIL  
OE  
2nd Cycle WRITE  
VIH  
VIL  
LB/UB  
2nd Cycle WRITE  
tSP  
tHD  
VIH  
VIL  
DQ[15:0]IN  
2nd Cycle WRITE  
High-Z  
D0  
D1  
D2  
D3  
Undefined  
Don’t Care  
NOTE :  
1) Non-default BCR settings for burst READ interrupted by burst READ or WRITE: Fixed or variable latency code two (three clocks); WAIT active LOW;  
WAIT asserted during delay. All bursts shown for variable latency; no refresh collision.  
2) Burst interrupt shown on first allowable clock (i.e., after the first data received by the controller).  
3) CS can stay LOW between burst operations, but CS must not remain LOW longer than tCSM.  
4) Don’t care must be in VIL or VIH.  
Revision 0.1  
Nov 2008  
- 42 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.19 Burst WRITE Interrupted by Burst WRITE or READ—Variable Latency Mode  
(CRE=VIL)  
WRITE Burst interrupted with new WRITE or READ. See Note 2.  
tCLK  
VIH  
CLK  
VIL  
tHD  
tHD  
tSP  
tSP  
VIH  
VIL  
Valid  
Address  
Valid  
Address  
A[22:0]  
tSP tHD  
tSP tHD  
VIH  
VIL  
ADV  
CS  
tAHCR  
tAHCR  
tCSM (Note 3)  
tCSP  
tHD  
VIH  
VIL  
tSP tHD  
tSP tHD  
VIH  
VIL  
WE  
tKHTL  
VOH  
VOL  
High-Z  
High-Z  
WAIT  
tCSW  
VIH  
VIL  
OE  
2nd Cycle WRITE  
tSP tHD  
VIH  
VIL  
LB/UB  
2nd Cycle WRITE  
tSP tHD  
tSP tHD  
VIH  
VIL  
DQ[15:0]IN  
2nd Cycle WRITE  
High-Z  
D0  
D0  
D1  
D2  
D3  
tOHZ  
tBOE  
VIH  
OE  
2nd Cycle READ  
VIL  
tSP  
VIH  
VIL  
LB/UB  
2nd Cycle READ  
tKOH  
VOH  
VOH  
VOL  
Valid  
Output  
Valid  
Valid  
Valid  
High-Z  
DQp15:0]OUT  
2nd Cycle READ  
Output Output Output  
VOL  
tACLK  
Undefined  
Don’t Care  
NOTE :  
1) Non-default BCR settings for burst WRITE interrupted by burst WRITE or READ in variable latency mode: Variable latency; latency code two (three clocks);  
WAIT active LOW; WAIT asserted during delay. All bursts shown for variable latency; no refresh collision.  
2) Burst interrupt shown on first allowable clock (i.e., after first data word written).  
3) CS can stay LOW between burst operations, but CS must not remain LOW longer than tCSM.  
4) Don’t care must be in VIL or VIH.  
Revision 0.1  
- 43 -  
Nov 2008  
Preliminary  
K1C6416B2E  
UtRAM2  
15.20 Burst WRITE Interrupted by Burst WRITE or READ—Fixed Latency Mode  
(CRE=VIL)  
WRITE Burst interrupted with new WRITE or READ. See Note 2.  
tCLK  
VIH  
CLK  
VIL  
tSP  
tSP  
VIH  
VIL  
Valid  
Address  
Valid  
Address  
A[22:0]  
tSP tHD  
tSP tHD  
tKADV  
VIH  
VIL  
ADV  
CS  
tAHCR  
tAHCR  
tCSM (Note 3)  
tCSP  
tHD  
VIH  
VIL  
tSP tHD  
tSP tHD  
VIH  
VIL  
WE  
tKHTL  
VOH  
VOL  
High-Z  
High-Z  
WAIT  
tCSW  
VIH  
VIL  
OE  
2nd Cycle WRITE  
tSP tHD  
VIH  
VIL  
LB/UB  
2nd Cycle WRITE  
tSP tHD  
tSP tHD  
VIH  
VIL  
DQ[15:0]IN  
2nd Cycle WRITE  
High-Z  
D0  
D0  
D1  
D2  
D3  
tOHZ  
tBOE  
VIH  
OE  
2nd Cycle READ  
VIL  
tSP  
VIH  
VIL  
tHD  
LB/UB  
2nd Cycle READ  
tKOH  
VOH  
VOH  
VOL  
Valid  
Output  
Valid  
Valid  
Valid  
High-Z  
DQ[15:0]OUT  
2nd Cycle READ  
Output Output Output  
VOL  
tACLK  
Undefined  
Don’t Care  
NOTE :  
1) Non-default BCR settings for burst WRITE interrupted by burst WRITE or READ in fixed latency mode: Fixed latency; latency code two (three clocks);  
WAIT active LOW; WAIT asserted during delay.  
2) Burst interrupt shown on first allowable clock (i.e., after first data word written).  
3) CS can stay LOW between burst operations, but CS must not remain LOW longer than tCSM.  
4) Don’t care must be in VIL or VIH.  
Revision 0.1  
Nov 2008  
- 44 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.21 Asynchronous WRITE Followed by Burst READ  
(CRE=VIL)  
tCLK  
VIH  
CLK  
VIL  
tSP  
Valid Address  
tSP tHD  
tHD  
tWC  
tWC  
VIH  
VIL  
A[22:0]  
ADV  
Valid Address  
tAVS  
Valid Address  
tAW  
tWR  
VIH  
VIL  
tAHCR  
tVS  
tHD  
tVP  
tSP  
tBW  
VIH  
VIL  
LB/UB  
tCVS  
tCW  
tCBPH  
Note 2  
tCSP  
VIH  
VIL  
CS  
OE  
tAS  
tOHZ  
VIH  
VIL  
tWC  
tWPH  
tHD  
tSP  
tAS  
tWP  
VIH  
VIL  
WE  
tCSW  
tCSW  
tBOE  
VOH  
VOL  
High-Z  
WAIT  
tKOH  
tACLK  
VOH  
VOL  
VIH  
VIL  
DQ[15:0]  
IN/OUT  
Valid  
Output  
Valid  
Valid  
Valid  
High-Z  
High-Z  
Data  
Data  
Output Output Output  
tDH  
tDW  
Undefined  
Don’t Care  
NOTE :  
1) Non-default BCR settings for asynchronous WRITE followed by burst READ: Fixed or variable latency; latency code two (three clocks); WAIT active LOW;  
WAIT asserted during delay.  
2) When transitioning between asynchronous and variable-latency burst operations, CS must go HIGH. CS can stay LOW when transitioning to fixed-latency  
burst READs. A refresh opportunity must be provided every tCSM. A refresh opportunity is satisfied by either of the following two conditions: a) clocked CS  
HIGH, or b) CS HIGH for longer than 15ns.  
3) Don’t care must be in VIL or VIH.  
Revision 0.1  
Nov 2008  
- 45 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.22 Asynchronous WRITE (ADV LOW) Followed By Burst READ  
(CRE=VIL)  
tCLK  
VIH  
CLK  
VIL  
tSP  
Valid Address  
tHD  
tHD  
tWC  
tWC  
VIH  
VIL  
A[22:0]  
Valid Address  
Valid Address  
tAW  
tWR  
tSP  
VIH  
VIL  
ADV  
LB/UB  
CS  
tAHCR  
tSP  
tBW  
VIH  
VIL  
tCBPH  
Note 2  
tCW  
tCSP  
VIH  
VIL  
tOHZ  
VIH  
VIL  
OE  
tWC  
tWPH  
tHD  
tSP  
tWP  
VIH  
VIL  
WE  
tCSW  
tCSW  
tBOE  
VOH  
VOL  
High-Z  
WAIT  
tKOH  
tACLK  
VOH  
VOL  
VIH  
VIL  
DQ[15:0]  
IN/OUT  
Valid  
Output  
Valid  
Valid  
Valid  
High-Z  
High-Z  
Data  
Data  
Output Output Output  
tDH  
tDW  
Undefined  
Don’t Care  
NOTE :  
1) Non-default BCR settings for asynchronous WRITE, with ADV LOW, followed by burst READ: Fixed or variable latency; latency code two (three clocks);  
WAIT active LOW; WAIT asserted during delay.  
2) When transitioning between asynchronous and variable-latency burst operations, CS must go HIGH. CS can stay LOW when transitioning to fixed-latency  
burst READs. A refresh opportunity must be provided every tCSM. A refresh opportunity is satisfied by either of the following two conditions: a) clocked CS  
HIGH, or b) CS HIGH for longer than 15ns.  
3) Don’t care must be in VIL or VIH.  
Revision 0.1  
Nov 2008  
- 46 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.23 Burst READ Followed by Asynchronous WRITE (WE-Controlled)  
(CRE=VIL)  
tCLK  
VIH  
CLK  
VIL  
tWC  
tSP  
tHD  
VIH  
VIL  
A[22:0]  
Valid Address  
Valid Address  
tAW  
tSP  
tHD  
tWR  
VIH  
VIL  
ADV  
CS  
tAHCR  
tHD  
tCBPH  
Note 2  
tHZ  
tCW  
tCSP  
VIH  
VIL  
tOHZ  
tBOE  
VIH  
VIL  
OE  
tAS  
tWPH  
tWP  
tBW  
tOLZ  
tSP  
tHD  
VIH  
VIL  
WE  
tSP  
VIH  
VIL  
LB/UB  
WAIT  
tKHTL  
tHZ  
tCSW  
tCSW  
High-Z  
VOH  
VOL  
High-Z  
tDH  
tACLK  
tKOH  
tDW  
VIH  
VOH  
VOL  
High-Z  
Valid Output  
Valid Input  
DQ[15:0]  
VIL  
READ Burst Identified  
(WE = HIGH)  
Undefined  
Don’t Care  
NOTE :  
1) Non-default BCR settings for burst READ followed by asynchronous WE-controlled WRITE: Fixed or variable latency; latency code two (three clocks);  
WAIT active LOW; WAIT asserted during delay.  
2) When transitioning between asynchronous and variable-latency burst operations, CS must go HIGH. CS can stay LOW when transitioning from fixed-latency  
burst READs; asynchronous operation begins at the falling edge of ADV. A refresh opportunity must be provided every tCSM. A refresh opportunity is satisfied  
by either of the following two conditions: a) clocked CS HIGH, or b) CS HIGH for longer than 15ns.  
3) Don’t care must be in VIL or VIH.  
Revision 0.1  
- 47 -  
Nov 2008  
Preliminary  
K1C6416B2E  
UtRAM2  
15.24 Burst READ Followed by Asynchronous WRITE Using ADV  
(CRE=VIL)  
tCLK  
VIH  
CLK  
VIL  
tSP  
tHD  
VIH  
VIL  
Valid Address  
Valid Address  
A[22:0]  
ADV  
tAVS  
tVS  
tSP  
tHD  
tVP  
VIH  
VIL  
tAHCR  
tAW  
tHD  
tCBPH  
tHZ  
tAS  
tCW  
tCSP  
VIH  
VIL  
CS  
OE  
WE  
Note 2  
tOHZ  
tBOE  
VIH  
VIL  
tAS  
tOLZ  
tWPH  
tWP  
tSP  
tHD  
VIH  
VIL  
tBW  
tSP  
VIH  
VIL  
LB/UB  
WAIT  
tKHTL  
tHZ  
tCSW  
tCSW  
High-Z  
VIH  
VIL  
High-Z  
tDH  
tKOH  
tDW  
tACLK  
VIH  
VIH  
VIL  
DQ[15:0]  
IN/OUT  
High-Z  
Valid Output  
Valid Input  
VIL  
READ Burst Identified  
(WE = HIGH)  
Undefined  
Don’t Care  
NOTE :  
1) Non-default BCR settings for burst READ followed by asynchronous WRITE using ADV: Fixed or variable latency; latency code two (three clocks);  
WAIT active LOW; WAIT asserted during delay.  
2) When transitioning between asynchronous and variable-latency burst operations, CS must go HIGH. CS can stay LOW when transitioning from fixed-latency  
burst READs; asynchronous operation begins at the falling edge of ADV. A refresh opportunity must be provided every tCSM. A refresh opportunity is satisfied  
by either of the following two conditions: a) clocked CS HIGH, or b) CS HIGH for longer than 15ns.  
3) Don’t care must be in VIL or VIH.  
Revision 0.1  
- 48 -  
Nov 2008  
Preliminary  
K1C6416B2E  
UtRAM2  
15.25 Asynchronous WRITE Followed by Asynchronous READ—ADV LOW  
(CRE=VIL)  
VIH  
Valid Address  
Valid Address  
Valid Address  
A[22:0]  
VIL  
tAW  
tWR  
tAA  
VIH  
VIL  
ADV  
tBHZ  
tBW  
tBLZ  
VIH  
VIL  
LB/UB  
tHZ  
tCW  
tCPH  
VIH  
VIL  
CS  
OE  
tOHZ  
Note 1  
tLZ  
tOE  
VIH  
VIL  
tWC  
tWPH  
tAS  
tWP  
VIH  
VIL  
WE  
tHZ  
tHZ  
tCSW  
tWHZ  
VIH  
VIL  
WAIT  
tOLZ  
VOH  
VOL  
VIH  
VIL  
DQ[15:0]  
IN/OUT  
High-Z  
High-Z  
Data  
Data  
Valid Output  
tDW  
tDH  
Undefined  
Don’t Care  
NOTE :  
1) When configured for synchronous mode (BCR[15] = 0), CS must remain HIGH for at least 5ns (tCPH) to schedule the appropriate refresh interval.  
Otherwise, tCPH is only required after CS-controlled WRITEs.  
2) Don’t care must be in VIL or VIH.  
Revision 0.1  
Nov 2008  
- 49 -  
Preliminary  
K1C6416B2E  
UtRAM2  
15.26 Asynchronous WRITE Followed by Asynchronous READ  
(CRE=VIL)  
VIH  
Valid Address  
Valid Address  
Valid Address  
tAA  
A[22:0]  
VIL  
tAVS  
tVP  
tAW  
tVS  
tWR  
VIH  
VIL  
ADV  
tBHZ  
tCVS  
tCW  
tBLZ  
tBW  
VIH  
VIL  
LB/UB  
tCPH  
tHZ  
VIH  
VIL  
CS  
OE  
Note 1  
tLZ  
tAS  
tOHZ  
VIH  
VIL  
tWC  
tAS  
tWP  
tWPH  
tOLZ  
VIH  
VIL  
WE  
tCSW  
tWHZ  
VIH  
VIL  
WAIT  
tOE  
VOH  
VOL  
VIH  
VIL  
DQ[15:0]  
IN/OUT  
High-Z  
High-Z  
Data  
Data  
Valid Output  
tDH  
tDW  
Undefined  
Don’t Care  
NOTE :  
1) When configured for synchronous mode (BCR[15] = 0), CS must remain HIGH for at least 5ns (tCPH) to schedule the appropriate refresh interval.  
Otherwise,tCPH is only required after CS-controlled WRITEs.  
2) Don’t care must be in VIL or VIH.  
Revision 0.1  
Nov 2008  
- 50 -  

相关型号:

K1C6416B8D-BI70

Memory IC, 4MX16, CMOS, PBGA54
SAMSUNG

K1C6416B8D-BI700

Memory IC, 4MX16, CMOS, PBGA54
SAMSUNG

K1C6416B8D-BI70T

Memory IC, 4MX16, CMOS, PBGA54
SAMSUNG

K1C6416B8D-FI70

Memory IC, 4MX16, CMOS, PBGA54
SAMSUNG

K1C6416B8D-FI700

Memory IC, 4MX16, CMOS, PBGA54
SAMSUNG

K1C6416B8D-FI70T

Memory IC, 4MX16, CMOS, PBGA54
SAMSUNG

K1C6416B8D-I0000

Pseudo Static RAM, 4MX16, 70ns, CMOS, PBGA54, 6 X 8 MM, 0.75 MM PITCH, FBGA-54
SAMSUNG

K1C6416B8E-I

Pseudo Static RAM, 4MX16, 70ns, CMOS, PBGA54, HALOGEN FREE AND ROHS COMPLIANT, FBGA-54
SAMSUNG

K1CL0C-P02LCC0-2500

CONN RCPT FMALE 2POS GOLD SOLDER
ETC

K1CL0C-P02LCC0-3000

CONN RCPT FMALE 2POS GOLD SOLDER
ETC

K1CL0C-P03LCC0-2500

CONN RCPT FMALE 3POS GOLD SOLDER
ETC