K4A4G085WE-BCRC [SAMSUNG]

4Gb E-die DDR4 SDRAM;
K4A4G085WE-BCRC
型号: K4A4G085WE-BCRC
厂家: SAMSUNG    SAMSUNG
描述:

4Gb E-die DDR4 SDRAM

动态存储器 双倍数据速率
文件: 总73页 (文件大小:1689K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Rev. 1.6, Jan. 2017  
K4A4G045WE  
K4A4G085WE  
4Gb E-die DDR4 SDRAM  
78FBGA with Lead-Free & Halogen-Free  
(RoHS compliant)  
1.2V  
datasheet  
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND  
SPECIFICATIONS WITHOUT NOTICE.  
Products and specifications discussed herein are for reference purposes only. All information discussed  
herein is provided on an "AS IS" basis, without warranties of any kind.  
This document and all information discussed herein remain the sole and exclusive property of Samsung  
Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property  
right is granted by one party to the other party under this document, by implication, estoppel or other-  
wise.  
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or  
similar applications where product failure could result in loss of life or personal or physical harm, or any  
military or defense application, or any governmental procurement to which special terms or provisions  
may apply.  
For updates or additional information about Samsung products, contact your nearest Samsung office.  
All brand names, trademarks and registered trademarks belong to their respective owners.  
(C) 2017 Samsung Electronics Co., Ltd.GG All rights reserved.  
- 1 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
Revision History  
Revision No.  
History  
Draft Date  
Remark  
Editor  
J.Y.Lee  
J.Y.Lee  
J.Y.Lee  
J.Y.Lee  
J.Y.Lee  
J.Y.Lee  
J.Y.Lee  
J.Y.Lee  
J.Y.Lee  
1.0  
1.01  
1.1  
- First SPEC release  
- Correction of typo  
4th Jun, 2015  
11th Aug, 2015  
27th Oct, 2015  
11th Apr, 2016  
22th Jun, 2016  
3rd Aug, 2016  
22th Aug, 2016  
4th Nov, 2016  
12th Jan, 2017  
-
-
-
-
-
-
-
-
-
- Added values on page 11 [Table 5]  
- Addition of Industrial temp  
1.2  
1.3  
- Addition of DDR4-2666  
1.4  
- Addition of IDD Current specification of 2666Mbps  
- Addition of DDR4-2666 (x4)  
1.5  
1.51  
1.6  
- Change of Package pinout on page 5  
- Update referring to JEDEC DDR4 datasheet rev.79-4B  
- 2 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
Table Of Contents  
4Gb E-die DDR4 SDRAM  
1. Ordering Information.....................................................................................................................................................5  
2. Key Features.................................................................................................................................................................5  
3. Package pinout/Mechanical Dimension & Addressing..................................................................................................6  
3.1 x4 Package Pinout (Top view) : 78ball FBGA Package ..........................................................................................6  
3.2 x8 Package Pinout (Top view) : 78ball FBGA Package ..........................................................................................7  
3.3 FBGA Package Dimension (x4/x8)..........................................................................................................................8  
4. Input/Output Functional Description..............................................................................................................................9  
5. DDR4 SDRAM Addressing ...........................................................................................................................................11  
6. Absolute Maximum Ratings ..........................................................................................................................................12  
6.1 Absolute Maximum DC Ratings...............................................................................................................................12  
6.2 DRAM Component Operating Temperature Range ................................................................................................12  
7. AC & DC Operating Conditions.....................................................................................................................................12  
8. AC & DC Input Measurement Levels............................................................................................................................13  
8.1 AC & DC Logic Input Levels for Single-ended Signals............................................................................................13  
8.2 AC and DC Input Measurement Levels: VREF Tolerances.....................................................................................13  
8.3 AC & DC Logic Input Levels for Differential Signals...............................................................................................14  
8.3.1. Differential Signals Definition ...........................................................................................................................14  
8.3.2. Differential Swing Requirement for Clock (CK_t - CK_c).................................................................................14  
8.3.3. Single-ended Requirements for Differential Signals ........................................................................................15  
8.3.4. Address, Command and Control Overshoot and Undershoot Specifications...................................................16  
8.3.5. Clock Overshoot and Undershoot Specifications.............................................................................................17  
8.3.6. Data, Strobe and Mask Overshoot and Undershoot Specifications.................................................................18  
8.4 Slew Rate Definitions ..............................................................................................................................................19  
8.4.1. Slew Rate Definitions for Differential Input Signals (CK) .................................................................................19  
8.4.2. Slew Rate Definition for Single-ended Input Signals ( CMD/ADD )..................................................................20  
8.5 Differential Input Cross Point Voltage......................................................................................................................21  
8.6 CMOS Rail to Rail Input Levels...............................................................................................................................22  
8.6.1. CMOS Rail to Rail Input Levels for RESET_n .................................................................................................22  
8.7 AC and DC Logic Input Levels for DQS Signals......................................................................................................23  
8.7.1. Differential Signal Definition.............................................................................................................................23  
8.7.2. Differential Swing Requirements for DQS (DQS_t - DQS_c)...........................................................................23  
8.7.3. Peak Voltage Calculation Method....................................................................................................................24  
8.7.4. Differential Input Cross Point Voltage ..............................................................................................................25  
8.7.5. Differential Input Slew Rate Definition..............................................................................................................26  
9. AC and DC Output Measurement Levels......................................................................................................................27  
9.1 Output Driver DC Electrical Characteristics.............................................................................................................27  
9.1.1. Alert_n Output Drive Characteristic..................................................................................................................29  
9.1.2. Output Driver Characteristic of Connectivity Test ( CT ) Mode ........................................................................29  
9.2 Single-ended AC & DC Output Levels.....................................................................................................................30  
9.3 Differential AC & DC Output Levels.........................................................................................................................30  
9.4 Single-ended Output Slew Rate ..............................................................................................................................31  
9.5 Differential Output Slew Rate ..................................................................................................................................32  
9.6 Single-ended AC & DC Output Levels of Connectivity Test Mode..........................................................................33  
9.7 Test Load for Connectivity Test Mode Timing.........................................................................................................33  
10. Speed Bin ...................................................................................................................................................................34  
10.1 Speed Bin Table Note ...........................................................................................................................................39  
11. IDD and IDDQ Specification Parameters and Test Conditions...................................................................................40  
11.1 IDD, IPP and IDDQ Measurement Conditions.......................................................................................................40  
11.2 4Gb DDR4 SDRAM E-die IDD Specification Table...............................................................................................55  
12. Input/Output Capacitance ...........................................................................................................................................57  
13. Electrical Characteristics & AC Timing .......................................................................................................................59  
13.1 Reference Load for AC Timing and Output Slew Rate..........................................................................................59  
13.2 tREFI .....................................................................................................................................................................59  
- 3 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
13.3 Clock Specification ................................................................................................................................................60  
13.3.1. Definition for tCK(abs)....................................................................................................................................60  
13.3.2. Definition for tCK(avg)....................................................................................................................................60  
13.3.3. Definition for tCH(avg) and tCL(avg).............................................................................................................60  
13.3.4. Definition for tERR(nper)................................................................................................................................60  
13.4 Timing Parameters by Speed Grade.....................................................................................................................61  
13.5 Rounding Algorithms ............................................................................................................................................67  
13.6 The DQ Input Receiver Compliance Mask for Voltage and Timing.......................................................................68  
13.7 DDR4 Function Matrix ...........................................................................................................................................72  
- 4 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
1. Ordering Information  
[ Table 1 ] Samsung 4Gb DDR4 E-die ordering information table  
2
Organization  
1Gx4  
DDR4-2133 (15-15-15)  
K4A4G045WE-BCPB  
K4A4G085WE-BCPB  
K4A4G085WE-BIPB  
Package  
78 FBGA  
78 FBGA  
78 FBGA  
DDR4-2400 (17-17-17)  
K4A4G045WE-BCRC  
K4A4G085WE-BCRC  
K4A4G085WE-BIRC  
DDR4-2666 (19-19-19)  
K4A4G045WE-BCTD  
K4A4G085WE-BCTD  
K4A4G085WE-BITD  
512Mx8  
512Mx8  
NOTE :  
1. Speed bin is in order of CL-tRCD-tRP.  
2. Backward compatible to lower frequency  
3. 13th digit stands for below.  
"C" : Commercial temp/Normal power  
"I" : Industrial temp/Normal power  
2. Key Features  
[ Table 2 ] 4Gb DDR4 E-die Speed bins  
DDR4-1600  
DDR4-1866  
13-13-13  
1.071  
13  
DDR4-2133  
15-15-15  
0.938  
15  
DDR4-2400  
DDR4-2666  
19-19-19  
0.75  
Speed  
Unit  
11-11-11  
17-17-17  
0.833  
17  
tCK(min)  
CAS Latency  
tRCD(min)  
tRP(min)  
1.25  
11  
ns  
nCK  
ns  
19  
13.75  
13.75  
35  
13.92  
13.92  
34  
14.06  
14.06  
33  
14.16  
14.16  
32  
14.25  
14.25  
32  
ns  
tRAS(min)  
tRC(min)  
ns  
48.75  
47.92  
47.06  
46.16  
46.25  
ns  
JEDEC standard 1.2V (1.14V~1.26V)  
= 1.2V (1.14V~1.26V)  
The 4Gb DDR4 SDRAM E-die is organized as a 64Mbit x 4 I/Os x 16banks  
or 32Mbit x8 I/Os x 16banks device. This synchronous device achieves  
high speed double-data-rate transfer rates of up to 2666Mb/sec/pin (DDR4-  
2666) for general applications.  
V
DDQ  
800 MHz f for 1600Mb/sec/pin,933 MHz f for 1866Mb/sec/pin,  
CK  
CK  
1067MHz f for 2133Mb/sec/pin, 1200MHz f for 2400Mb/sec/pin,  
CK  
CK  
1333MHz f for2666Mb/sec/pin  
CK  
The chip is designed to comply with the following key DDR4 SDRAM fea-  
tures such as posted CAS, Programmable CWL, Internal (Self) Calibration,  
On Die Termination using ODT pin and Asynchronous Reset.  
16 Banks (4 Bank Groups)  
Programmable CAS Latency (posted CAS):  
10,11,12,13,14,15,16,17,18  
Programmable Additive Latency: 0, CL-2 or CL-1 clock  
All of the control and address inputs are synchronized with a pair of exter-  
nally supplied differential clocks. Inputs are latched at the crosspoint of dif-  
ferential clocks (CK rising and CK falling). All I/Os are synchronized with a  
pair of bidirectional strobes (DQS and DQS) in a source synchronous fash-  
ion. The address bus is used to convey row, column, and bank address  
information in a RAS/CAS multiplexing style. The DDR4 device operates  
with a single 1.2V (1.14V~1.26V) power supply and 1.2V (1.14V~1.26V).  
The 4Gb DDR4 E-die device is available in 78ball FBGAs(x4/x8).  
Programmable CAS Write Latency (CWL) = 9,11 (DDR4-1600), 10,12  
(DDR4-1866),11,14 (DDR4-2133),12,16 (DDR4-2400) and 14,18  
(DDR4-2666)  
8-bit pre-fetch  
Burst Length: 8, 4 with tCCD = 4 which does not allow seamless read  
or write [either On the fly using A12 or MRS]  
Bi-directional Differential Data-Strobe  
Internal (self) calibration: Internal self calibration through ZQ pin  
(RZQ: 240 ohm ± 1%)  
On Die Termination using ODT pin  
Average Refresh Period 7.8us at lower than T  
85C, 3.9us at  
CASE  
85C < T  
< 95 C  
CASE  
Support Industrial Temp (-4095C)  
- tREFI 7.8us at -40 °C TCASE 85°C  
- tREFI 3.9us at 85 °C < TCASE 95°C  
Asynchronous Reset  
Package: 78 balls FBGA - x4/x8  
All of Lead-Free products are compliant for RoHS  
All of products are Halogen-free  
CRC (Cyclic Redundancy Check) for Read/Write data security  
Command address parity check  
DBI (Data Bus Inversion)  
Gear down mode  
POD (Pseudo Open Drain) interface for data input/output  
Internal VREF for data inputs  
External VPP for DRAM Activating Power  
PPR and sPPR is supported  
NOTE: 1. This data sheet is an abstract of full DDR4 specification and does not cover the common features which are described in “DDR4 SDRAM Device Operation & Timing  
Diagram”.  
2. The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation.  
- 5 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
3. Package pinout/Mechanical Dimension & Addressing  
3.1 x4 Package Pinout (Top view) : 78ball FBGA Package  
1
2
3
4
5
6
7
8
9
VDD  
VPP  
VSSQ  
VDDQ  
DQ0  
NC  
NC  
DQS_c  
DQS_t  
DQ2  
VSSQ  
VDDQ  
VSS  
VSS  
ZQ  
NC  
DQ1  
VDD  
DQ3  
NC  
A
B
C
D
E
F
A
B
C
D
E
F
VDDQ  
VSSQ  
VSS  
VDDQ  
VSSQ  
VSS  
NC  
VDDQ  
CK_c  
NC  
VDDQ  
NC  
NC  
VDD  
ODT  
CK_t  
CS_n  
VDD  
VSS  
NC  
CKE  
NC  
G
G
WE_n  
A14  
CAS_n  
A15  
RAS_n  
A16  
VDD  
ACT_n  
VSS  
H
J
H
J
A10  
AP  
A12  
BC_n  
VREFCA  
BG0  
BG1  
VDD  
VSS  
RESET_n  
VDD  
BA0  
A6  
A4  
A0  
A3  
A1  
A9  
NC  
BA1  
A5  
VSS  
ALERT_n  
VPP  
K
L
K
L
A8  
A2  
A7  
M
N
M
N
VSS  
A11  
PAR  
A13  
VDD  
1
2
3
4
5
6
7
8
9
Ball Locations (x4)  
A
B
C
D
E
F
Populated ball  
Ball not populated  
G
H
J
Top view  
(See the balls through the package)  
K
L
M
N
- 6 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
3.2 x8 Package Pinout (Top view) : 78ball FBGA Package  
1
2
3
4
5
6
7
8
9
DM_n,  
DBI_n,  
TDQS_t  
VDD  
VSSQ  
VSSQ  
VSS  
TDQS_c  
A
A
VPP  
VDDQ  
VSSQ  
VSS  
VDDQ  
DQ0  
DQ4  
VDDQ  
NC  
DQS_c  
DQS_t  
DQ2  
DQ1  
VDDQ  
VSS  
ZQ  
VDDQ  
VSSQ  
VSS  
B
C
D
E
F
B
C
D
E
F
VDD  
DQ3  
DQ5  
DQ6  
DQ7  
VDDQ  
CK_c  
NC  
VDD  
ODT  
CK_t  
CS_n  
VDD  
NC  
VSS  
NC  
CKE  
G
G
WE_n  
A14  
VDD  
ACT_n  
CAS_n  
RAS_n  
BG1  
VSS  
H
J
H
A10  
AP  
A12  
BC_n  
VREFCA  
BG0  
VDD  
VSS  
J
VSS  
RESET_n  
VDD  
BA0  
A6  
A4  
A0  
A3  
A1  
A9  
NC  
BA1  
A5  
K
L
K
ALERT_n  
VPP  
L
M
N
A8  
A2  
A7  
M
N
VSS  
A11  
PAR  
A13  
VDD  
1
2
3
4
5
6
7
8
9
Ball Locations (x8)  
A
B
C
D
E
F
Populated ball  
Ball not populated  
G
H
J
Top view  
(See the balls through the package)  
K
L
M
N
- 7 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
3.3 FBGA Package Dimension (x4/x8)  
Units : Millimeters  
7.50 0.10  
A
0.80 x 8 6.40  
#A1 INDEX MARK  
B
0.80  
(Datum A)  
(Datum B)  
1.60  
6
3.20  
3
9
8
7
5
4
2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
78 - 0.48 Solder ball  
(Post Reflow 0.50 0.05)  
0.2  
M
A B  
BOTTOM VIEW  
7.50 0.10  
#A1  
0.37 0.05  
1.10 0.10  
TOP VIEW  
- 8 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
4. Input/Output Functional Description  
[ Table 3 ] Input/Output function description  
Symbol  
Type  
Function  
Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on  
the crossing of the positive edge of CK_t and negative edge of CK_c.  
CK_t, CK_c  
Input  
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input  
buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self-Refresh operation  
(all banks idle), or Active Power-Down (row Active in any bank). CKE is synchronous for Self-Refresh exit.  
After VREFCA and Internal DQ Vref have become stable during the power on and initialization sequence,  
they must be maintained during all operations (including Self-Refresh). CKE must be maintained high  
throughout read and write accesses. Input buffers, excluding CK_t,CK_cSGODT and CKE are disabled  
during power-down. Input buffers, excluding CKE, are disabled during Self-Refresh.  
CKE, (CKE1)  
Input  
Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for external Rank  
selection on systems with multiple Ranks. CS_n is considered part of the command code.  
CS_n, (CS1_n)  
C0,C1,C2  
Input  
Input  
Chip ID : Chip ID is only used for 3DS for 2,4,8high stack via TSV to select each slice of stacked  
component. Chip ID is considered part of the command code  
On Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance internal to the  
DDR4 SDRAM. When enabled, ODT is only applied to each DQ, DQS_t, DQS_c and DM_n/DBI_n/  
TDQS_t, NU/TDQS_c (When TDQS is enabled via Mode Register A11=1 in MR1) signal for x8  
conurations. For x16 conuration ODT is applied to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c,  
DMU_n, and DML_n signal. The ODT pin will be ignored if MR1 is programmed to disable RTT_NOM.  
ODT, (ODT1)  
ACT_n  
Input  
Activation Command Input : ACT_n defines the Activation command being entered along with CS_n. The  
input into RAS_n/A16, CAS_n/A15 and WE_n/A14 will be considered as Row Address A16, A15 and A14  
Input  
Input  
Command Inputs: RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the command being  
entered. Those pins have multi function. ForG example, for activation with ACT_n Low, those are  
Addressing like A16,A15 and A14 but for non-activation command with ACT_n High, those are Command  
pins for Read, Write and other command defined in command truth table  
RAS_n/A16. CAS_n/  
A15. WE_n/A14  
Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data. Input data is  
masked when DM_n is sampled LOW coincident with that input data during a Write access. DM_n is  
sampled on both edges of DQS. DM is muxed with DBI function by Mode Register A10,A11,A12 setting in  
MR5. For x8 device, the function of DM or TDQS is enabled by Mode Register A11 setting in MR1. DBI_n  
is an input/output identifing whether to store/output the true or inverted data. If DBI_n is LOW, the data will  
be stored/output after inversion inside the DDR4 SDRAM and not inverted if DBI_n is HIGH. TDQS is only  
supported in X8  
DM_n/DBI_n/TDQS_t,  
(DMU_n/DBIU_n),  
(DML_n/DBIL_n)  
Input/Output  
Bank Group Inputs : BG0 - BG1 define to which bank group an Active, Read, Write or Precharge command  
is being applied. BG0 also determines which mode register is to be accessed during a MRS cycle. X4/8  
have BG0 and BG1 but X16 has only BG0  
BG0 - BG1  
BA0 - BA1  
Input  
Input  
Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write or Precharge command is  
being applied. Bank address also determines which mode register is to be accessed during a MRS cycle.  
Address Inputs: Provide the row address for ACTIVATE Commands and the column address for Read/  
Write commands to select one location out of the memory array in the respective bank. (A10/AP, A12/  
BC_n, RAS_n/A16, CAS_n/A15 and WE_n/A14 have additional functions, see other rows.The address  
inputs also provide the op-code during Mode Register Set commands.A17 is only defined for the x4  
conuration.  
A0 - A17  
A10 / AP  
Input  
Input  
Auto-precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge  
should be performed to the accessed bank after the Read/Write operation. (HIGH: Autoprecharge; LOW:  
no Autoprecharge).A10 is sampled during a Precharge command to determine whether the Precharge  
applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is  
selected by bank addresses.  
Burst Chop: A12 / BC_n is sampled during Read and Write commands to determine if burst chop (on-the-  
fly) will be performed. (HIGH, no burst chop; LOW: burst chopped). See command truth table for details.  
A12 / BC_n  
RESET_n  
Input  
Input  
Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is  
HIGH. RESET_n must be HIGH during normal operation. RESET_n is a CMOS rail to rail signal with DC  
high and low at 80% and 20% of V  
.
DD  
Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then CRC code is added at  
the end of Data Burst. Any DQ from DQ0~DQ3 may indicate the internal Vref level during test via Mode  
Register Setting MR4 A4=High. During this mode, RTT value should be set to Hi-Z. Refer to vendor  
specific datasheets to determine which DQ is used.  
DQ  
Input / Output  
Input / Output  
Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write  
data. For the x16, DQSL corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on  
DQU0-DQU7. The data strobe DQS_t, DQSL_t and DQSU_t are paired with differential signals DQS_c,  
DQSL_c, and DQSU_c, respectively, to provide differential pair signaling to the system during reads and  
writes. DDR4 SDRAM supports differential data strobe only and does not support single-ended.  
DQS_t, DQS_c,  
DQSU_t, DQSU_c,  
DQSL_t, DQSL_c  
- 9 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
Symbol  
Type  
Function  
Termination Data Strobe: TDQS_t/TDQS_c is applicable for x8 DRAMs only. When enabled via Mode  
Register A11 = 1 in MR1, the DRAM will enable the same termination resistance function on TDQS_t/  
TDQS_c that is applied to DQS_t/DQS_c. When disabled via mode register A11 = 0 in MR1, DM/DBI/  
TDQS will provide the data mask function or Data Bus Inversion depending on MR5; A11,12,10and  
TDQS_c is not used. x4/x16 DRAMs must disable the TDQS function via mode register A11 = 0 in MR1.  
TDQS_t, TDQS_c  
Output  
Command and Address Parity Input: DDR4 Supports Even Parity check in DRAM with MR setting. Once  
it’s enabled via Register in MR5, then DRAM calculates Parity with ACT_n,RAS_n/A16,CAS_n/A15,WE_n/  
A14,BG0-BG1,BA0-BA1,A17-A0, and C0-C2 (3DS devices). Input parity should maintain at the rising edge  
of the clock and at the same time with command & address with CS_n LOW  
PAR  
Input  
Alert : It has multi functions such as CRC error flag, Command and Address Parity error flag as Output  
signal. If there is error in CRC, then Alert_n goes LOW for the period time interval and goes back HIGH. If  
there is error in Command Address Parity Check, then Alert_n goes LOW for relatively long period until on  
going DRAM internal recovery transaction to complete. During Connectivity Test mode, this pin works as  
input. Using this signal or not is dependent on system. In case of not connected as Signal, ALERT_n Pin  
must be bounded to VDD on board.  
ALERT_n  
Input/Output  
Connectivity Test Mode Enable: Required on X16 devices and optional input on x4/x8 with densities equal  
to or greater than 8Gb.HIGH in this pin will enable Connectivity Test Mode operation along with other pins.  
It is a CMOS rail to rail signal with AC high and low at 80% and 20% of VDD. Using this signal or not is  
dependent on System. This pin may be DRAM internally pulled low through a weak pull-down resistor to  
VSS.  
TEN  
Input  
NC  
VDDQ  
VSSQ  
VDD  
No Connect: No internal electrical connection is present.  
DQ Power Supply: 1.2 V +/- 0.06 V  
DQ Ground  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Power Supply: 1.2 V +/- 0.06 V  
Ground  
VSS  
DRAM Activating Power Supply: 2.5V (2.375V min, 2.75V max)  
Reference voltage for CA  
VPP  
VREFCA  
ZQ  
Reference Pin for ZQ calibration  
NOTE: Input only pins (BG0-BG1,BA0-BA1, A0-A17, ACT_n, RAS_n/A16, CAS_n/A15, WE_n/A14, CS_n, CKE, ODT, and RESET_n) do not supply termination.  
- 10 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
5. DDR4 SDRAM Addressing  
2 Gb Addressing Table  
Configuration  
# of Bank Groups  
512 Mb x4  
256 Mb x8  
4
128 Mb x16  
2
4
Bank Address  
BG Address  
BG0~BG1  
BA0~BA1  
A0~A14  
A0~A9  
BG0~BG1  
BA0~BA1  
A0~A13  
A0~A9  
1KB  
BG0  
Bank Address in a BG  
BA0~BA1  
A0~A13  
A0~A9  
2KB  
Row Address  
Column Address  
Page size  
512B  
4 Gb Addressing Table  
Configuration  
1 Gb x4  
4
512 Mb x8  
4
256 Mb x16  
2
# of Bank Groups  
Bank Address  
BG Address  
BG0~BG1  
BA0~BA1  
A0~A15  
A0~A9  
512B  
BG0~BG1  
BA0~BA1  
A0~A14  
A0~A9  
1KB  
BG0  
Bank Address in a BG  
BA0~BA1  
A0~A14  
A0~A9  
2KB  
Row Address  
Column Address  
Page size  
8 Gb Addressing Table  
Configuration  
2 Gb x4  
4
1 Gb x8  
4
512 Mb x16  
2
# of Bank Groups  
Bank Address  
BG Address  
BG0~BG1  
BA0~BA1  
A0~A16  
A0~A9  
512B  
BG0~BG1  
BA0~BA1  
A0~A15  
A0~A9  
1KB  
BG0  
Bank Address in a BG  
BA0~BA1  
A0~A15  
A0~A9  
2KB  
Row Address  
Column Address  
Page size  
16 Gb Addressing Table  
Configuration  
4 Gb x4  
4
2 Gb x8  
4
1 Gb x16  
2
# of Bank Groups  
Bank Address  
BG Address  
BG0~BG1  
BA0~BA1  
A0~A17  
A0~A9  
512B  
BG0~BG1  
BA0~BA1  
A0~A16  
A0~A9  
1KB  
BG0  
Bank Address in a BG  
BA0~BA1  
A0~A16  
A0~A9  
2KB  
Row Address  
Column Address  
Page size  
16 Gb Addressing Table(SR x16 DDP)  
Configuration  
1 Gb x16  
4
# of Bank Groups  
Bank Address  
BG Address  
BG0~BG1  
BA0~BA1  
A0~A15  
A0~A9  
2KB  
Bank Address in a BG  
Row Address  
Column Address  
Page size  
NOTE 1 : Page size is the number of bytes of data delivered from the array to the internal sense amplifiers when an ACTIVE command is registered.  
Page size is per bank, calculated as follows:  
page size = 2 COLBITS * ORG8  
where, COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits  
- 11 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
6. Absolute Maximum Ratings  
6.1 Absolute Maximum DC Ratings  
[ Table 4 ] Absolute Maximum DC Ratings  
Symbol  
Parameter  
Voltage on VDD pin relative to Vss  
Rating  
Units  
NOTE  
VDD  
-0.3 ~ 1.5  
V
1,3  
VDDQ  
VPP  
-0.3 ~ 1.5  
-0.3 ~ 3.0  
-0.3 ~ 1.5  
-55 to +100  
V
V
1,3  
4
Voltage on VDDQ pin relative to Vss  
Voltage on VPP pin relative to Vss  
Voltage on any pin except VREFCA relative to Vss  
Storage Temperature  
V
V
V
1,3,5  
1,2  
IN, OUT  
T
°C  
STG  
NOTE :  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect reliability  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.  
3. VDD and VDDQ must be within 300 mV of each other at all times;and VREFCA must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500 mV; VREFCA  
may be equal to or less than 300 mV  
4. VPP must be equal or greater than VDD/VDDQ at all times.  
5. Overshoot area above 1.5 V is specified in section 8.3.4, 8.3.5 and section 8.3.6.  
6.2 DRAM Component Operating Temperature Range  
[ Table 5 ] Temperature Range  
Symbol  
Parameter  
rating  
0 to 95  
Unit  
C  
NOTE  
1, 2, 4  
1, 3, 4  
Normal  
T
Operating Temperature Range  
OPER  
Industrial  
-40 to 95  
C  
NOTE :  
1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM.  
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be main-  
tained between 0-85C under all operating conditions  
3. The Industrial Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be main-  
tained between -40-95C under all operating conditions  
4. Some applications require operation of the Extended Temperature Range between 85C and 95C case temperature. Full specifications are guaranteed in this range, but the  
following additional conditions apply:  
a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us.  
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to use the Manual Self-Refresh mode with Extended Temperature Range  
capability (MR2 A6 = 0b and MR2 A7 = 1b).  
7. AC & DC Operating Conditions  
[ Table 6 ] Recommended DC Operating Conditions  
Rating  
Symbol  
Parameter  
Unit  
NOTE  
Min.  
1.14  
Typ.  
1.2  
Max.  
1.26  
1.26  
2.75  
VDD  
VDDQ  
VPP  
Supply Voltage  
V
V
V
1,2,3  
1,2,3  
3
Supply Voltage for Output  
Peak-to-Peak Voltage  
1.14  
1.2  
2.375  
2.5  
NOTE :  
1. Under all conditions VDDQ must be less than or equal to VDD.  
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.  
3. DC bandwidth is limited to 20MHz.  
- 12 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
8. AC & DC Input Measurement Levels  
8.1 AC & DC Logic Input Levels for Single-ended Signals  
[ Table 7 ] Single-ended AC & DC input Levels for Command and Address  
DDR4-1600/1866/2133/2400  
DDR4-2666  
Min.  
Symbol  
Parameter  
Unit  
NOTE  
Min.  
VREFCA+ 0.075  
VSS  
Max.  
VDD  
Max.  
TBD  
TBD  
TBD  
TBD  
TBD  
VIH.CA(DC75)  
VIL.CA(DC75)  
VIH.CA(AC100)  
VIL.CA(AC100)  
VREFCA(DC)  
DC input logic high  
DC input logic low  
TBD  
TBD  
TBD  
TBD  
TBD  
V
V
V
V
V
VREFCA-0.075  
Note 2  
AC input logic high  
VREF + 0.1  
Note 2  
1
1
AC input logic low  
VREF - 0.1  
0.51*VDD  
Reference Voltage for ADD, CMD inputs  
0.49*VDD  
2,3  
NOTE :  
1. See “Overshoot and Undershoot Specifications” .  
2. The AC peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1% VDD (for reference : approx. ± 12mV)  
3. For reference : approx. VDD/2 ± 12mV  
8.2 AC and DC Input Measurement Levels: V  
Tolerances  
REF  
The DC-tolerance limits and ac-noise limits for the reference voltages V  
is illustrated in Figure 1. It shows a valid reference voltage V  
(t) as a  
REF  
REFCA  
function of time. (V  
stands for V  
and V  
likewise).  
REFDQ  
REF  
REFCA  
V
(DC) is the linear average of V  
(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirement in Table 7. Fur-  
REF  
REF  
thermore V  
(t) may temporarily deviate from V  
(DC) by no more than ± 1% V  
.
REF  
REF  
DD  
voltage  
VDD  
VSS  
time  
Figure 1. Illustration of V  
(DC) tolerance and VREF ac-noise limits  
REF  
The voltage levels for setup and hold time measurements V (AC), V (DC), V (AC) and V (DC) are dependent on V  
.
IH  
IH  
IL  
IL  
REF  
"V  
" shall be understood as V  
(DC), as defined in Figure 1.  
REF  
REF  
This clarifies, that DC-variations of V  
affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to  
REF  
which setup and hold is measured. System timing and voltage budgets need to account for V  
data-eye of the input signals.  
(DC) deviations from the optimum position within the  
REF  
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V  
ac-noise. Timing  
REF  
and voltage effects due to ac-noise on V  
up to the specified limit (+/-1% of V ) are included in DRAM timings and their associated deratings.  
DD  
REF  
- 13 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
8.3 AC & DC Logic Input Levels for Differential Signals  
8.3.1 Differential Signals Definition  
tDVAC  
V
.DIFF.AC.MIN  
IH  
V
.DIFF.MIN  
IH  
0.0  
half cycle  
V .DIFF.MAX  
IL  
V .DIFF.AC.MAX  
IL  
tDVAC  
time  
Figure 2. Definition of differential ac-swing and "time above ac level" tDVAC  
NOTE :  
1. Differential signal rising edge from VIL.DIFF.MAX to VIH.DIFF.MIN must be monotonic slope.  
2. Differential signal falling edge from VIH.DIFF.MIN to VIL.DIFF.MAX must be monotonic slope.  
8.3.2 Differential Swing Requirement for Clock (CK_t - CK_c)  
[ Table 8 ] Differential AC & DC Input Levels  
DDR4 -1600/1866/2133  
DDR4 -2400/2666  
Symbol  
Parameter  
unit NOTE  
min  
max  
min  
TBD  
max  
NOTE 3  
TBD  
V
differential input high  
differential input low  
+0.150  
NOTE 3  
NOTE 3  
-0.150  
V
V
V
V
1
1
2
2
IHdiff  
V
NOTE 3  
ILdiff  
V
(AC)  
(AC)  
2 x (V (AC) - V  
)
2 x (V (AC) - V  
)
differential input high ac  
differential input low ac  
NOTE 3  
NOTE 3  
IHdiff  
IH  
REF  
IH  
REF  
V
2 x (V (AC) - V  
)
2 x (V (AC) - V  
)
REF  
NOTE 3  
NOTE 3  
ILdiff  
NOTE:  
1. Used to define a differential signal slew-rate.  
2. for CK_t - CK_c use VIHCA/VILCA(AC) of ADD/CMD and VREFCA  
IL  
REF  
IL  
;
3. These values are not defined; however, the differential signals CK_t - CK_c, need to be within the respective limits (VIHCA(DC) max, VILCA(DC)min) for single-ended signals  
as well as the limitations for overshoot and undershoot.  
- 14 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
[ Table 9 ] Allowed Time Before Ringback (tDVAC) for CK_t - CK_c  
tDVAC [ps] @ |V  
(AC)| = 200mV  
IH/Ldiff  
Slew Rate [V/ns]  
min  
max  
> 4.0  
4.0  
120  
115  
110  
105  
100  
95  
-
-
-
-
-
-
-
-
-
-
3.0  
2.0  
1.8  
1.6  
1.4  
90  
1.2  
85  
1.0  
80  
< 1.0  
80  
8.3.3 Single-ended Requirements for Differential Signals  
Each individual component of a differential signal (CK_t, CK_c) has also to comply with certain requirements for single-ended signals.  
CK_t and CK _c have to approximately reach V  
min / V  
max [approximately equal to the ac-levels { V  
(AC) / V  
(AC)} for ADD/CMD signals]  
IL.CA  
SEH  
SEL  
IH.CA  
in every half-cycle.  
Note that the applicable ac-levels for ADD/CMD might be different per speed-bin etc. E.g. if Different value than V  
ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK_t and CK _c .  
(AC100)/V  
(AC100) is used for  
IL.CA  
IH.CA  
VDD or VDDQ  
VSEH min  
VSEH  
VDD/2 or VDDQ/2  
CK  
VSEL max  
VSEL  
VSS or VSSQ  
time  
Figure 3. Single-ended requirement for differential signals  
Note that while ADD/CMD signal requirements are with respect to V  
, the single-ended components of differential signals have a requirement with  
REFCA  
respect to V /2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended  
DD  
components of differential signals the requirement to reach V  
characteristics of these signals.  
max, V  
min has no bearing on timing, but adds a restriction on the common mode  
SEL  
SEH  
- 15 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
[ Table 10 ] Single-ended Levels for CK_t, CK_c  
DDR4-1600/1866/2133  
DDR4-2400/2666  
Symbol  
Parameter  
Unit NOTE  
Min  
Max  
Min  
Max  
Single-ended high-level for  
CK_t , CK_c  
V
(VDD/2)+0.100  
NOTE3  
TBD  
NOTE3  
V
V
1, 2  
1, 2  
SEH  
Single-ended low-level for  
CK_t , CK_c  
V
NOTE3  
(VDD/2)-0.100  
NOTE3  
TBD  
SEL  
NOTE :  
1. For CK_t - CK_c use VIH.CA/VIL.CA(AC) of ADD/CMD;  
2. VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA  
;
3. These values are not defined, however the single-ended signals CK_t - CK_c need to be within the respective limits (VIH.CA(DC) max, VIL.CA(DC)min) for single-ended sig-  
nals as well as the limitations for overshoot and undershoot.  
8.3.4 Address, Command and Control Overshoot and Undershoot Specifications  
[ Table 11 ] AC Overshoot/Undershoot Specification for Address, Command and Control Pins  
Specification  
Parameter  
Symbol  
Unit NOTE  
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666  
Maximum peak amplitude above VAOS  
Upper boundary of overshoot area AAOS1  
VAOSP  
VAOS  
0.06  
0.06  
0.06  
0.06  
TBD  
TBD  
TBD  
TBD  
V
VDD + 0.24  
V
1
VAUS  
0.3  
0.3  
0.3  
0.3  
V-ns  
V-ns  
Maximum peak amplitude allowed for undershoot  
Maximum overshoot area per 1 tCK above VAOS  
AAOS2  
0.0083  
0.0071  
0.0062  
0.0055  
Maximum overshoot area per 1 tCK between VDD and  
VAOS  
AAOS1  
AAUS  
0.2550  
0.2644  
0.2185  
0.2265  
0.1914  
0.1984  
0.1699  
0.1762  
TBD  
TBD  
V-ns  
V-ns  
Maximum undershoot area per 1 tCK below VSS  
(A0-A13,A17,BG0-BG1,BA0-BA1,ACT_n,RAS_n,CAS_n/A15,WE_n/A14,CS_n,CKE,ODT,C2-C0)  
NOTE: 1.The value of VAOS matches VDD absolute max as defined in Table 4 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended  
DC Operating Conditions. If VDD is above the recommended operating conditions, VAOS remains at VDD absolute max as defined in Table 4.  
VAOSP  
AAOS2  
VAOS  
AAOS1  
VDD  
Volts  
(V)  
1 tCK  
VSS  
AAUS  
VAUS  
Figure 4. Address, Command and Control Overshoot and Undershoot Definition  
- 16 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
8.3.5 Clock Overshoot and Undershoot Specifications  
[ Table 12 ] AC Overshoot/Undershoot Specification for Clock  
Specification  
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666  
Parameter  
Symbol  
Unit NOTE  
Maximum peak amplitude above VCOS  
VAOSP  
VAOS  
VAUS  
0.06  
0.06  
0.06  
0.06  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
V
V
Upper boundary of overshoot area ADOS1  
Maximum peak amplitude allowed for undershoot  
VDD + 0.24  
1
0.3  
0.3  
0.3  
0.3  
V
AAOS2  
AAOS1  
AAUS  
0.0038  
0.1125  
0.1144  
0.0032  
0.0964  
0.0980  
0.0028  
0.0844  
0.0858  
0.0025  
0.0750  
0.0762  
V-ns  
V-ns  
V-ns  
Maximum overshoot area per 1 UI above VCOS  
Maximum overshoot area per 1 UI between VDD and VDOS  
Maximum undershoot area per 1 UI below VSS  
(CK_t, CK_c)  
NOTE: The value of VCOS matches VDD absolute max as defined in Table 4 Absolute Maximum DC Ratings if VDD equals VDD max as defined in Table 6 Recommended DC  
Operating Conditions. If VDD is above the recommended operating conditions, VCOS remains at VDD absolute max as defined in Table 4.  
VCOSP  
ACOS2  
VCOS  
ACOS1  
VDD  
Volts  
(V)  
1 UI  
VSS  
ACUS  
VCUS  
Figure 5. Clock Overshoot and Undershoot Definition  
- 17 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
8.3.6 Data, Strobe and Mask Overshoot and Undershoot Specifications  
[ Table 13 ] AC Overshoot/Undershoot Specification for Data, Strobe and Mask  
Specification  
Parameter  
Symbol  
Unit NOTE  
DDR4-1600 DDR4-1866 DDR4-2133 DDR4-2400 DDR4-2666  
Maximum peak amplitude above VDOS  
Upper boundary of overshoot area ADOS1  
Lower boundary of undershoot area ADUS1  
Maximum peak amplitude below VDUS  
Maximum overshoot area per 1 UI above VDOS  
VDOSP  
VDOS  
0.16  
0.16  
0.16  
0.16  
TBD  
TBD  
TBD  
TBD  
TBD  
V
V
VDDQ + 0.24  
1
2
VDUS  
0.30  
0.10  
0.30  
0.10  
0.30  
0.10  
0.30  
0.10  
V
VDUSP  
ADOS2  
V
0.0150  
0.0129  
0.0113  
0.0100  
V-ns  
Maximum overshoot area per 1 UI between VDDQ and  
VDOS  
ADOS1  
0.1050  
0.0900  
0.0788  
0.0700  
TBD  
V-ns  
Maximum undershoot area per 1 UI between VSSQ  
and VDUS1  
ADUS1  
ADUS2  
0.1050  
0.0150  
0.0900  
0.0129  
0.0788  
0.0113  
0.0700  
0.0100  
TBD  
TBD  
V-ns  
V-ns  
Maximum undershoot area per 1 UI below VDUS  
(DQ, DQS_t, DQS_c, DM_n, DBI_n, TDQS_t, TDQS_c)  
NOTE :  
1. The value of VDOS matches (VIN, VOUT) max as defined in Table 4 Absolute Maximum DC Ratings if VDDQ equals VDDQ max as defined in Table 6 Recommended DC  
Operating Conditions. If VDDQ is above the recommended operating conditions, VDOS remains at (VIN, VOUT) max as defined in Table 4.  
2. The value of VDUS matches (VIN, VOUT) min as defined in Table 4 Absolute Maximum DC Ratings  
VDOSP  
ADOS2  
VDOS  
ADOS1  
VDDQ  
Volts  
(V)  
1 UI  
VSSQ  
ADUS1  
VDUSP  
ADUS2  
Figure 6. Data, Strobe and Mask Overshoot and Undershoot Definition  
- 18 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
8.4 Slew Rate Definitions  
8.4.1 Slew Rate Definitions for Differential Input Signals (CK)  
Input slew rate for differential signals (CK_t, CK_c) are defined and measured as shown in Table 14 and Figure 7.  
[ Table 14 ] Differential Input Slew Rate Definition  
Measured  
Description  
Defined by  
From  
To  
V
V
V
V
V
V
Differential input slew rate for rising edge(CK_t - CK_c)  
Differential input slew rate for falling edge(CK_t - CK_c)  
  
DeltaTRdiff  
ILdiffmax  
IHdiffmin  
IHdiffmin - ILdiffmax  
V
V
  
DeltaTFdiff  
IHdiffmin  
ILdiffmax  
IHdiffmin - ILdiffmax  
NOTE :  
The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds.  
Delta TRdiff  
V
IHdiffmin  
0
V
ILdiffmax  
Delta TFdiff  
Figure 7. Differential Input Slew Rate definition for CK, CK  
- 19 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
8.4.2 Slew Rate Definition for Single-ended Input Signals ( CMD/ADD )  
Delta TRsingle  
V
IHCA(AC) Min  
V
IHCA(DC) Min  
VREFCA(DC)  
V
ILCA(DC) Max  
V
ILCA(AC) Max  
Delta TFsingle  
NOTE :  
1. Single-ended input slew rate for rising edge = { VIHCA(AC)Min - VILCA(DC)Max } / Delta TR single  
2. Single-ended input slew rate for falling edge = { VIHCA(DC)Min - VILCA(AC)Max } / Delta TF single  
3. Single-ended signal rising edge from VILCA(DC)Max to VIHCA(DC)Min must be monotonic slope.  
4. Single-ended signal falling edge from VIHCA(DC)Min to VILCA(DC)Max must be monotonic slope.  
Figure 8. Single-ended Input Slew Rate definition for CMD and ADD  
- 20 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
8.5 Differential Input Cross Point Voltage  
To guarantee tight setup and hold times as well as output skew parameters with respect to clock, each cross point voltage of differential input signals  
(CK_t, CK_c) must meet the requirements in Table 15. The differential input cross point voltage VIX is measured from the actual cross point of true and  
complement signals to the midlevel between of VDD and VSS.  
VDD  
CK_t  
Vix  
VDD/2  
Vix  
CK_c  
VSEL  
VSEH  
VSS  
Figure 9. Vix Definition (CK)  
[ Table 15 ] Cross Point Voltage for Differential Input Signals (CK)  
DDR4-1600/1866/2133  
Symbol  
Parameter  
min  
VDD/2 - 145mV =<  
VSEL =< VDD/2 - =< VSEH =< VDD/  
100mV 2 + 145mV  
-(VDD/2 - VSEL) + (VSEH - VDD/2) -  
max  
VDD/2 + 100mV  
VSEL =< VDD/2 -  
145mV  
VDD/2 + 145mV  
=< VSEH  
-
Area of VSEH, VSEL  
Differential Input Cross Point Voltage relative to  
VDD/2 for CK_t, CK_c  
VlX(CK)  
-120mV  
120mV  
25mV  
25mV  
DDR4-2400/2666  
Symbol  
Parameter  
min  
max  
-
Area of VSEH, VSEL  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Differential Input Cross Point Voltage relative to  
VDD/2 for CK_t, CK_c  
VlX(CK)  
- 21 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
8.6 CMOS Rail to Rail Input Levels  
8.6.1 CMOS Rail to Rail Input Levels for RESET_n  
[ Table 16 ] CMOS Rail to Rail Input Levels for RESET_n  
Parameter  
Symbol  
Min  
0.8*VDD  
0.7*VDD  
VSS  
Max  
VDD  
Unit  
V
NOTE  
AC Input High Voltage  
DC Input High Voltage  
DC Input Low Voltage  
AC Input Low Voltage  
Rising time  
VIH(AC)_RESET  
VIH(DC)_RESET  
VIL(DC)_RESET  
VIL(AC)_RESET  
TR_RESET  
6
2
VDD  
V
0.3*VDD  
0.2*VDD  
1.0  
V
1
VSS  
V
7
-
us  
us  
4
RESET pulse width  
tPW_RESET  
1.0  
-
3,5  
NOTE :  
1.After RESET_n is registered LOW, RESET_n level shall be maintained below VIL(DC)_RESET during tPW_RESET, otherwise, SDRAM may not be reset.  
2. Once RESET_n is registered HIGH, RESET_n level must be maintained above VIH(DC)_RESET, otherwise, SDRAM operation will not be guaranteed until it is reset  
asserting RESET_n signal LOW.  
3. RESET is destructive to data contents.  
4. No slope reversal(ringback) requirement during its level transition from Low to High.  
5. This definition is applied only “Reset Procedure at Power Stable”.  
6. Overshoot might occur. It should be limited by the Absolute Maximum DC Ratings.  
7. Undershoot might occur. It should be limited by Absolute Maximum DC Ratings  
tPW_RESET  
0.8*VDD  
0.7*VDD  
0.3*VDD  
0.2*VDD  
TR_RESET  
Figure 10. RESET_n Input Slew Rate Definition  
- 22 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
8.7 AC and DC Logic Input Levels for DQS Signals  
8.7.1 Differential Signal Definition  
Figure 11. Definition of differential DQS Signal AC-swing Level  
8.7.2 Differential Swing Requirements for DQS (DQS_t - DQS_c)  
[ Table 17 ] Differential AC and DC Input Levels for DQS  
DDR4-1600/1866/2133  
DDR4-2400  
DDR4-2666  
Symbol  
Parameter  
Unit  
Note  
Min  
186  
Max  
Note2  
-186  
Min  
Max  
Note2  
-160  
Min  
TBD  
TBD  
Max  
TBD  
TBD  
VIHDiffPeak  
VILDiffPeak  
VIH.DIFF.Peak Voltage  
VIL.DIFF.Peak Voltage  
160  
mV  
mV  
1
1
Note2  
Note2  
NOTE :  
1.Used to define a differential signal slew-rate.  
2.These values are not defined; however, the differential signals DQS_t - DQS_c, need to be within the respective limits Overshoot, Undershoot Specification for single-ended  
signals.  
- 23 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
8.7.3 Peak Voltage Calculation Method  
The peak voltage of Differential DQS signals are calculated in a following equation.  
VIH.DIFF.Peak Voltage = Max(f(t))  
VIL.DIFF.Peak Voltage = Min(f(t))  
f(t) = VDQS_t - VDQS_c  
DQS_t  
Max(f(t))  
Min(f(t))  
+50%  
+50%  
+35%  
+35%  
DQS_c  
Time  
Figure 12. Definition of differential DQS Peak Voltage and rage of exempt non-monotonic signaling  
- 24 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
8.7.4 Differential Input Cross Point Voltage  
To achieve tight RxMask input requirements as well as output skew parameters with respect to strobe, the cross point voltage of differential input signals  
(DQS_t, DQS_c) must meet the requirements in Table 18. The differential input cross point voltage VIX_DQS (VIX_DQS_FR and VIX_DQS_RF) is  
measured from the actual cross point of DQS_t, DQS_c relative to the VDQSmid of the DQS_t and DQS_c signals.  
VDQSmid is the midpoint of the minimum levels achieved by the transitioning DQS_t and DQS_c signals, and noted by VDQS_trans. VDQS_trans is the  
difference between the lowest horizontal tangent above VDQSmid of the transitioning DQS signals and the highest horizontal tangent below VDQSmid of  
the transitioning DQS signals.  
A non-monotonic transitioning signal’s ledge is exempt or not used in determination of a horizontal tangent provided the said ledge occurs within +/- 35%  
of the midpoint of either VIH.DIFF.Peak Voltage (DQS_t rising) or VIL.DIFF.Peak Voltage (DQS_c rising), refer to Figure 12. A secondary horizontal tan-  
gent resulting from a ring-back transition is also exempt in determination of a horizontal tangent. That is, a falling transition’s horizontal tangent is derived  
from its negative slope to zero slope transition (point A in Figure 13) and a ring-back’s horizontal tangent derived from its positive slope to zero slope tran-  
sition (point B in Figure 13) is not a valid horizontal tangent; and a rising transition’s horizontal tangent is derived from its positive slope to zero slope tran-  
sition (point C in Figure 13) and a ring-back’s horizontal tangent derived from its negative slope to zero slope transition (point D in Figure 13) is not a valid  
horizontal tangent  
Lowest horizontal tangent above VDQSmid of the transitioning signals  
C
DQS_t  
D
VIX_DQS,RF  
VIX_DQS,FR  
VIX_DQS,RF  
VDQSmid  
DQS_c  
VIX_DQS,FR  
B
A
Highest horizontal tanget below VDQSmid of the transitioning signals  
V
SSQ  
Figure 13. Vix Definition (DQS)  
[ Table 18 ] Cross Point Voltage for DQS differential Input Signals  
DDR4-1600/1866/2133/2400  
DDR4-2666  
Symbol  
Parameter  
Unit  
%
Note  
1, 2  
Min  
Max  
Min  
Max  
DQS_t and DQS_c crossing relative  
to the midpoint of the DQS_t and  
DQS_c signal swings  
Vix_DQS_ratio  
-
25  
-
25  
VDQSmid offset relative to  
Vcent_DQ(midpoint)  
VDQSmid_to_Vcent  
-
min(VIHdiff,50)  
-
min(VIHdiff,50)  
mV  
3, 4, 5  
NOTE :  
1. Vix_DQS_Ratio is DQS VIX crossing (Vix_DQS_FR or Vix_DQS_RF) divided by VDQS_trans. VDQS_trans is the difference between the lowest horizontal tangent above  
VDQSmid of the transitioning DQS signals and the highest horizontal tangent below VDQSmid of the transitioning DQS signals.  
2. VDQSmid will be similar to the VREFDQ internal setting value obtained during Vref Training if the DQS and DQs drivers and paths are matched.  
3. The maximum limit shall not exceed the smaller of VIHdiff minimum limit or 50mV.  
4. VIX measurements are only applicable for transitioning DQS_t and DQS_c signals when toggling data, preamble and high-z states are not applicable conditions.  
5. The parameter VDQSmid is defined for simulation and ATE testing purposes, it is not expected to be tested in a system.  
- 25 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
8.7.5 Differential Input Slew Rate Definition  
Input slew rate for differential signals (DQS_t, DQS_c) are defined and measured as shown in are Figure 13 and Figure 14.  
NOTE :  
1. Differential signal rising edge from VILDiff_DQS to VIHDiff_DQS must be monotonic slope.  
2. Differential signal falling edge from VIHDiff_DQS to VILDiff_DQS must be monotonic slope.  
Figure 14. Differential Input Slew Rate Definition for DQS_t, DQS_c  
[ Table 19 ] Differential Input Slew Rate Definition for DQS_t, DQS_c  
Description  
Defined by  
From  
To  
Differential input slew rate for rising edge(DQS_t - DQS_c)  
Differential input slew rate for falling edge(DQS_t - DQS_c)  
VILDiff_DQS  
VIHDiff_DQS  
|VILDiff_DQS - VIHDiff_DQS|/DeltaTRdiff  
|VILDiff_DQS - VIHDiff_DQS|/DeltaTFdiff  
VIHDiff_DQS  
VILDiff_DQS  
[ Table 20 ] Differential Input Level for DQS_t, DQS_c  
DDR4-1600/1866/2133  
DDR4-2400  
DDR4-2666  
Symbol  
Parameter  
Unit NOTE  
Min  
136  
-
Max  
-
Min  
130  
-
Max  
-
Min  
TBD  
TBD  
Max  
TBD  
TBD  
VIHDiff_DQS  
VILDiff_DQS  
Differntial Input High  
Differntial Input Low  
mV  
mV  
-136  
-130  
[ Table 21 ] Differential Input Slew Rate for DQS_t, DQS_c  
DDR4-1600/1866/2133/2400  
DDR4-2666  
Symbol  
Parameter  
Unit NOTE  
Min  
Max  
Min  
TBD  
Max  
TBD  
SRIdiff  
Differential Intput Slew Rate  
3
18  
V/ns  
- 26 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
9. AC and DC Output Measurement Levels  
9.1 Output Driver DC Electrical Characteristics  
The DDR4 driver supports two different Ron values. These Ron values are referred as strong(low Ron) and weak mode(high Ron). A functional  
representation of the output buffer is shown in the figure below. Output driver impedance RON is defined as follows:  
The individual pull-up and pull-down resistors (RON and RON ) are defined as follows:  
Pu  
Pd  
VDDQ -Vout  
I out  
under the condition that RONPd is off  
under the condition that RONPu is off  
RON  
=
=
Pu  
Pd  
Vout  
I out  
RON  
Chip In Drive Mode  
Output Drive  
VDDQ  
To  
IPu  
other  
circuity  
like  
RON  
Pu  
Pd  
RCV, ...  
DQ  
RON  
IPd  
Iout  
Vout  
VSSQ  
Figure 15. Output driver  
- 27 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
[ Table 22 ] Output Driver DC Electrical Characteristics, assuming RZQ=240ohm; entire operating temperature range;  
after proper ZQ calibration  
RON  
Resistor  
Vout  
Min  
0.8  
0.9  
0.9  
0.9  
0.9  
0.8  
0.8  
0.9  
0.9  
0.9  
0.9  
0.8  
Nom  
1
Max  
1.1  
Unit  
NOTE  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
1,2  
NOM  
VOLdc= 0.5*VDDQ  
VOMdc= 0.8* VDDQ  
VOHdc= 1.1* VDDQ  
VOLdc= 0.5* VDDQ  
VOMdc= 0.8* VDDQ  
VOHdc= 1.1* VDDQ  
VOLdc= 0.5*VDDQ  
VOMdc= 0.8* VDDQ  
VOHdc= 1.1* VDDQ  
VOLdc= 0.5* VDDQ  
VOMdc= 0.8* VDDQ  
VOHdc= 1.1* VDDQ  
RZQ/7  
RZQ/7  
RZQ/7  
RZQ/7  
RZQ/7  
RZQ/7  
RZQ/5  
RZQ/5  
RZQ/5  
RZQ/5  
RZQ/5  
RZQ/5  
RON34Pd  
1
1.1  
1
1.25  
1.25  
1.1  
34  
1
RON34Pu  
RON48Pd  
RON48Pu  
1
1
1.1  
1
1.1  
1
1.1  
1
1.25  
1.25  
1.1  
48  
1
1
1
1.1  
Mismatch between pull-up and  
pull-down, MMPuPd  
VOMdc= 0.8* VDDQ  
VOMdc= 0.8* VDDQ  
VOMdc= 0.8* VDDQ  
-10  
-
-
-
10  
10  
10  
%
%
%
1,2,3,4  
1,2,4  
Mismatch DQ-DQ within byte vari-  
ation pull-up, MMPudd  
-
-
Mismatch DQ-DQ within byte vari-  
ation pull-dn, MMPddd  
1,2,4  
NOTE :  
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after cal-  
ibration, see following section on voltage and temperature sensitivity(TBD).  
2. Pull-up and pull-dn output driver impedances are recommended to be calibrated at 0.8 * VDDQ. Other calibration schemes may be used to achieve the linearity spec  
shown above, e.g. calibration at 0.5 * VDDQ and 1.1 * VDDQ.  
3. Measurement definition for mismatch between pull-up and pull-down, MMPuPd : Measure RONPu and RONPD both at 0.8*VDD separately; Ronnom is the nominal Ron  
value  
RONPu -RONPd  
*100  
MMPuPd =  
RONNOM  
4. RON variance range ratio to RON Nominal value in a given component, including DQS_t and DQS_c.  
RONPuMax -RONPuMin  
*100  
*100  
MMPudd =  
RONNOM  
RONPdMax -RONPdMin  
MMPddd =  
RONNOM  
5. This parameter of x16 device is specified for Upper byte and Lower byte.  
- 28 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
9.1.1 Alert_n Output Drive Characteristic  
A functional representation of the output buffer is shown in the figure below. Output driver impedance RON is defined as follows:  
Vout  
RON  
=
Pd  
l Iout l  
under the condition that RON is off  
Pu  
Alert Driver  
DRAM  
Alert  
RON  
Pd  
Iout  
Vout  
IPd  
VSSQ  
Resistor  
Vout  
VOLdc= 0.1* VDDQ  
Min  
0.3  
0.4  
Max  
1.2  
Unit  
34Ω  
34Ω  
NOTE  
1
1
V
= 0.8* VDDQ  
= 1.1* VDDQ  
RON  
1.2  
OMdc  
Pd  
V
0.4  
1.4  
34Ω  
1
OHdc  
NOTE :  
1. VDDQ voltage is at VDDQ DC. VDDQ DC definition is TBD.  
9.1.2 Output Driver Characteristic of Connectivity Test ( CT ) Mode  
Following Output driver impedance RON will be applied Test Output Pin during Connectivity Test ( CT ) Mode.  
The individual pull-up and pull-down resistors (RONPu_CT and RONPd_CT) are defined as follows:  
V
-V  
DDQ OUT  
RON  
RON  
=
=
Pu_CT  
Pd_CT  
l Iout l  
V
OUT  
l Iout l  
Chip In Driver Mode  
Output Driver  
VDDQ  
IPu_CT  
RON  
To  
other  
circuity  
like  
Pu_CT  
DQ  
RCV,...  
Iout  
RON  
Pd_CT  
Vout  
IPd_CT  
VSSQ  
Figure 16. Output Driver  
- 29 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
RON  
Resistor  
Vout  
Max  
1.9  
2.0  
2.2  
2.5  
2.5  
2.2  
2.0  
1.9  
Units  
34  
34  
34  
34  
34  
34  
34  
34  
NOTE  
NOM_CT  
VOB = 0.2 x V  
1
1
1
1
1
1
1
1
dc  
DDQ  
VOL = 0.5 x V  
dc  
DDQ  
RON  
Pd_CT  
Pu_CT  
VOM = 0.8 x V  
dc  
DDQ  
DDQ  
DDQ  
VOH = 1.1 x V  
dc  
34  
VOB = 0.2 x V  
dc  
VOL = 0.5 x V  
dc  
DDQ  
RON  
VOM = 0.8 x V  
dc  
DDQ  
VOH = 1.1 x V  
dc  
DDQ  
NOTE :  
1. Connectivity test mode uses un-calibrated drivers, showing the full range over PVT. No mismatch between pull up and pull down is defined.  
9.2 Single-ended AC & DC Output Levels  
[ Table 23 ] Single-ended AC & DC Output Levels  
Symbol  
Parameter  
DDR4-1600/1866/2133/2400/2666  
Units NOTE  
V
(DC)  
(DC)  
DC output high measurement level (for IV curve linearity)  
1.1 x V  
0.8 x V  
0.5 x V  
V
OH  
DDQ  
DDQ  
DDQ  
V
V
V
DC output mid measurement level (for IV curve linearity)  
DC output low measurement level (for IV curve linearity)  
AC output high measurement level (for output SR)  
AC output low measurement level (for output SR)  
V
V
OM  
(DC)  
OL  
(AC)  
(AC)  
(0.7 + 0.15) x V  
V
V
1
1
OH  
DDQ  
V
(0.7 - 0.15) x V  
OL  
DDQ  
NOTE :  
1. The swing of ± 0.15 × VDDQ is based on approximately 50% of the static single-ended output peak-to-peak swing with a driver impedance of RZQ/7Ω and an effective test  
load of 50Ω to VTT = VDDQ  
.
9.3 Differential AC & DC Output Levels  
[ Table 24 ] Differential AC & DC Output Levels  
Symbol  
(AC)  
Parameter  
DDR4-1600/1866/2133/2400/2666  
Units  
NOTE  
V
AC differential output high measurement level (for output SR)  
+0.3 x V  
V
1
OHdiff  
DDQ  
V
(AC)  
AC differential output low measurement level (for output SR)  
-0.3 x V  
V
1
OLdiff  
DDQ  
NOTE :  
1. The swing of ± 0.3 × VDDQ is based on approximately 50% of the static differential output peak-to-peak swing with a driver impedance of RZQ/7Ω and an effective test load  
of 50Ω to VTT = VDDQ at each of the differential outputs.  
- 30 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
9.4 Single-ended Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between V  
single ended signals as shown in Table 25 and Figure 17.  
and V  
for  
OL(AC)  
OH(AC)  
[ Table 25 ] Single-ended Output Slew Rate Definition  
Measured  
Description  
Defined by  
[V (AC)-V (AC)] / Delta TRse  
From  
(AC)  
To  
(AC)  
V
V
V
Single ended output slew rate for rising edge  
Single ended output slew rate for falling edge  
NOTE :  
OL  
OH  
OH  
OL  
(AC)  
V
(AC)  
[V (AC)-V (AC)] / Delta TFse  
OH OL  
OH  
OL  
1. Output slew rate is verified by design and characterization, and may not be subject to production test.  
VOH(AC)  
VTT  
VOL(AC)  
delta TFse  
delta TRse  
Figure 17. Single-ended Output Slew Rate Definition  
[ Table 26 ] Single-ended Output Slew Rate  
DDR4-1600  
DDR4-1866  
DDR4-2133  
DDR4-2400  
DDR4-2666  
Parameter  
Symbol  
Units  
V/ns  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Single ended output slew rate  
Description: SR: Slew Rate  
SRQse  
4
9
4
9
4
9
4
9
4
9
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)  
se: Single-ended Signals  
For Ron = RZQ/7 setting  
NOTE :  
1. In two cases, a maximum slew rate of 12 V/ns applies for a single DQ signal within a byte lane.  
-Case 1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the  
same byte lane are static (i.e. they stay at either high or low).  
-Case 2 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the  
same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the  
regular maximum limit of 9 V/ns applies  
- 31 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
9.5 Differential Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and  
VOHdiff(AC) for differential signals as shown in Table 27 and Figure 18.  
[ Table 27 ] Differential Output Slew Rate Definition  
Measured  
Description  
Defined by  
(AC)-V (AC)] / Delta TRdiff  
From  
(AC)  
To  
(AC)  
V
V
V
[V  
OHdiff  
Differential output slew rate for rising edge  
Differential output slew rate for falling edge  
NOTE :  
OLdiff  
OHdiff  
OLdiff  
(AC)  
V
(AC)  
[V  
(AC)-V (AC)] /Delta TFdiff  
OLdiff  
OHdiff  
OLdiff  
OHdiff  
1. Output slew rate is verified by design and characterization, and may not be subject to production test.  
VOHdiff(AC)  
VTT  
OLdiff(AC)  
V
delta TFdiff  
delta TRdiff  
Figure 18. Differential Output Slew Rate Definition  
[ Table 28 ] Differential Output Slew Rate  
DDR4-1600  
DDR4-1866  
DDR4-2133  
DDR4-2400  
DDR4-2666  
Parameter  
Symbol  
SRQdiff  
Units  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Differential output slew rate  
8
18  
8
18  
8
18  
8
18  
8
18  
V/ns  
Description:  
SR: Slew Rate  
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)  
diff: Differential Signals  
For Ron = RZQ/7 setting  
- 32 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
9.6 Single-ended AC & DC Output Levels of Connectivity Test Mode  
Following output parameters will be applied for DDR4 SDRAM Output Signal during Connectivity Test Mode.  
[ Table 29 ] Single-ended AC & DC Output Levels of Connectivity Test Mode  
Symbol  
Parameter  
DDR4-1600/1866/2133/2400/2666  
1.1 x VDDQ  
Unit  
V
Notes  
V
V
V
V
V
V
DC output high measurement level (for IV curve linearity)  
DC output mid measurement level (for IV curve linearity)  
DC output low measurement level (for IV curve linearity)  
DC output below measurement level (for IV curve linearity)  
AC output high measurement level (for output SR)  
AC output below measurement level (for output SR)  
OH(DC)  
0.8 x VDDQ  
V
OM(DC)  
OL(DC)  
OB(DC)  
OH(AC)  
OL(AC)  
0.5 x VDDQ  
V
0.2 x VDDQ  
V
VTT + (0.1 x VDDQ)  
VTT - (0.1 x VDDQ)  
V
1
1
V
NOTE  
1. The effective test load is 50Ω terminated by VTT = 0.5 * VDDQ.  
VOH(AC)  
VTT  
0.5 * VDDQ  
VOL(AC)  
TR_output_CT  
TR_output_CT  
Figure 19. Output Slew Rate Definition of Connectivity Test Mode  
[ Table 30 ] Single-ended Output Slew Rate of Connectivity Test Mode  
DDR4-1600/1866/2133/2400/2666  
Parameter  
Symbol  
Unit  
Notes  
Min  
Max  
10  
Output signal Falling time  
Output signal Rising time  
TF_output_CT  
TR_output_CT  
-
-
ns/V  
ns/V  
10  
9.7 Test Load for Connectivity Test Mode Timing  
The reference load for ODT timings is defined in Figure 20.  
V
DDQ  
DQ, DM  
DQSL , DQSL  
DQSU , DQSU  
DQS , DQS  
CT_INPUTS  
DUT  
0.5*VDDQ  
Rterm = 50 ohm  
V
SSQ  
Timing Reference Points  
Figure 20. Connectivity Test Mode Timing Reference Load  
- 33 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
10. Speed Bin  
[ Table 31 ] DDR4-1600 Speed Bins and Operations  
Speed Bin  
CL-nRCD-nRP  
Parameter  
DDR4-1600  
11-11-11  
Unit  
NOTE  
Symbol  
tAA  
min  
max  
13  
13.75  
Internal read command to first data  
Internal read command to first data with read DBI enabled  
ACT to internal read or write delay time  
18.00  
ns  
ns  
ns  
11  
11  
11  
5,11  
(13.50)  
tAA_DBI  
tRCD  
tAA(min) + 2nCK  
tAA(max) +2nCK  
-
13  
13.75  
5,11  
(13.50)  
13  
13.75  
PRE command period  
ACT to PRE command period  
ACT to ACT or REF command period  
tRP  
tRAS  
tRC  
-
ns  
ns  
ns  
11  
11  
11  
5,11  
(13.50)  
35  
9 x tREFI  
-
48.75  
5,11  
(48.50)  
Normal  
CL = 9  
Read DBI  
CL = 11  
1.5  
tCK(AVG)  
1.6  
ns  
1,2,3,4,10,13  
5,11  
CWL = 9  
(Optional)  
CL = 10  
CL = 10  
CL = 11  
CL = 12  
CL = 12  
CL = 12  
CL = 13  
CL = 14  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
Reserved  
ns  
ns  
1,2,3,4,10  
1,2,3,4  
1,2,3,4  
1,2,3  
Reserved  
CWL = 9,11  
1.25  
1.25  
<1.5  
<1.5  
ns  
ns  
Supported CL Settings  
9,11,12  
11,13,14  
9,11  
nCK  
nCK  
nCK  
12,13  
12  
Supported CL Settings with read DBI  
Supported CWL Settings  
- 34 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
[ Table 32 ] DDR4-1866 Speed Bins and Operations  
Speed Bin  
CL-nRCD-nRP  
Parameter  
DDR4-1866  
13-13-13  
Unit  
NOTE  
Symbol  
tAA  
min  
max  
13  
13.92  
Internal read command to first data  
Internal read command to first data with read DBI enabled  
ACT to internal read or write delay time  
18.00  
ns  
ns  
ns  
11  
11  
11  
5,11  
(13.50)  
tAA_DBI  
tRCD  
tAA(min) + 2nCK  
tAA(max) +2nCK  
-
13  
13.92  
5,11  
(13.50)  
13  
13.92  
PRE command period  
ACT to PRE command period  
ACT to ACT or REF command period  
tRP  
tRAS  
tRC  
-
ns  
ns  
ns  
11  
11  
11  
5,11  
(13.50)  
34  
9 x tREFI  
-
47.92  
5,11  
(47.50)  
Normal  
CL = 9  
Read DBI  
CL = 11  
1.5  
tCK(AVG)  
1.6  
ns  
1,2,3,4,10,13  
5,11  
CWL = 9  
CWL = 9,11  
CWL = 10,12  
(Optional)  
CL = 10  
CL = 10  
CL = 12  
CL = 12  
tCK(AVG)  
tCK(AVG)  
Reserved  
Reserved  
ns  
ns  
1,2,3,4,10  
4
1.25  
1.25  
<1.5  
<1.5  
CL = 11  
CL = 13  
tCK(AVG)  
ns  
1,2,3,4,6  
5,11  
(Optional)  
CL = 12  
CL = 12  
CL = 13  
CL = 14  
CL = 14  
CL = 14  
CL = 15  
CL = 16  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
ns  
ns  
1,2,3,6  
1,2,3,4  
1,2,3,4  
1,2,3  
Reserved  
1.071  
1.071  
<1.25  
<1.25  
ns  
ns  
Supported CL Settings  
9,11,12,13,14  
11,13,14,15,16  
9,10,11,12  
nCK  
nCK  
nCK  
12,13  
12  
Supported CL Settings with read DBI  
Supported CWL Settings  
- 35 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
[ Table 33 ] DDR4-2133 Speed Bins and Operations  
Speed Bin  
CL-nRCD-nRP  
Parameter  
DDR4-2133  
15-15-15  
Unit  
NOTE  
Symbol  
min  
max  
13  
14.06  
Internal read command to first data  
tAA  
18.00  
ns  
ns  
ns  
11  
11  
11  
5,11  
(13.75)  
Internal read command to first data with read DBI  
enabled  
tAA_DBI  
tRCD  
tAA(min) + 3nCK  
14.06  
tAA(max) + 3nCK  
-
ACT to internal read or write delay time  
5,11  
(13.75)  
14.06  
PRE command period  
ACT to PRE command period  
ACT to ACT or REF command period  
tRP  
tRAS  
tRC  
-
ns  
ns  
ns  
11  
11  
11  
5,11  
(13.75)  
33  
9 x tREFI  
-
47.06  
5,11  
(46.75)  
Normal  
CL = 9  
Read DBI  
CL = 11  
CL = 12  
CL = 13  
CL = 14  
CL = 15  
1.5  
1,2,3,4,10,1  
3
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
1.6  
ns  
ns  
ns  
ns  
ns  
5,11  
CWL = 9  
(Optional)  
CL = 10  
CL = 11  
CL = 12  
CL = 13  
Reserved  
1,2,3,10  
1,2,3,4,7  
1,2,3,7  
1.25  
<1.5  
5,11  
CWL = 9,11  
CWL = 10,12  
CWL = 11,14  
(Optional)  
1.25  
<1.5  
1.071  
<1.25  
1,2,3,4,7  
5,11  
(Optional)  
CL = 14  
CL = 14  
CL = 15  
CL = 16  
CL = 16  
CL = 17  
CL = 18  
CL = 19  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
1.071  
<1.25  
ns  
ns  
1,2,3,7  
1,2,3,4  
1,2,3,4  
1,2,3  
Reserved  
0.937  
0.937  
<1.071  
<1.071  
ns  
ns  
Supported CL Settings  
Supported CL Settings with read DBI  
Supported CWL Settings  
9,11.12,13,14,15,16  
11,13,14,15,16,18,19  
9,10,11,12,14  
nCK  
nCK  
nCK  
12,13  
- 36 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
[ Table 34 ] DDR4-2400 Speed Bins and Operations  
Speed Bin  
CL-nRCD-nRP  
Parameter  
DDR4-2400  
17-17-17  
Unit  
NOTE  
Symbol  
min  
max  
14.16  
Internal read command to first data  
tAA  
18.00  
ns  
ns  
ns  
11  
11  
11  
5,11  
(13.75)  
tAA(min) + 3nCK  
14.16  
Internal read command to first data with read DBI  
enabled  
tAA_DBI  
tRCD  
tAA(max) + 3nCK  
-
ACT to internal read or write delay time  
5,11  
(13.75)  
14.16  
PRE command period  
ACT to PRE command period  
ACT to ACT or REF command period  
tRP  
tRAS  
tRC  
-
ns  
ns  
ns  
11  
11  
11  
5,11  
(13.75)  
32  
9 x tREFI  
-
46.16  
5,11  
(45.75)  
Normal  
CL = 9  
Read DBI  
CL = 11  
CL = 12  
CL = 12  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
Reserved  
Reserved  
ns  
ns  
ns  
1,2,3,4,9  
1,2,3,4,9  
4
CWL = 9  
CL = 10  
CL = 10  
1.5  
1.6  
1.25  
<1.5  
CWL = 9,11  
CL = 11  
CL = 13  
tCK(AVG)  
ns  
1,2,3,4,8  
5,11  
(Optional)  
CL = 12  
CL = 12  
CL = 14  
CL = 14  
tCK(AVG)  
tCK(AVG)  
1.25  
<1.5  
ns  
ns  
ns  
1,2,3,8  
4
Reserved  
1.071  
<1.25  
1,2,3,4,8  
CWL = 10,12  
CWL = 11,14  
CWL = 12,16  
CL = 13  
CL = 15  
tCK(AVG)  
5,11  
(Optional)  
CL = 14  
CL = 14  
CL = 16  
CL = 17  
tCK(AVG)  
tCK(AVG)  
1.071  
0.937  
<1.25  
ns  
ns  
ns  
1,2,3,8  
4
Reserved  
<1.071  
1,2,3,4,8  
CL = 15  
CL = 18  
tCK(AVG)  
5,11  
(Optional)  
CL = 16  
CL = 15  
CL = 16  
CL = 17  
CL = 18  
CL = 19  
CL = 18  
CL = 19  
CL = 20  
CL = 21  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
0.937  
<1.071  
ns  
ns  
ns  
1,2,3,8  
1,2,3,4  
1,2,3,4  
Reserved  
Reserved  
0.833  
0.833  
<0.937  
<0.937  
ns  
1,2,3  
Supported CL Settings  
Supported CL Settings with read DBI  
Supported CWL Settings  
10,11,12,13,14,15,16,17,18  
12,13,14,15,16,18,19,20,21  
9,10,11,12,14,16  
nCK  
nCK  
nCK  
12,13  
- 37 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
[ Table 35 ] DDR4-2666 Speed Bins and Operations  
Speed Bin  
CL-nRCD-nRP  
Parameter  
DDR4-2666  
19-19-19  
Unit  
NOTE  
Symbol  
min  
max  
14  
14.25  
Internal read command to first data  
tAA  
18.00  
ns  
ns  
ns  
11  
11  
11  
5,12  
(13.75)  
Internal read command to first data with read DBI  
enabled  
tAA_DBI  
tRCD  
tAA(min) + 3nCK  
14.25  
tAA(max) + 3nCK  
-
ACT to internal read or write delay time  
5,12  
(13.75)  
14  
14.25  
PRE command period  
ACT to PRE command period  
ACT to ACT or REF command period  
tRP  
tRAS  
tRC  
-
ns  
ns  
ns  
11  
11  
11  
5,12  
(13.75)  
32  
9 x tREFI  
-
46.25  
5,12  
(45.75)  
Normal  
CL = 9  
Read DBI  
CL = 11  
CL = 12  
CL = 12  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
Reserved  
Reserved  
ns  
ns  
ns  
1,2,3,4,10  
1,2,3,10  
4
CWL = 9  
CL = 10  
CL = 10  
1.5  
1.6  
1.25  
<1.5  
CWL = 9,11  
CL = 11  
CL = 13  
tCK(AVG)  
ns  
1,2,3,4,9  
5,12  
(Optional)  
CL = 12  
CL = 12  
CL = 14  
CL = 14  
tCK(AVG)  
tCK(AVG)  
1.25  
<1.5  
ns  
ns  
1,2,3,9  
4
Reserved  
1.071  
<1.25  
CWL = 10,12  
CWL = 11,14  
CL = 13  
CL = 15  
tCK(AVG)  
ns  
1,2,3,4,9  
5,12  
(Optional)  
CL = 14  
CL = 14  
CL = 16  
CL = 17  
tCK(AVG)  
tCK(AVG)  
1.071  
0.937  
<1.25  
ns  
ns  
1,2,3,9  
4
Reserved  
<1.071  
CL = 15  
CL = 18  
tCK(AVG)  
ns  
1,2,3,4,9  
5,12  
(Optional)  
CL = 16  
CL = 15  
CL = 16  
CL = 19  
CL = 18  
CL = 19  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
0.937  
<1.071  
ns  
ns  
ns  
1,2,3,9  
4
Reserved  
Reserved  
1,2,3,4S9  
1,2,3,4S9  
1,2,3,4S9  
1,2,3  
0.833  
0.833  
<0.937  
<0.937  
CWL = 12,16  
CWL = 14.18  
CL = 17  
CL = 20  
tCK(AVG)  
ns  
5,12  
(Optional)  
CL = 18  
CL = 17  
CL = 18  
CL = 19  
CL = 20  
CL = 21  
CL = 20  
CL = 21  
CL = 22  
CL = 23  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
ns  
ns  
Reserved  
Reserved  
1,2,3S4  
1,2,3S4  
1,2,3S4  
1,2,3  
ns  
0.75  
0.75  
<0.833  
<0.833  
ns  
ns  
Supported CL Settings  
Supported CL Settings with read DBI  
Supported CWL Settings  
10,11,12,13,14,15,16,17,18,19,20  
12,13,14,15,17,18,19,20,21,22,23  
9,10,11,12,14,16,18  
nCK  
nCK  
nCK  
12  
- 38 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
10.1 Speed Bin Table Note  
Absolute Specification  
- VDDQ = VDD = 1.20V +/- 0.06 V  
- VPP = 2.5V +0.25/-0.125 V  
- The values defined with above-mentioned table are DLL ON case.  
- DDR4-1600, 1866, 2133S2400Gand 2666 Speed Bin Tables are valid only when Geardown Mode is disabled.  
1. The CL setting and CWL setting result in tCK(avg).MIN and tCK(avg).MAX requirements. When making a selection of tCK(avg), both need to be fulfilled: Requirements from  
CL setting as well as requirements from CWL setting.  
2. tCK(avg).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guar-  
anteed. CL in clock cycle is calculated from tAA following rounding algorithm defined in Section "Rounding Algorithms"  
3. tCK(avg).MAX limits: Calculate tCK(avg) = tAA.MAX / CL SELECTED and round the resulting tCK(avg) down to the next valid speed bin (i.e. 1.5ns or 1.25ns or 1.071 ns or  
0.937 ns or 0.833 ns). This result is tCK(avg).MAX corresponding to CL SELECTED.  
4. ‘Reserved’ settings are not allowed. User must program a different value.  
5. 'Optional' settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to supplier's data sheet and/or the DIMM SPD  
information if and how this setting is supported.  
6. Any DDR4-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/  
Characterization.  
7. Any DDR4-2133 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/  
Characterization.  
8. Any DDR4-2400 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/  
Characterization.  
9. Any DDR4-2666 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/  
Characterization.  
10. DDR4-1600 AC timing apply if DRAM operates at lower than 1600 MT/s data rate.  
11. Parameters apply from tCK(avg)min to tCK(avg)max at all standard JEDEC clock period values as stated in the Speed Bin Tables.  
12. CL number in parentheses, it means that these numbers are optional.  
13. DDR4 SDRAM supports CL=9 as long as a system meets tAA(min).  
14. Each speed bin lists the timing requirements that need to be supported in order for a given DRAM to be JEDEC compliant. JEDEC compliance does not require support for  
all speed bins within a given speed. JEDEC compliance requires meeting the parameters for a least one of the listed speed bins.  
- 39 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
11. IDD and IDDQ Specification Parameters and Test Condi-  
tions  
11.1 IDD, IPP and IDDQ Measurement Conditions  
In this chapter, IDD, IPP and IDDQ measurement conditions such as test load and patterns are defined. Figure 21 shows the setup and test load for IDD,  
IPP and IDDQ measurements.  
l
IDD currents (such as IDD0, IDD0A, IDD1, IDD1A, IDD2N, IDD2NA, IDD2NL, IDD2NT, IDD2P, IDD2Q, IDD3N, IDD3NA, IDD3P, IDD4R, IDD4RA,  
IDD4W, IDD4WA, IDD5B, IDD5F2, IDD5F4, IDD6N, IDD6E, IDD6R, IDD6A, IDD7 and IDD8) are measured as time-averaged currents with all VDD  
balls of the DDR4 SDRAM under test tied together. Any IPP or IDDQ current is not included in IDD currents.  
l
l
IPP currents have the same definition as IDD except that the current on the VPP supply is measured.  
IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR4 SDRAM under test tied  
together. Any IDD current is not included in IDDQ currents.  
Attention: IDDQ values cannot be directly used to calculate IO power of the DDR4 SDRAM. They can be used to support correlation of simulated IO  
power to actual IO power as outlined in Figure 22. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are  
using one merged-power layer in Module PCB.  
For IDD, IPP and IDDQ measurements, the following definitions apply:  
l
l
l
l
l
l
l
“0” and “LOW” is defined as VIN <= VILAC(max).  
“1” and “HIGH” is defined as VIN >= VIHAC(min).  
“MID-LEVEL” is defined as inputs are VREF = VDD / 2.  
Timings used for IDD, IPP and IDDQ Measurement-Loop Patterns are provided in Table 36.  
Basic IDD, IPP and IDDQ Measurement Conditions are described in Table 37.  
Detailed IDD, IPP and IDDQ Measurement-Loop Patterns are described in Table 38 through Table 46.  
IDD Measurements are done after properly initializing the DDR4 SDRAM. This includes but is not limited to setting  
RON = RZQ/7 (34 Ohm in MR1);  
RTT_NOM = RZQ/6 (40 Ohm in MR1);  
RTT_WR = RZQ/2 (120 Ohm in MR2);  
RTT_PARK = Disable;  
Qoff = 0 (Output Buffer enabled) in MR1;  
B
TDQS_t disabled in MR1;  
CRC disabled in MR2;  
CA parity feature disabled in MR5;  
Gear down mode disabled in MR3  
Read/Write DBI disabled in MR5;  
DM disabled in MR5  
l
Attention: The IDD, IPP and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is  
started.  
l
l
Define D = {CS_n, ACT_n, RAS_n, CAS_n, WE_n } := {HIGH, LOW, LOW, LOW, LOW} ; apply BG/BA changes when directed.  
Define D# = {CS_n, ACT_n, RAS_n, CAS_n, WE_n } := {HIGH, HIGH, HIGH, HIGH, HIGH} apply invert of BG/BA changes when directed above.  
- 40 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
I
I
I
DDQ  
DD  
PP  
V
V
V
DDQ  
DD  
PP  
RESET  
CK_t/CK_c  
DDR4 SDRAM  
CKE  
CS  
C
DQS_t/DQS_c  
DQ  
DM  
ACT,RAS,CAS,WE  
A,BG,BA  
ODT  
V
V
SSQ  
SS  
ZQ  
NOTE:  
1. DIMM level Output test load condition may be different from above  
Figure 21. Measurement Setup and Test Load for IDD, IPP and IDDQ Measurements  
Application specific  
IDDQ  
TestLad  
memory channel  
environment  
Channel  
IO Powe  
Simulatin  
IDDQ  
Simuaion  
IDDQ  
Measurement  
Correlation  
X
X
Channel IO Power  
Number  
Figure 22. Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement.  
- 41 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
[ Table 36 ] Timings Used for IDD, IPP and IDDQ Measurement-Loop Patterns  
DDR4-1600  
DDR4-1866  
DDR4-2133  
DDR4-2400  
DDR4-2666  
Unit  
Symbol  
11-11-11  
1.25  
11  
11  
11  
39  
28  
11  
16  
20  
28  
4
13-13-13  
1.071  
13  
12  
13  
45  
32  
13  
16  
22  
28  
4
15-15-15  
0.937  
15  
14  
15  
51  
36  
15  
16  
23  
32  
4
17-17-17  
0.833  
17  
16  
17  
56  
39  
17  
16  
26  
36  
4
19-19-19  
tCK  
CL  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ns  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
CWL  
nRCD  
nRC  
nRAS  
nRP  
x4  
x8  
nFAW  
x16  
x4  
nRRDS  
nRRDL  
x8  
4
4
4
4
x16  
x4  
5
5
6
7
5
5
6
6
x8  
5
5
6
6
x16  
6
6
7
8
tCCD_S  
4
4
4
4
tCCD_L  
tWTR_S  
tWTR_L  
nRFC 2Gb  
nRFC 4Gb  
nRFC 8Gb  
TBD  
5
5
6
6
2
3
3
3
6
7
8
9
128  
208  
280  
150  
243  
327  
171  
278  
374  
193  
313  
421  
- 42 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
[ Table 37 ] Basic IDD, IPP and IDDQ Measurement Conditions  
Symbol  
Description  
Operating One Bank Active-Precharge Current (AL=0)  
1
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 36 on page 42; BL: 8 ; AL: 0; CS_n: High between ACT and PRE;  
Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 38 on page 46; Data IO: VDDQ;  
DM_n: stable at 1; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 38 on page 46); Output Buffer and  
IDD0  
2
RTT: Enabled in Mode Registers ; ODT Signal: stable at 0; Pattern Details: see Table 38 on page 46  
Operating One Bank Active-Precharge Current (AL=CL-1)  
AL = CL-1, Other conditions: see IDD0  
IDD0A  
IPP0  
Operating One Bank Active-Precharge IPP Current  
Same condition with IDD0  
Operating One Bank Active-Read-Precharge Current (AL=0)  
1
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 36 on page 42; BL: 8 ; AL: 0; CS_n: High between ACT, RD  
IDD1  
and PRE; Command, Address, Bank Group Address, Bank Address Inputs, Data IO: partially toggling according to Table 39 on  
page 47; DM_n: stable at 1; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 39 on page 47); Output Buf-  
2
fer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0; Pattern Details: see Table 39 on page 47  
Operating One Bank Active-Read-Precharge Current (AL=CL-1)  
AL = CL-1, Other conditions: see IDD1  
IDD1A  
IPP1  
Operating One Bank Active-Read-Precharge IPP Current  
Same condition with IDD1  
Precharge Standby Current (AL=0)  
1
CKE: High; External clock: On; tCK, CL: see Table 36 on page 42; BL: 8 ; AL: 0; CS_n: stable at 1; Command, Address, Bank Group  
IDD2N  
Address, Bank Address Inputs: partially toggling according to Table 40 on page 48; Data IO: VDDQ; DM_n: stable at 1; Bank Activity:  
2
all banks closed; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0; Pattern Details: see Table 40 on  
page 48  
Precharge Standby Current (AL=CL-1)  
AL = CL-1, Other conditions: see IDD2N  
IDD2NA  
IPP2N  
Precharge Standby IPP Current  
Same condition with IDD2N  
Precharge Standby ODT Current  
1
CKE: High; External clock: On; tCK, CL: see Table 36 on page 42; BL: 8 ; AL: 0; CS_n: stable at 1; Command, Address, Bank Group  
IDD2NT Address, Bank Address Inputs: partially toggling according to Table 41 on page 49; Data IO: VSSQ; DM_n: stable at 1; Bank Activity:  
2
all banks closed; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: toggling according to Table 41 on page 49; Pattern  
Details: see Table 41 on page 49  
IDDQ2NT Precharge Standby ODT IDDQ Current  
(Optional) Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current  
Precharge Standby Current with CAL enabled  
IDD2NL  
3
Same definition like for IDD2N, CAL enabled  
Precharge Standby Current with Gear Down mode enabled  
IDD2NG  
3,5  
Same definition like for IDD2N, Gear Down mode enabled  
Precharge Standby Current with DLL disabled  
IDD2ND  
3
Same definition like for IDD2N, DLL disabled  
Precharge Standby Current with CA parity enabled  
IDD2N_par  
3
Same definition like for IDD2N, CA parity enabled  
1
Precharge Power-Down Current CKE: Low; External clock: On; tCK, CL: see Table 36 on page 42; BL: 8 ; AL: 0; CS_n: stable at 1;  
IDD2P  
IPP2P  
Command, Address, Bank Group Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all  
2
banks closed; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0  
Precharge Power-Down IPP Current  
Same condition with IDD2P  
Precharge Quiet Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 36 on page 42; BL: 8 ; AL: 0; CS_n: stable at 1; Command, Address, Bank Group  
1
IDD2Q  
IDD3N  
Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1;Bank Activity: all banks closed; Output Buffer and RTT:  
Enabled in Mode Registers ; ODT Signal: stable at 0  
2
Active Standby Current  
1
CKE: High; External clock: On; tCK, CL: see Table 36 on page 42; BL: 8 ; AL: 0; CS_n: stable at 1; Command, Address, Bank Group  
Address, Bank Address Inputs: partially toggling according to Table 40 on page 48; Data IO: VDDQ; DM_n: stable at 1;Bank Activity:  
2
all banks open; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0; Pattern Details: see Table 40 on page 48  
- 43 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
Symbol  
Description  
Active Standby Current (AL=CL-1)  
AL = CL-1, Other conditions: see IDD3N  
IDD3NA  
IPP3N  
Active Standby IPP Current  
Same condition with IDD3N  
Active Power-Down Current  
1
CKE: Low; External clock: On; tCK, CL: see Table 36 on page 42; BL: 8 ; AL: 0; CS_n: stable at 1; Command, Address, Bank Group  
Address, Bank Address Inputs: stable at 0; Data IO: VDDQ; DM_n: stable at 1; Bank Activity: all banks open; Output Buffer and  
RTT: Enabled in Mode Registers ; ODT Signal: stable at 0  
IDD3P  
IPP3P  
2
Active Power-Down IPP Current  
Same condition with IDD3P  
Operating Burst Read Current  
2
CKE: High; External clock: On; tCK, CL: see Table 36 on page 42; BL: 8 ; AL: 0; CS_n: High between RD; Command, Address,  
Bank Group Address, Bank Address Inputs: partially toggling according to Table 42 on page 50; Data IO: seamless read data burst  
with different data between one burst and the next one according to Table 42 on page 50; DM_n: stable at 1; Bank Activity: all banks  
open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 42 on page 50); Output Buffer and RTT: Enabled in Mode  
IDD4R  
2
Registers ; ODT Signal: stable at 0; Pattern Details: see Table 42 on page 50  
Operating Burst Read Current (AL=CL-1)  
AL = CL-1, Other conditions: see IDD4R  
IDD4RA  
IDD4RB  
IPP4R  
Operating Burst Read Current with Read DBI  
3
Read DBI enabled , Other conditions: see IDD4R  
Operating Burst Read IPP Current  
Same condition with IDD4R  
IDDQ4R  
Operating Burst Read IDDQ Current  
(Optional)  
Same definition like for IDD4R, however measuring IDDQ current instead of IDD current  
IDDQ4RB  
(Optional)  
Operating Burst Read IDDQ Current with Read DBI  
Same definition like for IDD4RB, however measuring IDDQ current instead of IDD current  
Operating Burst Write Current  
1
CKE: High; External clock: On; tCK, CL: see Table 36 on page 42; BL: 8 ; AL: 0; CS_n: High between WR; Command, Address,  
Bank Group Address, Bank Address Inputs: partially toggling according to Table 43 on page 51; Data IO: seamless write data burst  
with different data between one burst and the next one according to Table 43 on page 51; DM_n: stable at 1; Bank Activity: all banks  
open, WR commands cycling through banks: 0,0,1,1,2,2,... (see Table 43 on page 51); Output Buffer and RTT: Enabled in Mode  
IDD4W  
2
Registers ; ODT Signal: stable at HIGH; Pattern Details: see Table 43 on page 51  
Operating Burst Write Current (AL=CL-1)  
AL = CL-1, Other conditions: see IDD4W  
IDD4WA  
IDD4WB  
IDD4WC  
IDD4W_par  
IPP4W  
Operating Burst Write Current with Write DBI  
3
Write DBI enabled , Other conditions: see IDD4W  
Operating Burst Write Current with Write CRC  
3
Write CRC enabled , Other conditions: see IDD4W  
Operating Burst Write Current with CA Parity  
3
CA Parity enabled , Other conditions: see IDD4W  
Operating Burst Write IPP Current  
Same condition with IDD4W  
Burst Refresh Current (1X REF)  
CKE: High; External clock: On; tCK, CL, nRFC: see Table 36 on page 42; BL: 8 ; AL: 0; CS_n: High between REF; Command,  
1
IDD5B  
Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 45 on page 53; Data IO: VDDQ; DM_n:  
stable at 1; Bank Activity: REF command every nRFC (see Table 45 on page 53); Output Buffer and RTT: Enabled in Mode  
Registers ; ODT Signal: stable at 0; Pattern Details: see Table 45 on page 53  
2
Burst Refresh Write IPP Current (1X REF)  
Same condition with IDD5B  
IPP5B  
IDD5F2  
IPP5F2  
IDD5F4  
IPP5F4  
Burst Refresh Current (2X REF)  
tRFC=tRFC_x2, Other conditions: see IDD5B  
Burst Refresh Write IPP Current (2X REF)  
Same condition with IDD5F2  
Burst Refresh Current (4X REF)  
tRFC=tRFC_x4, Other conditions: see IDD5B  
Burst Refresh Write IPP Current (4X REF)  
Same condition with IDD5F4  
- 44 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
Symbol  
Description  
Self Refresh Current: Normal Temperature Range  
T
: 0 - 85°C; Low Power Array Self Refresh (LP ASR) : Normal4; CKE: Low; External clock: Off; CK_t and CK_c#: LOW; CL: see  
CASE  
IDD6N  
1
Table 36 on page 42; BL: 8 ; AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n: stable  
at 1; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: MID-LEVEL  
2
Self Refresh IPP Current: Normal Temperature Range  
Same condition with IDD6N  
IPP6N  
IDD6E  
IPP6E  
IDD6R  
)
Self-Refresh Current: Extended Temperature Range  
T
: 0 - 95°C; Low Power Array Self Refresh (LP ASR) : Extended4; CKE: Low; External clock: Off; CK_t and CK_c: LOW; CL: see  
Table 36 on page 42; BL: 8 ; AL: 0; CS_n, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at  
CASE  
1
2
1; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: MID-  
LEVEL  
Self Refresh IPP Current: Extended Temperature Range  
Same condition with IDD6E  
Self-Refresh Current: Reduced Temperature Range  
4
T
: 0 - 45 °C; Low Power Array Self Refresh (LP ASR) : Reduced ; CKE: Low; External clock: Off; CK_t and CK_c#: LOW; CL: see  
CASE  
1
Table 36 on page 42; BL: 8 ; AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at  
2
1; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: MID-  
LEVEL  
Self Refresh IPP Current: Reduced Temperature Range  
Same condition with IDD6R  
IPP6R  
IDD6A  
IPP6A  
Auto Self-Refresh Current  
4
T
: 0 - 95°C; Low Power Array Self Refresh (LP ASR) : Auto ;CKE: Low; External clock: Off; CK_t and CK_c#: LOW; CL: see  
CASE  
1
Table 36 on page 42; BL: 8 ; AL: 0; CS_n#, Command, Address, Bank Group Address, Bank Address, Data IO: High; DM_n:stable at  
2
1; Bank Activity: Auto Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: MID-LEVEL  
Auto Self-Refresh IPP Current  
Same condition with IDD6A  
Operating Bank Interleave Read Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 36 on page 42; BL: 8 ; AL: CL-1; CS_n: High  
1
between ACT and RDA; Command, Address, Bank Group Address, Bank Address Inputs: partially toggling according to Table 46 on  
page 54; Data IO: read data bursts with different data between one burst and the next one according to Table 46 on page 54; DM_n: stable  
at 1; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see Table 46 on page 54; Output  
IDD7  
2
Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0; Pattern Details: see Table 46 on page 54  
Operating Bank Interleave Read IPP Current  
Same condition with IDD7  
IPP7  
IDD8  
IPP8  
Maximum Power Down Current  
TBD  
Maximum Power Down IPP Current  
Same condition with IDD8  
NOTE :  
1. Burst Length: BL8 fixed by MRS: set MR0 [A1:0=00].  
2. Output Buffer Enable  
- set MR1 [A12 = 0] : Qoff = Output buffer enabled  
- set MR1 [A2:1 = 00] : Output Driver Impedance Control = RZQ/7  
RTT Nom enable  
- set MR1 [A10:8 = 011] : RTT_NOM = RZQ/6  
RTT_WR enable  
- set MR2 [A10:9 = 01] : RTT_WR = RZQ/2  
RTT_PARK disable  
- set MR5 [A8:6 = 000]  
3. CAL enabled : set MR4 [A8:6 = 001] : 1600MT/s  
010] : 1866MT/s, 2133MT/s  
011] : 2400MT/s ,2666MT/s  
Gear Down mode enabled :set MR3 [A3 = 1] : 1/4 Rate  
DLL disabled : set MR1 [A0 = 0]  
CA parity enabled :set MR5 [A2:0 = 001] : 1600MT/s,1866MT/s, 2133MT/s  
010] : 2400MT/s ,2666MT/s  
Read DBI enabled : set MR5 [A12 = 1]  
Write DBI enabled : set :MR5 [A11 = 1]  
4. Low Power Auto Self Refresh (LP ASR) : set MR2 [A7:6 = 00] : Normal  
01] : Reduced Temperature range  
10] : Extended Temperature range  
11] : Auto Self Refresh  
5. IDD2NG should be measured after sync pulse (NOP) input.  
- 45 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
1
[ Table 38 ] IDD0, IDD0A and IPP0 Measurement-Loop Pattern  
4
Data  
0
1,2  
ACT  
D, D  
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
F
0
0
0
-
-
-
2
3,4  
D_#, D_#  
3
0
...  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
PRE  
nRAS  
...  
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
-
repeat pattern 1...4 until nRC - 1, truncate if necessary  
2
1
2
1*nRC  
repeat Sub-Loop 0, use BG[1:0] = 1, BA[1:0] = 1 instead  
2
2*nRC  
3*nRC  
4*nRC  
5*nRC  
6*nRC  
7*nRC  
8*nRC  
9*nRC  
10*nRC  
11*nRC  
12*nRC  
13*nRC  
14*nRC  
15*nRC  
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 2 instead  
2
3
repeat Sub-Loop 0, use BG[1:0] = 1, BA[1:0] = 3 instead  
2
4
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 1 instead  
2
5
repeat Sub-Loop 0, use BG[1:0] = 1, BA[1:0] = 2 instead  
2
6
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 3 instead  
2
7
repeat Sub-Loop 0, use BG[1:0] = 1, BA[1:0] = 0 instead  
2
8
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 0 instead  
2
9
repeat Sub-Loop 0, use BG[1:0] = 3, BA[1:0] = 1 instead  
2
10  
11  
12  
13  
14  
15  
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 2 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 3, BA[1:0] = 3 instead  
For x4 and  
x8 only  
2
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 1 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 3, BA[1:0] = 2 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 3 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 3, BA[1:0] = 0 instead  
NOTE :  
1. DQS_t, DQS_c are VDDQ.  
2. BG1 is don’t care for x16 device  
3. C[2:0] are used only for 3DS device  
4. DQ signals are VDDQ.  
- 46 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
1
[ Table 39 ] IDD1, IDD1A and IPP1 Measurement-Loop Pattern  
4
Data  
0
ACT  
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
F
0
0
0
-
-
-
1, 2  
3, 4  
...  
D, D  
b
D#, D#  
3
repeat pattern 1...4 until nRCD - AL - 1, truncate if necessary  
D0=00, D1=FF  
D2=FF, D3=00  
D4=FF, D5=00  
D6=00, D7=FF  
0
nRCD -AL  
RD  
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
...  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
PRE  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
nRAS  
0
1
0
1
0
0
0
0
0
0
-
...  
1*nRC + 0  
1*nRC + 1, 2  
ACT  
0
1
1
0
0
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
1
1
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
F
0
0
0
-
-
-
D, D  
0
b
1*nRC + 3, 4  
...  
D#, D#  
3
repeat pattern nRC + 1...4 until 1*nRC + nRAS - 1, truncate if necessary  
D0=FF, D1=00  
D2=00, D3=FF  
D4=00, D5=FF  
D6=FF, D7=00  
1
1*nRC + nRCD - AL RD  
0
1
1
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
...  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
PRE  
1*nRC + nRAS  
...  
0
1
0
1
0
0
0
0
0
0
0
0
-
repeat nRC + 1...4 until 2*nRC - 1, truncate if necessary  
2
2
3
4
5
6
8
9
2*nRC  
3*nRC  
4*nRC  
5*nRC  
6*nRC  
7*nRC  
9*nRC  
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 2 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 1, BA[1:0] = 3 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 1 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 1, BA[1:0] = 2 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 3 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 1, BA[1:0] = 0 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 2, BA[1:0] = 0 instead  
2
10 10*nRC  
11 11*nRC  
12 12*nRC  
13 13*nRC  
14 14*nRC  
15 15*nRC  
16 16*nRC  
repeat Sub-Loop 0, use BG[1:0] = 3, BA[1:0] = 1 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 2, BA[1:0] = 2 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 3, BA[1:0] = 3 instead  
For x4 and x8 only  
2
repeat Sub-Loop 1, use BG[1:0] = 2, BA[1:0] = 1 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 3, BA[1:0] = 2 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 2, BA[1:0] = 3 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 3, BA[1:0] = 0 instead  
NOTE :  
1. DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ  
2. BG1 is don’t care for x16 device  
3. C[2:0] are used only for 3DS device  
4. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ.  
- 47 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
1
[ Table 40 ] IDD2N, IDD2NA, IDD2NL, IDD2NG, IDD2ND, IDD2N_par, IPP2,IDD3N, IDD3NA and IDD3P Measurement-Loop Pattern  
4
Data  
0
1
2
D, D  
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
F
0
0
0
0
0
0
D, D  
0
2
D#, D#  
3
3
2
3
D#, D#  
1
1
1
1
1
0
0
3
0
0
0
7
F
0
0
2
1
2
3
4
5
6
7
8
9
4-7  
repeat Sub-Loop 0, use BG[1:0] = 1, BA[1:0] = 1 instead  
2
8-11  
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 2 instead  
2
12-15  
16-19  
20-23  
24-27  
28-31  
32-35  
36-39  
repeat Sub-Loop 0, use BG[1:0] = 1, BA[1:0] = 3 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 1 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 1, BA[1:0] = 2 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 3 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 1, BA[1:0] = 0 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 0 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 3, BA[1:0] = 1 instead  
2
10 40-43  
11 44-47  
12 48-51  
13 52-55  
14 56-59  
15 60-63  
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 2 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 3, BA[1:0] = 3 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 1 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 3, BA[1:0] = 2 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 3 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 3, BA[1:0] = 0 instead  
NOTE :  
1. DQS_t, DQS_c are VDDQ.  
2. BG1 is don’t care for x16 device  
3. C[2:0] are used only for 3DS device  
4. DQ signals are VDDQ.  
- 48 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
1
[ Table 41 ] IDD2NT and IDDQ2NT Measurement-Loop Pattern  
4
Data  
0
1
2
D, D  
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
7
0
0
F
0
0
0
-
-
-
D, D  
0
2
D#, D#  
3
3
2
3
D#, D#  
1
1
1
1
1
0
0
3
0
0
0
7
F
0
-
2
1
2
3
4
5
6
7
8
9
4-7  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0] = 1, BA[1:0] = 1 instead  
2
8-11  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0] = 0, BA[1:0] = 2 instead  
2
12-15  
16-19  
20-23  
24-27  
28-31  
32-35  
36-39  
repeat Sub-Loop 0, but ODT = 1 and BG[1:0] = 1, BA[1:0] = 3 instead  
2
repeat Sub-Loop 0, but ODT = 0 and BG[1:0] = 0, BA[1:0] = 1 instead  
2
repeat Sub-Loop 0, but ODT = 1 and BG[1:0] = 1, BA[1:0] = 2 instead  
2
repeat Sub-Loop 0, but ODT = 0 and BG[1:0] = 0, BA[1:0] = 3 instead  
2
repeat Sub-Loop 0, but ODT = 1 and BG[1:0] = 1, BA[1:0] = 0 instead  
2
repeat Sub-Loop 0, but ODT = 0 and BG[1:0] = 2, BA[1:0] = 0 instead  
2
repeat Sub-Loop 0, but ODT = 1 and BG[1:0] = 3, BA[1:0] = 1 instead  
2
10 40-43  
11 44-47  
12 48-51  
13 52-55  
14 56-59  
15 60-63  
repeat Sub-Loop 0, but ODT = 0 and BG[1:0] = 2, BA[1:0] = 2 instead  
For x4  
and x8  
only  
2
repeat Sub-Loop 0, but ODT = 1 and BG[1:0] = 3, BA[1:0] = 3 instead  
2
repeat Sub-Loop 0, but ODT = 0 and BG[1:0] = 2, BA[1:0] = 1 instead  
2
repeat Sub-Loop 0, but ODT = 1 and BG[1:0] = 3, BA[1:0] = 2 instead  
2
repeat Sub-Loop 0, but ODT = 0 and BG[1:0] = 2, BA[1:0] = 3 instead  
2
repeat Sub-Loop 0, but ODT = 1 and BG[1:0] = 3, BA[1:0] = 0 instead  
NOTE :  
1. DQS_t, DQS_c are VDDQ.  
2. BG1 is don’t care for x16 device  
3. C[2:0] are used only for 3DS device  
4. DQ signals are VDDQ.  
- 49 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
1
[ Table 42 ] IDD4R, IDDR4RA, IDD4RB and IDDQ4R Measurement-Loop Pattern  
4
Data  
D0=00, D1=FF  
D2=FF, D3=00  
D4=FF, D5=00  
D6=00, D7=FF  
0
RD  
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
D
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
2
2,3  
D#, D#  
3
D0=FF, D1=00  
D2=00, D3=FF  
D4=00, D5=FF  
D6=FF, D7=00  
4
RD  
0
1
1
0
1
0
0
1
0
1
0
0
0
7
F
0
5
D
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
2
6,7  
D#, D#  
3
2
2
3
4
5
6
7
8
9
8-11  
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 2 instead  
2
12-15  
16-19  
20-23  
24-27  
28-31  
32-35  
36-39  
repeat Sub-Loop 1, use BG[1:0] = 1, BA[1:0] = 3 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 1 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 1, BA[1:0] = 2 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 3 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 1, BA[1:0] = 0 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 0 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 3, BA[1:0] = 1 instead  
2
10 40-43  
11 44-47  
12 48-51  
13 52-55  
14 56-59  
15 60-63  
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 2 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 3, BA[1:0] = 3 instead  
For x4 and x8 only  
2
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 1 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 3, BA[1:0] = 2 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 3 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 3, BA[1:0] = 0 instead  
NOTE :  
1. DQS_t, DQS_c are used according to RD Commands, otherwise VDDQ.  
2. BG1 is don’t care for x16 device  
3. C[2:0] are used only for 3DS device  
4. Burst Sequence driven on each DQ signal by Read Command.  
- 50 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
1
[ Table 43 ] IDD4W, IDD4WA, IDD4WB and IDD4W_par Measurement-Loop Pattern  
4
Data  
D0=00, D1=FF  
D2=FF, D3=00  
D4=FF, D5=00  
D6=00, D7=FF  
0
WR  
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
1
D
1
1
0
1
0
1
0
1
0
1
1
1
0
0
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
2
2,3  
D#, D#  
3
D0=FF, D1=00  
D2=00, D3=FF  
D4=00, D5=FF  
D6=FF, D7=00  
4
WR  
0
1
1
0
0
1
0
1
0
1
0
0
0
7
F
0
5
D
1
1
0
1
0
1
0
1
0
1
1
1
0
0
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
2
6,7  
D#, D#  
3
2
2
3
4
5
6
7
8
9
8-11  
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 2 instead  
2
12-15  
16-19  
20-23  
24-27  
28-31  
32-35  
36-39  
repeat Sub-Loop 1, use BG[1:0] = 1, BA[1:0] = 3 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 1 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 1, BA[1:0] = 2 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 3 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 1, BA[1:0] = 0 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 0 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 3, BA[1:0] = 1 instead  
2
10 40-43  
11 44-47  
12 48-51  
13 52-55  
14 56-59  
15 60-63  
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 2 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 3, BA[1:0] = 3 instead  
For x4 and x8 only  
2
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 1 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 3, BA[1:0] = 2 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 3 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 3, BA[1:0] = 0 instead  
NOTE :  
1. DQS_t, DQS_c are used according to WR Commands, otherwise VDDQ.  
2. BG1 is don’t care for x16 device  
3. C[2:0] are used only for 3DS device  
4. Burst Sequence driven on each DQ signal by Write Command.  
- 51 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
1
[ Table 44 ] IDD4WC Measurement-Loop Pattern  
4
Data  
D0=00, D1=FF  
D2=FF, D3=00  
0
WR  
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
D4=FF, D5=00  
D6=00, D7=FF  
D8=CRC  
1,2  
3,4  
D, D  
1
1
0
1
0
1
0
1
0
1
1
1
0
0
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
2
D#, D#  
3
0
D0=FF, D1=00  
D2=00, D3=FF  
D4=00, D5=FF  
D6=FF, D7=00  
D8=CRC  
5
WR  
0
1
1
0
0
1
0
1
0
1
0
0
0
7
F
0
6,7  
D, D  
1
1
0
1
0
1
0
1
0
1
1
1
0
0
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
2
8,9  
D#, D#  
3
2
2
3
4
5
6
7
8
9
10-14  
15-19  
20-24  
25-29  
30-34  
35-39  
40-44  
45-49  
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 2 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 1, BA[1:0] = 3 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 1 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 1, BA[1:0] = 2 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 3 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 1, BA[1:0] = 0 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 0 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 3, BA[1:0] = 1 instead  
2
10 50-54  
11 55-59  
12 60-64  
13 65-69  
14 70-74  
15 75-79  
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 2 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 3, BA[1:0] = 3 instead  
For x4 and x8 only  
2
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 1 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 3, BA[1:0] = 2 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 3 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 3, BA[1:0] = 0 instead  
NOTE :  
1. DQS_t, DQS_c are VDDQ.  
2. BG1 is don’t care for x16 device.  
3. C[2:0] are used only for 3DS device.  
4. Burst Sequence driven on each DQ signal by Write Command.  
- 52 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
1
[ Table 45 ] IDD5B Measurement-Loop Pattern  
4
Data  
0
1
2
0
1
2
3
REF  
D
1
1
1
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
0
0
0
F
0
0
0
0
-
-
-
-
D
2
D#, D#  
3
3
2
4
D#, D#  
1
1
1
1
1
0
0
3
0
0
0
7
F
0
-
2
4-7  
repeat pattern 1...4, use BG[1:0] = 1, BA[1:0] = 1 instead  
2
8-11  
repeat pattern 1...4, use BG[1:0] = 0, BA[1:0] = 2 instead  
2
12-15  
16-19  
20-23  
24-27  
28-31  
32-35  
36-39  
40-43  
44-47  
48-51  
52-55  
56-59  
60-63  
64 ... nRFC - 1  
repeat pattern 1...4, use BG[1:0] = 1, BA[1:0] = 3 instead  
2
repeat pattern 1...4, use BG[1:0] = 0, BA[1:0] = 1 instead  
2
repeat pattern 1...4, use BG[1:0] = 1, BA[1:0] = 2 instead  
2
repeat pattern 1...4, use BG[1:0] = 0, BA[1:0] = 3 instead  
2
repeat pattern 1...4, use BG[1:0] = 1, BA[1:0] = 0 instead  
2
repeat pattern 1...4, use BG[1:0] = 2, BA[1:0] = 0 instead  
2
repeat pattern 1...4, use BG[1:0] = 3, BA[1:0] = 1 instead  
2
repeat pattern 1...4, use BG[1:0] = 2, BA[1:0] = 2 instead  
2
repeat pattern 1...4, use BG[1:0] = 3, BA[1:0] = 3 instead  
For x4 and x8 only  
2
repeat pattern 1...4, use BG[1:0] = 2, BA[1:0] = 1 instead  
2
repeat pattern 1...4, use BG[1:0] = 3, BA[1:0] = 2 instead  
2
repeat pattern 1...4, use BG[1:0] = 2, BA[1:0] = 3 instead  
2
repeat pattern 1...4, use BG[1:0] = 3, BA[1:0] = 0 instead  
repeat Sub-Loop 1, Truncate, if necessary  
NOTE :  
1. DQS_t, DQS_c are VDDQ.  
2. BG1 is don’t care for x16 device.  
3. C[2:0] are used only for 3DS device.  
4. DQ signals are VDDQ.  
- 53 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
1
[ Table 46 ] IDD7 Measurement-Loop Pattern  
4
Data  
0
1
ACT  
RDA  
0
0
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
-
D0=00, D1=FF  
D2=FF, D3=00  
D4=FF, D5=00  
D6=00, D7=FF  
0
2
D
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
3
0
0
0
0
0
0
0
7
0
F
0
0
-
-
2
3
D#  
3
...  
repeat pattern 2...3 until nRRD - 1, if nRRD > 4. Truncate if necessary  
nRRD  
ACT  
RDA  
0
0
0
1
0
1
0
0
0
1
0
0
0
1
1
1
1
0
0
0
0
0
1
0
0
0
0
0
0
-
D0=FF, D1=00  
D2=00, D3=FF  
D4=00, D5=FF  
D6=FF, D7=00  
1
nRRD + 1  
...  
repeat pattern 2 ... 3 until 2*nRRD - 1, if nRRD > 4. Truncate if necessary  
2
2
3
4
2*nRRD  
3*nRRD  
4*nRRD  
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 2 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 1, BA[1:0] = 3 instead  
repeat pattern 2 ... 3 until nFAW - 1, if nFAW > 4*nRRD. Truncate if necessary  
2
5
6
7
8
9
nFAW  
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 1 instead  
2
nFAW + nRRD  
nFAW + 2*nRRD  
nFAW + 3*nRRD  
nFAW + 4*nRRD  
repeat Sub-Loop 1, use BG[1:0] = 1, BA[1:0] = 2 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 0, BA[1:0] = 3 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 1, BA[1:0] = 0 instead  
repeat Sub-Loop 4  
2
10 2*nFAW  
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 0 instead  
2
11 2*nFAW + nRRD  
12 2*nFAW + 2*nRRD  
13 2*nFAW + 3*nRRD  
14 2*nFAW + 4*nRRD  
repeat Sub-Loop 1, use BG[1:0] = 3, BA[1:0] = 1 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 2 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 3, BA[1:0] = 3 instead  
repeat Sub-Loop 4  
For x4 and x8  
only  
2
15 3*nFAW  
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 1 instead  
2
16 3*nFAW + nRRD  
17 3*nFAW + 2*nRRD  
18 3*nFAW + 3*nRRD  
19 3*nFAW + 4*nRRD  
repeat Sub-Loop 1, use BG[1:0] = 3, BA[1:0] = 2 instead  
2
repeat Sub-Loop 0, use BG[1:0] = 2, BA[1:0] = 3 instead  
2
repeat Sub-Loop 1, use BG[1:0] = 3, BA[1:0] = 0 instead  
repeat Sub-Loop 4  
20 4*nFAW  
repeat pattern 2 ... 3 until nRC - 1, if nRC > 4*nFAW. Truncate if necessary  
NOTE :  
1. DQS_t, DQS_c are VDDQ.  
2. BG1 is don’t care for x16 device.  
3. C[2:0] are used only for 3DS device.  
4. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are VDDQ.  
- 54 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
11.2 4Gb DDR4 SDRAM E-die IDD Specification Table  
IDD and IPP values are for typical operating range of voltage and temperature unless otherwise noted.  
[ Table 47 ] I and I  
Specification  
DDQ  
DD  
1Gx4 (K4A4G045WE)  
512Mx8 (K4A4G085WE)  
DDR4-2133  
15-15-15  
1.2V  
DDR4-2400  
17-17-17  
1.2V  
DDR4-2666  
19-19-19  
1.2V  
DDR4-2133  
DDR4-2400  
17-17-17  
1.2V  
DDR4-2666  
Symbol  
Unit  
NOTE  
15-15-15  
1.2V  
19-19-19  
1.2V  
IDD Max.  
IDD Max.  
IDD Max.  
IDD Max.  
IDD Max.  
IDD Max.  
30  
32  
38  
41  
15  
18  
16  
11  
31  
33  
40  
43  
15  
19  
17  
12  
16  
12  
15  
10  
13  
28  
29  
13  
80  
83  
81  
73  
77  
72  
66  
81  
192  
162  
122  
13  
20  
10  
13  
199  
6.5  
31  
33  
41  
44  
16  
20  
19  
13  
17  
13  
16  
11  
30  
32  
40  
43  
15  
18  
16  
11  
31  
33  
42  
45  
15  
19  
17  
12  
16  
12  
15  
10  
13  
28  
29  
13  
90  
95  
94  
78  
81  
77  
70  
85  
192  
162  
122  
13  
20  
10  
13  
148  
6.5  
32  
34  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
I
DD0  
I
DD0A  
43  
I
DD1  
46  
I
DD1A  
DD2N  
16  
I
20  
I
DD2NA  
18  
I
DD2NT  
13  
I
DD2NL  
15  
12  
15  
10  
13  
27  
28  
13  
72  
75  
73  
65  
69  
65  
59  
72  
190  
160  
120  
13  
20  
10  
13  
181  
6.5  
15  
12  
15  
10  
13  
27  
28  
13  
84  
87  
87  
72  
76  
72  
66  
78  
190  
160  
120  
13  
20  
10  
13  
146  
6.5  
17  
I
DD2NG  
13  
I
DD2ND  
16  
I
DD2N_par  
10  
I
DD2P  
DD2Q  
14  
29  
30  
14  
86  
91  
88  
82  
87  
82  
75  
91  
192  
162  
122  
14  
21  
10  
13  
227  
6.5  
14  
I
29  
I
DD3N  
30  
I
DD3NA  
14  
I
DD3P  
99  
I
DD4R  
104  
101  
82  
I
I
DD4RA  
DD4RB  
I
DD4W  
88  
I
I
DD4WA  
DD4WB  
DD4WC  
83  
76  
I
91  
I
DD4W_par  
198  
162  
122  
13  
I
DD5B  
I
I
DD5F2  
DD5F4  
I
DD6N  
20  
I
DD6E  
DD6R  
10  
I
13  
I
DD6A  
150  
6.5  
I
I
DD7  
DD8  
- 55 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
[ Table 48 ] I Specification  
PP  
512Mx8 (K4A4G085WE)  
1Gx4 (K4A4G045WE)  
DDR4-2133  
DDR4-2400  
17-17-17  
2.5V  
DDR4-2666  
19-19-19  
1.2V  
DDR4-2133  
15-15-15  
2.5V  
DDR4-2400  
17-17-17  
2.5V  
DDR4-2666  
19-19-19  
2.5V  
Symbol  
Unit  
NOTE  
15-15-15  
2.5V  
IPP Max.  
IPP Max.  
IPP Max.  
IPP Max.  
IPP Max.  
IPP Max.  
4
3
4
3
4
4
4
3
4
3
4
3
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
I
I
PP0  
PP1  
3
3
3
3
3
3
I
PP2N  
3
3
3
3
3
3
I
PP2P  
PP3N  
3
3
3
3
3
3
I
3
3
3
3
3
3
I
PP3P  
PP4R  
3
3
3
3
3
3
I
3
3
3
3
3
3
I
PP4W  
18  
15  
11  
4
18  
15  
11  
4
19  
16  
14  
4
18  
15  
11  
4
18  
15  
11  
4
18  
15  
11  
4
I
PP5B  
I
I
PP5F2  
PP5F4  
I
PP6N  
4
4
5
4
4
4
I
PP6E  
12  
2
13  
2
14  
3
9
9
9
I
I
PP7  
2
2
2
PP8  
[ Table 49 ] I  
Specification  
DD6  
Value  
Value  
1Gx4 (K4A4G045WE)  
512Mx8 (K4A4G085WE)  
Symbol  
Temperature Range  
Unit  
NOTE  
DDR4-2133 DDR4-2400 DDR4-2666 DDR4-2133 DDR4-2400 DDR4-2666  
15-15-15  
17-17-17  
1.2V  
13  
19-19-19  
15-15-15  
17-17-17  
1.2V  
13  
19-19-19  
o
0 - 85 C  
13  
20  
14  
21  
13  
20  
13  
20  
mA  
mA  
3,4  
4,5  
I
DD6N  
o
0 - 95 C  
20  
20  
I
DD6E  
NOTE :  
1. Some IDD currents are higher for x16 organization due to larger page-size architecture.  
2. Max. values for IDD currents considering worst case conditions of process, temperature and voltage.  
3. Applicable for MR2 settings A6=0 and A7=0.  
4. Include a max value for IDD6  
.
5. Applicable for MR2 settings A6=0 and A7=1. IDD6E is only specified for devices which support the Extended Temperature Range feature.  
- 56 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
12. Input/Output Capacitance  
[ Table 50 ] Silicon Pad I/O Capacitance  
DDR4-1600/1866/2133  
DDR4-2400/2666  
Symbol  
Parameter  
Unit  
NOTE  
min  
0.55  
-0.1  
-
max  
1.4  
min  
0.55  
-0.1  
-
max  
1.15  
0.1  
C
Input/output capacitance  
Input/output capacitance delta  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
1,2,3  
1,2,3,11  
1,2,3,5  
1,3  
IO  
C
0.1  
DIO  
C
Input/output capacitance delta DQS_t and DQS_c  
Input capacitance, CK_t and CK_c  
0.05  
0.8  
0.05  
0.7  
DDQS  
C
0.2  
-
0.2  
-
CK  
C
Input capacitance delta CK_t and CK_c  
Input capacitance(CTRL, ADD, CMD pins only)  
Input capacitance delta(All CTRL pins only)  
Input capacitance delta(All ADD/CMD pins only)  
Input/output capacitance of ALERT  
Input/output capacitance of ZQ  
0.05  
0.8  
0.05  
0.7  
1,3,4  
DCK  
C
0.2  
-0.1  
-0.1  
0.5  
-
0.2  
-0.1  
-0.1  
0.5  
-
1,3,6  
I
C
0.1  
0.1  
1,3,7,8  
1,2,9,10  
1,3  
DI_ CTRL  
C
0.1  
0.1  
DI_ ADD_CMD  
C
1.5  
1.5  
ALERT  
C
2.3  
2.3  
1,3,12  
1,3,13  
ZQ  
CTEN  
Input capacitance of TEN  
0.2  
2.3  
0.2  
2.3  
NOTE:  
1. This parameter is not subject to production test. It is verified by design and characterization. The silicon only capacitance is validated by de-embedding the package L & C  
parasitic. The capacitance is measured with VDD, VDDQ, VSS, VSSQ applied with all other signal pins floating. Measurement procedure tbd.  
2. DQ, DM_n, DQS_T, DQS_C, TDQS_T, TDQS_C. Although the DM, TDQS_T and TDQS_C pins have different functions, the loading matches DQ and DQS  
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here  
4. Absolute value CK_T-CK_C  
5. Absolute value of CIO(DQS_T)-CIO(DQS_C)  
6. CI applies to ODT, CS_n, CKE, A0-A15, BA0-BA1, BG0-BG1, RAS_n, CAS_n/A15, WE_n/A14, ACT_n and PAR.  
7. CDI CTRL applies to ODT, CS_n and CKE  
8. CDI_CTRL = CI(CTRL)-0.5*(CI(CLK_T)+CI(CLK_C))  
9. CDI_ADD_ CMD applies to, A0-A15, BA0-BA1, BG0-BG1,RAS_n, CAS_n/A15, WE_n/A14, ACT_n and PAR.  
10. CDI_ADD_CMD = CI(ADD_CMD)-0.5*(CI(CLK_T)+CI(CLK_C))  
11. CDIO = CIO(DQ,DM)-0.5*(CIO(DQS_T)+CIO(DQS_C))  
12. Maximum external load capacitance on ZQ pin: tbd pF.  
13.TEN pin may be DRAM internally pulled low through a weak pull-down resistor to VSS. In this case CTEN might not be valid and system shall verify TEN signal with Vendor  
specific information.  
- 57 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
[ Table 51 ] DRAM Package Electrical Specifications (x4/x8)  
DDR4-1600/1866/2133/2400  
DDR4-2666  
Symbol  
Parameter  
Unit  
NOTE  
min  
45  
14  
-
max  
85  
min  
45  
14  
-
max  
85  
Z
Input/output Zpkg  
Input/output Pkg Delay  
Input/Output Lpkg  
W
ps  
nH  
pF  
W
1,2,4,5,10,11  
1,3,4,5,11  
11,12  
IO  
T
42  
42  
dIO  
L
3.3  
0.78  
85  
3.3  
0.78  
85  
io  
C
Input/Output Cpkg  
-
-
11,13  
io  
Z
DQS_t, DQS_c Zpkg  
DQS_t, DQS_c Pkg Delay  
DQS Lpkg  
45  
14  
-
45  
14  
-
1,2,5,10,11  
1,3,5,10,11  
11,12  
IO DQS  
Td  
42  
42  
ps  
nH  
pF  
W
IO DQS  
L
3.3  
0.78  
10  
3.3  
0.78  
10  
io DQS  
C
DQS Cpkg  
-
-
11,13  
io DQS  
DZ  
Delta Zpkg DQS_t, DQS_c  
Delta Delay DQS_t, DQS_c  
Input- CTRL pins Zpkg  
-
-
1,2,5,7,10  
1,3,5,7,10  
1,2,5,9,10,11  
DIO DQS  
D
-
5
-
5
ps  
W
TdDIO DQS  
Z
50  
90  
50  
90  
I CTRL  
T
Input- CTRL pins Pkg Delay  
Input CTRL Lpkg  
14  
-
42  
3.4  
0.7  
90  
14  
-
42  
3.4  
0.7  
90  
ps  
nH  
pF  
W
1,3,5,9,10,11  
11,12  
dI_ CTRL  
Li CTRL  
Ci CTRL  
Input CTRL Cpkg  
-
-
11,13  
Z
Input- CMD ADD pins Zpkg  
50  
50  
1,2,5,8,10,11  
IADD CMD  
Td  
Input- CMD ADD pins Pkg Delay  
Input CMD ADD Lpkg  
14  
-
45  
3.6  
0.74  
90  
14  
-
45  
3.6  
0.74  
90  
ps  
nH  
pF  
W
1,3,5,8,10,11  
11,12  
IADD_ CMD  
Li ADD CMD  
Ci ADD CMD  
Input CMD ADD Cpkg  
-
-
11,13  
Z
CLK_t & CLK_c Zpkg  
50  
50  
1,2,5,10,11  
CK  
Td  
CLK_t & CLK_c Pkg Delay  
Input CLK Lpkg  
14  
-
42  
3.4  
0.7  
10  
14  
-
42  
3.4  
0.7  
10  
ps  
nH  
pF  
W
1,3,5,10,11  
11,12  
CK  
Li CLK  
Ci CLK  
Input CLK Cpkg  
-
-
11,13  
DZ  
Delta Zpkg CLK_t & CLK_c  
-
-
1,2,5,6,10  
DCK  
D
Delta Delay CLK_t & CLK_c  
ZQ Zpkg  
-
5
-
5
ps  
W
ps  
W
ps  
1,3,5,6,10  
1,2,5,10,11  
1,3,5,10,11  
1,2,5,10,11  
1,3,5,10,11  
TdCK  
Z
-
100  
90  
-
100  
90  
OZQ  
Td  
ZQ Delay  
20  
40  
20  
20  
40  
20  
O ZQ  
Z
ALERT Zpkg  
100  
55  
100  
55  
O ALERT  
Td  
ALERT Delay  
O ALERT  
NOTE :  
1. This parameter is not subject to production test. It is verified by design and characterization. The package parasitic( L & C) are validated using package only samples. The  
capacitance is measured with VDD, VDDQ, VSS, VSSQ shorted with all other signal pins floating. The inductance is measured with VDD, VDDQ, VSS and VSSQ shorted and  
all other signal pins shorted at the die side(not pin). Measurement procedure tbd  
2. Package only impedance (Zpkg) is calculated based on the Lpkg and Cpkg total for a given pin where:  
Zpkg(total per pin) = GGGGLpkg/Cpkg  
3. Package only delay(Tpkg) is calculated based on Lpkg and Cpkg total for a given pin where:  
Tdpkg(total per pin) = GGLpkgCpkg  
4. Z & Td IO applies to DQ, DM, TDQS_T and TDQS_C  
5. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here  
6. Absolute value of ZCK_t-ZCK_c for impedance(Z) or absolute value of TdCK_t-TdCK_c for delay(Td).  
7. Absolute value of ZIO(DQS_t)-ZIO(DQS_c) for impedance(Z) or absolute value of TdIO(DQS_t)-TdIO(DQS_c) for delay(Td)  
8. ZI & Td ADD CMD applies to A0-A13,A17, ACT_n, BA0-BA1, BG0-BG1, RAS_n/16, CAS_n/A15, WE_n/A14 and PAR.  
9. ZI & Td CTRL applies to ODT, CS_n and CKE  
10. This table applies to monolithic X4 and X8 devices.  
11. Package implementations shall meet spec if the Zpkg and Pkg Delay fall within the ranges shown, and the maximum Lpkg and Cpkg do not exceed the maximum values  
shown.  
12. It is assumed that Lpkg can be approximated as Lpkg = Zo*Td.  
13. It is assumed that Cpkg can be approximated as Cpkg = Td/Zo.  
- 58 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
13. Electrical Characteristics & AC Timing  
13.1 Reference Load for AC Timing and Output Slew Rate  
Figure 23 represents the effective reference load of 50 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate  
measurements.  
It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester.  
System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to  
their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.  
VDDQ  
50 Ohm  
DUT  
CK_t, CK_c  
DQ  
DQS_t  
DQS_c  
VTT = VDDQ  
Timing Reference Point  
Timing Reference Point  
Figure 23. Reference Load for AC Timing and Output Slew Rate  
13.2 tREFI  
Average periodic Refresh interval (tREFI) of DDR4 SDRAM is defined as shown in the table.  
[ Table 52 ] tREFI by Device Density  
Parameter  
Symbol  
2Gb  
160  
7.8  
4Gb  
260  
7.8  
8Gb  
350  
7.8  
16Gb  
550  
Units  
ns  
NOTE  
All Bank Refresh to active/refresh cmd time  
tRFC  
0CT  
85C  
85C  
7.8  
s  
CASE  
-40CT  
85CT  
Average periodic refresh interval  
tREFI  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
s  
s  
2
1
CASE  
95C  
CASE  
NOTE :  
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR4 SDRAM devices support the following options or requirements referred to in  
this material.  
2. Supported only for Industrial Temperature  
- 59 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
13.3 Clock Specification  
The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result in malfunction of the DDR4  
SDRAM device.  
13.3.1 Definition for tCK(abs)  
tCK(abs) is defined as the absolute clock period, as measured from one rising edge to the next consecutive rising edge. tCK(abs) is not subject t o pro-  
duction test.  
13.3.2 Definition for tCK(avg)  
tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to  
rising edge.  
N
tCKavg=  
tCKabsj N  
N = 200  
j = 1  
13.3.3 Definition for tCH(avg) and tCL(avg)  
tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses.  
N
tCHavg=  
tCHj N tCKavg  
N = 200  
j = 1  
tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses.  
N
tCLavg=  
tCLj N tCKavg  
N = 200  
j = 1  
13.3.4 Definition for tERR(nper)  
tERR is defined as the cumulative error across n consecutive cycles of n x tCK(avg). tERR is not subject to production test.  
- 60 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
13.4 Timing Parameters by Speed Grade  
[ Table 53 ] Timing Parameters by Speed Bin for DDR4-1600 to DDR4-2666  
Speed  
DDR4-1600  
DDR4-1866  
DDR4-2133  
DDR4-2400  
MIN MAX  
DDR4-2666  
Units  
NOTE  
Parameter  
Symbol  
MIN  
MAX  
MIN MAX  
MIN  
MAX  
MIN  
MAX  
Clock Timing  
tCK  
(DLL_OFF)  
Minimum Clock Cycle Time (DLL off mode)  
8
20  
8
20  
8
20  
8
20  
8
20  
ns  
-
Average Clock Period  
Average high pulse width  
Average low pulse width  
tCK(avg)  
tCH(avg)  
tCL(avg)  
1.25  
0.48  
0.48  
<1.5  
0.52  
0.52  
1.071  
0.48  
0.48  
<1.25  
0.52  
0.937  
0.48  
0.48  
<1.071  
0.52  
0.833  
0.48  
0.48  
<0.937  
0.52  
0.750  
0.48  
0.48  
<0.833  
0.52  
ns  
35,36  
tCK(avg)  
tCK(avg)  
0.52  
0.52  
0.52  
0.52  
tCK(avg)min + tJIT(per)min_tot  
tCK(avg)m ax + tJIT(per)max_tot  
Absolute Clock Period  
tCK(abs)  
tCK(avg)  
Absolute clock HIGH pulse width  
Absolute clock LOW pulse width  
Clock Period Jitter- total  
tCH(abs)  
tCL(abs)  
0.45  
0.45  
-63  
-31  
-50  
-
-
-
0.45  
0.45  
-54  
-27  
-43  
-
-
-
0.45  
0.45  
-47  
-23  
-38  
-
-
0.45  
0.45  
-42  
-21  
-33  
-
-
0.45  
0.45  
-38  
-19  
-30  
-
-
tCK(avg)  
23  
24  
23  
26  
-
-
-
tCK(avg)  
JIT(per)_tot  
JIT(per)_dj  
tJIT(per, lck)  
tJIT(cc)  
63  
31  
50  
125  
54  
27  
43  
107  
47  
23  
38  
94  
42  
21  
33  
83  
38  
19  
30  
75  
ps  
ps  
ps  
ps  
Clock Period Jitter- deterministic  
Clock Period Jitter during DLL locking period  
Cycle to Cycle Period Jitter  
Cycle to Cycle Period Jitter during DLL lock-  
ing period  
tJIT(cc, lck)  
-
100  
-
86  
-
75  
-
67  
-
60  
ps  
Duty Cycle Jitter  
tJIT(duty)  
tERR(2per)  
tERR(3per)  
tERR(4per)  
tERR(5per)  
tERR(6per)  
tERR(7per)  
tERR(8per)  
tERR(9per)  
tERR(10per)  
tERR(11per)  
tERR(12per)  
tERR(13per)  
tERR(14per)  
tERR(15per)  
tERR(16per)  
tERR(17per)  
tERR(18per)  
TBD  
-92  
TBD  
92  
TBD  
-79  
TBD  
79  
TBD  
-69  
TBD  
69  
TBD  
-61  
TBD  
61  
TBD  
-55  
TBD  
55  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
Cumulative error across 6 cycles  
Cumulative error across 7 cycles  
Cumulative error across 8 cycles  
Cumulative error across 9 cycles  
Cumulative error across 10 cycles  
Cumulative error across 11 cycles  
Cumulative error across 12 cycles  
Cumulative error across 13 cycles  
Cumulative error across 14 cycles  
Cumulative error across 15 cycles  
Cumulative error across 16 cycles  
Cumulative error across 17 cycles  
Cumulative error across 18 cycles  
-109  
-121  
-131  
-139  
-145  
-151  
-156  
-160  
-164  
-168  
-172  
-175  
-178  
-180  
-183  
-185  
109  
121  
131  
139  
145  
151  
156  
160  
164  
168  
172  
175  
178  
189  
183  
185  
-94  
94  
-82  
82  
-73  
73  
-66  
66  
-104  
-112  
-119  
-124  
-129  
-134  
-137  
-141  
-144  
-147  
-150  
-152  
-155  
-157  
104  
112  
119  
124  
129  
134  
137  
141  
144  
147  
150  
152  
155  
157  
159  
-91  
91  
-81  
81  
-73  
73  
-98  
98  
-87  
87  
-78  
78  
-104  
-109  
-113  
-117  
-120  
-123  
-126  
-129  
-131  
-133  
-135  
-137  
-139  
104  
109  
113  
117  
120  
123  
126  
129  
131  
133  
135  
137  
-92  
92  
-83  
83  
-97  
97  
-87  
87  
-101  
-104  
-107  
-110  
-112  
-114  
-116  
-118  
-120  
-122  
-124  
101  
104  
107  
110  
112  
114  
116  
118  
120  
122  
124  
-91  
91  
-94  
94  
-96  
96  
-99  
99  
-101  
-103  
-104  
-106  
-108  
-110  
-112  
101  
103  
104  
106  
108  
110  
112  
-159  
t
139  
t
Cumulative error across n = 13, 14 . . . 49, 50  
cycles  
ERR(nper)min = ((1 + 0.68ln(n)) * JIT(per)_total min)  
tERR(nper)  
tIS(base)  
tIS(Vref)  
ps  
ps  
ps  
ps  
t
t
ERR(nper)max = ((1 + 0.68ln(n)) * JIT(per)_total max)  
Command and Address setup time to  
CK_t,CK_c referenced to Vih(ac) / Vil(ac) lev-  
els  
115  
215  
140  
-
-
-
100  
200  
125  
-
-
-
80  
-
-
-
62  
162  
87  
-
-
-
TBD  
TBD  
TBD  
-
-
-
Command and Address setup time to  
CK_t,CK_c referenced to Vref levels  
180  
105  
Command and Address hold time to  
CK_t,CK_c referenced to Vih(dc) / Vil(dc) lev-  
els  
tIH(base)  
Command and Address hold time to  
CK_t,CK_c referenced to Vref levels  
tIH(Vref)  
tIPW  
215  
600  
-
-
200  
525  
-
-
180  
460  
-
-
162  
410  
-
-
TBD  
385  
-
-
ps  
ps  
Control and Address Input pulse width for  
each input  
Command and Address Timing  
max(5  
nCK,  
6.250 ns)  
max(5  
nCK,  
5.355 ns)  
max(5  
nCK,  
5.625 ns)  
max(5  
nCK,  
5 ns)  
max(5  
nCK,  
5 ns)  
CAS_n to CAS_n command delay for same  
bank group  
tCCD_L  
-
-
-
-
-
nCK  
34  
CAS_n to CAS_n command delay for differ-  
ent bank group  
tCCD_S  
4
-
-
4
-
-
4
-
-
4
-
-
-
-
4
-
-
-
-
nCK  
nCK  
nCK  
nCK  
34  
34  
34  
34  
ACTIVATE to ACTIVATE Command delay to  
different bank group for 2KB page size  
Max(4nC  
K,6ns)  
Max(4nC  
K,5.3ns)  
Max(4nC  
K,5.3ns)  
Max(4nC  
K,5.3ns)  
Max(4nC  
K,5.3ns)  
tRRD_S(2K)  
tRRD_S(1K)  
tRRD_S(1/2K)  
ACTIVATE to ACTIVATE Command delay to  
different bank group for 2KB page size  
Max(4nC  
K,5ns)  
Max(4nC  
K,4.2ns)  
Max(4nC  
K,3.7ns)  
Max(4nC  
K,3.3ns)  
Max(4nC  
K,3.3ns)  
ACTIVATE to ACTIVATE Command delay to  
different bank group for 1/2KB page size  
Max(4nC  
K,5ns)  
Max(4nC  
K,4.2ns)  
Max(4nC  
K,3.7ns)  
Max(4nC  
K,3.3ns)  
Max(4nC  
K,3.3ns)  
- 61 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
Speed  
DDR4-1600  
DDR4-1866  
DDR4-2133  
DDR4-2400  
DDR4-2666  
Units  
NOTE  
Parameter  
Symbol  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
ACTIVATE to ACTIVATE Command delay to  
same bank group for 2KB page size  
Max(4nC  
K,7.5ns)  
Max(4nC  
K,6.4ns)  
Max(4nC  
K,6.4ns)  
Max(4nC  
K,6.4ns)  
Max(4nC  
K,6.4ns)  
tRRD_L(2K)  
-
-
nCK  
nCK  
nCK  
ns  
34  
34  
34  
34  
34  
34  
ACTIVATE to ACTIVATE Command delay to  
same bank group for 1KB page size  
Max(4nC  
K,6ns)  
Max(4nC  
K,5.3ns)  
Max(4nC  
K,5.3ns)  
Max(4nC  
K,4.9ns)  
Max(4nC  
K,4.9ns)  
tRRD_L(1K)  
tRRD_L(1/2K)  
tFAW_2K  
-
-
-
-
-
-
-
-
-
-
ACTIVATE to ACTIVATE Command delay to  
same bank group for 1/2KB page size  
Max(4nC  
K,6ns)  
Max(4nC  
K,5.3ns)  
Max(4nC  
K,5.3ns)  
Max(4nC  
K,4.9ns)  
Max(4nC  
K,4.9ns)  
Max(28nC  
K,35ns)  
Max(28nC  
K,30ns)  
Max(28nC  
K,30ns)  
Max(28nC  
K,30ns)  
Max(28n  
CK,30ns)  
Four activate window for 2KB page size  
Four activate window for 1KB page size  
Four activate window for 1/2KB page size  
Max(20nC  
K,25ns)  
Max(20nC  
K,23ns)  
Max(20nC  
K,21ns)  
Max(20nC  
K,21ns)  
Max(20n  
CK,21ns)  
tFAW_1K  
ns  
Max(16nC  
K,20ns)  
Max(16nC  
K,17ns)  
Max(16nC  
K,15ns)  
Max(16nC  
K,13ns)  
Max(16n  
CK,13ns)  
tFAW_1/2K  
ns  
Delay from start of internal write transaction  
to internal read command for different bank  
group  
max  
max  
max(2nC  
K,2.5ns)  
max(2nC  
K,2.5ns)  
max(2nC  
K,2.5ns)  
1,2,e,3  
4
tWTR_S  
tWTR_L  
-
-
-
-
-
-
(2nCK,  
2.5ns)  
-
-
(2nCK,  
2.5ns)  
-
-
ns  
ns  
Delay from start of internal write transaction  
to internal read command for same bank  
group  
max  
(4nCK,7.5  
ns)  
max  
(4nCK,7.  
5ns)  
max(4nC  
K,7.5ns)  
max(4nC  
K,7.5ns)  
max(4nC  
K,7.5ns)  
1,34  
max  
(4nCK,7.5  
ns)  
max  
(4nCK,7.  
5ns)  
Internal READ Command to PRECHARGE  
Command delay  
max(4nC  
K,7.5ns)  
max(4nC  
K,7.5ns)  
max(4nC  
K,7.5ns)  
tRTP  
tWR  
-
-
-
-
-
-
-
-
-
-
ns  
ns  
34  
1
WRITE recovery time  
15  
15  
15  
15  
15  
tWR+ma  
x
tWR+max  
(4nCK,3.7  
5ns)  
tWR+max  
(5nCK,3.7  
5ns)  
tWR+max  
(5nCK,3.7  
5ns)  
tWR+max  
(5nCK,3.7  
5ns)  
Write recovery time when CRC and DM are  
enabled  
tWR_CRC  
_DM  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
1, 28  
(5nCK,3.  
75ns)  
tWTR_S+  
max  
(4nCK,3.7  
5ns)  
tWTR_S+  
max  
(5nCK,3.7  
5ns)  
tWTR_S+  
max  
(5nCK,3.7  
5ns)  
tWTR_S+  
max  
(5nCK,3.7  
5ns)  
tWTR_S  
+max  
(5nCK,3.  
75ns)  
delay from start of internal write transaction  
to internal read command for different bank  
group with both CRC and DM enabled  
tWTR_S_C  
RC_DM  
2, 29,  
34  
tWTR_L+  
max  
(4nCK,3.7  
5ns)  
tWTR_L+  
max  
(5nCK,3.7  
5ns)  
tWTR_L+  
max  
(5nCK,3.7  
5ns)  
tWTR_L+  
max  
(5nCK,3.7  
5ns)  
tWTR_L+  
max  
(5nCK,3.  
75ns)  
delay from start of internal write transaction  
to internal read command for same bank  
group with both CRC and DM enabled  
tWTR_L_C  
RC_DM  
3,30,  
34  
DLL locking time  
tDLLK  
tMRD  
597  
8
-
-
597  
8
-
-
768  
8
-
-
768  
8
-
-
854  
8
-
-
nCK  
nCK  
Mode Register Set command cycle time  
max(24nC  
K,15ns)  
max(24nC  
K,15ns)  
max(24nC  
K,15ns)  
max(24nC  
K,15ns)  
max(24n  
CK,15ns)  
Mode Register Set command update delay  
Multi-Purpose Register Recovery Time  
tMOD  
-
-
-
-
-
-
-
-
-
-
nCK  
nCK  
tMPRR  
1
1
1
1
1
33  
tMOD  
(min)  
+ AL +  
PL  
tMOD  
(min)  
+ AL + PL  
tMOD  
(min)  
+ AL + PL  
tMOD  
(min)  
+ AL + PL  
tMOD  
(min)  
+ AL + PL  
Multi Purpose Register Write Recovery Time  
tWR_MPR  
-
-
-
-
-
nCK  
Auto precharge write recovery + precharge  
time  
tDAL(min)  
tPDA_S  
tPDA_H  
Programmed WR + roundup ( tRP / tCK(avg))  
nCK  
UI  
DQ0 or DQL0 driven to 0 set-up time to first  
DQS rising edge  
0.5  
0.5  
-
-
0.5  
0.5  
-
-
0.5  
0.5  
-
-
0.5  
0.5  
-
-
0.5  
0.5  
-
-
45,47  
46,47  
DQ0 or DQL0 driven to 0 hold time from last  
DQS fall-ing edge  
UI  
CS_n to Command Address Latency  
max(3  
nCK,  
max(3  
nCK,  
max(3  
nCK,  
CS_n to Command Address Latency  
tCAL  
-
-
-
5
-
5
-
nCK  
3.748 ns)  
3.748 ns)  
3.748 ns)  
Mode Register Set command cycle time in  
CAL mode  
tMOD+  
tCAL  
tMOD+  
tCAL  
tMOD+  
tCAL  
tMOD+  
tCAL  
tMOD+  
tCAL  
tMRD_tCAL  
tMOD_tCAL  
-
-
-
-
-
-
-
-
nCK  
nCK  
Mode Register Set update delay in CAL  
mode  
tMOD+  
tCAL  
tMOD+  
tCAL  
tMOD+  
tCAL  
tMOD+  
tCAL  
tMOD+  
tCAL  
DRAM Data Timing  
DQS_t,DQS_c to DQ skew, per group, per  
access  
tCK(avg)/ 13,18,3  
9,49  
tDQSQ  
tQH  
-
0.16  
-
0.16  
-
0.16  
-
0.16  
-
0.18  
2
DQ output hold time per group, per access  
from DQS_t,DQS_c  
tCK(avg)/ 13,17,1  
0.76  
0.63  
0.66  
-
-
-
0.76  
0.63  
0.66  
-
-
-
0.76  
0.64  
0.69  
-
-
-
0.74  
0.64  
0.72  
-
-
-
0.74  
TBD  
0.72  
-
-
-
2
8,39,49  
Data Valid Window per device per UI: (tQH -  
tDQSQ) of each UI on a given DRAM  
17,18,3  
9,49  
tDVWd  
tDVWp  
UI  
Data Valid Window , per pin per UI : (tQH -  
tDQSQ) each UI on a pin of a given DRAM  
17,18,3  
9,49  
UI  
DQ low impedance time from CK_t, CK_c  
DQ high impedance time from CK_t, CK_c  
tLZ(DQ)  
tHZ(DQ)  
-450  
-
225  
225  
-390  
-
195  
195  
-390  
-
180  
180  
-330  
-
175  
175  
-310  
-
170  
170  
ps  
ps  
39  
39  
Data Strobe Timing  
DQS_t, DQS_c differential READ Pre-amble  
(1 clock preamble)  
NOTE  
44  
NOTE  
44  
tRPRE  
0.9  
NOTE44  
0.9  
NOTE44  
0.9  
NOTE44  
0.9  
0.9  
tCK  
40  
- 62 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
Speed  
DDR4-1600  
DDR4-1866  
DDR4-2133  
DDR4-2400  
DDR4-2666  
Units  
NOTE  
Parameter  
Symbol  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
DQS_t, DQS_c differential READ Pre-amble  
(2 clock preamble)  
NOTE  
44  
NOTE  
44  
tRPRE2  
NA  
NA  
NA  
NA  
NA  
NA  
1.8  
1.8  
tCK  
tCK  
41  
NOTE  
45  
NOTE  
45  
NOTE  
45  
DQS_t, DQS_c differential READ Postamble  
tRPST  
0.33  
NOTE 45  
0.33  
NOTE 45  
0.33  
0.33  
0.33  
DQS_t,DQS_c differential output high time  
DQS_t,DQS_c differential output low time  
tQSH  
tQSL  
0.4  
0.4  
-
-
0.4  
0.4  
-
-
0.4  
0.4  
-
-
0.4  
0.4  
-
-
0.4  
0.4  
-
-
tCK  
tCK  
21  
20  
DQS_t, DQS_c differential WRITE Pre-amble  
(1 clock preamble)  
tWPRE  
tWPRE2  
tWPST  
tLZ(DQS)  
tHZ(DQS)  
tDQSL  
0.9  
NA  
-
0.9  
NA  
-
0.9  
NA  
-
0.9  
1.8  
-
-
0.9  
1.8  
-
-
tCK  
tCK  
tCK  
ps  
42  
43  
DQS_t, DQS_c differential WRITE Pre-amble  
(2 clock preamble)  
DQS_t, DQS_c differential WRITE Postam-  
ble  
0.33  
-450  
-
-
0.33  
-390  
-
-
0.33  
-360  
-
-
0.33  
-330  
-
-
0.33  
-310  
-
-
DQS_t and DQS_c low-impedance time  
(Referenced from RL-1)  
225  
225  
0.54  
0.54  
0.27  
TBD  
-
195  
195  
0.54  
0.54  
0.27  
TBD  
-
180  
180  
0.54  
0.54  
0.27  
TBD  
-
175  
175  
0.54  
0.54  
0.27  
TBD  
-
170  
170  
0.54  
0.54  
0.27  
TBD  
-
DQS_t and DQS_c high-impedance time  
(Referenced from RL+BL/2)  
ps  
DQS_t, DQS_c differential input low pulse  
width  
0.46  
0.46  
-0.27  
TBD  
0.18  
0.18  
0.46  
0.46  
-0.27  
TBD  
0.18  
0.18  
0.46  
0.46  
-0.27  
TBD  
0.18  
0.18  
0.46  
0.46  
-0.27  
TBD  
0.18  
0.18  
0.46  
0.46  
-0.27  
TBD  
0.18  
0.18  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
DQS_t, DQS_c differential input high pulse  
width  
tDQSH  
tDQSS  
tDQSS2  
tDSS  
DQS_t, DQS_c rising edge to CK_t, CK_c  
rising edge (1 clock preamble)  
42  
43  
DQS_t, DQS_c rising edge to CK_t, CK_c ris-  
ing edge (2 clock preamble)  
DQS_t, DQS_c falling edge setup time to  
CK_t, CK_c rising edge  
DQS_t, DQS_c falling edge hold time from  
CK_t, CK_c rising edge  
tDSH  
-
-
-
-
-
DQS_t, DQS_c rising edge output timing  
locatino from rising CK_t, CK_c with DLL On  
mode  
tDQSCK  
(DLL On)  
37,38,3  
9
-225  
225  
370  
-195  
195  
330  
-180  
180  
310  
-175  
175  
290  
-170  
170  
270  
ps  
ps  
DQS_t, DQS_c rising edge output variance  
window per DRAM  
tDQSCKI  
(DLL On)  
37,38,3  
9
MPSM Timing  
tMOD(min  
tMOD(min  
) +  
tCP-  
tMOD(min  
) +  
tCP-  
tMOD(min  
) +  
tCP-  
Command path disable delay upon MPSM  
entry  
) +  
tCP-  
tMPED  
-
-
-
-
-
-
-
TBD  
TBD  
-
-
DED(min)  
DED(min)  
DED(min)  
DED(min)  
tMOD(min  
) +  
tCP-  
tMOD(min  
) +  
tCP-  
tMOD(min  
) +  
tCP-  
tMOD(min  
) + tCP-  
Valid clock requirement after MPSM entry  
Valid clock requirement before MPSM exit  
tCKMPE  
-
DED(min)  
DED(min)  
DED(min)  
DED(min)  
tCKSRX(  
min)  
tCKSRX(  
min)  
tCKSRX(  
min)  
tCKSRX(  
min)  
tCKMPX  
tXMP  
-
-
-
-
-
-
-
-
TBD  
TBD  
-
-
Exit MPSM to commands not requiring a  
locked DLL  
tXS(min)  
tXS(min)  
tXS(min)  
tXS(min)  
tXMP(min  
) +  
tXS-  
tXMP(min  
) +  
tXS-  
tXMP(min  
) +  
tXS-  
tXMP(min  
) +  
tXS-  
Exit MPSM to commands requiring a locked  
DLL  
tXMPDLL  
tMPX_S  
-
-
-
-
-
-
-
TBD  
TBD  
-
-
DLL(min)  
DLL(min)  
DLL(min)  
DLL(min)  
tIS(min) +  
tIHL(min)  
tIS(min) +  
tIHL(min)  
tIS(min) +  
tIHL(min)  
tIS(min) +  
tIHL(min)  
CS setup time to CKE  
-
Calibration Timing  
Power-up and RESET calibration time  
Normal operation Full calibration time  
Normal operation Short calibration time  
tZQinit  
tZQoper  
tZQCS  
1024  
512  
-
-
-
1024  
512  
-
-
-
1024  
512  
-
-
-
1024  
512  
-
-
-
1024  
512  
-
-
-
nCK  
nCK  
nCK  
128  
128  
128  
128  
128  
Reset/Self Refresh Timing  
max  
max  
max  
max  
max  
Exit Reset from CKE HIGH to a valid com-  
mand  
(5nCK,tR  
FC(min)+  
10ns)  
(5nCK,tR  
FC(min)+  
10ns)  
(5nCK,tR  
FC(min)+  
10ns)  
(5nCK,tR  
FC(min)+  
10ns)  
(5nCK,tR  
FC(min)+  
10ns)  
tXPR  
tXS  
-
-
-
-
-
nCK  
Exit Self Refresh to commands not requiring  
a locked DLL  
tRFC(min)  
+10ns  
tRFC(min)  
+10ns  
tRFC(min)  
+10ns  
tRFC(min)  
+10ns  
tRFC(min  
)+10ns  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
nCK  
nCK  
nCK  
nCK  
nCK  
SRX to commands not requiring a locked  
DLL in Self Refresh ABORT  
tXS_ABORT(  
min)  
tRFC4(mi  
n)+10ns  
tRFC4(mi  
n)+10ns  
tRFC4(mi  
n)+10ns  
tRFC4(mi  
n)+10ns  
tRFC4(mi  
n)+10ns  
Exit Self Refresh to ZQCL,ZQCS and MRS  
(CL,CWL,WR,RTP and Gear Down)  
tXS_FAST  
(min)  
tRFC4(mi  
n)+10ns  
tRFC4(mi  
n)+10ns  
tRFC4(mi  
n)+10ns  
tRFC4(mi  
n)+10ns  
tRFC4(mi  
n)+10ns  
Exit Self Refresh to commands requiring a  
locked DLL  
tDLLK(mi  
n)  
tDLLK(mi  
n)  
tDLLK(mi  
n)  
tDLLK(mi  
n)  
tDLLK(mi  
n)  
tXSDLL  
tCKESR  
Minimum CKE low width for Self refresh entry  
to exit timing  
tCKE(min)  
+1nCK  
tCKE(min)  
+1nCK  
tCKE(min)  
+1nCK  
tCKE(min)  
+1nCK  
tCKE(min  
)+1nCK  
- 63 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
Speed  
DDR4-1600  
DDR4-1866  
DDR4-2133  
DDR4-2400  
DDR4-2666  
Units  
NOTE  
Parameter  
Symbol  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
tCKE(min)  
+
1nCK+PL  
tCKE(min)  
+
1nCK+PL  
tCKE(min)  
+
1nCK+PL  
tCKE(min)  
+
1nCK+PL  
tCKE(min  
)+  
1nCK+PL  
Minimum CKE low width for Self refresh entry  
to exit timing with CA Parity enabled  
tCKESR_ PAR  
-
-
-
-
-
nCK  
max  
(5nCK,10  
ns)  
max  
(5nCK,10  
ns)  
Valid Clock Requirement after Self Refresh  
Entry (SRE) or Power-Down Entry (PDE)  
max(5nC  
K,10ns)  
max(5nC  
K,10ns)  
max(5nC  
K,10ns)  
tCKSRE  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
nCK  
nCK  
nCK  
Valid Clock Requirement after Self Refresh  
Entry (SRE) or Power-Down when CA Parity tCKSRE_PAR (5nCK,10  
max  
max  
(5nCK,10  
ns)+PL  
max  
(5nCK,10  
ns)+PL  
max  
(5nCK,10  
ns)+PL  
max  
(5nCK,10  
ns)+PL  
is enabled  
ns)+PL  
Valid Clock Requirement before Self Refresh  
Exit (SRX) or Power-Down Exit (PDX) or  
Reset Exit  
max  
(5nCK,10  
ns)  
max  
(5nCK,10  
ns)  
max(5nC  
K,10ns)  
max(5nC  
K,10ns)  
max(5nC  
K,10ns)  
tCKSRX  
Power Down Timing  
Exit Power Down with DLL on to any valid  
command;Exit Precharge Power Down with  
DLL frozen to commands not requiring a  
locked DLL  
max  
(4nCK,6n  
s)  
max  
(4nCK,6n  
s)  
max  
(4nCK,6n  
s)  
max  
(4nCK,6n  
s)  
max  
(4nCK,6n  
s)  
tXP  
-
-
-
-
-
-
nCK  
nCK  
max  
(3nCK,  
5ns)  
max  
(3nCK,  
5ns)  
max  
(3nCK,  
5ns)  
max  
(3nCK,  
5ns)  
max  
(3nCK,  
5ns)  
CKE minimum pulse width  
tCKE  
-
-
-
-
-
-
-
-
31,32  
Command pass disable delay  
tCPDED  
tPD  
4
4
4
4
4
-
nCK  
nCK  
tCKE(min  
)
Power Down Entry to Exit Timing  
tCKE(min)  
9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI  
9*tREFI  
6
7
7
Timing of ACT command to Power Down  
entry  
tACTPDEN  
tPRPDEN  
tRDPDEN  
1
1
-
-
-
1
1
-
-
-
2
2
-
-
-
2
2
-
-
-
2
2
-
-
-
nCK  
nCK  
nCK  
Timing of PRE or PREA command to Power  
Down entry  
Timing of RD/RDA command to Power Down  
entry  
RL+4+1  
RL+4+1  
RL+4+1  
RL+4+1  
RL+4+1  
WL+4+(t  
WR/  
tCK(avg))  
WL+4+(t  
WR/  
tCK(avg))  
WL+4+(t  
WR/  
tCK(avg))  
WL+4+(t  
WR/  
tCK(avg))  
WL+4+(t  
WR/  
tCK(avg))  
Timing of WR command to Power Down  
entry (BL8OTF, BL8MRS, BC4OTF)  
tWRPDEN  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
nCK  
nCK  
nCK  
4
5
4
Timing of WRA command to Power Down  
entry (BL8OTF, BL8MRS, BC4OTF)  
WL+4+W  
R+1  
WL+4+W  
R+1  
WL+4+W  
R+1  
WL+4+W  
R+1  
WL+4+W  
R+1  
tWRAPDEN  
WL+2+(t  
WR/  
tCK(avg))  
WL+2+(t  
WR/  
tCK(avg))  
WL+2+(t  
WR/  
tCK(avg))  
WL+2+(t  
WR/  
tCK(avg))  
WL+2+(t  
WR/  
tCK(avg))  
Timing of WR command to Power Down  
entry (BC4MRS)  
tWRP-  
BC4DEN  
Timing of WRA command to Power Down  
entry (BC4MRS)  
tWRAP-  
BC4DEN  
WL+2+W  
R+1  
WL+2+W  
R+1  
WL+2+W  
R+1  
WL+2+W  
R+1  
WL+2+W  
R+1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
nCK  
nCK  
nCK  
5
7
Timing of REF command to Power Down  
entry  
tREFPDEN  
tMRSPDEN  
1
1
2
2
2
Timing of MRS command to Power Down  
entry  
tMOD(min  
)
tMOD(min  
)
tMOD(min  
)
tMOD(min  
)
tMOD(mi  
n)  
PDA Timing  
Mode Register Set command cycle time in  
PDA mode  
max(16nC  
K,10ns)  
max(16nC  
max(16nC  
K,10ns)  
max(16nC  
K,10ns)  
max(16n  
CK,10ns)  
tMRD_PDA  
tMOD_PDA  
-
-
-
-
-
nCK  
nCK  
K,10ns)  
tMOD  
Mode Register Set command update delay in  
PDA mode  
tMOD  
tMOD  
tMOD  
tMOD  
ODT Timing  
Asynchronous RTT turn-on delay (Power-  
Down with DLL frozen)  
tAONAS  
1.0  
9.0  
1.0  
9.0  
1.0  
9.0  
1.0  
9.0  
1.0  
9.0  
ns  
Asynchronous RTT turn-off delay (Power-  
Down with DLL frozen)  
tAOFAS  
tADC  
1.0  
0.3  
9.0  
0.7  
1.0  
0.3  
9.0  
0.7  
1.0  
0.3  
9.0  
0.7  
1.0  
0.3  
9.0  
0.7  
1.0  
0.3  
9.0  
0.7  
ns  
RTT dynamic change skew  
tCK(avg)  
Write Leveling Timing  
First DQS_t/DQS_n rising edge after write  
leveling mode is programmed  
tWLMRD  
40  
25  
-
-
40  
25  
-
-
40  
25  
-
-
40  
25  
-
-
40  
25  
-
-
nCK  
nCK  
12  
12  
DQS_t/DQS_n delay after write leveling  
mode is programmed  
tWLDQSEN  
Write leveling setup time from rising CK_t,  
CK_c crossing to rising DQS_t/DQS_n cross-  
ing  
tWLS  
tWLH  
0.13  
0.13  
-
-
0.13  
0.13  
-
-
0.13  
0.13  
-
-
0.13  
0.13  
-
-
0.13  
0.13  
-
-
tCK(avg)  
tCK(avg)  
Write leveling hold time from rising DQS_t/  
DQS_n crossing to rising CK_t, CK_ crossing  
Write leveling output delay  
Write leveling output error  
tWLO  
0
0
9.5  
2
0
0
9.5  
2
0
0
9.5  
2
0
0
9.5  
2
0
0
9.5  
2
ns  
ns  
tWLOE  
CA Parity Timing  
Commands not guaranteed to be executed  
during this time  
tPAR_UN-  
KNOWN  
-
-
PL  
-
-
PL  
-
-
PL  
-
-
PL  
-
-
PL  
nCK  
nCK  
Delay from errant command to ALERT_n  
assertion  
tPAR_ALERT  
_ON  
PL+6ns  
PL+6ns  
PL+6ns  
PL+6ns  
PL+6ns  
- 64 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
Speed  
DDR4-1600  
DDR4-1866  
DDR4-2133  
DDR4-2400  
DDR4-2666  
Units  
NOTE  
Parameter  
Symbol  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Pulse width of ALERT_n signal when  
asserted  
tPAR_ALERT  
_PW  
48  
96  
56  
-
112  
64  
128  
72  
-
144  
80  
160  
nCK  
Time from when Alert is asserted till control-  
ler must start providing DES commands in  
Persistent CA parity mode  
tPAR_ALERT  
_RSP  
-
43  
50  
-
57  
64  
71  
nCK  
nCK  
Parity Latency  
PL  
4
4
4
5
5
CRC Error Reporting  
CRC error to ALERT_n latency  
CRC ALERT_n pulse width  
tCRC_ALERT  
3
6
13  
10  
3
6
13  
10  
3
6
13  
10  
3
6
13  
10  
3
6
13  
10  
ns  
CRC_ALERT_  
PW  
nCK  
Geardown timing  
Exit RESET from CKE HIGH to a valid MRS  
geardown (T2/Reset)  
tXPR_GEAR  
tXS_GEAR  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TBD  
TBD  
CKE High Assert to Gear Down Enable  
time(T2/CKE)  
tSYNC_GEA  
R
MRS command to Sync pulse time(T3)  
TBD  
-
27  
27  
Sync pulse to First valid command(T4)  
Geardown setup time  
tCMD_GEAR  
tGEAR_setup  
tGEAR_hold  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TBD  
2
2
-
-
nCK  
nCK  
Geardown hold time  
tREFI  
2Gb  
4Gb  
8Gb  
16Gb  
2Gb  
4Gb  
8Gb  
16Gb  
2Gb  
4Gb  
8Gb  
16Gb  
160  
260  
350  
550  
110  
160  
260  
350  
90  
-
-
-
-
-
-
-
-
-
-
-
-
160  
260  
350  
550  
110  
160  
260  
350  
90  
-
-
-
-
-
-
-
-
-
-
-
-
160  
260  
350  
550  
110  
160  
260  
350  
90  
-
-
-
-
-
-
-
-
-
-
-
-
160  
260  
350  
550  
110  
160  
260  
350  
90  
-
-
-
-
-
-
-
-
-
-
-
-
160  
260  
350  
550  
110  
160  
260  
350  
90  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
34  
34  
34  
34  
34  
34  
34  
34  
34  
34  
34  
34  
tRFC1 (min)  
tRFC2 (min)  
tRFC4 (min)  
110  
160  
260  
110  
160  
260  
110  
160  
260  
110  
160  
260  
110  
160  
260  
- 65 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
NOTE :  
1. Start of internal write transaction is defined as follows :  
For BL8 (Fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.  
For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL.  
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL.  
2. A separate timing parameter will cover the delay from write to read when CRC and DM are simultaneously enabled  
3. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.  
4. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR/tCK to the next integer.  
5. WR in clock cycles as programmed in MR0.  
6. tREFI depends on TOPER.  
7. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down IDD spec will not be  
applied until finishing those operations.  
8. For these parameters, the DDR4 SDRAM device supports tnPARAM[nCK]=RU{tPARAM[ns]/tCK(avg)[ns]}, which is in clock cycles assuming all input clock jitter  
specifications are satisfied  
9. When CRC and DM are both enabled, tWR_CRC_DM is used in place of tWR.  
10. When CRC and DM are both enabled tWTR_S_CRC_DM is used in place of tWTR_S.  
11. When CRC and DM are both enabled tWTR_L_CRC_DM is used in place of tWTR_L.  
12. The max values are system dependent.  
13. DQ to DQS total timing per group where the total includes the sum of deterministic and random timing terms for a specified BER. BER spec and measurement method are  
tbd.  
14. The deterministic component of the total timing. Measurement method tbd.  
15. DQ to DQ static offset relative to strobe per group. Measurement method tbd.  
16. This parameter will be characterized and guaranteed by design.  
17U When the device is operated with the input clock jitter, this parameter needs to be derated by the actual tjit(per)_total of the input clock. (output deratings are relative to the  
SDRAM input clock). Example tbd.  
18. DRAM DBI mode is off.  
19. DRAM DBI mode is enabled. Applicable to x8 and x16 DRAM only.  
20. tQSL describes the instantaneous differential output low pulse width on DQS_t - DQS_c, as measured from on falling edge to the next consecutive rising edge  
21. tQSH describes the instantaneous differential output high pulse width on DQS_t - DQS_c, as measured from on falling edge to the next consecutive rising edge  
22. There is no maximum cycle time limit besides the need to satisfy the refresh interval tREFI  
23. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge  
24. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge  
25. Total jitter includes the sum of deterministic and random jitter terms for a specified BER. BER target and measurement method are tbd.  
26. The deterministic jitter component out of the total jitter. This parameter is characterized and gauranteed by design.  
27. This parameter has to be even number of clocks  
28. When CRC and DM are both enabled, tWR_CRC_DM is used in place of tWR.  
29. When CRC and DM are both enabled tWTR_S_CRC_DM is used in place of tWTR_S.  
30. When CRC and DM are both enabled tWTR_L_CRC_DM is used in place of tWTR_L.  
31. After CKE is registered LOW, CKE signal level shall be maintained below VILDC for tCKE specification ( Low pulse width ).  
32. After CKE is registered HIGH, CKE signal level shall be maintained above VIHDC for tCKE specification ( HIGH pulse width ).  
33. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.  
34. Parameters apply from tCK(avg)min to tCK(avg)max at all standard JEDEC clock period values as stated in the Speed Bin Tables.  
35. This parameter must keep consistency with Speed-Bin Tables .  
36. DDR4-1600 AC timing apply if DRAM operates at lower than 1600 MT/s data rate.  
UI=tCK(avg).min/2  
37. applied when DRAM is in DLL ON mode.  
38. Assume no jitter on input clock signals to the DRAM  
39. Value is only valid for RZQ/7 RONNOM = 34 ohms  
40. 1tCK toggle mode with setting MR4:A11 to 0  
41. 2tCK toggle mode with setting MR4:A11 to 1, which is valid for DDR4-2400/2666/3200 speed grade.  
42. 1tCK mode with setting MR4:A12 to 0  
43. 2tCK mode with setting MR4:A12 to 1, which is valid for DDR4-2400/2666/3200 speed grade.  
44. The maximum read preamble is bounded by tLZ(DQS)min on the left side and tDQSCK(max) on the right side.  
45. DQ falling signal middle-point of transferring from High to Low to first rising edge of DQS diff-signal cross-point  
46. last falling edge of DQS diff-signal cross-point to DQ rising signal middle-point of transferring from Low to High  
47. VrefDQ value must be set to either its midpoint or Vcent_DQ(midpoint) in order to capture DQ0 or DQL0 low level for entering PDA mode.  
48. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side.  
49. Reference level of DQ output signal is specified with a midpoint as a widest part of Output signal eye which should be approximately 0.7 * VDDQ as a center level of the  
static single-ended output peak-to-peak swing with a driver impedance of 34 ohms and an effective test load of 50 ohms to VTT = VDDQ .  
50. For MR7 commands, the minimum delay to a subsequent non-MRS command is 5nCK. .  
- 66 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
13.5 Rounding Algorithms  
Software algorithms for calculation of timing parameters are subject to rounding errors from many sources. For example, a system may use a memory  
clock with a nominal frequency of 933.33... MHz, or a clock period of 1.0714... ns. Similarly, a system with a memory clock frequency of 1066.66... MHz  
yields mathematically a clock period of 0.9375... ns. In most cases, it is impossible to express all digits after the decimal point exactly, and rounding must  
be done because the DDR4 SDRAM specification establishes a minimum granularity for timing parameters of 1 ps.  
Rules for rounding must be defined to allow optimization of device performance without violating device parameters. These algorithms rely on results that  
are within correction factors on device testing and specification to avoid losing performance due to rounding errors.  
These rules are:  
•Clock periods such as tCKAVGmin are defined to 1 ps of accuracy; for example, 0.9375... ns is defined as 937 ps and 1.0714... ns is defined as  
1071 ps.  
•Using real math, parameters like tAAmin, tRCDmin, etc. which are programmed in systems in numbers of clocks (nCK) but expressed in units of  
time (in ns) are divided by the clock period (in ns) yielding a unitless ratio, a correction factor of 2.5% is subtracted, then the result is set to the next  
higher integer number of clocks:  
nCK = ceiling [ (parameter_in_ns / application_tCK_in_ns) - 0.025 ]  
•Alternatively, programmers may prefer to use integer math instead of real math by expressing timing in ps, scaling the desired parameter value by  
1000, dividing by the application clock period, adding an inverse correction factor of 97.4%, dividing the result by 1000, then truncating down to the  
next lower integer value:  
nCK = truncate [ {(parameter_in_ps x 1000) / (application_tCK_in_ps) + 974} / 1000 ]  
•Either algorithm yields identical results  
- 67 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
13.6 The DQ Input Receiver Compliance Mask for Voltage and Timing  
The DQ input receiver compliance mask for voltage and timing is shown in the figure below. The receiver mask (Rx Mask) defines area the input signal  
must not encroach in order for the DRAM input receiver to be expected to be able to successfully capture a valid input signal with BER of 1e-16; any input  
signal encroaching within the Rx Mask is subject to being invalid data. The Rx Mask is the receiver property for each DQ input pin and it is not the valid  
data-eye.  
Figure 24. DQ Receiver(Rx) compliance mask  
DQx  
DQz  
DQy  
(Largest Vref_DQ Level)  
(Smallest Vref_DQ Level)  
Vcent_DQz  
Vcent_DQx  
Vcent_DQy  
Vcent_DQ(midpoint)  
Vref variation  
(Component)  
Figure 25. Vcent_DQ Variation to Vcent_DQ(midpoint)  
The Vref_DQ voltage is an internal reference voltage level that shall be set to the properly trained setting, which is generally Vcent_DQ(midpoint), in order  
to have valid Rx Mask values.  
Vcent_DQ is defined as the midpoint between the largest Vref_DQ voltage level and the smallest Vref_DQ voltage level across all DQ pins for a given  
DDR4 DRAM component Each DQ pin Vref level is defined by the center, i.e. widest opening, of the cumulative data input eye as depicted in  
Figure 25.This clarifies that any DDR4 DRAM component level variation must be accounted for within the DDR4 DRAM Rx mask.The component level  
Vref will be set by the system to account for Ron and ODT settings.  
- 68 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
DQS, DQs Data-in at DRAM Ball  
DQS, DQs Data-in at DRAM Ball  
Rx Mask  
Rx Mask - Alternative View  
DQS_t  
DQS_c  
DQS_t  
DQS_c  
0.5xTdiVW 0.5xTdiVW  
0.5xTdiVW 0.5xTdiVW  
DRAMa  
DRAMa  
Rx Mask  
Rx Mask  
DQx-z  
DQx-z  
TdiVW  
TdiVW  
tDQS2DQ + 0.5 x TdiVW  
tDQS2DQ  
Rx Mask  
DRAMb  
DQy  
DRAMb  
DQy  
Rx Mask  
TdiVW  
tDQ2DQ  
tDQ2DQ  
Rx Mask  
DRAMb  
DQz  
DRAMb  
DQz  
Rx Mask  
TdiVW  
tDQ2DQ  
tDQS2DQ + 0.5 x TdiVW  
tDQS2DQ  
Rx Mask  
DRAMc  
DQz  
DRAMc  
DQz  
Rx Mask  
TdiVW  
tDQ2DQ  
tDQ2DQ  
Rx Mask  
DRAMc  
DQy  
DRAMc  
DQy  
Rx Mask  
TdiVW  
tDQ2DQ  
NOTE : DQx represents an optimally centered mask.  
DQy represents earliest valid mask.  
NOTE : DRAMa represents a DRAM without any DQS/DQ skews.  
DRAMb represents a DRAM with early skews (negative tDQS2DQ).  
DRAMc represents a DRAM with delayed skews (positive tDQS2DQ).  
DQz represents latest valid mask.  
.
NOTE : Figures show skew allowed between DRAM to DRAM and DQ to DQ for a DRAM. Signals assume data centered aligned at DRAM Latch.  
TdiPW is not shown; composite data-eyes shown would violate TdiPW.  
VCENT DQ(midpoint) is not shown but is assummed to be midpoint of VdiVW..  
Figure 26. DQS to DQ and DQ to DQ Timings at DRAM Balls  
- 69 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
All of the timing terms in Figure 26 are measured at the VdIVW levels centered around Vcent_DQ(midpoint) and are referenced to the DQS_t/DQS_c  
center aligned to the DQ per pin.  
The rising edge slew rates are defined by srr1 and srr2. The slew rate measurement points for a rising edge are shown in Figure 27 below: A low to high  
transition tr1 is measured from 0.5*VdiVW(max) below Vcent_DQ(midpoint) to the last transition through 0.5*VdiVW(max) above Vcent_DQ(midpoint)  
while tr2 is measured from the last transition through 0.5*VdiVW(max) above Vcent_DQ(midpoint) to the first transition through the 0.5*VIHL_AC(min)  
above Vcent_DQ(midpoint).  
Rising edge slew rate equations:  
srr1 = VdIVW(max) / tr1  
srr2 = (VIHL_AC(min) – VdIVW(max)) / (2*tr2)  
t
r2  
0.5*VdiVW(max)  
Vcent_DQ(midpoint)  
0.5*VdiVW(max)  
Rx Mask  
t
r1  
Figure 27. Slew Rate Conditions For Rising Transition  
The falling edge slew rates are defined by srf1 and srf2. The slew rate measurement points for a falling edge are shown in Figure 28 B below: A high to  
low transition tf1 is measured from 0.5*VdiVW(max) above Vcent_DQ(midpoint) to the last transition through 0.5*VdiVW(max) below Vcent_DQ(midpoint)  
while tf2 is measured from the last transition through 0.5*VdiVW(max) below Vcent_DQ(midpoint) to the first transition through the 0.5*VIHL_AC(min)  
below Vcent_DQ(pin mid).  
Falling edge slew rate equations:  
srf1 = VdIVW(max) / tf1  
srf2 = (VIHL_AC(min) – VdIVW(max)) / (2*tf2)  
t
r1  
0.5*VdiVW(max)  
Vcent_DQ(midpoint)  
0.5*VdiVW(max)  
Rx Mask  
t
r2  
Figure 28. Slew Rate Conditions For Falling Transition  
- 70 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
[ Table 54 ] DRAM DQs In Receive Mode; * UI=tck(avg)min/2  
1600/1866/2133  
2400  
2666  
Symbol Parameter  
Unit  
NOTE  
min  
max  
min  
max  
min  
max  
136  
VdIVW  
Rx Mask voltage - pk-pk  
-
-
130  
-
120  
mV  
UI*  
mV  
UI*  
UI*  
UI*  
1,2,10  
0.2  
-
TdIVW  
Rx timing window  
-
186  
-
0.2  
-
-
0.22  
-
1,2,10  
3,4,10  
5,10  
6, 10  
7
VIHL_AC  
TdIPW  
DQ AC input swing pk-pk  
DQ input pulse width  
160  
150  
0.58  
-0.17  
-
0.58  
-0.17  
-
0.58  
-
tDQS2DQ  
tDQ2DQ  
Rx Mask DQS to DQ offset  
Rx Mask DQ to DQ offset  
Input Slew Rate over VdIVW if tCK >= 0.935ns  
0.17  
0.17  
tbd  
9
-0.19  
0.19  
tbd  
tbd  
tbd  
tbd  
tbd  
tbd  
9
1.0  
1.0  
1.0  
1
V/ns 8,10  
V/ns 8,10  
V/ns 9,10  
V/ns 9,10  
srr1, srf1  
srr2  
Input Slew Rate over  
VdIVW if 0.935ns > tCK >= 0.625ns  
-
-
1.25  
9
Rising Input Slew Rate  
over 1/2 VIHL_AC  
0.2*srr1  
0.2*srf1  
9
0.2*srr1  
0.2*srf1  
9
0.2*srr1  
0.2*srr1  
Falling Input Slew Rate  
over 1/2 VIHL_AC  
srf2  
9
9
NOTE :  
1. Data Rx mask voltage and timing total input valid window where VdIVW is centered around Vcent_DQ( midpoint) after VrefDQ training is completed. The data Rx mask is  
applied per bit and should include voltage and temperature drift terms. The input buffer design specification is to achieve at least a BER = e-16 when the RxMask is not vio-  
lated. The BER will be characterized and extrapolated if necessary using a dual dirac method from a higher BER(tbd).  
2. Defined over the DQ internal Vref range 1.  
3. See Overshoot and Undershoot Specification.  
4. DQ input pulse signal swing into the receiver must meet or exceed VIHL AC(min). . VIHL_AC(min) is to be achieved on an UI basis when a rising and falling edge occur in  
the same UI, i.e. a valid TdiPW.  
5. DQ minimum input pulse width defined at the Vcent_DQ( midpoint).  
6. DQS to DQ offset is skew between DQS and DQs within a nibble (x4) or word (x8, x16) at the DDR4 SDRAM balls over process, voltage, and temperature.  
7. DQ to DQ offset is skew between DQs within a nibble (x4) or word (x8, x16) at the DDR4 SDRAM balls for a given component over process, voltage, and temperature.  
8. Input slew rate over VdIVW Mask centered at Vcent_DQ( midpoint). Slowest DQ slew rate to fastest DQ slew rate per transition edge must be within 1.7 V/ns of each other.  
9. Input slew rate between VdIVW Mask edge and VIHL_AC(min) points.  
10. All Rx Mask specifications must be satisfied for each UI. For example, if the minimum input pulse width is violated when satisfying TdiVW(min), VdiVW(max), and minimum  
slew rate limits, then either TdiVW(min) or minimum slew rates would have to be increased to the point where the minimum input pulse width would no longer be violated.  
- 71 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
13.7 DDR4 Function Matrix  
DDR4 SDRAM has several features supported by ORG and also by Speed. The following Table is the summary of the features.  
[ Table 55 ] Function Matrix (By ORG. V:Supported, Blank:Not supported)  
Functions  
x4  
x8  
x16  
NOTE  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Write Leveling  
Temperature controlled Refresh  
Low Power Auto Self Refresh  
Fine Granularity Refresh  
Multi Purpose Register  
Data Mask  
Data Bus Inversion  
TDQS  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
ZQ calibration  
DQ Vref Training  
Per DRAM Addressability  
Mode Register Readout  
CAL  
WRITE CRC  
CA Parity  
Control Gear Down Mode  
Programmable Preamble  
Maximum Power Down Mode  
Boundary Scan Mode  
Additive Latency  
V
V
V
V
V
3DS  
- 72 -  
Rev. 1.6  
K4A4G045WE  
K4A4G085WE  
datasheet  
DDR4 SDRAM  
[ Table 56 ] Function Matrix (By Speed. V:Supported, Blank:Not supported)  
DLL Off mode  
DLL On mode  
2400Mbps  
Functions  
equal or slower  
than  
1600/1866/2133  
Mbps  
2666Mbps  
NOTE  
250Mbps  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Write Leveling  
Temperature controlled Refresh  
Low Power Auto Self Refresh  
Fine Granularity Refresh  
Multi Purpose Register  
Data Mask  
Data Bus Inversion  
TDQS  
V
V
ZQ calibration  
DQ Vref Training  
Per DRAM Addressability  
Mode Register Readout  
CAL  
V
WRITE CRC  
CA Parity  
Control Gear Down Mode  
Programmable Preamble ( = 2tCK)  
Maximum Power Down Mode  
Boundary Scan Mode  
3DS  
V
V
V
V
V
V
V
V
V
- 73 -  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY