K4B2G0446D-HCMA [SAMSUNG]

DDR DRAM, 512MX4, 0.195ns, CMOS, PBGA78,;
K4B2G0446D-HCMA
型号: K4B2G0446D-HCMA
厂家: SAMSUNG    SAMSUNG
描述:

DDR DRAM, 512MX4, 0.195ns, CMOS, PBGA78,

动态存储器 双倍数据速率
文件: 总65页 (文件大小:1818K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Rev. 1.1, Sep. 2010  
K4B2G0446D  
K4B2G0846D  
2Gb D-die DDR3 SDRAM  
78FBGA with Lead-Free & Halogen-Free  
(RoHS compliant)  
datasheet  
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND  
SPECIFICATIONS WITHOUT NOTICE.  
Products and specifications discussed herein are for reference purposes only. All information discussed  
herein is provided on an "AS IS" basis, without warranties of any kind.  
This document and all information discussed herein remain the sole and exclusive property of Samsung  
Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property  
right is granted by one party to the other party under this document, by implication, estoppel or other-  
wise.  
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or  
similar applications where product failure could result in loss of life or personal or physical harm, or any  
military or defense application, or any governmental procurement to which special terms or provisions  
may apply.  
For updates or additional information about Samsung products, contact your nearest Samsung office.  
All brand names, trademarks and registered trademarks belong to their respective owners.  
2010 Samsung Electronics Co., Ltd. All rights reserved.  
- 1 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
Revision History  
Revision No.  
History  
Draft Date  
Aug. 2010  
Sep. 2010  
Remark  
Editor  
S.H.Kim  
S.H.Kim  
1.0  
1.1  
- First SPEC. Release  
-
-
- Corrected IDD current spec.(IDD7)  
- 2 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
Table Of Contents  
2Gb D-die DDR3 SDRAM  
1. Ordering Information.....................................................................................................................................................5  
2. Key Features.................................................................................................................................................................5  
3. Package pinout/Mechanical Dimension & Addressing..................................................................................................6  
3.1 x4 Package Pinout (Top view) : 78ball FBGA Package .......................................................................................... 6  
3.2 x8 Package Pinout (Top view) : 78ball FBGA Package .......................................................................................... 7  
3.3 FBGA Package Dimension (x4/x8).......................................................................................................................... 8  
4. Input/Output Functional Description..............................................................................................................................9  
5. DDR3 SDRAM Addressing ...........................................................................................................................................10  
6. Absolute Maximum Ratings ..........................................................................................................................................11  
6.1 Absolute Maximum DC Ratings............................................................................................................................... 11  
6.2 DRAM Component Operating Temperature Range ................................................................................................ 11  
7. AC & DC Operating Conditions.....................................................................................................................................11  
7.1 Recommended DC operating Conditions (SSTL_1.5)............................................................................................. 11  
8. AC & DC Input Measurement Levels............................................................................................................................12  
8.1 AC & DC Logic input levels for single-ended signals .............................................................................................. 12  
8.2 VREF Tolerances...................................................................................................................................................... 13  
8.3 AC & DC Logic Input Levels for Differential Signals............................................................................................... 14  
8.3.1. Differential signals definition ............................................................................................................................ 14  
8.3.2. Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS) .................................................. 14  
8.3.3. Single-ended requirements for differential signals........................................................................................... 15  
8.4 Differential Input Cross Point Voltage...................................................................................................................... 16  
8.5 Slew rate definition for Differential Input Signals..................................................................................................... 16  
8.6 Slew rate definitions for Differential Input Signals ................................................................................................... 16  
9. AC & DC Output Measurement Levels .........................................................................................................................17  
9.1 Single-ended AC & DC Output Levels..................................................................................................................... 17  
9.2 Differential AC & DC Output Levels......................................................................................................................... 17  
9.3 Single-ended Output Slew Rate .............................................................................................................................. 17  
9.4 Differential Output Slew Rate .................................................................................................................................. 18  
9.5 Reference Load for AC Timing and Output Slew Rate............................................................................................ 18  
9.6 Overshoot/Undershoot Specification....................................................................................................................... 19  
9.6.1. Address and Control Overshoot and Undershoot specifications...................................................................... 19  
9.6.2. Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications...................................................... 19  
9.7 34ohm Output Driver DC Electrical Characteristics................................................................................................. 20  
9.7.1. Output Drive Temperature and Voltage Sensitivity.......................................................................................... 21  
9.8 On-Die Termination (ODT) Levels and I-V Characteristics ..................................................................................... 21  
9.8.1. ODT DC Electrical Characteristics................................................................................................................... 22  
9.8.2. ODT Temperature and Voltage sensitivity ...................................................................................................... 23  
9.9 ODT Timing Definitions ........................................................................................................................................... 24  
9.9.1. Test Load for ODT Timings.............................................................................................................................. 24  
9.9.2. ODT Timing Definitions.................................................................................................................................... 24  
10. IDD Current Measure Method.....................................................................................................................................27  
10.1 IDD Measurement Conditions ............................................................................................................................... 27  
11. 2Gb DDR3 SDRAM D-die IDD Specification Table ....................................................................................................37  
12. Input/Output Capacitance ...........................................................................................................................................38  
13. Electrical Characteristics and AC timing for DDR3-1066 to DDR3-1866....................................................................39  
13.1 Clock Specification ................................................................................................................................................ 39  
13.1.1. Definition for tCK(avg).................................................................................................................................... 39  
13.1.2. Definition for tCK(abs).................................................................................................................................... 39  
13.1.3. Definition for tCH(avg) and tCL(avg).............................................................................................................. 39  
13.1.4. Definition for note for tJIT(per), tJIT(per, Ick)................................................................................................. 39  
13.1.5. Definition for tJIT(cc), tJIT(cc, Ick) ................................................................................................................. 39  
13.1.6. Definition for tERR(nper)................................................................................................................................ 39  
13.2 Refresh Parameters by Device Density................................................................................................................. 40  
13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin................................................................. 40  
13.3.1. Speed Bin Table Notes .................................................................................................................................. 44  
- 3 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
14. Timing Parameters by Speed Grade ..........................................................................................................................45  
14.1 Jitter Notes ............................................................................................................................................................ 51  
14.2 Timing Parameter Notes........................................................................................................................................ 52  
14.3 Address/Command Setup, Hold and Derating : .................................................................................................... 53  
14.4 Data Setup, Hold and Slew Rate Derating : .......................................................................................................... 60  
- 4 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
1. Ordering Information  
[ Table 1 ] Samsung 2Gb DDR3 D-die ordering information table  
DDR3-1333 (9-9-9)4  
K4B2G0446D-HCH9  
K4B2G0846D-HCH9  
DDR3-1600 (11-11-11)3  
K4B2G0446D-HCK0  
K4B2G0846D-HCK0  
DDR3-1866 (13-13-13)2  
K4B2G0446D-HCMA  
K4B2G0846D-HCMA  
DDR3-1066 (7-7-7)  
Package  
Organization  
512Mx4  
K4B2G0446D-HCF8  
K4B2G0846D-HCF8  
78 FBGA  
78 FBGA  
256Mx8  
NOTE :  
1. Speed bin is in order of CL-tRCD-tRP.  
2. Backward compatible to DDR3-1600(11-11-11), DDR3-1333(9-9-9), DDR3-1066(7-7-7)  
3. Backward compatible to DDR3-1333(9-9-9), DDR3-1066(7-7-7)  
4. Backward compatible to DDR3-1066(7-7-7)  
2. Key Features  
[ Table 2 ] 2Gb DDR3 D-die Speed bins  
DDR3-800  
6-6-6  
2.5  
DDR3-1066  
7-7-7  
DDR3-1333  
DDR3-1600  
11-11-11  
1.25  
DDR3-1866  
13-13-13  
1.07  
Speed  
Unit  
9-9-9  
1.5  
tCK(min)  
CAS Latency  
tRCD(min)  
tRP(min)  
1.875  
7
ns  
nCK  
ns  
6
9
11  
13  
15  
13.125  
13.125  
37.5  
13.5  
13.5  
36  
13.75  
13.75  
35  
13.91  
13.91  
34  
15  
ns  
tRAS(min)  
tRC(min)  
37.5  
52.5  
ns  
50.625  
49.5  
48.75  
47.91  
ns  
JEDEC standard 1.5V ± 0.075V Power Supply  
VDDQ = 1.5V ± 0.075V  
The 2Gb DDR3 SDRAM D-die is organized as a 64Mbit x 4 I/Os x 8banks  
or 32Mbit x 8 I/Os x 8banks device. This synchronous device achieves high  
speed double-data-rate transfer rates of up to 1866Mb/sec/pin (DDR3-  
1866) for general applications.  
400 MHz fCK for 800Mb/sec/pin, 533MHz fCK for 1066Mb/sec/pin,  
667MHz fCK for 1333Mb/sec/pin, 800MHz fCK for 1600Mb/sec/pin,  
900MHz fCK for 1866Mb/sec/pin,  
The chip is designed to comply with the following key DDR3 SDRAM fea-  
tures such as posted CAS, Programmable CWL, Internal (Self) Calibration,  
On Die Termination using ODT pin and Asynchronous Reset .  
8 Banks  
Programmable CAS Latency(posted CAS): 5,6,7,8,9,10,11,12,13  
Programmable Additive Latency: 0, CL-2 or CL-1 clock  
Programmable CAS Write Latency (CWL) = 5(DDR3-800),  
6(DDR3-1066), 7(DDR3-1333), 8(DDR3-1600) and 9(DDR3-1866)  
All of the control and address inputs are synchronized with a pair of exter-  
nally supplied differential clocks. Inputs are latched at the crosspoint of dif-  
ferential clocks (CK rising and CK falling). All I/Os are synchronized with a  
pair of bidirectional strobes (DQS and DQS) in a source synchronous fash-  
ion. The address bus is used to convey row, column, and bank address  
information in a RAS/CAS multiplexing style. The DDR3 device operates  
8-bit pre-fetch  
Burst Length: 8 (Interleave without any limit, sequential with starting  
address “000” only), 4 with tCCD = 4 which does not allow seamless  
read or write [either On the fly using A12 or MRS]  
Bi-directional Differential Data-Strobe  
Internal(self) calibration : Internal self calibration through ZQ pin  
(RZQ : 240 ohm ± 1%)  
On Die Termination using ODT pin  
Average Refresh Period 7.8us at lower than TCASE 85°C, 3.9us at  
85°C < TCASE < 95 °C  
with a single 1.5V ± 0.075V power supply and 1.5V ± 0.075V VDDQ  
The 2Gb DDR3 D-die device is available in 78ball FBGAs(x4/x8).  
.
Asynchronous Reset  
Package : 78 balls FBGA - x4/x8  
All of Lead-Free products are compliant for RoHS  
All of products are Halogen-free  
NOTE : 1. This data sheet is an abstract of full DDR3 specification and does not cover the common features which are described in “DDR3 SDRAM Device Operation & Timing  
Diagram”.  
2. The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation.  
- 5 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
3. Package pinout/Mechanical Dimension & Addressing  
3.1 x4 Package Pinout (Top view) : 78ball FBGA Package  
1
2
3
4
5
6
7
8
9
VSS  
VSS  
VDD  
VSS  
VDD  
VDDQ  
VSSQ  
VSSQ  
VDDQ  
NC  
A
B
C
D
E
F
NC  
DQ0  
DQS  
DQS  
NC  
NC  
DM  
A
B
C
D
E
F
VSSQ  
VSSQ  
VDDQ  
VSSQ  
VREFDQ  
NC  
DQ2  
NC  
VDDQ  
VSS  
VDD  
CS  
DQ1  
VDD  
DQ3  
VSS  
NC  
CK  
NC  
VSS  
VDD  
RAS  
CAS  
WE  
BA2  
A0  
G
H
J
ODT  
NC  
VSS  
CK  
A10/AP  
NC  
CKE  
NC  
VSS  
G
H
J
ZQ  
VREFCA  
BA0  
A3  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
K
L
A12/BC  
A1  
BA1  
A4  
K
L
A5  
A2  
M
N
A7  
A9  
A11  
A6  
M
N
RESET  
A13  
A14  
A8  
1
2
3
4
5
6
7
8
9
Ball Locations (x4)  
A
B
C
D
E
F
Populated ball  
Ball not populated  
G
H
J
Top view  
(See the balls through the package)  
K
L
M
N
- 6 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
3.2 x8 Package Pinout (Top view) : 78ball FBGA Package  
1
2
3
4
5
6
7
8
9
VSS  
VSS  
VDD  
VSS  
VDD  
VDDQ  
VSSQ  
VSSQ  
VDDQ  
NC  
A
B
C
D
E
F
NC  
DQ0  
DQS  
DQS  
DQ4  
RAS  
CAS  
WE  
NU/TDQS  
DM/TDQS  
DQ1  
A
B
C
D
E
F
VSSQ  
VSSQ  
VDDQ  
VSSQ  
VREFDQ  
NC  
DQ2  
DQ6  
VDDQ  
VSS  
DQ3  
VSS  
VDD  
DQ7  
CK  
DQ5  
VSS  
VDD  
VDD  
CS  
BA0  
A3  
G
H
J
ODT  
NC  
VSS  
CK  
A10/AP  
NC  
CKE  
NC  
VSS  
G
H
J
ZQ  
VREFCA  
BA2  
A0  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
K
L
A12/BC  
A1  
BA1  
A4  
K
L
A5  
A2  
M
N
A7  
A9  
A11  
A6  
M
N
RESET  
A13  
A14  
A8  
1
2
3
4
5
6
7
8
9
Ball Locations (x8)  
A
B
C
D
E
F
Populated ball  
Ball not populated  
G
H
J
K
L
Top view  
(See the balls through the package)  
M
N
- 7 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
3.3 FBGA Package Dimension (x4/x8)  
Units : Millimeters  
7.50 ± 0.10  
0.80 x 8 = 6.40  
A
#A1 INDEX MARK  
B
0.80  
(Datum A)  
(Datum B)  
1.60  
6
3.20  
3
9
8
7
5
4
2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
(0.95)  
78 - 0.45 Solder ball  
(Post Reflow 0.50 ± 0.05)  
MOLDING AREA  
(1.90)  
0.2  
M
A B  
BOTTOM VIEW  
7.50 ± 0.10  
#A1  
0.35 ± 0.05  
1.10 ± 0.10  
TOP VIEW  
- 8 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
4. Input/Output Functional Description  
[ Table 3 ] Input/Output function description  
Symbol  
Type  
Function  
Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of  
the positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK  
CK, CK  
Input  
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and  
output drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or  
Active Power-Down (Row Active in any bank). CKE is asynchronous for self refresh exit. After VREFCA has become  
stable during the power on and initialization sequence, it must be maintained during all operations (including Self-  
Refresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, CK, ODT  
and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during Self -Refresh.  
CKE  
CS  
Input  
Chip Select: All commands are masked when CS is registered HIGH. CS provides for external Rank selection on  
systems with multiple Ranks. CS is considered part of the command code.  
Input  
Input  
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR3 SDRAM. When  
enabled, ODT is only applied to each DQ, DQS, DQS and DM/TDQS, NU/TDQS (When TDQS is enabled via Mode  
Register A11=1 in MR1) signal for x8 configurations. The ODT pin will be ignored if the Mode Register (MR1) is pro-  
grammed to disable ODT.  
ODT  
RAS, CAS, WE  
Input  
Input  
Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.  
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coinci-  
dent with that input data during a Write access. DM is sampled on both edges of DQS. For x8 device, the function of  
DM or TDQS/TDQS is enabled by Mode Register A11 setting in MR1.  
DM  
(DMU), (DML)  
Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being  
applied. Bank address also determines if the mode register or extended mode register is to be accessed during a  
MRS cycle.  
BA0 - BA2  
A0 - A14  
Input  
Input  
Address Inputs: Provided the row address for Active commands and the column address for Read/Write commands  
to select one location out of the memory array in the respective bank. (A10/AP and A12/BC have additional functions,  
see below)  
The address inputs also provide the op-code during Mode Register Set commands.  
Autoprecharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be per-  
formed to the accessed bank after the Read/Write operation. (HIGH:Autoprecharge; LOW: No Autoprecharge)  
A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or  
all banks (A10 HIGH). if only one bank is to be precharged, the bank is selected by bank addresses.  
A10 / AP  
A12 / BC  
Input  
Burst Chop:A12 is sampled during Read and Write commands to determine if burst chop(on-the-fly) will be per-  
formed. (HIGH : no burst chop, LOW : burst chopped). See command truth table for details  
Input  
Input  
Active Low Asynchronous Reset: Reset is active when RESET is LOW, and inactive when RESET is HIGH.  
RESET must be HIGH during normal operation. RESET is a CMOS rail to rail signal with DC high and low at 80% and  
20% of VDD, i.e. 1.20V for DC high and 0.30V for DC low.  
RESET  
DQ  
Input/Output Data Input/ Output: Bi-directional data bus.  
Data Strobe: Output with read data, input with write data. Edge-aligned with read data, centered in write data. For the  
x16, DQSL: corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data  
Input/Output strobe DQS, DQSL and DQSU are paired with differential signals DQS, DQSL and DQSU, respectively, to provide dif-  
ferential pair signaling to the system during reads and writes. DDR3 SDRAM supports differential data strobe only and  
does not support single-ended.  
DQS, (DQS)  
Termination Data Strobe: TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in  
MR1, DRAM will enable the same termination resistance function on TDQS/TDQS that is applied to DQS/DQS. When  
TDQS, (TDQS)  
Output  
disabled via mode register A11=0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used. x4/  
x16 DRAMs must disable the TDQS function via mode register A11=0 in MR1.  
NC  
No Connect: No internal electrical connection is present.  
VDDQ  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
DQ Power Supply: 1.5V +/- 0.075V  
DQ Ground  
VSSQ  
VDD  
Power Supply: 1.5V +/- 0.075V  
Ground  
VSS  
VREFDQ  
VREFCA  
ZQ  
Reference voltage for DQ  
Reference voltage for CA  
Reference Pin for ZQ calibration  
NOTE : Input only pins (BA0-BA2, A0-A14, RAS, CAS, WE, CS, CKE, ODT and RESET) do not supply termination.  
- 9 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
5. DDR3 SDRAM Addressing  
1Gb  
Configuration  
# of Bank  
256Mb x 4  
8
128Mb x 8  
8
64Mb x 16  
8
Bank Address  
Auto precharge  
Row Address  
BA0 - BA2  
A10/AP  
A0 - A13  
A0 - A9,A11  
A12/BC  
1 KB  
BA0 - BA2  
A10/AP  
A0 - A13  
A0 - A9  
A12/BC  
1 KB  
BA0 - BA2  
A10/AP  
A0 - A12  
A0 - A9  
A12/BC  
2 KB  
Column Address  
BC switch on the fly  
Page size *1  
2Gb  
Configuration  
# of Bank  
512Mb x 4  
8
256Mb x 8  
8
128Mb x 16  
8
Bank Address  
Auto precharge  
Row Address  
BA0 - BA2  
A10/AP  
A0 - A14  
A0 - A9,A11  
A12/BC  
1 KB  
BA0 - BA2  
A10/AP  
A0 - A14  
A0 - A9  
A12/BC  
1 KB  
BA0 - BA2  
A10/AP  
A0 - A13  
A0 - A9  
A12/BC  
2 KB  
Column Address  
BC switch on the fly  
Page size *1  
4Gb  
Configuration  
# of Bank  
1Gb x 4  
8
512Mb x 8  
8
256Mb x 16  
8
Bank Address  
Auto precharge  
Row Address  
BA0 - BA2  
A10/AP  
A0 - A15  
A0 - A9,A11  
A12/BC  
1 KB  
BA0 - BA2  
A10/AP  
A0 - A15  
A0 - A9  
A12/BC  
1 KB  
BA0 - BA2  
A10/AP  
A0 - A14  
A0 - A9  
A12/BC  
2 KB  
Column Address  
BC switch on the fly  
Page size *1  
8Gb  
Configuration  
# of Bank  
2Gb x 4  
8
1Gb x 8  
8
512Mb x 16  
8
Bank Address  
Auto precharge  
Row Address  
BA0 - BA2  
A10/AP  
BA0 - BA2  
A10/AP  
A0 - A15  
A0 - A9,A11  
A12/BC  
2 KB  
BA0 - BA2  
A10/AP  
A0 - A15  
A0 - A9  
A12/BC  
2 KB  
A0 - A15  
A0 - A9,A11,A13  
A12/BC  
Column Address  
BC switch on the fly  
Page size *1  
2 KB  
NOTE 1 : Page size is the number of bytes of data delivered from the array to the internal sense amplifiers when an ACTIVE command is registered.  
COLBITS  
Page size is per bank, calculated as follows:  
page size = 2  
* ORG÷8  
where, COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits  
- 10 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
6. Absolute Maximum Ratings  
6.1 Absolute Maximum DC Ratings  
[ Table 4 ] Absolute Maximum DC Ratings  
Symbol  
Parameter  
Rating  
Units  
NOTE  
VDD  
Voltage on VDD pin relative to Vss  
-0.4 V ~ 1.975 V  
-0.4 V ~ 1.975 V  
-0.4 V ~ 1.975 V  
-55 to +100  
V
1,3  
VDDQ  
Voltage on VDDQ pin relative to Vss  
Voltage on any pin relative to Vss  
Storage Temperature  
V
V
1,3  
1
V
IN, VOUT  
TSTG  
°C  
1, 2  
NOTE :  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.  
3. V and V  
must be within 300mV of each other at all times; and V  
must be not greater than 0.6 x V  
, When V and V  
are less than 500mV; V  
may be  
DD  
DDQ  
REF  
DDQ  
DD  
DDQ  
REF  
equal to or less than 300mV.  
6.2 DRAM Component Operating Temperature Range  
[ Table 5 ] Temperature Range  
Symbol  
Parameter  
rating  
Unit  
NOTE  
TOPER  
Operating Temperature Range  
0 to 95  
°C  
1, 2, 3  
NOTE :  
1. Operating Temperature T  
JESD51-2.  
is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the JEDEC document  
OPER  
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be main-  
tained between 0-85°C under all operating conditions  
3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the  
following additional conditions apply:  
a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. It is also possible to specify a component with 1X refresh (tREFI  
to 7.8us) in the Extended Temperature Range.  
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature  
Range capability (MR2 A6 = 0 and MR2 A7 = 1 ), in this case IDD6 current can be increased around 10~20% than normal Temperature range.  
b
b
7. AC & DC Operating Conditions  
7.1 Recommended DC operating Conditions (SSTL_1.5)  
[ Table 6 ] Recommended DC Operating Conditions  
Rating  
Typ.  
1.5  
Symbol  
Parameter  
Units  
NOTE  
Min.  
1.425  
1.425  
Max.  
1.575  
1.575  
VDD  
Supply Voltage  
Supply Voltage for Output  
V
V
1,2  
1,2  
VDDQ  
1.5  
NOTE :  
1. Under all conditions V  
must be less than or equal to V  
.
DDQ  
DD  
2. V  
tracks with V . AC parameters are measured with V and V  
tied together.  
DDQ  
DDQ  
DD  
DD  
- 11 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
8. AC & DC Input Measurement Levels  
8.1 AC & DC Logic input levels for single-ended signals  
[ Table 7 ] Single-ended AC & DC input levels for Command and Address  
DDR3-1066/1333/1600  
Symbol  
Parameter  
Unit NOTE  
Min.  
Max.  
VIH.CA(DC100)  
VREF + 100  
VDD  
DC input logic high  
DC input logic low  
AC input logic high  
AC input logic low  
AC input logic high  
AC input logic low  
mV  
mV  
mV  
mV  
mV  
mV  
1,5  
V
IL.CA(DC100)  
IH.CA(AC175)  
IL.CA(AC175)  
IH.CA(AC150)  
IL.CA(AC150)  
VSS  
VREF - 100  
1,6  
V
VREF + 175  
Note 2  
1,2,7  
1,2,8  
1,2,7  
1,2,8  
V
VREF - 175  
Note 2  
V
VREF+150  
Note 2  
V
VREF-150  
Note 2  
Reference Voltage for ADD,  
CMD inputs  
V
REFCA(DC)  
0.49*VDD  
0.51*VDD  
V
3,4  
NOTE :  
1. For input only pins except RESET, V  
= V  
(DC)  
REF  
REFCA  
2. See ’Overshoot/Undershoot Specification’ on page 19.  
3. The AC peak noise on V may not allow V to deviate from V  
(DC) by more than ± 1% V (for reference : approx. ± 15mV)  
REF  
DD  
REF  
REF  
DD  
4. For reference : approx. V /2 ± 15mV  
5. V (dc) is used as a simplified symbol for V  
(DC100)  
IH  
IH.CA  
IL.CA  
IH.CA  
6. V (dc) is used as a simplified symbol for V  
(DC100)  
IL  
7. V (ac) is used as a simplified symbol for V  
IH  
(AC175) and V  
(AC150); V  
(AC175) value is used when V  
+ 175mV is referenced and V  
(AC150) value is  
IH.CA  
IH.CA  
IH.CA  
REF  
used when VREF + 150mV is referenced.  
8. V (ac) is used as a simplified symbol for V  
(AC175) and V  
(AC150); V  
(AC175) value is used when V  
- 175mV is referenced and V (AC150) value is used  
IL.CA  
IL  
IL.CA  
IL.CA  
IL.CA  
REF  
when V  
- 150mV is referenced.  
REF  
[ Table 8 ] Single-ended AC & DC input levels for DQ and DM  
DDR3-1066  
DDR3-1333/1600  
DDR3-1866  
Symbol  
Parameter  
Unit NOTE  
Min.  
Max.  
Min.  
Max.  
Min.  
VREF + 100  
Max.  
VDD  
VIH.DQ(DC100)  
VREF + 100  
VDD  
VREF + 100  
VDD  
DC input logic high  
DC input logic low  
AC input logic high  
AC input logic low  
AC input logic high  
AC input logic low  
AC input logic high  
AC input logic low  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
1,5  
V
IL.DQ(DC100)  
IH.DQ(AC175)  
IL.DQ(AC175)  
IH.DQ(AC150)  
IL.DQ(AC150)  
IH.DQ(AC135)  
IL.DQ(AC135)  
VSS  
VREF - 100  
VSS  
VREF - 100  
VSS  
VREF - 100  
1,6  
V
VREF + 175  
NOTE 2  
-
-
-
-
-
1,2,7  
1,2,8  
1,2,7  
1,2,8  
1,2,7  
1,2,8  
V
VREF - 175  
NOTE 2  
-
-
-
V
VREF + 150  
VREF + 150  
NOTE 2  
NOTE 2  
VREF - 150  
-
-
V
VREF - 150  
NOTE 2  
NOTE 2  
-
-
V
VREF + 135  
-
-
-
-
-
-
-
-
NOTE 2  
VREF - 135  
V
NOTE 2  
Reference Voltage for DQ,  
DM inputs  
VREFDQ(DC)  
0.49*VDD  
0.51*VDD  
0.49*VDD  
0.51*VDD  
0.49*VDD  
0.51*VDD  
V
3,4  
NOTE :  
1. For input only pins except RESET, V  
= V  
(DC)  
REF  
REFDQ  
2. See ’Overshoot/Undershoot Specification’ on page 19.  
3. The AC peak noise on V  
may not allow V  
to deviate from V  
(DC) by more than ± 1% V (for reference : approx. ± 15mV)  
REF DD  
REF  
DD  
REF  
4. For reference : approx. V /2 ± 15mV  
5. V (dc) is used as a simplified symbol for V  
(DC100)  
IH  
IH.DQ  
IL.DQ  
6. V (dc) is used as a simplified symbol for V  
(DC100)  
IL  
7. V (ac) is used as a simplified symbol for V  
(AC175), V  
(AC150) ; V  
(AC175) value is used when V  
+ 175mV is referenced, V  
(AC150) value is used  
IH.DQ  
IH  
IH.DQ  
IH.DQ  
IH.DQ  
REF  
when V  
+ 150mV is referenced.  
REF  
8. V (ac) is used as a simplified symbol for V  
(AC175), V  
(AC150) ; V  
(AC175) value is used when V  
- 175mV is referenced, V  
(AC150) value is used when  
IL  
IL.DQ  
IL.DQ  
IL.DQ  
REF  
IL.DQ  
V
- 150mV is referenced.  
REF  
- 12 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
8.2 V Tolerances  
REF  
The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrate in Figure 1. It shows a valid reference voltage  
V
V
REF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise).  
REF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirement in Table 7 on  
page 12. Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD  
.
voltage  
VDD  
VSS  
time  
Figure 1. Illustration of VREF(DC) tolerance and VREF ac-noise limits  
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF  
.
"VREF" shall be understood as VREF(DC), as defined in Figure 1 .  
This clarifies, that dc-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to  
which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the  
data-eye of the input signals.  
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise. Timing  
and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.  
- 13 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
8.3 AC & DC Logic Input Levels for Differential Signals  
8.3.1 Differential signals definition  
tDVAC  
VIH.DIFF.AC.MIN  
VIH.DIFF.MIN  
0.0  
half cycle  
VIL.DIFF.MAX  
VIL.DIFF.AC.MAX  
tDVAC  
time  
Figure 2. Definition of differential ac-swing and "time above ac level" tDVAC  
8.3.2 Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS)  
[ Table 9 ] Differential AC & DC Input Levels  
DDR3-1066/1333/1600  
Symbol  
Parameter  
unit  
NOTE  
min  
+0.2  
max  
NOTE 3  
VIHdiff  
VILdiff  
differential input high  
differential input low  
V
V
V
V
1
1
2
2
NOTE 3  
-0.2  
VIHdiff(AC)  
2 x (VIH(AC) - VREF  
NOTE 3  
)
differential input high ac  
differential input low ac  
NOTE 3  
V
ILdiff(AC)  
2 x (VIL(AC) - VREF)  
NOTE :  
1. Used to define a differential signal slew-rate.  
2. for CK - CK use V /V (AC) of ADD/CMD and V  
; for DQS - DQS, DQSL - DQSL, DQSU - DQSU use V /V (AC) of DQs and V ; if a reduced ac-high or ac-low  
REFDQ  
IH IL  
REFCA  
IH IL  
level is used for a signal group, then the reduced level applies also here.  
3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (V (DC) max,  
IH  
V
(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undershoot Specification"  
IL  
[ Table 10 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS  
tDVAC [ps] @ |VIH/Ldiff(AC)| = 350mV  
Slew Rate [V/ns]  
tDVAC [ps] @ |VIH/Ldiff(AC)| = 300mV  
min  
75  
57  
50  
38  
34  
29  
22  
13  
0
max  
min  
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
max  
> 4.0  
4.0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
< 1.0  
0
- 14 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
8.3.3 Single-ended requirements for differential signals  
Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU) has also to comply with certain requirements for  
single-ended signals.  
CK and CK have to approximately reach VSEHmin / VSELmax [approximately equal to the ac-levels { VIH(AC) / VIL(AC)} for ADD/CMD signals] in every  
half-cycle.  
DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax [approximately the ac-levels { VIH(AC) / VIL(AC)} for DQ signals] in every half-cycle  
proceeding and following a valid transition.  
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if VIH150(AC)/VIL150(AC) is used for ADD/CMD sig-  
nals, then these ac-levels apply also for the single-ended signals CK and CK .  
VDD or VDDQ  
VSEH min  
VSEH  
VDD/2 or VDDQ/2  
CK or DQS  
VSEL max  
VSEL  
VSS or VSSQ  
time  
Figure 3. Single-ended requirement for differential signals  
Note that while ADD/CMD and DQ signal requirements are with respect to VREF, the single-ended components of differential signals have a requirement  
with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-  
ended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common  
mode characteristics of these signals.  
[ Table 11 ] Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU  
DDR3-1066/1333/1600  
Symbol  
Parameter  
Unit  
NOTE  
Min  
Max  
(VDD/2)+0.175  
(VDD/2)+0.175  
NOTE3  
Single-ended high-level for strobes  
Single-ended high-level for CK, CK  
Single-ended low-level for strobes  
Single-ended low-level for CK, CK  
NOTE3  
NOTE3  
(VDD/2)-0.175  
(VDD/2)-0.175  
V
V
V
V
1, 2  
1, 2  
1, 2  
1, 2  
VSEH  
VSEL  
NOTE3  
NOTE :  
1. For CK, CK use V /V (AC) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use V /V (AC) of DQs.  
IH IL  
IH IL  
2. V (AC)/V (AC) for DQs is based on V  
; V (AC)/V (AC) for ADD/CMD is based on V  
; if a reduced ac-high or ac-low level is used for a signal group, then the  
REFCA  
IH  
IL  
REFDQ  
IH  
IL  
reduced level applies also here  
3. These values are not defined, however the single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective  
limits (V (DC) max, V (DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot  
IH  
IL  
Specification"  
- 15 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
8.4 Differential Input Cross Point Voltage  
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input  
signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual  
cross point of true and complement signal to the mid level between of VDD and VSS  
.
VDD  
CK, DQS  
VIX  
VDD/2  
VIX  
VIX  
CK, DQS  
VSS  
Figure 4. VIX Definition  
[ Table 12 ] Cross point voltage for differential input signals (CK, DQS)  
DDR3-1066/1333/1600  
Symbol  
Parameter  
Unit  
NOTE  
Min  
Max  
150  
175  
150  
-150  
-175  
-150  
mV  
mV  
mV  
VIX  
VIX  
Differential Input Cross Point Voltage relative to VDD/2 for CK,CK  
Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS  
1
NOTE :  
1. Extended range for V is only allowed for clock and if single-ended clock input signals CKand CK are monotonic, have a single-ended swing V  
/ V  
of at least V /2  
SEH DD  
IX  
SEL  
±250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns. Refer to Table 11 on page 15 for V  
and V  
standard values.  
SEL  
SEH  
8.5 Slew rate definition for Differential Input Signals  
See 14.3 “Address/Command Setup, Hold and Derating :” on page 48 for single-ended slew rate definitions for address and command signals.  
See 14.4 “Data Setup, Hold and Slew Rate Derating :” on page 54 for single-ended slew rate definitions for data signals.  
8.6 Slew rate definitions for Differential Input Signals  
Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in Table 13 and Figure 5.  
[ Table 13 ] Differential input slew rate definition  
Measured  
Description  
Defined by  
From  
To  
VIHdiffmin - VILdiffmax  
Delta TRdiff  
VILdiffmax  
VIHdiffmin  
Differential input slew rate for rising edge (CK-CK and DQS-DQS)  
VIHdiffmin - VILdiffmax  
VIHdiffmin  
VILdiffmax  
Differential input slew rate for falling edge (CK-CK and DQS-DQS)  
Delta TFdiff  
NOTE :  
The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds.  
V
IHdiffmin  
ILdiffmax  
0
V
delta TFdiff  
delta TRdiff  
Figure 5. Differential Input Slew Rate definition for DQS, DQS, and CK, CK  
- 16 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
9. AC & DC Output Measurement Levels  
9.1 Single-ended AC & DC Output Levels  
[ Table 14 ] Single-ended AC & DC output levels  
Symbol  
Parameter  
DDR3-1066/1333/1600  
Units  
NOTE  
VOH(DC)  
DC output high measurement level (for IV curve linearity)  
0.8 x VDDQ  
V
V
OM(DC)  
OL(DC)  
VOH(AC)  
OL(AC)  
DC output mid measurement level (for IV curve linearity)  
DC output low measurement level (for IV curve linearity)  
AC output high measurement level (for output SR)  
AC output low measurement level (for output SR)  
0.5 x VDDQ  
0.2 x VDDQ  
V
V
V
V
V
VTT + 0.1 x VDDQ  
VTT - 0.1 x VDDQ  
1
1
V
NOTE : 1. The swing of +/-0.1 x V  
is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40and an effective test  
DDQ  
DDQ  
load of 25to V =V  
/2.  
TT  
9.2 Differential AC & DC Output Levels  
[ Table 15 ] Differential AC & DC output levels  
Symbol  
Parameter  
DDR3-1066/1333/1600  
Units  
NOTE  
VOHdiff(AC)  
AC differential output high measurement level (for output SR)  
+0.2 x VDDQ  
V
1
V
OLdiff(AC)  
AC differential output low measurement level (for output SR)  
-0.2 x VDDQ  
V
1
NOTE : 1. The swing of +/-0.2xV  
is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40and an effective test  
DDQ  
DDQ  
load of 25to V =V  
/2 at each of the differential outputs.  
TT  
9.3 Single-ended Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC)  
for single ended signals as shown in Table 16 and Figure 6.  
[ Table 16 ] Single-ended output slew rate definition  
Measured  
Description  
Defined by  
From  
To  
VOH(AC)-VOL(AC)  
Delta TRse  
VOL(AC)  
VOH(AC)  
Single ended output slew rate for rising edge  
Single ended output slew rate for falling edge  
VOH(AC)-VOL(AC)  
Delta TFse  
VOH(AC)  
VOL(AC)  
NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.  
[ Table 17 ] Single-ended output slew rate  
DDR3-1066  
DDR3-1333  
DDR3-1600  
DDR3-1866  
Parameter  
Symbol  
Units  
Min  
2.5  
Max  
Min  
2.5  
Max  
Min  
2.5  
Max  
Min  
Max  
51)  
Single ended output slew rate  
Description : SR : Slew Rate  
SRQse  
5
5
5
2.5  
V/ns  
Q : Query Output (like in DQ, which stands for Data-in, Query-Output)  
se : Single-ended Signals  
For Ron = RZQ/7 setting  
NOTE : 1) In two cased, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane.  
- Case_1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low of low to high) while all remaining DQ  
signals in the same byte lane are static (i.e they stay at either high or low).  
- Case_2 is defined for a single DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the  
remaining DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies.  
V
OH(AC)  
V
V
TT  
OL(AC)  
delta TFse  
delta TRse  
Figure 6. Single-ended Output Slew Rate Definition  
- 17 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
9.4 Differential Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOH-  
diff(AC) for differential signals as shown in Table 18 and Figure 7.  
[ Table 18 ] Differential output slew rate definition  
Measured  
Description  
Defined by  
From  
To  
VOHdiff(AC)-VOLdiff(AC)  
Delta TRdiff  
VOLdiff(AC)  
VOHdiff(AC)  
Differential output slew rate for rising edge  
Differential output slew rate for falling edge  
VOHdiff(AC)-VOLdiff(AC)  
Delta TFdiff  
VOHdiff(AC)  
VOLdiff(AC)  
NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.  
[ Table 19 ] Differential output slew rate  
DDR3-1066  
DDR3-1333  
DDR3-1600  
DDR3-1866  
Parameter  
Symbol  
Units  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Differential output slew rate  
Description : SR : Slew Rate  
SRQdiff  
5
10  
5
10  
5
10  
5
12  
V/ns  
Q : Query Output (like in DQ, which stands for Data-in, Query-Output)  
diff : Differential Signals  
For Ron = RZQ/7 setting  
V
(AC)  
(AC)  
OHdiff  
V
V
TT  
OLdiff  
delta TFdiff  
delta TRdiff  
Figure 7. Differential Output Slew Rate Definition  
9.5 Reference Load for AC Timing and Output Slew Rate  
Figure 8 represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate  
measurements.  
It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. Sys-  
tem designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their  
production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.  
VDDQ  
DQ  
CK/CK  
DQS  
DUT  
VTT = VDDQ/2  
DQS  
25Ω  
Reference  
Point  
Figure 8. Reference Load for AC Timing and Output Slew Rate  
- 18 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
9.6 Overshoot/Undershoot Specification  
9.6.1 Address and Control Overshoot and Undershoot specifications  
[ Table 20 ] AC overshoot/undershoot specification for Address and Control pins (A0-A12, BA0-BA2. CS. RAS. CAS. WE. CKE, ODT)  
Specification  
Parameter  
Unit  
DDR3-1066  
0.4V  
DDR3-1333  
0.4V  
DDR3-1600  
0.4V  
DDR3-1866  
0.4V  
Maximum peak amplitude allowed for overshoot area (See Figure 9)  
Maximum peak amplitude allowed for undershoot area (See Figure 9)  
Maximum overshoot area above VDD (See Figure 9)  
V
V
0.4V  
0.4V  
0.4V  
0.4V  
0.5V-ns  
0.4V-ns  
0.33V-ns  
0.28V-ns  
V-ns  
Maximum undershoot area below VSS (See Figure 9)  
0.5V-ns  
0.4V-ns  
0.33V-ns  
0.28V-ns  
V-ns  
Maximum Amplitude  
Overshoot Area  
VDD  
VSS  
Volts  
(V)  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
Figure 9. Address and Control Overshoot and Undershoot Definition  
9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications  
[ Table 21 ] AC overshoot/undershoot specification for Clock, Data, Strobe and Mask (DQ, DQS, DQS, DM, CK, CK)  
Specification  
Parameter  
Unit  
DDR3-1066  
0.4V  
DDR3-1333  
0.4V  
DDR3-1600  
0.4V  
DDR3-1866  
0.4V  
Maximum peak amplitude allowed for overshoot area (See Figure 10)  
Maximum peak amplitude allowed for undershoot area (See Figure 10)  
Maximum overshoot area above VDDQ (See Figure 10)  
V
V
0.4V  
0.4V  
0.4V  
0.4V  
0.19V-ns  
0.15V-ns  
0.13V-ns  
0.11V-ns  
V-ns  
Maximum undershoot area below VSSQ (See Figure 10)  
0.19V-ns  
0.15V-ns  
0.13V-ns  
0.11V-ns  
V-ns  
Maximum Amplitude  
Overshoot Area  
VDDQ  
VSSQ  
Volts  
(V)  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
Figure 10. Clock, Data, Strobe and Mask Overshoot and Undershoot Definition  
- 19 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
9.7 34ohm Output Driver DC Electrical Characteristics  
A functional representation of the output buffer is shown below. Output driver impedance RON is defined by the value of external reference resistor RZQ  
as follows:  
RON34 = RZQ/7 (Nominal 34.3ohms +/- 10% with nominal RZQ=240ohm)  
The individual Pull-up and Pull-down resistors (RONpu and RONpd) are defined as follows  
VDDQ-VOUT  
under the condition that RONpd is turned off  
RONpu =  
l Iout l  
VOUT  
l Iout l  
under the condition that RONpu is turned off  
RONpd =  
Output Driver  
Ipu  
VDDQ  
To  
RON  
other  
Pu  
circuity  
DQ  
Iout  
RON  
Pd  
Vout  
Ipd  
VSSQ  
Figure 11. Output Driver : Definition of Voltages and Currents  
[ Table 22 ] Output Driver DC Electrical Characteristics, assuming RZQ=240ohms ;  
entire operating temperature range ; after proper ZQ calibration  
RONnom  
Resistor  
Vout  
OLdc = 0.2 x VDDQ  
Min  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
Nom  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
Max  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
Units  
NOTE  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
V
V
OMdc = 0.5 x VDDQ  
OHdc = 0.8 x VDDQ  
VOLdc = 0.2 x VDDQ  
OMdc = 0.5 x VDDQ  
OHdc = 0.8 x VDDQ  
OLdc = 0.2 x VDDQ  
OMdc = 0.5 x VDDQ  
OHdc = 0.8 x VDDQ  
VOLdc = 0.2 x VDDQ  
OMdc = 0.5 x VDDQ  
OHdc = 0.8 x VDDQ  
RON34pd  
V
34Ohms  
RZQ/7  
V
RON34pu  
RON40pd  
RON40pu  
V
V
V
V
40Ohms  
RZQ/6  
%
V
V
Mismatch between Pull-up and Pull-down,  
MMpupd  
V
OMdc = 0.5 x VDDQ  
-10  
10  
1,2,4  
NOTE :  
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibra-  
tion, see following section on voltage and temperature sensitivity  
2. The tolerance limits are specified under the condition that V  
= V and that V  
= V  
DDQ  
DD  
SSQ SS  
3. Pull-down and pull-up output driver impedance are recommended to be calibrated at 0.5 X V  
. Other calibration schemes may be used to achieve the linearity spec shown  
DDQ  
above, e.g. calibration at 0.2 X V  
and 0.8 X V  
DDQ  
DDQ  
4. Measurement definition for mismatch between pull-up and pull-down, MMpupd: Measure RONpu and RONpd. both at 0.5 X V  
:
DDQ  
RONpu - RONpd  
x 100  
MMpupd  
=
RONnom  
- 20 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
9.7.1 Output Drive Temperature and Voltage Sensitivity  
If temperature and/or voltage change after calibration, the tolerance limits widen according to Table 23 and Table 24.  
T = T - T(@calibration); V = VDDQ - VDDQ (@calibration); VDD = VDDQ  
*dRONdT and dRONdV are not subject to production test but are verified by design and characterization  
[ Table 23 ] Output Driver Sensitivity Definition  
Min  
Max  
Units  
RONPU@VOHDC  
RON@VOMDC  
0.6 - dRONdTH * |T| - dR dVH * |V|  
1.1 + dRONdTH * |T| + dR dVH * |V|  
RZQ/7  
RZQ/7  
RZQ/7  
ON  
ON  
0.9 - dRONdTM * |T| - dR dVM * |V|  
1.1 + dRONdTM * |T| + dR dVM * |V|  
ON  
ON  
RONPD@VOLDC  
0.6 - dRONdTL * |T| - dR dVL * |V|  
1.1 + dRONdTL * |T| + dR dVL * |V|  
ON  
ON  
[ Table 24 ] Output Driver Voltage and Temperature Sensitivity  
Speed Bin  
DDR3-800/1066/1333  
DDR3-1600  
Units  
Min  
0
Max  
1.5  
Min  
0
Max  
1.5  
dRONdTM  
dRONdVM  
dRONdTL  
dRONdVL  
dRONdTH  
dRONdVH  
%/°C  
%/mV  
%/°C  
0
0.15  
1.5  
0
0.13  
1.5  
0
0
0
0.15  
1.5  
0
0.13  
1.5  
%/mV  
%/°C  
0
0
0
0.15  
0
0.13  
%/mV  
9.8 On-Die Termination (ODT) Levels and I-V Characteristics  
On-Die Termination effective resistance RTT is defined by bits A9, A6 and A2 of MR1 register.  
ODT is applied to the DQ,DM, DQS/DQS and TDQS,TDQS (x8 devices only) pins.  
A functional representation of the on-die termination is shown below. The individual pull-up and pull-down resistors (RTTpu and RTTpd) are defined as  
follows :  
VDDQ-VOUT  
under the condition that RTTpd is turned off  
under the condition that RTTpu is turned off  
RTTpu =  
RTTpd =  
l Iout l  
VOUT  
l Iout l  
Chip in Termination Mode  
ODT  
VDDQ  
Ipu  
Iout=Ipd-Ipu  
To  
RTTPu  
other  
circuitry  
like  
DQ  
RCV,  
Iout  
RTTPd  
...  
VOUT  
VSSQ  
Ipd  
Figure 12. On-Die Termination : Definition of Voltages and Currents  
- 21 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
9.8.1 ODT DC Electrical Characteristics  
Table 25 provides and overview of the ODT DC electrical characteristics. They values for RTT60pd120, RTT60pu120, RTT120pd240, RTT120pu240, RTT40pd80,  
RTT40pu80, RTT30pd60, RTT30pu60, RTT20pd40, RTT20pu40 are not specification requirements, but can be used as design guide lines:  
[ Table 25 ] ODT DC Electrical Characteristics, assuming RZQ=240ohm +/- 1% entire operating temperature range; after proper ZQ calibration  
MR1 (A9,A6,A2)  
RTT  
RESISTOR  
Vout  
Min  
Nom  
Max  
Unit  
RZQ  
NOTE  
VOL(DC) 0.2XVDDQ  
0.5XVDDQ  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
-5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
5
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT120pd240  
RZQ  
V
OH(DC) 0.8XVDDQ  
RZQ  
VOL(DC) 0.2XVDDQ  
0.5XVDDQ  
RZQ  
(0,1,0)  
120 ohm  
RTT120pu240  
RZQ  
V
OH(DC) 0.8XVDDQ  
RZQ  
RTT120  
VIL(AC) to VIH(AC)  
VOL(DC) 0.2XVDDQ  
0.5XVDDQ  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/2  
RZQ/4  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/3  
RZQ/6  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/4  
RZQ/8  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/6  
RZQ/12  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT60pd240  
V
OH(DC) 0.8XVDDQ  
VOL(DC) 0.2XVDDQ  
0.5XVDDQ  
(0,0,1)  
(0,1,1)  
(1,0,1)  
(1,0,0)  
60 ohm  
40 ohm  
30 ohm  
20 ohm  
RTT60pu240  
RTT60  
V
OH(DC) 0.8XVDDQ  
VIL(AC) to VIH(AC)  
VOL(DC) 0.2XVDDQ  
0.5XVDDQ  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT40pd240  
V
OH(DC) 0.8XVDDQ  
VOL(DC) 0.2XVDDQ  
0.5XVDDQ  
RTT40pu240  
RTT40  
V
OH(DC) 0.8XVDDQ  
VIL(AC) to VIH(AC)  
VOL(DC) 0.2XVDDQ  
0.5XVDDQ  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT60pd240  
V
OH(DC) 0.8XVDDQ  
VOL(DC) 0.2XVDDQ  
0.5XVDDQ  
RTT60pu240  
RTT60  
V
OH(DC) 0.8XVDDQ  
VIL(AC) to VIH(AC)  
VOL(DC) 0.2XVDDQ  
0.5XVDDQ  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
RTT60pd240  
V
OH(DC) 0.8XVDDQ  
VOL(DC) 0.2XVDDQ  
0.5XVDDQ  
RTT60pu240  
RTT60  
V
OH(DC) 0.8XVDDQ  
VIL(AC) to VIH(AC)  
Deviation of VM w.r.t VDDQ/2, VM  
%
1,2,5,6  
- 22 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
NOTE :  
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibra-  
tion, see following section on voltage and temperature sensitivity  
2. The tolerance limits are specified under the condition that V  
= V and that V  
= V  
DDQ  
DD  
SSQ SS  
3. Pull-down and pull-up ODT resistors are recommended to be calibrated at 0.5XV  
. Other calibration schemes may be used to achieve the linearity spec shown above, e.g.  
DDQ  
calibration at 0.2XV  
and 0.8XV  
.
DDQ  
DDQ  
4. Not a specification requirement, but a design guide line  
5. Measurement definition for RTT:  
Apply V (AC) to pin under test and measure current I(V (AC)), then apply V (AC) to pin under test and measure current I(V (AC)) respectively  
IH  
IH  
IL  
IL  
VIH(AC) - VIL(AC)  
RTT  
=
I(VIH(AC)) - I(VIL(AC))  
6. Measurement definition for V and V : Measure voltage (V ) at test pin (midpoint) with no load  
M
M
M
2 x VM  
VDDQ  
- 1  
x 100  
VM  
=
9.8.2 ODT Temperature and Voltage sensitivity  
If temperature and/or voltage change after calibration, the tolerance limits widen according to table below  
T = T - T(@calibration); V = VDDQ - VDDQ (@calibration); VDD = VDDQ  
[ Table 26 ] ODT Sensitivity Definition  
Min  
Max  
Units  
0.9 - dRTTdT * |T| - dR dV * |V|  
1.6 + dRTTdT * |T| + dR dV * |V|  
RTT  
RZQ/2,4,6,8,12  
TT  
TT  
[ Table 27 ] ODT Voltage and Temperature Sensitivity  
Min  
0
Max  
1.5  
Units  
%/°C  
dRTTdT  
dRTTdV  
0
0.15  
%/mV  
NOTE : These parameters may not be subject to production test. They are verified by design and characterization.  
- 23 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
9.9 ODT Timing Definitions  
9.9.1 Test Load for ODT Timings  
Different than for timing measurements, the reference load for ODT timings is defined in Figure 13.  
VDDQ  
DUT  
DQ, DM  
CK,CK  
VTT  
=
DQS , DQS  
VSSQ  
RTT  
=25 ohm  
TDQS , TDQS  
VSSQ  
Timing Reference Points  
Figure 13. ODT Timing Reference Load  
9.9.2 ODT Timing Definitions  
Definitions for tAON, tAONPD, tAOF, tAOFPD and tADC are provided in Table 28 and subsequent figures. Measurement reference settings are provided  
in Table 29.  
[ Table 28 ] ODT Timing Definitions  
Symbol  
tAON  
Begin Point Definition  
End Point Definition  
Extrapolated point at VSSQ  
Figure  
Rising edge of CK - CK defined by the end point of ODTLon  
Rising edge of CK - CK with ODT being first registered high  
Rising edge of CK - CK defined by the end point of ODTLoff  
Rising edge of CK - CK with ODT being first registered low  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
tAONPD  
tAOF  
Extrapolated point at VSSQ  
End point: Extrapolated point at VRTT_Nom  
End point: Extrapolated point at VRTT_Nom  
tAOFPD  
Rising edge of CK - CK defined by the end point of ODTLcnw,  
ODTLcwn4 of ODTLcwn8  
End point: Extrapolated point at VRTT_Wr and VRTT_Nom  
respectively  
tADC  
Figure 18  
[ Table 29 ] Reference Settings for ODT Timing Measurements  
Measured  
RTT_Nom Setting  
RTT_Wr Setting  
VSW1[V]  
VSW2[V]  
NOTE  
Parameter  
RZQ/4  
RZQ/12  
RZQ/4  
NA  
NA  
0.05  
0.10  
0.05  
0.10  
0.05  
0.10  
0.05  
0.10  
0.20  
0.10  
0.20  
0.10  
0.20  
0.10  
0.20  
0.10  
0.20  
0.30  
tAON  
NA  
tAONPD  
tAOF  
RZQ/12  
RZQ/4  
NA  
NA  
RZQ/12  
RZQ/4  
NA  
NA  
tAOFPD  
tADC  
RZQ/12  
RZQ/12  
NA  
RZQ/2  
- 24 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
Begin point : Rising edge of CK - CK  
defined by the end point of ODTLon  
CK  
CK  
V
TT  
t
AON  
T
SW2  
T
SW1  
DQ, DM  
DQS , DQS  
TDQS , TDQS  
V
SW2  
V
SW1  
VSSQ  
VSSQ  
End point Extrapolated point at VSSQ  
Figure 14. Definition of tAON  
Begin point : Rising edge of CK - CK  
with ODT being first registered high  
CK  
CK  
V
TT  
t
AONPD  
T
SW2  
T
SW1  
DQ, DM  
DQS , DQS  
TDQS , TDQS  
V
SW2  
V
SW1  
VSSQ  
VSSQ  
End point Extrapolated point at VSSQ  
Figure 15. Definition of tAONPD  
Begin point : Rising edge of CK - CK  
defined by the end point of ODTLoff  
CK  
CK  
V
TT  
t
AOF  
End point Extrapolated point at VRTT_Nom  
VRTT_Nom  
T
SW2  
T
DQ, DM  
SW1  
DQS , DQS  
V
SW2  
V
TDQS , TDQS  
SW1  
VSSQ  
TD_TAON_DEF  
Figure 16. Definition of tAOF  
- 25 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
Begin point : Rising edge of CK - CK  
with ODT being first registered low  
CK  
CK  
V
TT  
t
AOFPD  
End point Extrapolated point at VRTT_Nom  
VRTT_Nom  
T
SW2  
T
DQ, DM  
SW1  
DQS , DQS  
V
SW2  
V
TDQS , TDQS  
SW1  
VSSQ  
Figure 17. Definition of tAOFPD  
Begin point : Rising edge of CK - CK  
defined by the end point of ODTLcnw  
Begin point : Rising edge of CK - CK defined by  
the end point of ODTLcwn4 or ODTLcwn8  
CK  
CK  
V
TT  
t
t
ADC  
ADC  
End point Extrapolated point at VRTT_Nom  
VRTT_Nom  
VRTT_Nom  
T
SW21  
End point  
T
DQ, DM  
DQS , DQS  
TDQS , TDQS  
SW22  
Extrapolated point  
at VRTT_Nom  
V
SW2  
T
SW11  
T
SW12  
V
SW1  
End point Extrapolated point at VRTT_Wr  
VRTT_Wr  
V
SSQ  
Figure 18. Definition of tADC  
- 26 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
10. IDD Current Measure Method  
10.1 IDD Measurement Conditions  
In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure 19 shows the setup and test load for IDD and  
IDDQ measurements.  
- IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and  
IDD7) are measured as time-averaged currents with all VDD balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in  
IDD currents.  
- IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR3 SDRAM under test tied  
together. Any IDD current is not included in IDDQ currents.  
Attention : IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO  
power to actual IO power as outlined in Figure 20. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ  
are using one merged-power layer in Module PCB.  
For IDD and IDDQ measurements, the following definitions apply :  
- "0" and "LOW" is defined as VIN <= VILAC(max).  
- "1" and "HIGH" is defined as VIN >= VIHAC(min).  
- "FLOATING" is defined as inputs are VREF = VDD / 2.  
- "Timing used for IDD and IDDQ Measured - Loop Patterns for 1066/1333" are provided in Table 30  
- "Basic IDD and IDDQ Measurement Conditions" are described in Table 32  
- Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 32 on page 31 through Table 39.  
- IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting  
RON = RZQ/7 (34 Ohm in MR1);  
Qoff = 0B (Output Buffer enabled in MR1);  
RTT_Nom = RZQ/6 (40 Ohm in MR1);  
RTT_Wr = RZQ/2 (120 Ohm in MR2);  
TDQS Feature disabled in MR1  
- Attention : The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started.  
- Define D = {CS, RAS, CAS, WE} := {HIGH, LOW, LOW, LOW}  
- Define D = {CS, RAS, CAS, WE} := {HIGH, HIGH, HIGH, HIGH}  
- RESET Stable time is : During a Cold Bood RESET (Initialization), current reading is valid once power is stable and RESET has been LOW for 1ms;  
During Warm Boot RESET(while operating), current reading is valid after RESET has been LOW for 200ns + tRFC  
- 27 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
[ Table 30 ] Timing used for IDD and IDDQ Measured - Loop Patterns for 1066/1333  
DDR3-1066  
DDR3-1333  
Parameter Bin  
Unit  
6-6-6  
7-7-7  
1.875  
7
8-8-8  
7-7-7  
8-8-8  
9-9-9  
10-10-10  
tCKmin(IDD)  
CL(IDD)  
1.5  
ns  
6
6
8
8
7
7
8
8
9
9
10  
10  
34  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
tRCDmin(IDD)  
tRCmin(IDD)  
tRASmin(IDD)  
tRPmin(IDD)  
7
26  
27  
20  
7
28  
31  
32  
33  
24  
6
8
7
8
9
10  
x4/x8  
x16  
20  
27  
4
20  
30  
4
tFAW(IDD)  
tRRD(IDD)  
x4/x8  
x16  
6
5
tRFC(IDD) - 512Mb  
tRFC(IDD) - 1Gb  
tRFC(IDD) - 2Gb  
tRFC(IDD) - 4Gb  
tRFC(IDD) - 8Gb  
48  
59  
86  
160  
187  
60  
74  
107  
200  
234  
[ Table 31 ] Timing used for IDD and IDDQ Measured - Loop Patterns for 1600/1866  
DDR3-1600  
DDR3-1866  
11-11-11 12-12-12  
Parameter Bin  
Unit  
8-8-8  
9-9-9  
10-10-10  
11-11-11  
10-10-10  
13-13-13  
tCKmin(IDD)  
CL(IDD)  
1.25  
1.07  
ns  
8
8
9
9
10  
10  
38  
11  
11  
39  
10  
10  
42  
11  
11  
43  
12  
12  
44  
13  
13  
45  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
tRCDmin(IDD)  
tRCmin(IDD)  
tRASmin(IDD)  
tRPmin(IDD)  
36  
37  
28  
32  
8
9
10  
11  
10  
11  
12  
13  
x4/x8  
x16  
24  
32  
5
26  
33  
tFAW(IDD)  
tRRD(IDD)  
x4/x8  
x16  
5
6
6
tRFC(IDD) - 512Mb  
tRFC(IDD) - 1Gb  
tRFC(IDD) - 2Gb  
tRFC(IDD) - 4Gb  
tRFC(IDD) - 8Gb  
72  
88  
128  
240  
280  
85  
103  
150  
281  
328  
- 28 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
I
I
DDQ  
DD  
V
V
DDQ  
DD  
RESET  
CK/CK  
CKE  
CS  
RAS, CAS, WE  
DQS, DQS  
DQ, DM,  
TDQS, TDQS  
R
= 25 Ohm  
V
TT  
/2  
DDQ  
A, BA  
ODT  
ZQ  
V
V
SSQ  
SS  
[NOTE : DIMM level Output test load condition may be different from above]  
Figure 19. Measurement Setup and Test Load for IDD and IDDQ Measurements  
Application specific  
memory channel  
environment  
IDDQ  
Test Load  
Channel  
IO Power  
Simulation  
IDDQ  
Measurement  
IDDQ  
Simulation  
Correlation  
Correction  
Channel IO Power  
Number  
Figure 20. Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement.  
- 29 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
[ Table 32 ] Basic IDD and IDDQ Measurement Conditions  
Symbol  
Description  
Operating One Bank Active-Precharge Current  
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 30 on page 28 ; BL: 8 ; AL: 0; CS: High between ACT and PRE; Command, Address,  
Bank Address Inputs: partially toggling according to Table 32 on page 31 ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active  
1)  
IDD0  
IDD1  
2)  
at a time: 0,0,1,1,2,2,... (see Table 32); Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0; Pattern Details: see Table 32  
Operating One Bank Active-Read-Precharge Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 30 on page 28 ; BL: 8 ; AL: 0; CS: High between ACT, RD and PRE; Command,  
Address, Bank Address Inputs, Data IO: partially toggling according to Table 33 on page 32 ; DM:stable at 0; Bank Activity: Cycling with one bank active at  
1)  
2)  
a time: 0,0,1,1,2,2,... (see Table 33); Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0; Pattern Details: see Table 33  
Precharge Standby Current  
1)  
CKE: High; External clock: On; tCK, CL: see Table 30 on page 28 ; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially tog-  
IDD2N  
gling according to Table 34 on page 32 ; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode  
2)  
Registers ; ODT Signal: stable at 0; Pattern Details: see Table 34  
Precharge Standby ODT Current  
1)  
CKE: High; External clock: On; tCK, CL: see Table 30 on page 28 ; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially tog-  
IDD2NT  
IDDQ2NT  
IDD2P0  
gling according to Table 35 on page 33 ; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode  
2)  
Registers ; ODT Signal: toggling according to Table 35 ; Pattern Details: see Table 35  
Precharge Standby ODT IDDQ Current  
Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current  
Precharge Power-Down Current Slow Exit  
CKE: Low; External clock: On; tCK, CL: see Table 30 on page 28 ; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0;  
1)  
2)  
Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0; Pre-  
3)  
charge Power Down Mode: Slow Exi  
Precharge Power-Down Current Fast Exit  
CKE: Low; External clock: On; tCK, CL: see Table 30 on page 28; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0;  
1)  
IDD2P1  
IDD2Q  
IDD3N  
IDD3P  
2)  
Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0; Pre-  
3)  
charge Power Down Mode: Fast Exit  
Precharge Quiet Standby Current  
1)  
CKE: High; External clock: On; tCK, CL: see Table 30 on page 28 ; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0;  
Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0  
2)  
Active Standby Current  
1)  
CKE: High; External clock: On; tCK, CL: see Table 30 on page 28 ; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially tog-  
gling according to Table 34 on page 32 ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode  
2)  
Registers ; ODT Signal: stable at 0; Pattern Details: see Table 34  
Active Power-Down Current  
1)  
CKE: Low; External clock: On; tCK, CL: see Table 30 on page 28 ; BL: 8 ; AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0;  
Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0  
2)  
Operating Burst Read Current  
1)  
CKE: High; External clock: On; tCK, CL: see Table 30 on page 28 ; BL: 8 ; AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: par-  
IDD4R  
IDDQ4R  
IDD4W  
tially toggling according to Table 36 on page 33 ; Data IO: seamless read data burst with different data between one burst and the next one according to  
Table 36 ; DM:stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 7 on page 12); Output Buffer and  
2)  
RTT: Enabled in Mode Registers ; ODT Signal: stable at 0; Pattern Details: see Table 36  
Operating Burst Read IDDQ Current  
Same definition like for IDD4R, however measuring IDDQ current instead of IDD current  
Operating Burst Write Current  
1)  
CKE: High; External clock: On; tCK, CL: see Table 30 on page 28 ; BL: 8 ; AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: par-  
tially toggling according to Table 37 on page 34 ; Data IO: seamless write data burst with different data between one burst and the next one according to  
Table 37; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... (see Table 37); Output Buffer and RTT:  
2)  
Enabled in Mode Registers ; ODT Signal: stable at HIGH; Pattern Details: see Table 37  
Burst Refresh Current  
1)  
CKE: High; External clock: On; tCK, CL, nRFC: see Table 30 on page 28 ; BL: 8 ; AL: 0; CS: High between REF; Command, Address, Bank Address  
Inputs: partially toggling according to Table 38 on page 34 ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC (see Table 38);  
Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0; Pattern Details: see Table 38  
IDD5B  
IDD6  
2)  
Self Refresh Current: Normal Temperature Range  
4)  
e)  
TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled ; Self-Refresh Temperature Range (SRT): Normal ; CKE: Low; External clock: Off; CK and CK:  
1)  
LOW; CL: see Table 30 on page 28 ; BL: 8 ; AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Self-  
2)  
Refresh operation; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: FLOATING  
- 30 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
[ Table 32 ] Basic IDD and IDDQ Measurement Conditions  
Symbol  
Description  
Operating Bank Interleave Read Current  
1)  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 30 on page 28 ; BL: 8 ; AL: CL-1; CS: High between ACT and RDA;  
Command, Address, Bank Address Inputs: partially toggling according to Table 39 on page 35 ; Data IO: read data bursts with different data between one  
burst and the next one according to Table 39 ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing,  
IDD7  
IDD8  
2)  
see Table 39 ; Output Buffer and RTT: Enabled in Mode Registers ; ODT Signal: stable at 0; Pattern Details: see Table 39  
RESET Low Current  
RESET : Low; External clock : off; CK and CK : LOW; CKE : FLOATING ; CS, Command, Address, Bank Address, Data IO : FLOATING ; ODT Signal :  
FLOATING  
NOTE :  
1) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B  
2) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B  
3) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit  
4) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature  
5) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range  
6) Read Burst type : Nibble Sequential, set MR0 A[3]=0B  
- 31 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
[ Table 33 ] IDD0 Measurement - Loop Pattern1)  
0
0
1,2  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
3,4  
...  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
PRE  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
nRAS  
0
0
1
0
0
0
00  
0
0
0
0
-
...  
1*nRC + 0  
1*nRC + 1, 2  
1*nRC + 3, 4  
...  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
F
F
F
0
0
0
-
-
-
repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary  
PRE 00  
1*nRC + nRAS  
...  
0
0
1
0
0
0
0
0
F
0
repeat 1...4 until 2*nRC - 1, truncate if necessary  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
1
2
3
4
5
6
7
2*nRC  
4*nRC  
6*nRC  
8*nRC  
10*nRC  
12*nRC  
14*nRC  
NOTE :  
1. DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
2. DQ signals are MID-LEVEL.  
- 32 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
[ Table 34 ] IDD1 Measurement - Loop Pattern1)  
0
0
1,2  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
3,4  
...  
repeat pattern 1...4 until nRCD- 1, truncate if necessary  
RD  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
PRE  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
nRCD  
...  
0
1
0
1
0
0
00  
00  
0
0
0
0
0
0
0
0
00000000  
-
nRAS  
0
0
1
0
0
0
...  
1*nRC+0  
1*nRC + 1, 2  
1*nRC + 3, 4  
...  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
F
F
F
0
0
0
-
-
-
repeat pattern nRC + 1,..., 4 until nRC + nRCD - 1, truncate if necessary  
1*nRC + nRCD  
...  
RD  
repeat pattern nRC + 1,..., 4 until nRC +nRAS - 1, truncate if necessary  
PRE 00  
0
1
0
1
0
0
00  
0
0
F
F
0
0
00110011  
-
1*nRC + nRAS  
...  
0
0
1
0
0
0
0
0
repeat pattern nRC + 1,..., 4 until 2 * nRC - 1, truncate if necessary  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
1
2
3
4
5
6
7
2*nRC  
4*nRC  
6*nRC  
8*nRC  
10*nRC  
12*nRC  
14*nRC  
NOTE :  
1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.  
2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.  
[ Table 35 ] IDD2 and IDD3N Measurement - Loop Pattern1)  
0
0
D
D
D
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
-
-
-
-
1
2
3
1
2
3
4
5
6
7
4-7  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
8-11  
12-15  
16-19  
20-23  
24-27  
28-31  
NOTE :  
1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL.  
2. DQ signals are MID-LEVEL.  
- 33 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
[ Table 36 ] IDD2NT and IDDQ2NT Measurement - Loop Pattern1)  
0
0
D
D
D
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
-
1
2
3
1
2
3
4
5
6
7
4-7  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7  
8-11  
12-15  
16-19  
20-23  
24-27  
28-31  
NOTE :  
1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL.  
2. DQ signals are MID-LEVEL.  
[ Table 37 ] IDD4R and IDDQ4R Measurement - Loop Pattern1)  
0
0
RD  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
1
-
2,3  
D,D  
RD  
D
-
4
00110011  
5
-
-
6,7  
D,D  
1
2
3
4
5
6
7
8-15  
16-23  
24-31  
32-39  
40-47  
48-55  
56-63  
repeat Sub-Loop 0, but BA[2:0] = 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 0, but BA[2:0] = 3  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 0, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 0, but BA[2:0] = 7  
NOTE :  
1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.  
2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.  
- 34 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
[ Table 38 ] IDD4W Measurement - Loop Pattern1)  
0
0
WR  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
1
-
2,3  
D,D  
WR  
D
-
4
00110011  
5
-
-
6,7  
D,D  
1
2
3
4
5
6
7
8-15  
16-23  
24-31  
32-39  
40-47  
48-55  
56-63  
repeat Sub-Loop 0, but BA[2:0] = 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 0, but BA[2:0] = 3  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 0, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 0, but BA[2:0] = 7  
NOTE :  
1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.  
2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.  
[ Table 39 ] IDD5B Measurement - Loop Pattern1)  
0
1
0
1,2  
REF  
D
0
1
1
0
0
1
0
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
0
0
F
0
0
0
-
-
-
3,4  
D,D  
5...8  
repeat cycles 1...4, but BA[2:0] = 1  
repeat cycles 1...4, but BA[2:0] = 2  
repeat cycles 1...4, but BA[2:0] = 3  
repeat cycles 1...4, but BA[2:0] = 4  
repeat cycles 1...4, but BA[2:0] = 5  
repeat cycles 1...4, but BA[2:0] = 6  
repeat cycles 1...4, but BA[2:0] = 7  
9...12  
13...16  
17...20  
21...24  
25...28  
29...32  
33...nRFC - 1  
2
repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary.  
NOTE :  
1. DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
2. DQ signals are MID-LEVEL.  
- 35 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
[ Table 40 ] IDD7 Measurement - Loop Pattern1)  
0
1
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
00  
00  
00  
0
1
0
0
0
0
0
0
0
0
0
0
-
00000000  
-
0
1
2
...  
repeat above D Command until nRRD - 1  
nRRD  
nRRD + 1  
nRRD + 2  
...  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
00  
00  
00  
0
1
0
0
0
0
F
F
F
0
0
0
-
00110011  
-
repeat above D Command until 2*nRRD-1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 1, but BA[2:0] = 3  
2
3
2 * nRRD  
3 * nRRD  
D
1
0
0
0
0
3
00  
0
0
F
F
0
0
-
-
4
4 * nRRD  
Assert and repeat above D Command until nFAW - 1, if necessary  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 1, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 1, but BA[2:0] = 7  
5
6
7
8
nFAW  
nFAW+nRRD  
nFAW+2*nRRD  
nFAW+3*nRRD  
D
1
0
0
0
0
7
00  
0
0
9
nFAW+4*nRRD  
Assert and repeat above D Command until 2*nFAW - 1, if necessary  
2*nFAW+0  
2*nFAW+1  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
00  
00  
00  
0
1
0
0
0
0
F
F
F
0
0
0
-
00110011  
-
10  
2*nFAW+2  
Repeat above D Command until 2*nFAW + nRRD - 1  
2*nFAW+nRRD  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
00  
00  
00  
0
1
0
0
0
0
0
0
0
0
0
0
-
2*nFAW+nRRD+1  
00000000  
-
11  
2*nFAW+nRRD+2  
Repeat above D Command until 2*nFAW + 2*nRRD - 1  
repeat Sub-Loop 10, but BA[2:0] = 2  
repeat Sub-Loop 11, but BA[2:0] = 3  
12  
13  
2*nFAW+2*nRRD  
2*nFAW+3*nRRD  
D
1
0
0
0
0
3
00  
0
0
0
0
0
0
-
-
14  
2*nFAW+4*nRRD  
Assert and repeat above D Command until 3*nFAW - 1, if necessary  
repeat Sub-Loop 10, but BA[2:0] = 4  
repeat Sub-Loop 11, but BA[2:0] = 5  
repeat Sub-Loop 10, but BA[2:0] = 6  
repeat Sub-Loop 11, but BA[2:0] = 7  
15  
16  
17  
18  
3*nFAW  
3*nFAW+nRRD  
3*nFAW+2*nRRD  
3*nFAW+3*nRRD  
D
1
0
0
0
0
7
00  
0
0
19  
3*nFAW+4*nRRD  
Assert and repeat above D Command until 4*nFAW - 1, if necessary  
NOTE :  
1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.  
2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation. DQ signals are MID-LEVEL.  
- 36 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
11. 2Gb DDR3 SDRAM D-die IDD Specification Table  
[ Table 41 ] IDD Specification for 2Gb DDR3 D-die  
512Mx4 (K4B2G0446D)  
Symbol  
DDR3-1066  
DDR3-1333  
DDR3-1600  
DDR3-1866  
Unit  
NOTE  
7-7-7  
35  
45  
12  
15  
17  
20  
40  
17  
17  
30  
50  
35  
60  
110  
12  
105  
12  
9-9-9  
40  
50  
12  
15  
20  
25  
40  
20  
17  
35  
60  
35  
70  
115  
12  
125  
12  
11-11-11  
45  
13-13-13  
50  
IDD0  
IDD1  
IDD2P0(slow exit)  
IDD2P1(fast exit)  
IDD2N  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
55  
12  
15  
20  
25  
40  
20  
20  
35  
70  
35  
85  
120  
12  
130  
12  
60  
12  
17  
20  
25  
40  
20  
20  
37  
90  
35  
95  
120  
12  
135  
12  
IDD2NT  
IDDQ2NT  
IDD2Q  
IDD3P  
IDD3N  
IDD4R  
IDDQ4R  
IDD4W  
IDD5B  
IDD6  
IDD7  
IDD8  
256Mx8 (K4B2G0846D)  
Symbol  
DDR3-1066  
DDR3-1333  
DDR3-1600  
DDR3-1866  
Unit  
NOTE  
7-7-7  
35  
45  
12  
15  
17  
20  
70  
17  
17  
30  
65  
50  
70  
110  
12  
105  
12  
9-9-9  
40  
50  
12  
15  
20  
25  
70  
20  
17  
35  
75  
50  
80  
115  
12  
135  
12  
11-11-11  
45  
13-13-13  
50  
IDD0  
IDD1  
IDD2P0(slow exit)  
IDD2P1(fast exit)  
IDD2N  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
55  
12  
15  
20  
25  
70  
20  
20  
35  
90  
50  
95  
120  
12  
140  
12  
60  
12  
17  
20  
25  
70  
20  
20  
37  
100  
50  
110  
120  
12  
145  
12  
IDD2NT  
IDDQ2NT  
IDD2Q  
IDD3P  
IDD3N  
IDD4R  
IDDQ4R  
IDD4W  
IDD5B  
IDD6  
IDD7  
IDD8  
- 37 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
12. Input/Output Capacitance  
[ Table 42 ] Input/Output Capacitance  
DDR3-1066  
Min Max  
DDR3-1333  
Min Max  
DDR3-1600  
Min Max  
DDR3-1866  
Parameter  
Symbol  
Units NOTE  
Min  
Max  
Input/output capacitance  
(DQ, DM, DQS, DQS, TDQS, TDQS)  
CIO  
CCK  
1.5 2.7  
1.5 2.5  
1.5 2.3  
1.4  
0.8  
0
2.2  
pF  
pF  
pF  
pF  
pF  
pF  
1,2,3  
2,3  
Input capacitance  
(CK and CK)  
0.8  
0
1.6  
0.15  
1.5  
0.2  
0.3  
0.8  
0
1.4  
0.15  
1.3  
0.8  
0
1.4  
0.15  
1.3  
1.3  
0.15  
0.15  
1.2  
Input capacitance delta  
(CK and CK)  
CDCK  
2,3,4  
2,3,6  
2,3,5  
2,3,7,8  
Input capacitance  
(All other input-only pins)  
CI  
0.75  
0
0.75  
0
0.75  
0
0
Input capacitance delta  
(DQS and DQS)  
CDDQS  
CDI_CTRL  
CDI_ADD_CMD  
0.15  
0.2  
0.15  
0.2  
0.75  
-0.4  
-0.4  
Input capacitance delta  
(All control input-only pins)  
-0.5  
-0.5  
-0.4  
-0.4  
-0.4  
-0.4  
0.2  
Input capacitance delta  
(all ADD and CMD input-only pins)  
0.5  
0.4  
0.4  
0.4  
pF 2,3,9,10  
Input/output capacitance delta  
(DQ, DM, DQS, DQS, TDQS, TDQS)  
CDIO  
CZQ  
-0.5  
-
0.3  
3
-0.5  
-
0.3  
3
-0.5  
-
0.3  
3
-0.5  
-
0.3  
3
pF  
2,3,11  
Input/output capacitance of ZQ pin  
pF 2, 3, 12  
NOTE :  
1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS  
2. This parameter is not subject to production test. It is verified by design and characterization.  
The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER( VNA)") with  
V
, V  
, V , V  
applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary). V =V  
=1.5V, V  
=V /2 and on-die  
BIAS DD  
DD  
DDQ  
SS  
SSQ  
DD  
DDQ  
termination off.  
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here  
4. Absolute value of CCK-CCK  
5. Absolute value of CIO(DQS)-CIO(DQS)  
6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE.  
7. CDI_CTRL applies to ODT, CS and CKE  
8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK))  
9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE  
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK))  
11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS))  
12. Maximum external load capacitance on ZQ pin: 5pF  
- 38 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
13. Electrical Characteristics and AC timing for DDR3-1066 to DDR3-1866  
13.1 Clock Specification  
The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result in malfunction of the DDR3  
SDRAM device.  
13.1.1 Definition for tCK(avg)  
tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to  
rising edge.  
N
tCKj  
N=200  
N
j=1  
13.1.2 Definition for tCK(abs)  
tCK(abs) is defined as the absolute clock period, as measured from one rising edge to the next consecutive rising edge. tCK(abs) is not subject to produc-  
tion test.  
13.1.3 Definition for tCH(avg) and tCL(avg)  
tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses:  
tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses:  
N
N
tCHj  
tCLj  
N x tCK(avg) N=200  
N x tCK(avg)  
N=200  
j=1  
j=1  
13.1.4 Definition for note for tJIT(per), tJIT(per, Ick)  
tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg). tJIT(per) = min/max of {tCKi-tCK(avg) where i=1 to 200}  
tJIT(per) defines the single period jitter when the DLL is already locked.  
tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only.  
tJIT(per) and tJIT(per,lck) are not subject to production test.  
13.1.5 Definition for tJIT(cc), tJIT(cc, Ick)  
tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock cycles: tJIT(cc) = Max of {tCKi+1-tCKi}  
tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked.  
tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only.  
tJIT(cc) and tJIT(cc,lck) are not subject to production test.  
13.1.6 Definition for tERR(nper)  
tERR is defined as the cumulative error across n multiple consecutive cycles from tCK(avg). tERR is not subject to production test.  
- 39 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
13.2 Refresh Parameters by Device Density  
[ Table 43 ] Refresh parameters by device density  
Parameter  
All Bank Refresh to active/refresh cmd time  
Symbol  
tRFC  
1Gb  
110  
7.8  
2Gb  
160  
7.8  
4Gb  
300  
7.8  
8Gb  
350  
7.8  
Units  
ns  
NOTE  
0 °C TCASE 85°C  
µs  
Average periodic refresh interval  
tREFI  
85 °C < TCASE 95°C  
3.9  
3.9  
3.9  
3.9  
µs  
1
NOTE :  
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in  
this material.  
13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin  
DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.  
[ Table 44 ] DR3-1066 Speed Bins  
Speed  
CL-nRCD-nRP  
DDR3-1066  
7 - 7 - 7  
Units  
NOTE  
Parameter  
Symbol  
tAA  
min  
max  
20  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
13.125  
13.125  
13.125  
50.625  
37.5  
ns  
ns  
ns  
ns  
ns  
tRCD  
tRP  
-
-
ACT to ACT or REF command period  
ACT to PRE command period  
tRC  
-
tRAS  
9*tREFI  
1,2,3,4,5,10,  
11  
CWL = 5  
tCK(AVG)  
3.0  
3.3  
3.3  
ns  
CL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
Reserved  
ns  
ns  
4
1,2,3,5  
1,2,3,4  
4
2.5  
CL = 6  
CL = 7  
CL = 8  
Reserved  
Reserved  
ns  
ns  
1.875  
1.875  
<2.5  
<2.5  
ns  
1,2,3,4,9  
4
Reserved  
ns  
ns  
1,2,3  
Supported CL Settings  
Supported CWL Settings  
5,6,7,8  
5,6  
nCK  
nCK  
- 40 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
[ Table 45 ] DDR3-1333 Speed Bins  
Speed  
DDR3-1333  
CL-nRCD-nRP  
9 -9 - 9  
Units  
NOTE  
Parameter  
Symbol  
min  
max  
13.5  
Internal read command to first data  
tAA  
20  
ns  
ns  
ns  
(13.125)9  
13.5  
ACT to internal read or write delay time  
PRE command period  
tRCD  
tRP  
-
-
(13.125)9  
13.5  
(13.125)9  
49.5  
ACT to ACT or REF command period  
ACT to PRE command period  
tRC  
tRAS  
-
ns  
ns  
ns  
(49.125)9  
36  
9*tREFI  
3.3  
1,2,3,4,6,10,  
11  
CWL = 5  
tCK(AVG)  
3.0  
CL = 5  
CL = 6  
CWL = 6,7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5,6  
CWL = 7  
CWL = 5,6  
CWL = 7  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
Reserved  
ns  
ns  
4
1,2,3,6  
1,2,3,4,6  
4
2.5  
3.3  
Reserved  
Reserved  
Reserved  
ns  
ns  
ns  
4
CL = 7  
CL = 8  
1.875  
1.875  
<2.5  
<2.5  
ns  
1,2,3,4,6  
1,2,3,4  
4
Reserved  
Reserved  
ns  
ns  
ns  
1,2,3,6  
1,2,3,4  
4
Reserved  
Reserved  
ns  
ns  
CL = 9  
1.5  
1.5  
<1.875  
<1.875  
ns  
1,2,3,4,9  
4
Reserved  
ns  
CL = 10  
ns  
1,2,3  
Supported CL Settings  
Supported CWL Settings  
5,6,7,8,9  
5,6,7  
nCK  
nCK  
- 41 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
[ Table 46 ] DDR3-1600 Speed Bins  
Speed  
DDR3-1600  
CL-nRCD-nRP  
11-11-11  
Units  
NOTE  
Parameter  
Symbol  
min  
max  
13.75  
Internal read command to first data  
tAA  
20  
ns  
ns  
ns  
(13.125)9  
13.75  
ACT to internal read or write delay time  
PRE command period  
tRCD  
tRP  
-
-
(13.125)9  
13.75  
(13.125)9  
48.75  
ACT to ACT or REF command period  
ACT to PRE command period  
tRC  
tRAS  
-
ns  
ns  
ns  
(48.125)9  
35  
9*tREFI  
3.3  
1,2,3,4,7,10,  
11  
CWL = 5  
tCK(AVG)  
3.0  
CL = 5  
CL = 6  
CWL = 6,7,8  
CWL = 5  
CWL = 6  
CWL = 7, 8  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 8  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 8  
CWL = 5,6  
CWL = 7  
CWL = 8  
CWL = 5,6  
CWL = 7  
CWL = 8  
CWL = 5,6,7  
CWL = 8  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
Reserved  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
nCK  
nCK  
4
1,2,3,7  
1,2,3,4,7  
4
2.5  
3.3  
Reserved  
Reserved  
Reserved  
4
1.875  
1.875  
<2.5  
<2.5  
1,2,3,4,7  
1,2,3,4,7  
4
CL = 7  
Reserved  
Reserved  
Reserved  
4
1,2,3,7  
1,2,3,4,7  
1,2,3,4  
4
CL = 8  
CL = 9  
Reserved  
Reserved  
Reserved  
1.5  
1.5  
<1.875  
<1.875  
<1.5  
1,2,3,4,7  
1,2,3,4  
4
Reserved  
Reserved  
CL = 10  
CL = 11  
1,2,3,7  
1,2,3,4  
4
Reserved  
Reserved  
1.25  
1,2,3,9  
Supported CL Settings  
Supported CWL Settings  
5,6,7,8,9,10,11  
5,6,7,8  
- 42 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
[ Table 47 ] DDR3-1866 Speed Bins  
Speed  
DDR3-1866  
CL-nRCD-nRP  
13-13-13  
Units  
NOTE  
Parameter  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
Symbol  
tAA  
min  
13.91  
13.91  
13.91  
47.91  
34  
max  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRCD  
-
tRP  
-
ACT to ACT or REF command period  
ACT to PRE command period  
tRC  
-
tRAS  
9*tREFI  
CWL = 5  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
Reserved  
Reserved  
1,2,3,4,8  
CL = 5  
CWL = 6,7,8,9  
CWL = 5  
4
2.5  
1.875  
1.5  
3.3  
1,2,3,8  
CL = 6  
CWL = 6  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1,2,3,4,8  
CWL = 7,8,9  
CWL = 5  
4
4
CL = 7  
CL = 8  
CWL = 6  
1,2,3,4,8  
CWL = 7,8,9  
CWL = 5  
4
4
CWL = 6  
<2.5  
1,2,3,8  
CWL = 7  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1,2,3,4,8  
CWL = 8,9  
CWL = 5,6  
CWL = 7,8  
CWL = 9  
4
4
1,2,3,4,8  
4
CL = 9  
CWL = 5,6  
CWL = 7  
ns  
ns  
4
CL = 10  
CL = 11  
<1.875  
1,2,3,8  
1,2,3,4,8  
4
CWL = 8  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
ns  
CWL = 5,6,7  
CWL = 8  
ns  
ns  
1,2,3,4,8  
1,2,3,4  
4
CWL = 9  
ns  
CWL = 5,6,7,8  
CWL = 9  
ns  
CL = 12  
CL = 13  
ns  
1,2,3,4  
4
CWL = 5,6,7,8  
CWL = 9  
ns  
1.07  
<1.25  
ns  
1,2,3,9  
Supported CL Settings  
Supported CWL Settings  
6,8,10,13  
5,6,7,8,9  
nCK  
nCK  
- 43 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
13.3.1 Speed Bin Table Notes  
Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V);  
NOTE :  
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements  
from CL setting as well as requirements from CWL setting.  
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guar-  
anteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns],  
rounding up to the next "Supported CL".  
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or  
1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.  
4. "Reserved" settings are not allowed. User must program a different value.  
5. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/  
Characterization.  
6. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/  
Characterization.  
7. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/  
Characterization.  
8. Any DDR3-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/  
Characterization.  
9. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to match. For example,  
DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte  
20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte  
18), and tRPmin (Byte 20). DDR3-1866(CL13) devices supporting downshift to DDR3-1600(CL11) or DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in  
SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be pro-  
grammed accordingly. For example, 49.125ns (tRASmin + tRPmin=36ns+13.125ns) for DDR3-1333(CL9) and 48.125ns (tRASmin+tRPmin=35ns+13.125ns) for DDR3-  
1600(CL11).  
10. DDR3 800 AC timing apply if DRAM operates at lower than 800 MT/s data rate.  
11. For CL5 support, refer to DIMM SPD information. DRAM is required to support CL5. CL5 is not mandatory in SPD coding.  
- 44 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
14. Timing Parameters by Speed Grade  
[ Table 48 ] Timing Parameters by Speed Bins for DDR3-1066, DDR3-1333  
Speed  
DDR3-1066  
DDR3-1333  
Units  
NOTE  
Parameter  
Symbol  
MIN  
MAX  
MIN  
MAX  
Clock Timing  
Minimum Clock Cycle Time (DLL off mode)  
Average Clock Period  
tCK(DLL_OFF)  
tCK(avg)  
8
-
8
-
ns  
ps  
6
See Speed Bins Table  
tCK(avg)max +  
tJIT(per)max  
tCK(avg)max +  
tJIT(per)max  
tCK(avg)min + tJIT(per)min  
tCK(avg)min + tJIT(per)min  
Clock Period  
tCK(abs)  
ps  
Average high pulse width  
tCH(avg)  
tCL(avg)  
0.47  
0.47  
-90  
0.53  
0.53  
90  
0.47  
0.47  
-80  
0.53  
0.53  
80  
tCK(avg)  
Average low pulse width  
tCK(avg)  
ps  
Clock Period Jitter  
tJIT(per)  
Clock Period Jitter during DLL locking period  
Cycle to Cycle Period Jitter  
tJIT(per, lck)  
tJIT(cc)  
-80  
80  
-70  
70  
ps  
180  
160  
160  
140  
ps  
Cycle to Cycle Period Jitter during DLL locking period  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
Cumulative error across 6 cycles  
Cumulative error across 7 cycles  
Cumulative error across 8 cycles  
Cumulative error across 9 cycles  
Cumulative error across 10 cycles  
Cumulative error across 11 cycles  
Cumulative error across 12 cycles  
tJIT(cc, lck)  
tERR(2per)  
tERR(3per)  
tERR(4per)  
tERR(5per)  
tERR(6per)  
tERR(7per)  
tERR(8per)  
tERR(9per)  
tERR(10per)  
tERR(11per)  
tERR(12per)  
ps  
- 132  
- 157  
- 175  
- 188  
- 200  
- 209  
- 217  
- 224  
- 231  
- 237  
- 242  
132  
157  
175  
188  
200  
209  
217  
224  
231  
237  
242  
- 118  
- 140  
- 155  
- 168  
- 177  
- 186  
- 193  
- 200  
- 205  
- 210  
- 215  
118  
140  
155  
168  
177  
186  
193  
200  
205  
210  
215  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min  
tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max  
Cumulative error across n = 13, 14 ... 49, 50 cycles  
tERR(nper)  
ps  
24  
Absolute clock HIGH pulse width  
Absolute clock Low pulse width  
Data Timing  
tCH(abs)  
tCL(abs)  
0.43  
0.43  
-
-
0.43  
0.43  
-
-
tCK(avg)  
tCK(avg)  
25  
26  
DQS,DQS to DQ skew, per group, per access  
DQ output hold time from DQS, DQS  
DQ low-impedance time from CK, CK  
DQ high-impedance time from CK, CK  
tDQSQ  
tQH  
-
150  
-
-
125  
-
ps  
tCK(avg)  
ps  
13  
0.38  
-600  
-
0.38  
-500  
-
13, g  
tLZ(DQ)  
tHZ(DQ)  
300  
300  
250  
250  
13,14, f  
13,14, f  
ps  
tDS(base)  
AC175  
25  
75  
-
-
-
ps  
ps  
d, 17  
d, 17  
-
-
Data setup time to DQS, DQS referenced  
to V (AC)V (AC) levels  
IH  
IL  
tDS(base)  
AC150  
30  
Data hold time to DQS, DQS referenced  
to V (AC)V (AC) levels  
tDH(base)  
DC100  
100  
490  
65  
-
ps  
ps  
d, 17  
28  
-
-
IH  
IL  
DQ and DM Input pulse width for each input  
Data Strobe Timing  
tDIPW  
400  
-
DQS, DQS differential READ Preamble  
tRPRE  
tRPST  
tQSH  
0.9  
0.3  
NOTE 19  
0.9  
0.3  
NOTE 19  
tCK  
tCK  
13, 19, g  
11, 13, b  
13, g  
DQS, DQS differential READ Postamble  
NOTE 11  
NOTE 11  
DQS, DQS differential output high time  
0.38  
0.38  
0.9  
-
-
0.4  
-
-
tCK(avg)  
tCK(avg)  
tCK  
DQS, DQS differential output low time  
tQSL  
0.4  
13, g  
DQS, DQS differential WRITE Preamble  
tWPRE  
tWPST  
tDQSCK  
tLZ(DQS)  
tHZ(DQS)  
tDQSL  
tDQSH  
tDQSS  
tDSS  
-
0.9  
-
DQS, DQS differential WRITE Postamble  
DQS, DQS rising edge output access time from rising CK, CK  
DQS, DQS low-impedance time (Referenced from RL-1)  
DQS, DQS high-impedance time (Referenced from RL+BL/2)  
DQS, DQS differential input low pulse width  
DQS, DQS differential input high pulse width  
DQS, DQS rising edge to CK, CK rising edge  
DQS,DQS falling edge setup time to CK, CK rising edge  
DQS,DQS falling edge hold time to CK, CK rising edge  
0.3  
-
0.3  
-
tCK  
-300  
-600  
-
300  
300  
300  
0.55  
0.55  
0.25  
-
-255  
-500  
-
255  
250  
250  
0.55  
0.55  
0.25  
-
ps  
13,f  
13,14,f  
12,13,14  
29, 31  
30, 31  
c
ps  
ps  
0.45  
0.45  
-0.25  
0.2  
0.45  
0.45  
-0.25  
0.2  
tCK  
tCK  
tCK(avg)  
tCK(avg)  
tCK(avg)  
c, 32  
tDSH  
0.2  
-
0.2  
-
c, 32  
- 45 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
[ Table 48 ] Timing Parameters by Speed Bins for DDR3-1066, DDR3-1333 (Cont.)  
Speed  
Parameter  
Command and Address Timing  
DLL locking time  
DDR3-1066  
DDR3-1333  
Units  
NOTE  
Symbol  
MIN  
MAX  
MIN  
MAX  
tDLLK  
tRTP  
512  
-
-
512  
-
-
nCK  
max  
max  
internal READ Command to PRECHARGE Command delay  
e
(4nCK,7.5ns)  
(4nCK,7.5ns)  
Delay from start of internal write transaction to internal read com-  
mand  
max  
max  
tWTR  
-
-
e,18  
e
(4nCK,7.5ns)  
(4nCK,7.5ns)  
WRITE recovery time  
tWR  
15  
4
-
-
15  
4
-
-
ns  
Mode Register Set command cycle time  
tMRD  
nCK  
max  
max  
Mode Register Set command update delay  
CAS# to CAS# command delay  
tMOD  
tCCD  
-
-
-
-
(12nCK,15ns)  
(12nCK,15ns)  
4
4
nCK  
nCK  
WR + roundup (tRP /  
tCK(AVG))  
Auto precharge write recovery + precharge time  
tDAL(min)  
Multi-Purpose Register Recovery Time  
tMPRR  
tRAS  
1
-
1
-
nCK  
ns  
22  
e
ACTIVE to PRECHARGE command period  
See “Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin” on page 42  
max  
max  
ACTIVE to ACTIVE command period for 1KB page size  
ACTIVE to ACTIVE command period for 2KB page size  
tRRD  
tRRD  
-
-
-
-
e
e
(4nCK,7.5ns)  
(4nCK,6ns)  
max  
max  
(4nCK,10ns)  
(4nCK,7.5ns)  
Four activate window for 1KB page size  
Four activate window for 2KB page size  
tFAW  
tFAW  
37.5  
50  
-
-
30  
45  
-
-
ns  
ns  
e
e
tIS(base)  
AC175  
125  
65  
-
-
ps  
ps  
b,16  
-
-
Command and Address setup time to CK, CK referenced to  
IH  
V
(AC) / V (AC) levels  
IL  
tIS(base)  
AC150  
125 + 150  
65+125  
b,16,27  
Command and Address hold time from CK, CK referenced to  
(AC) / V (AC) levels  
tIH(base)  
DC100  
200  
780  
140  
620  
-
-
ps  
ps  
b,16  
28  
-
-
V
IH  
IL  
Control & Address Input pulse width for each input  
Calibration Timing  
tIPW  
Power-up and RESET calibration time  
Normal operation Full calibration time  
Normal operation short calibration time  
Reset Timing  
tZQinitI  
tZQoper  
tZQCS  
512  
256  
64  
-
-
-
512  
256  
64  
-
-
-
nCK  
nCK  
nCK  
23  
max(5nCK, tRFC +  
10ns)  
max(5nCK, tRFC +  
10ns)  
Exit Reset from CKE HIGH to a valid command  
Self Refresh Timing  
tXPR  
-
-
max(5nCK,tRFC +  
10ns)  
max(5nCK,tRFC +  
10ns)  
Exit Self Refresh to commands not requiring a locked DLL  
tXS  
-
-
Exit Self Refresh to commands requiring a locked DLL  
Minimum CKE low width for Self refresh entry to exit timing  
tXSDLL  
tCKESR  
tDLLK(min)  
-
-
tDLLK(min)  
-
-
nCK  
tCKE(min) + 1tCK  
tCKE(min) + 1tCK  
Valid Clock Requirement after Self Refresh Entry (SRE) or Power-  
Down Entry (PDE)  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
tCKSRE  
tCKSRX  
-
-
-
-
Valid Clock Requirement before Self Refresh Exit (SRX) or Power-  
Down Exit (PDX) or Reset Exit  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
- 46 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
[ Table 48 ] Timing Parameters by Speed Bins for DDR3-1066, DDR3-1333 (Cont.)  
Speed  
DDR3-1066  
DDR3-1333  
Units  
NOTE  
Parameter  
Symbol  
MIN  
MAX  
MIN  
MAX  
Power Down Timing  
Exit Power Down with DLL on to any valid command;Exit Pre-  
charge Power Down with DLL  
max  
max  
tXP  
tXPDLL  
tCKE  
(3nCK,  
7.5ns)  
-
-
-
-
-
-
(3nCK,6ns)  
frozen to commands not requiring a locked DLL  
max  
(10nCK,  
24ns)  
max  
(10nCK,  
24ns)  
Exit Precharge Power Down with DLL frozen to commands re-  
quiring a locked DLL  
2
max  
max  
CKE minimum pulse width  
(3nCK,  
5.625ns)  
(3nCK,  
5.625ns)  
Command pass disable delay  
tCPDED  
tPD  
1
-
1
-
nCK  
tCK  
Power Down Entry to Exit Timing  
tCKE(min)  
9*tREFI  
tCKE(min)  
9*tREFI  
15  
20  
20  
Timing of ACT command to Power Down entry  
Timing of PRE command to Power Down entry  
Timing of RD/RDA command to Power Down entry  
tACTPDEN  
tPRPDEN  
tRDPDEN  
1
1
-
-
-
1
1
-
-
-
nCK  
nCK  
RL + 4 +1  
RL + 4 +1  
Timing of WR command to Power Down entry  
(BL8OTF, BL8MRS, BL4OTF)  
WL + 4 +(tWR/  
tCK(avg))  
WL + 4 +(tWR/  
tCK(avg))  
tWRPDEN  
tWRAPDEN  
tWRPDEN  
tWRAPDEN  
-
-
-
-
-
-
-
-
nCK  
nCK  
nCK  
nCK  
9
10  
9
Timing of WRA command to Power Down entry  
(BL8OTF, BL8MRS, BL4OTF)  
WL + 4 +WR +1  
WL + 4 +WR +1  
Timing of WR command to Power Down entry  
(BL4MRS)  
WL + 2 +(tWR/  
tCK(avg))  
WL + 2 +(tWR/  
tCK(avg))  
Timing of WRA command to Power Down entry  
(BL4MRS)  
WL +2 +WR +1  
WL +2 +WR +1  
10  
Timing of REF command to Power Down entry  
Timing of MRS command to Power Down entry  
ODT Timing  
tREFPDEN  
tMRSPDEN  
1
-
-
1
-
-
20,21  
tMOD(min)  
tMOD(min)  
ODT high time without write command or with write command  
and BC4  
ODTH4  
ODTH8  
tAONPD  
4
6
2
-
-
4
6
2
-
-
nCK  
nCK  
ns  
ODT high time with Write command and BL8  
Asynchronous RTT turn-on delay (Power-Down with DLL fro-  
zen)  
8.5  
8.5  
Asynchronous RTT turn-off delay (Power-Down with DLL fro-  
zen)  
tAOFPD  
2
8.5  
2
8.5  
ns  
RTT turn-on  
tAON  
tAOF  
tADC  
-300  
0.3  
300  
0.7  
0.7  
-250  
0.3  
250  
0.7  
0.7  
ps  
7,f  
8,f  
f
RTT_NOM and RTT_WR turn-off time from ODTLoff reference  
RTT dynamic change skew  
tCK(avg)  
tCK(avg)  
0.3  
0.3  
Write Leveling Timing  
First DQS pulse rising edge after tDQSS margining mode is pro-  
grammed  
tWLMRD  
tWLDQSEN  
tWLS  
40  
25  
-
-
-
40  
25  
-
-
-
tCK  
tCK  
ps  
3
3
DQS/DQS delay after tDQS margining mode is programmed  
Write leveling setup time from rising CK, CK crossing to rising  
DQS, DQS crossing  
245  
195  
Write leveling hold time from rising DQS, DQS crossing to rising  
CK, CK crossing  
tWLH  
245  
-
195  
-
ps  
Write leveling output delay  
Write leveling output error  
tWLO  
0
0
9
2
0
0
9
2
ns  
ns  
tWLOE  
- 47 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
[ Table 49 ] Timing Parameters by Speed Bins for DDR3-1600, DDR3-1866  
Speed  
DDR3-1600  
DDR3-1866  
Units  
NOTE  
Parameter  
Symbol  
MIN  
MAX  
MIN  
MAX  
Clock Timing  
Minimum Clock Cycle Time (DLL off mode)  
Average Clock Period  
tCK(DLL_OFF)  
tCK(avg)  
8
-
8
-
ns  
ps  
6
See Speed Bins Table  
tCK(avg)max +  
tJIT(per)max  
tCK(avg)min +  
tJIT(per)min  
tCK(avg)max +  
tJIT(per)max  
tCK(avg)min + tJIT(per)min  
Clock Period  
tCK(abs)  
ps  
Average high pulse width  
tCH(avg)  
tCL(avg)  
0.47  
0.47  
-70  
0.53  
0.53  
70  
0.47  
0.47  
-60  
0.53  
0.53  
60  
tCK(avg)  
Average low pulse width  
tCK(avg)  
ps  
Clock Period Jitter  
tJIT(per)  
Clock Period Jitter during DLL locking period  
Cycle to Cycle Period Jitter  
tJIT(per, lck)  
tJIT(cc)  
-60  
60  
-50  
50  
ps  
140  
120  
120  
100  
ps  
Cycle to Cycle Period Jitter during DLL locking period  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
Cumulative error across 6 cycles  
Cumulative error across 7 cycles  
Cumulative error across 8 cycles  
Cumulative error across 9 cycles  
Cumulative error across 10 cycles  
Cumulative error across 11 cycles  
Cumulative error across 12 cycles  
tJIT(cc, lck)  
tERR(2per)  
tERR(3per)  
tERR(4per)  
tERR(5per)  
tERR(6per)  
tERR(7per)  
tERR(8per)  
tERR(9per)  
tERR(10per)  
tERR(11per)  
tERR(12per)  
ps  
-103  
-122  
-136  
-147  
-155  
-163  
-169  
-175  
-180  
-184  
-188  
103  
122  
136  
147  
155  
163  
169  
175  
180  
184  
188  
-88  
88  
ps  
-105  
-117  
-126  
-133  
-139  
-145  
-150  
-154  
-158  
-161  
105  
117  
126  
133  
139  
145  
150  
154  
158  
161  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min  
tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max  
Cumulative error across n = 13, 14 ... 49, 50 cycles  
tERR(nper)  
ps  
24  
Absolute clock HIGH pulse width  
Absolute clock Low pulse width  
Data Timing  
tCH(abs)  
tCL(abs)  
0.43  
0.43  
-
-
0.43  
0.43  
-
-
tCK(avg)  
tCK(avg)  
25  
26  
DQS,DQS to DQ skew, per group, per access  
DQ output hold time from DQS, DQS  
DQ low-impedance time from CK, CK  
DQ high-impedance time from CK, CK  
tDQSQ  
tQH  
-
100  
-
-
85  
-
ps  
tCK(avg)  
ps  
13  
0.38  
-450  
-
0.38  
-390  
-
13, g  
tLZ(DQ)  
tHZ(DQ)  
225  
225  
195  
195  
13,14, f  
13,14, f  
ps  
tDS(base)  
AC150  
-
-
-
TBD  
TBD  
ps  
ps  
d, 17  
d, 17  
-
-
Data setup time to DQS, DQS referenced to V (AC)V (AC) lev-  
IH  
IL  
els  
tDS(base)  
AC125  
10  
tDH(base)  
DC100  
Data hold time to DQS, DQS referenced to V (AC)V (AC) levels  
45  
-
TBD  
320  
ps  
ps  
d, 17  
28  
-
-
IH  
IL  
DQ and DM Input pulse width for each input  
Data Strobe Timing  
tDIPW  
360  
-
DQS, DQS differential READ Preamble  
DQS, DQS differential READ Postamble  
DQS, DQS differential output high time  
DQS, DQS differential output low time  
DQS, DQS differential WRITE Preamble  
DQS, DQS differential WRITE Postamble  
tRPRE  
tRPST  
tQSH  
0.9  
0.3  
NOTE 19  
0.9  
0.3  
NOTE 19  
tCK  
tCK  
13, 19, g  
11, 13, b  
13, g  
NOTE 11  
NOTE 11  
0.4  
-
0.4  
-
-
tCK(avg)  
tCK(avg)  
tCK  
tQSL  
0.4  
-
-
0.4  
13, g  
tWPRE  
tWPST  
tDQSCK  
tLZ(DQS)  
tHZ(DQS)  
tDQSL  
tDQSH  
tDQSS  
tDSS  
0.9  
0.9  
-
0.3  
-
0.3  
-
tCK  
DQS, DQS rising edge output access time from rising CK, CK  
DQS, DQS low-impedance time (Referenced from RL-1)  
DQS, DQS high-impedance time (Referenced from RL+BL/2)  
DQS, DQS differential input low pulse width  
-225  
-450  
-
225  
-195  
-390  
-
195  
195  
195  
0.55  
0.55  
0.27  
-
ps  
13,f  
13,14,f  
12,13,14  
29, 31  
30, 31  
c
225  
ps  
225  
ps  
0.45  
0.45  
-0.27  
0.9  
0.55  
0.55  
0.27  
NOTE 19  
NOTE 11  
0.45  
0.45  
-0.27  
0.18  
0.18  
tCK  
DQS, DQS differential input high pulse width  
tCK  
DQS, DQS rising edge to CK, CK rising edge  
tCK(avg)  
tCK(avg)  
tCK(avg)  
DQS,DQS falling edge setup time to CK, CK rising edge  
DQS,DQS falling edge hold time to CK, CK rising edge  
c, 32  
tDSH  
0.3  
-
c, 32  
- 48 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
[ Table 49 ] Timing Parameters by Speed Bins for DDR3-1600, DDR3-1866 (Cont.)  
Speed  
Parameter  
Command and Address Timing  
DLL locking time  
DDR3-1600  
DDR3-1866  
Units  
NOTE  
Symbol  
MIN  
MAX  
MIN  
MAX  
tDLLK  
tRTP  
512  
-
-
512  
-
-
nCK  
max  
max  
internal READ Command to PRECHARGE Command delay  
e
(4nCK,7.5ns)  
(4nCK,7.5ns)  
Delay from start of internal write transaction to internal read com-  
mand  
max  
max  
tWTR  
-
-
e,18  
e
(4nCK,7.5ns)  
(4nCK,7.5ns)  
WRITE recovery time  
tWR  
15  
4
-
-
15  
4
-
-
ns  
Mode Register Set command cycle time  
tMRD  
nCK  
max  
max  
Mode Register Set command update delay  
CAS# to CAS# command delay  
tMOD  
tCCD  
-
-
-
-
(12nCK,15ns)  
(12nCK,15ns)  
4
4
nCK  
nCK  
WR + roundup (tRP /  
tCK(AVG))  
Auto precharge write recovery + precharge time  
tDAL(min)  
Multi-Purpose Register Recovery Time  
tMPRR  
tRAS  
1
-
1
-
nCK  
ns  
22  
e
ACTIVE to PRECHARGE command period  
See “Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin” on page 42  
max  
max  
ACTIVE to ACTIVE command period for 1KB page size  
ACTIVE to ACTIVE command period for 2KB page size  
tRRD  
tRRD  
-
-
-
-
e
e
(4nCK,6ns)  
(4nCK, 5ns)  
max  
max  
(4nCK,7.5ns)  
(4nCK, 6ns)  
Four activate window for 1KB page size  
Four activate window for 2KB page size  
tFAW  
tFAW  
30  
40  
-
-
27  
35  
-
-
ns  
ns  
e
e
tIS(base)  
AC150  
45  
-
-
TBD  
TBD  
ps  
ps  
b,16  
-
-
Command and Address setup time to CK, CK referenced to  
IH  
V
(AC) / V (AC) levels  
IL  
tIS(base)  
AC125  
45+125  
b,16,27  
Command and Address hold time from CK, CK referenced to  
(AC) / V (AC) levels  
tIH(base)  
DC100  
120  
560  
-
-
TBD  
535  
ps  
ps  
b,16  
28  
-
-
V
IH  
IL  
Control & Address Input pulse width for each input  
Calibration Timing  
tIPW  
Power-up and RESET calibration time  
Normal operation Full calibration time  
Normal operation short calibration time  
Reset Timing  
tZQinitI  
tZQoper  
tZQCS  
512  
256  
64  
-
-
-
max(512nCK,640ns)  
max(256nCK,320ns)  
max(64nCK,80ns)  
-
-
-
nCK  
nCK  
nCK  
23  
max(5nCK, tRFC +  
10ns)  
max(5nCK, tRFC +  
10ns)  
Exit Reset from CKE HIGH to a valid command  
Self Refresh Timing  
tXPR  
-
-
max(5nCK,tRFC +  
10ns)  
max(5nCK,tRFC +  
10ns)  
Exit Self Refresh to commands not requiring a locked DLL  
tXS  
-
-
Exit Self Refresh to commands requiring a locked DLL  
Minimum CKE low width for Self refresh entry to exit timing  
tXSDLL  
tCKESR  
tDLLK(min)  
-
-
tDLLK(min)  
-
-
nCK  
tCKE(min) + 1tCK  
tCKE(min) + 1nCK  
Valid Clock Requirement after Self Refresh Entry (SRE) or Power-  
Down Entry (PDE)  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
tCKSRE  
tCKSRX  
-
-
-
-
Valid Clock Requirement before Self Refresh Exit (SRX) or Power-  
Down Exit (PDX) or Reset Exit  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
- 49 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
[ Table 49 ] Timing Parameters by Speed Bins for DDR3-1600, DDR3-1866 (Cont.)  
Speed  
DDR3-1600  
DDR3-1866  
Units  
NOTE  
Parameter  
Symbol  
MIN  
MAX  
MIN  
MAX  
Power Down Timing  
Exit Power Down with DLL on to any valid command;Exit Pre-  
charge Power Down with DLL  
max  
tXP  
-
max(3nCK,6ns)  
-
(3nCK,6ns)  
frozen to commands not requiring a locked DLL  
max  
(10nCK,  
24ns)  
Exit Precharge Power Down with DLL frozen to commands re-  
quiring a locked DLL  
tXPDLL  
tCKE  
-
-
max(10nCK,24ns)  
max(3nCK,5ns)  
-
-
2
max  
CKE minimum pulse width  
(3nCK,5ns)  
Command pass disable delay  
tCPDED  
tPD  
1
-
2
-
nCK  
tCK  
Power Down Entry to Exit Timing  
tCKE(min)  
9*tREFI  
tCKE(min)  
9*tREFI  
15  
20  
20  
Timing of ACT command to Power Down entry  
Timing of PRE command to Power Down entry  
Timing of RD/RDA command to Power Down entry  
tACTPDEN  
tPRPDEN  
tRDPDEN  
1
1
-
-
-
1
1
-
-
-
nCK  
nCK  
RL + 4 +1  
RL + 4 +1  
Timing of WR command to Power Down entry  
(BL8OTF, BL8MRS, BL4OTF)  
WL + 4 +(tWR/  
tCK(avg))  
WL + 4 +(tWR/  
tCK(avg))  
tWRPDEN  
tWRAPDEN  
tWRPDEN  
tWRAPDEN  
-
-
-
-
-
-
-
-
nCK  
nCK  
nCK  
nCK  
9
10  
9
Timing of WRA command to Power Down entry  
(BL8OTF, BL8MRS, BL4OTF)  
WL + 4 +WR +1  
WL + 4 +WR +1  
Timing of WR command to Power Down entry  
(BL4MRS)  
WL + 2 +(tWR/  
tCK(avg))  
WL + 2 +(tWR/  
tCK(avg))  
Timing of WRA command to Power Down entry  
(BL4MRS)  
WL +2 +WR +1  
WL +2 +WR +1  
10  
Timing of REF command to Power Down entry  
Timing of MRS command to Power Down entry  
ODT Timing  
tREFPDEN  
tMRSPDEN  
1
-
-
1
-
-
20,21  
tMOD(min)  
tMOD(min)  
ODT high time without write command or with write command  
and BC4  
ODTH4  
ODTH8  
tAONPD  
4
6
2
-
-
4
6
2
-
-
nCK  
nCK  
ns  
ODT high time with Write command and BL8  
Asynchronous RTT turn-on delay (Power-Down with DLL fro-  
zen)  
8.5  
8.5  
Asynchronous RTT turn-off delay (Power-Down with DLL fro-  
zen)  
tAOFPD  
2
8.5  
2
8.5  
ns  
RTT turn-on  
tAON  
tAOF  
tADC  
-225  
0.3  
225  
0.7  
0.7  
-195  
0.3  
195  
0.7  
0.7  
ps  
7,f  
8,f  
f
RTT_NOM and RTT_WR turn-off time from ODTLoff reference  
RTT dynamic change skew  
tCK(avg)  
tCK(avg)  
0.3  
0.3  
Write Leveling Timing  
First DQS pulse rising edge after tDQSS margining mode is pro-  
grammed  
tWLMRD  
tWLDQSEN  
tWLS  
40  
25  
-
-
-
40  
25  
-
-
-
tCK  
tCK  
ps  
3
3
DQS/DQS delay after tDQS margining mode is programmed  
Write leveling setup time from rising CK, CK crossing to rising  
DQS, DQS crossing  
165  
140  
Write leveling hold time from rising DQS, DQS crossing to rising  
CK, CK crossing  
tWLH  
165  
-
140  
-
ps  
Write leveling output delay  
Write leveling output error  
tWLO  
0
0
7.5  
2
0
0
7.5  
2
ns  
ns  
tWLOE  
- 50 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
14.1 Jitter Notes  
Specific Note a  
Specific Note b  
Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the  
input clock, counting the actual clock edges.ex) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm,  
another Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min.  
These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition  
edge to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e.  
tJIT(per), tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is,  
these parameters should be met whether clock jitter is present or not.  
Specific Note c  
These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)) crossing to its respective clock signal (CK, CK)  
crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative  
to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.  
Specific Note d  
Specific Note e  
These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective data  
strobe signal (DQS(L/U), DQS(L/U)) crossing.  
For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock  
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK(avg)},  
which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the  
device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e. Precharge com-  
mand at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to input clock jitter.  
Specific Note f  
When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input  
clock, where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = +  
193 ps, then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(der-  
ated) = tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to  
tLZ(DQ),min(derated) = - 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the  
min/max usage!)  
Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <=  
12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.  
Specific Note g  
When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input  
clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has  
tCK(avg),act = 2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min +  
tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) =  
tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/  
max usage!)  
- 51 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
14.2 Timing Parameter Notes  
1. Actual value dependant upon measurement level definitions which are TBD.  
2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.  
3. The max values are system dependent.  
4. WR as programmed in mode register  
5. Value must be rounded-up to next higher integer value  
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.  
7. For definition of RTT turn-on time tAON see "Device Operation & Timing Diagram Datasheet"  
8. For definition of RTT turn-off time tAOF see "Device Operation & Timing Diagram Datasheet".  
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.  
10. WR in clock cycles as programmed in MR0  
11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See "Device Operation & Timing  
Diagram Datasheet.  
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated  
by TBD  
13. Value is only valid for RON34  
14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method.  
15. tREFI depends on T  
OPER  
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,  
V
(DC) = V DQ(DC). For input only pins except RESET, V (DC)=V CA(DC).  
REF  
REF  
REF  
REF  
See "Address/Command Setup, Hold and Derating :" on page 53. .  
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals,  
(DC)= V DQ(DC). For input only pins except RESET, V (DC)=V CA(DC).  
V
REF  
REF  
REF  
REF  
See "Data Setup, Hold and Slew Rate Derating :" on page 60.  
18. Start of internal write transaction is defined as follows ;  
For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.  
For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL  
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL  
19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation & Timing Diagram  
Datasheet"  
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down  
IDD spec will not be applied until finishing those operations.  
21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time  
such as tXPDLL(min) is also required. See "Device Operation & Timing Diagram Datasheet".  
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.  
23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming  
the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The  
appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters.  
One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is sub-  
ject to in the application, is illustrated. The interval could be defined by the following formula:  
ZQCorrection  
(TSens x Tdriftrate) + (VSens x Vdriftrate)  
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.  
For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calcu-  
lated as:  
0.5  
~
~
= 0.133  
128ms  
(1.5 x 1) + (0.15 x 15)  
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.  
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.  
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.  
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alter-  
nate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns].  
28. Pulse width of a input signal is defined as the width between the first crossing of V  
(DC) and the consecutive crossing of V  
(DC)  
REF  
REF  
29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge.  
30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge.  
31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.  
32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.  
- 52 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
14.3 Address/Command Setup, Hold and Derating :  
For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value (see  
Table 50) to the tIS and tIH derating value (see Table 51) respectively.  
Example: tIS (total setup time) = tIS(base) + tIS Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of  
V
REF(DC) and the first crossing of VIH(AC)min. Setup (tIS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of  
VREF(DC) and the first crossing of VIL(AC)max. If the actual signal is always earlier than the nominal slew rate line between shaded ’VREF(DC) to ac  
region’, use nominal slew rate for derating value (see Figure 21). If the actual signal is later than the nominal slew rate line anywhere between shaded  
’VREF(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see Figure 23).  
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VREF(DC).  
Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC). If  
the actual signal is always later than the nominal slew rate line between shaded ’dc to VREF(DC) region’, use nominal slew rate for derating value (see  
Figure 22). If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to VREF(DC) region’, the slew rate of a tangent line  
to the actual signal from the dc level to VREF(DC) level is used for derating value (see Figure 24).  
For a valid transition the input signal has to remain above/below VIH/IL(AC) for some time tVAC (see Table 55).  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(AC) at the time of the rising clock  
transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC).  
For slew rates in between the values listed in Table 51, the derating values may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
[ Table 50 ] ADD/CMD Setup and Hold Base-Values for 1V/ns  
[ps]  
DDR3-1066  
DDR3-1333  
DDR3-1600  
DDR3-1866  
reference  
VIH/L(AC)  
VIH/L(AC)  
VIH/L(AC)  
VIH/L(AC)  
VIH/L(DC)  
tIS(base) AC175  
tIS(base) AC150  
tIS(base)-AC135  
tIS(base)-AC125  
tIH(base)-DC100  
125  
275  
-
65  
190  
-
45  
170  
-
-
-
65  
150  
100  
-
-
-
200  
140  
120  
NOTE :  
1. AC/DC referenced for 1V/ns Address/Command slew rate and 2 V/ns differential CK-Ck slew rate  
2. The tIS(base)-AC150 specifications are adjusted from the tIS(base) AC175 specification by adding an additional 125ps for DDR3-800/1066 or 100ps for  
DDR3-1333/1600 of derating to accommodate for the lower alternate threshold of 150mV and another 25ps to account for the earlier reference point  
[(175mV-150mV)/1 V/ns]  
3. The tIS(base) AC125 specifications are adjusted from the tIS(base) AC135 specification by adding an additional 75ps for DDR3-1866 and 65ps for DDR3-2133 to accommo-  
date for the lower alternate threshold of 125mV and another 10ps to account for the earlier reference point [(135mV-125mV)/1V/ns].  
[ Table 51 ] Derating values DDR3-1066/1333/1600 tIS/tIH-AC/DC based AC175 Threshold  
tIS, tIH Derating [ps] AC/DC based  
Alternate AC175 Threshold -> VIH(AC) = VREF(DC) + 175mV, VIL(AC) = VREF(DC) - 175mV  
CLK,CLK Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
tIS  
1.0V/ns  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
58  
42  
8
tIS  
tIH  
66  
50  
16  
12  
6
tIS  
tIH  
74  
58  
24  
20  
14  
8
tIH  
84  
68  
34  
30  
24  
18  
8
tIS  
tIH  
100  
84  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
88  
59  
0
88  
59  
0
88  
59  
0
96  
67  
8
104  
75  
16  
14  
10  
5
112  
83  
24  
22  
18  
13  
7
120  
91  
32  
30  
26  
21  
15  
-2  
128  
99  
40  
38  
34  
29  
23  
5
34  
34  
34  
0
0
0
50  
CMD/  
ADD  
Slew  
rate  
-2  
-4  
-2  
-4  
-2  
-4  
6
4
46  
-6  
-10  
-16  
-26  
-40  
-60  
-6  
-10  
-16  
-26  
-40  
-60  
-6  
-10  
-16  
-26  
-40  
-60  
2
-2  
40  
-11  
-17  
-35  
-62  
-11  
-17  
-35  
-62  
-11  
-17  
-35  
-62  
-3  
-9  
-27  
-54  
-8  
0
34  
V/ns  
-18  
-32  
-52  
-1  
-10  
-24  
-44  
-2  
24  
-19  
-46  
-11  
-38  
-16  
-36  
-6  
10  
-30  
-26  
-22  
-10  
- 53 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
[ Table 52 ] Derating values DDR3-1066/1333/1600 tIS/tIH-AC/DC based - Alternate AC150 Threshold  
tIS, tIH Derating [ps] AC/DC based  
Alternate AC150 Threshold -> VIH(AC) = VREF(DC) + 150mV, VIL(AC) = VREF(DC) - 150mV  
CLK,CLK Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
tIS  
1.0V/ns  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
58  
42  
8
tIS  
tIH  
66  
50  
16  
12  
6
tIS  
tIH  
74  
58  
24  
20  
14  
8
tIH  
84  
68  
34  
30  
24  
18  
8
tIS  
tIH  
100  
84  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
75  
50  
0
75  
50  
0
75  
50  
0
83  
58  
8
91  
66  
16  
16  
16  
16  
15  
6
99  
74  
24  
24  
24  
24  
23  
14  
-1  
107  
82  
32  
32  
32  
32  
31  
22  
7
115  
90  
40  
40  
40  
40  
39  
30  
15  
34  
34  
34  
0
0
0
50  
CMD/  
ADD  
Slew  
rate  
0
-4  
0
-4  
0
-4  
8
4
46  
0
-10  
-16  
-26  
-40  
-60  
0
-10  
-16  
-26  
-40  
-60  
0
-10  
-16  
-26  
-40  
-60  
8
-2  
40  
0
0
0
8
-8  
0
34  
V/ns  
-1  
-10  
-25  
-1  
-10  
-25  
-1  
-10  
-25  
7
-18  
-32  
-52  
-10  
-24  
-44  
-2  
24  
-2  
-17  
-16  
-36  
-6  
10  
-9  
-26  
-10  
[ Table 53 ] Derating values DDR3-1866/2133 tIS/tIH-AC/DC based Alternate AC135 Threshold  
tIS, tIH Derating [ps] AC/DC based  
Alternate AC125 Threshold -> VIH(AC) = VREF(DC) + 135mV, VIL(AC) = VREF(DC) - 135mV  
CLK,CLK Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
58  
42  
8
tIS  
tIH  
66  
50  
16  
12  
6
tIS  
tIH  
74  
58  
24  
20  
14  
8
tIS  
100  
77  
tIH  
84  
68  
34  
30  
24  
18  
8
tIS  
108  
85  
tIH  
100  
84  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
68  
45  
0
68  
45  
0
68  
45  
0
76  
53  
8
84  
61  
16  
18  
19  
22  
25  
21  
14  
92  
69  
24  
26  
27  
30  
33  
29  
22  
34  
34  
34  
0
0
0
32  
40  
50  
CMD/  
ADD  
Slew  
rate  
2
-4  
2
-4  
2
-4  
10  
11  
14  
17  
13  
6
4
34  
42  
46  
3
-10  
-16  
-26  
-40  
-60  
3
-10  
-16  
-26  
-40  
-60  
3
-10  
-16  
-26  
-40  
-60  
-2  
35  
43  
40  
6
6
6
-8  
0
38  
46  
34  
V/ns  
9
9
9
-18  
-32  
-52  
-10  
-24  
-44  
-2  
41  
49  
24  
5
5
5
-16  
-36  
37  
-6  
45  
10  
-3  
-3  
-3  
30  
-26  
38  
-10  
- 54 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
[ Table 54 ] Derating values DDR3-1866/2133 tIS/tIH-AC/DC based - Alternate AC125 Threshold  
tIS, tIH Derating [ps] AC/DC based  
Alternate AC125 Threshold -> VIH(AC) = VREF(DC) + 125mV, VIL(AC) = VREF(DC) - 125mV  
CLK,CLK Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
tIS  
1.0V/ns  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
58  
42  
8
tIS  
tIH  
66  
50  
16  
12  
6
tIS  
tIH  
74  
58  
24  
20  
14  
8
tIH  
84  
68  
34  
30  
24  
18  
8
tIS  
tIH  
100  
84  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
63  
42  
0
63  
42  
0
63  
42  
0
71  
50  
8
79  
58  
16  
20  
22  
27  
32  
31  
29  
87  
66  
24  
28  
30  
35  
40  
39  
37  
95  
74  
32  
36  
38  
43  
48  
47  
45  
103  
82  
40  
44  
46  
51  
56  
55  
53  
34  
34  
34  
0
0
0
50  
CMD/  
ADD  
Slew  
rate  
4
-4  
4
-4  
4
-4  
12  
14  
19  
24  
23  
21  
4
46  
6
-10  
-16  
-26  
-40  
-60  
6
-10  
-16  
-26  
-40  
-60  
6
-10  
-16  
-26  
-40  
-60  
-2  
40  
11  
16  
15  
13  
11  
16  
15  
13  
11  
16  
15  
13  
-8  
0
34  
V/ns  
-18  
-32  
-52  
-10  
-24  
-44  
-2  
24  
-16  
-36  
-6  
10  
-26  
-10  
[ Table 55 ] Required time tVAC above VIH(AC) {blow VIL(AC)} for valid transition  
tVAC @175mV [ps]  
tVAC @150mV [ps]  
tVAC @135mV [ps]  
tVAC @125mV [ps]  
Slew Rate[V/ns]  
min  
75  
57  
50  
38  
34  
29  
22  
13  
0
max  
min  
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
max  
min  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
max  
min  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
max  
>2.0  
2.0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
< 0.5  
0
- 55 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
NOTE :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
tVAC  
VIH(AC) min  
VREF to ac  
region  
V
IH(DC) min  
nominal  
slew rate  
VREF(DC)  
nominal slew  
rate  
VIL(DC) max  
VREF to ac  
region  
VIL(AC) max  
VSS  
tVAC  
TF  
TR  
V
REF(DC) - VIL(AC)max  
Setup Slew Rate  
Rising Signal  
VIH(AC)min - VREF(DC)  
Setup Slew Rate  
Falling Signal  
=
=
TF  
TR  
Figure 21. Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS  
(for ADD/CMD with respect to clock).  
- 56 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
NOTE :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(AC) min  
V
IH(DC) min  
dc to VREF  
region  
nominal  
slew rate  
VREF(DC)  
nominal  
dc to VREF  
region  
slew rate  
VIL(DC) max  
VIL(AC) max  
VSS  
TR  
TF  
Hold Slew Rate  
Rising Signal  
V
REF(DC) - VIL(DC)max  
Hold Slew Rate  
Falling Signal  
V
IH(DC)min - VREF(DC)  
=
=
TR  
TF  
Figure 22. Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH  
(for ADD/CMD with respect to clock).  
- 57 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
NOTE :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
tVAC  
nominal  
line  
VIH(AC) min  
V
REF to ac  
region  
V
IH(DC) min  
tangent  
line  
VREF(DC)  
tangent  
line  
VIL(DC) max  
VIL(AC) max  
VREF to ac  
region  
nominal  
line  
TR  
tVAC  
VSS  
tangent line[VIH(AC)min - VREF(DC)]  
Setup Slew Rate  
Rising Signal  
=
TR  
TF  
Setup Slew Rate tangent line[VREF(DC) - VIL(AC)max]  
=
Falling Signal  
TF  
Figure 23. Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS  
(for ADD/CMD with respect to clock)  
- 58 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
NOTE :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(AC) min  
nominal  
line  
V
IH(DC) min  
dc to VREF  
region  
tangent  
line  
VREF(DC)  
tangent  
line  
dc to VREF  
region  
nominal  
line  
VIL(DC) max  
VIL(AC) max  
VSS  
TF  
TR  
tangent line [ VREF(DC) - VIL(DC)max ]  
Hold Slew Rate  
Rising Signal  
=
TR  
tangent line [ VIH(DC)min - VREF(DC) ]  
Hold Slew Rate  
=
Falling Signal  
TF  
Figure 24. Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH  
(for ADD/CMD with respect to clock)  
- 59 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
14.4 Data Setup, Hold and Slew Rate Derating :  
For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value (see  
Table 56) to the tDS and tDH (see Table 55) derating value respectively. Example: tDS (total setup time) = tDS(base) + tDS.  
Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIH(AC)min.  
Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIL(AC)max  
(see Figure 25). If the actual signal is always earlier than the nominal slew rate line between shaded ’VREF(DC) to ac region’, use nominal slew rate for  
derating value. If the actual signal is later than the nominal slew rate line anywhere  
between shaded ’VREF(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see  
Figure 27).  
Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VREF(DC).  
Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC)  
(see Figure ). If the actual signal is always later than the nominal slew rate line between shaded ’dc level to VREF(DC) region’, use nominal slew rate for  
derating value. If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to VREF(DC) region’, the slew rate of a tangent  
line to the actual signal from the dc level to VREF(DC) level is used for derating value (see Figure 28).  
For a valid transition the input signal has to remain above/below VIH/IL(AC) for some time tVAC (see Table 56).  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(AC) at the time of the rising clock  
transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC).  
For slew rates in between the values listed in the tables the derating values may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
[ Table 56 ] Data Setup and Hold Base-Values  
[ps]  
DDR3-1066  
DDR3-1333  
DDR3-1600  
DDR3-1866  
reference  
VIH/L(AC)  
VIH/L(AC)  
VIH/L(AC)  
VIH/L(DC)  
tDS(base) AC175  
tDS(base) AC150  
tDS(base) AC135  
tDH(base) DC100  
25  
75  
-
-
-
-
-
0
30  
-
65  
10  
-
45  
100  
20  
NOTE : AC/DC referenced for 1V/ns DQ-slew rate and 2 V/ns DQS slew rate)  
[ Table 57 ] Derating values DDR3-800/1066 tDS/tDH - (AC175)  
tDS, tDH Derating in [ps] AC/DC based1  
DQS,DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
88  
59  
0
-
50  
34  
0
-
88  
59  
0
-2  
-
50  
34  
0
-4  
-
88  
59  
0
-2  
-6  
-
-
-
50  
34  
0
-4  
-10  
-
-
-
-
67  
8
6
2
-3  
-
-
42  
8
-
-
16  
14  
10  
5
-1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
16  
12  
6
-
-
-
-
DDR3 DQ  
4
22  
18  
13  
7
-11  
-
20  
14  
8
-2  
-16  
-
-
-
-
-
-
-
-
Slew  
-
-
-2  
-8  
-
-
-
26  
21  
15  
-2  
-30  
24  
18  
8
-6  
-26  
800/ rate  
1066 V/ns  
-
-
-
-
0
29  
23  
6
34  
24  
10  
-10  
-
-
-
-
-
-
-10  
-
-
-
-
-
-
-
-
-
-
-
-
-22  
NOTE : 1. Cell contents shaded in red are defined as ’not supported’.  
[ Table 58 ] Derating values for DDR3-1066/1333/1600 tDS/tDH - (AC150)  
tDS, tDH Derating in [ps] AC/DC based1  
DQS,DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
75  
50  
0
-
50  
34  
0
-
75  
50  
0
0
-
50  
34  
0
-4  
-
75  
50  
0
0
0
-
50  
34  
0
-4  
-10  
-
-
-
-
58  
8
8
8
8
-
-
42  
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
16  
16  
16  
16  
15  
-
16  
12  
6
-
-
-
-
-
DQ  
Slew  
rate  
4
24  
24  
24  
23  
14  
-
20  
14  
8
-2  
-16  
-
-
-
-
-
-
-
-
-
-2  
-8  
-
-
-
32  
32  
31  
22  
7
24  
18  
8
-6  
-26  
-
-
-
-
0
40  
39  
30  
15  
34  
24  
10  
-10  
V/ns  
-
-
-
-
-
-
-
-10  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
NOTE : 1. Cell contents shaded in red are defined as ’not supported’.  
- 60 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
[ Table 59 ] Derating values for DDR3-1866 tDS/tDH - (AC135)  
tDS, tDH Derating in [ps] AC/DC based1  
DQS,DQS Differential Slew Rate  
1.8 V/ns 1.6 V/ns  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
68  
45  
0
-
50  
34  
0
-
68  
45  
0
2
-
50  
34  
0
-4  
-
68  
45  
0
2
3
-
50  
34  
0
-
53  
8
10  
11  
14  
-
-
-
-
42  
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
16  
18  
19  
22  
25  
-
16  
12  
6
-
-
-
-
DQ  
Slew  
rate  
-4  
-10  
-
4
26  
27  
30  
33  
29  
-
20  
14  
8
-2  
-16  
-
-
-
-
-
-
-
-
-
-2  
-8  
-
-
-
35  
38  
41  
37  
30  
24  
18  
8
-6  
-26  
-
-
-
-
0
46  
49  
45  
38  
34  
24  
10  
-10  
V/ns  
-
-
-
-
-
-
-10  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
NOTE : 1. Cell contents shaded in red are defined as ’not supported’.  
[ Table 60 ] Required time tVAC above VIH(AC) {blow VIL(AC)} for valid transition  
tVAC[ps] DDR3-1066  
(AC175)  
tVAC[ps] DDR3-1066/1333/1600  
(AC150)  
tVAC[ps] DDR3-1866  
(AC135)  
Slew Rate[V/ns]  
min  
max  
min  
175  
170  
167  
163  
162  
161  
159  
155  
155  
150  
max  
min  
max  
>2.0  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
<0.5  
75  
57  
50  
38  
34  
29  
22  
13  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
-
-
-
-
-
-
-
-
-
-
0
- 61 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
NOTE :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
tVAC  
VIH(AC) min  
VREF to ac  
region  
V
IH(DC) min  
nominal  
slew rate  
VREF(DC)  
nominal slew  
rate  
VIL(DC) max  
VREF to ac  
region  
VIL(AC) max  
VSS  
tVAC  
TF  
TR  
V
REF(DC) - VIL(AC)max  
Setup Slew Rate  
Rising Signal  
VIH(AC)min - VREF(DC)  
Setup Slew Rate  
Falling Signal  
=
=
TF  
TR  
Figure 25. Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS  
(for ADD/CMD with respect to clock).  
- 62 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
NOTE :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(AC) min  
V
IH(DC) min  
dc to VREF  
region  
nominal  
slew rate  
VREF(DC)  
nominal  
dc to VREF  
region  
slew rate  
VIL(DC) max  
VIL(AC) max  
VSS  
TR  
TF  
Hold Slew Rate  
Rising Signal  
V
REF(DC) - VIL(DC)max  
Hold Slew Rate  
Falling Signal  
V
IH(DC)min - VREF(DC)  
=
=
TR  
TF  
Figure 26. Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH  
(for ADD/CMD with respect to clock).  
- 63 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
NOTE :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
tVAC  
nominal  
line  
VIH(AC) min  
V
REF to ac  
region  
V
IH(DC) min  
tangent  
line  
VREF(DC)  
tangent  
line  
VIL(DC) max  
VIL(AC) max  
VREF to ac  
region  
nominal  
line  
TR  
tVAC  
VSS  
tangent line[VIH(AC)min - VREF(DC)]  
Setup Slew Rate  
Rising Signal  
=
TR  
TF  
Setup Slew Rate  
Falling Signal  
tangent line[VREF(DC) - VIL(AC)max]  
=
TF  
Figure 27. Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS  
(for ADD/CMD with respect to clock)  
- 64 -  
Rev. 1.1  
K4B2G0446D  
K4B2G0846D  
datasheet  
DDR3 SDRAM  
NOTE :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(AC) min  
nominal  
line  
V
IH(DC) min  
dc to VREF  
region  
tangent  
line  
VREF(DC)  
tangent  
line  
dc to VREF  
region  
nominal  
line  
VIL(DC) max  
VIL(AC) max  
VSS  
TF  
TR  
tangent line [ VREF(DC) - VIL(DC)max ]  
Hold Slew Rate  
Rising Signal  
=
TR  
tangent line [ VIH(DC)min - VREF(DC) ]  
Hold Slew Rate  
=
Falling Signal  
TF  
Figure 28. Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH  
(for ADD/CMD with respect to clock)  
- 65 -  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY