K4B4G1646Q [SAMSUNG]

4Gb Q-die DDR3L SDRAM Olny x16 96FBGA with Lead-Free & Halogen-Free (RoHS compliant) 1.35V;
K4B4G1646Q
型号: K4B4G1646Q
厂家: SAMSUNG    SAMSUNG
描述:

4Gb Q-die DDR3L SDRAM Olny x16 96FBGA with Lead-Free & Halogen-Free (RoHS compliant) 1.35V

动态存储器 双倍数据速率
文件: 总65页 (文件大小:522K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Rev. 0.5, Apr. 2013  
K4B4G1646Q  
Preliminary  
1.35V  
4Gb Q-die DDR3L SDRAMOlny x16  
96FBGA with Lead-Free & Halogen-Free  
(RoHS compliant)  
CAUTION :  
This document includes some items still under discussion in JEDEC  
Therefore, those may be changed without pre-notice based on JEDEC progress.  
In addition, it is highly recommended that you not send specs without Samsung’s permission.  
datasheet  
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND  
SPECIFICATIONS WITHOUT NOTICE.  
Products and specifications discussed herein are for reference purposes only. All information discussed  
herein is provided on an "AS IS" basis, without warranties of any kind.  
This document and all information discussed herein remain the sole and exclusive property of Samsung  
Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property  
right is granted by one party to the other party under this document, by implication, estoppel or other-  
wise.  
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or  
similar applications where product failure could result in loss of life or personal or physical harm, or any  
military or defense application, or any governmental procurement to which special terms or provisions  
may apply.  
For updates or additional information about Samsung products, contact your nearest Samsung office.  
All brand names, trademarks and registered trademarks belong to their respective owners.  
2013 Samsung Electronics Co., Ltd. All rights reserved.  
- 1 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
Revision History  
Revision No.  
History  
Draft Date  
Remark  
Editor  
0.5  
- Preliminary SPEC. Release  
Apr. 2013  
-
J.Y.Lee  
- 2 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
Table Of Contents  
4Gb Q-die DDR3L SDRAM Olny x16  
1. Ordering Information.....................................................................................................................................................5  
2. Key Features.................................................................................................................................................................5  
3. Package pinout/Mechanical Dimension & Addressing..................................................................................................6  
3.1 x16 Package Pinout (Top view) : 96ball FBGA Package ........................................................................................6  
3.2 FBGA Package Dimension (x16).............................................................................................................................7  
4. Input/Output Functional Description..............................................................................................................................8  
5. DDR3 SDRAM Addressing ...........................................................................................................................................9  
6. Absolute Maximum Ratings ..........................................................................................................................................10  
6.1 Absolute Maximum DC Ratings...............................................................................................................................10  
6.2 DRAM Component Operating Temperature Range ................................................................................................10  
7. AC & DC Operating Conditions.....................................................................................................................................10  
7.1 Recommended DC operating Conditions................................................................................................................10  
8. AC & DC Input Measurement Levels............................................................................................................................11  
8.1 AC & DC Logic input levels for single-ended signals ..............................................................................................11  
8.2 VREF Tolerances......................................................................................................................................................13  
8.3 AC & DC Logic Input Levels for Differential Signals................................................................................................14  
8.3.1. Differential signals definition ............................................................................................................................14  
8.3.2. Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS)...................................................14  
8.3.3. Single-ended requirements for differential signals...........................................................................................16  
8.4 Differential Input Cross Point Voltage......................................................................................................................17  
8.5 Slew rate definition for Differential Input Signals.....................................................................................................18  
8.6 Slew rate definitions for Differential Input Signals ...................................................................................................18  
9. AC & DC Output Measurement Levels .........................................................................................................................18  
9.1 Single-ended AC & DC Output Levels.....................................................................................................................18  
9.2 Differential AC & DC Output Levels.........................................................................................................................18  
9.3 Single-ended Output Slew Rate ..............................................................................................................................19  
9.4 Differential Output Slew Rate ..................................................................................................................................20  
9.5 Reference Load for AC Timing and Output Slew Rate............................................................................................20  
9.6 Overshoot/Undershoot Specification.......................................................................................................................21  
9.6.1. Address and Control Overshoot and Undershoot specifications......................................................................21  
9.6.2. Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications......................................................22  
9.7 34ohm Output Driver DC Electrical Characteristics.................................................................................................23  
9.7.1. Output Drive Temperature and Voltage Sensitivity..........................................................................................25  
9.8 On-Die Termination (ODT) Levels and I-V Characteristics......................................................................................25  
9.8.1. ODT DC Electrical Characteristics...................................................................................................................26  
9.8.2. ODT Temperature and Voltage sensitivity .......................................................................................................28  
9.9 ODT Timing Definitions ...........................................................................................................................................29  
9.9.1. Test Load for ODT Timings..............................................................................................................................29  
9.9.2. ODT Timing Definitions....................................................................................................................................29  
10. IDD Current Measure Method.....................................................................................................................................32  
10.1 IDD Measurement Conditions ...............................................................................................................................32  
11. 4Gb DDR3 SDRAM Q-die IDD Specification Table....................................................................................................41  
12. Input/Output Capacitance ...........................................................................................................................................42  
13. Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600......................................................................43  
13.1 Clock Specification ................................................................................................................................................43  
13.1.1. Definition for tCK(avg)....................................................................................................................................43  
13.1.2. Definition for tCK(abs)....................................................................................................................................43  
13.1.3. Definition for tCH(avg) and tCL(avg)..............................................................................................................43  
13.1.4. Definition for note for tJIT(per), tJIT(per, Ick).................................................................................................43  
13.1.5. Definition for tJIT(cc), tJIT(cc, Ick) .................................................................................................................43  
13.1.6. Definition for tERR(nper)................................................................................................................................43  
13.2 Refresh Parameters by Device Density.................................................................................................................44  
13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin.................................................................44  
13.3.1. Speed Bin Table Notes ..................................................................................................................................47  
- 3 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
14. Timing Parameters by Speed Grade ..........................................................................................................................48  
14.1 Jitter Notes ............................................................................................................................................................51  
14.2 Timing Parameter Notes........................................................................................................................................52  
14.3 Address/Command Setup, Hold and Derating : ....................................................................................................53  
14.4 Data Setup, Hold and Slew Rate Derating : ..........................................................................................................60  
- 4 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
1. Ordering Information  
[ Table 1 ] Samsung 4Gb DDR3L Q-die ordering information table  
3
2
DDR3L-1066 (7-7-7)  
Package  
Organization  
DDR3L-1333 (9-9-9)  
K4B4G1646Q-HYH9  
DDR3L-1600 (11-11-11)  
256Mx16  
K4B4G1646Q-HYF8  
K4B4G1646Q-HYK0  
96 FBGA  
NOTE :  
1. Speed bin is in order of CL-tRCD-tRP.  
2. Backward compatible to DDR3L-1333(9-9-9), DDR3L-1066(7-7-7)  
3. Backward compatible to DDR3L-1066(7-7-7)  
2. Key Features  
[ Table 2 ] 4Gb DDR3 Q-die Speed bins  
DDR3-800  
6-6-6  
2.5  
DDR3-1066  
DDR3-1333  
DDR3-1600  
11-11-11  
1.25  
Speed  
Unit  
7-7-7  
1.875  
7
9-9-9  
1.5  
tCK(min)  
CAS Latency  
tRCD(min)  
tRP(min)  
ns  
nCK  
ns  
6
9
11  
15  
13.125  
13.125  
37.5  
13.5  
13.5  
36  
13.75  
13.75  
35  
15  
ns  
tRAS(min)  
tRC(min)  
37.5  
52.5  
ns  
50.625  
49.5  
48.75  
ns  
JEDEC standard 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)  
= 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)  
The 4Gb DDR3 SDRAM Q-die is organized as a 32Mbit x 16 I/Os x 8banks,  
device. This synchronous device achieves high speed double-data-rate  
transfer rates of up to 1600Mb/sec/pin (DDR3-1600) for general applica-  
tions.  
V
DDQ  
400 MHz f for 800Mb/sec/pin, 533MHz f for 1066Mb/sec/pin,  
CK CK  
667MHz f for 1333Mb/sec/pin, 800MHz f for 1600Mb/sec/pin  
CK  
CK  
The chip is designed to comply with the following key DDR3 SDRAM fea-  
tures such as posted CAS, Programmable CWL, Internal (Self) Calibration,  
On Die Termination using ODT pin and Asynchronous Reset .  
All of the control and address inputs are synchronized with a pair of exter-  
nally supplied differential clocks. Inputs are latched at the crosspoint of dif-  
ferential clocks (CK rising and CK falling). All I/Os are synchronized with a  
pair of bidirectional strobes (DQS and DQS) in a source synchronous fash-  
ion. The address bus is used to convey row, column, and bank address  
information in a RAS/CAS multiplexing style. The DDR3 device operates  
with a single 1.35V(1.28V~1.45V) or 1.5V(1.425V~1.575V) power supply  
and 1.35V(1.28V~1.45V) or 1.5V(1.425V~1.575V).  
8 Banks  
Programmable CAS Latency(posted CAS): 5,6,7,8,9,10,11  
Programmable Additive Latency: 0, CL-2 or CL-1 clock  
Programmable CAS Write Latency (CWL) = 5 (DDR3-800),  
(DDR3-1066), 7 (DDR3-1333) and 8 (DDR3-1600)  
6
8-bit pre-fetch  
Burst Length: 8 (Interleave without any limit, sequential with starting  
address “000” only), 4 with tCCD = 4 which does not allow seamless  
read or write [either On the fly using A12 or MRS]  
Bi-directional Differential Data-Strobe  
Internal(self) calibration : Internal self calibration through ZQ pin  
(RZQ : 240 ohm ± 1%)  
The 4Gb DDR3 Q-die device is available in 96ball FBGAs(x16).  
On Die Termination using ODT pin  
Average Refresh Period 7.8us at lower than T  
85C, 3.9us at  
CASE  
85C < T  
< 95 C  
CASE  
Asynchronous Reset  
Package : 96 balls FBGA - x16  
All of Lead-Free products are compliant for RoHS  
All of products are Halogen-free  
NOTE : 1. This data sheet is an abstract of full DDR3 specification and does not cover the common features which are described in “DDR3 SDRAM Device Operation & Timing  
Diagram”.  
2. The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation.  
- 5 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
3. Package pinout/Mechanical Dimension & Addressing  
3.1 x16 Package Pinout (Top view) : 96ball FBGA Package  
1
2
3
4
5
6
7
8
9
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VSS  
DQU5  
VDD  
VDDQ  
VSS  
VSSQ  
VDDQ  
A
B
C
D
E
F
DQU7  
VSS  
DQU4  
DQSU  
DQSU  
DQU0  
A
B
C
D
E
F
DQU6  
DQU3  
VDDQ  
VSSQ  
DQL2  
DQL6  
VDDQ  
VSS  
DQU1  
DMU  
DQL0  
DQSL  
DQSL  
DQL4  
RAS  
DQU2  
VSSQ  
VDD  
VDDQ  
DML  
DQL1  
VDD  
VSSQ  
DQL3  
VSS  
VDDQ  
VSSQ  
G
H
J
VSSQ  
VREFDQ  
NC  
VSSQ  
VDDQ  
NC  
G
H
J
DQL7  
CK  
DQL5  
VSS  
ODT  
NC  
CKE  
NC  
K
L
VDD  
CAS  
CK  
VDD  
ZQ  
K
L
CS  
WE  
A10/AP  
NC  
VSS  
VDD  
M
BA0  
BA2  
VREFCA  
VSS  
M
N
P
R
T
A3  
A5  
A0  
A2  
A12/BC  
A1  
BA1  
A4  
VDD  
VSS  
VDD  
VSS  
N
P
R
T
VSS  
VDD  
VSS  
A7  
A9  
A11  
A6  
RESET  
A13  
A14  
A8  
1
2
3
4
5
6
7
8
9
Ball Locations (x16)  
A
B
C
D
E
F
Populated ball  
Ball not populated  
G
H
J
Top view  
(See the balls through the package)  
K
L
M
N
P
R
T
- 6 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
3.2 FBGA Package Dimension (x16)  
Units : Millimeters  
10.00 0.10  
0.80 x 8 = 6.40  
A
#A1 INDEX MARK  
B
(Datum A)  
0.80  
1.60  
6
3.20  
3
9
8
7
5
4
2 1  
A
B
C
D
E
F
(Datum B)  
G
H
J
K
L
M
N
P
R
T
(0.95)  
MOLDING AREA  
96 - 0.45 Solder ball  
(Post Reflow 0.50 0.05)  
0.2 A B  
(1.90)  
M
BOTTOM VIEW  
10.00 0.10  
#A1  
0.35 0.05  
1.10 0.10  
TOP VIEW  
- 7 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
4. Input/Output Functional Description  
[ Table 3 ] Input/Output function description  
Symbol  
Type  
Function  
Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of  
CK, CK  
Input  
the positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK  
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and  
output drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or  
Active Power-Down (Row Active in any bank). CKE is asynchronous for self refresh exit. After V  
has become  
REFCA  
CKE  
CS  
Input  
stable during the power on and initialization sequence, it must be maintained during all operations (including Self-  
Refresh). CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, CK, ODT  
and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during Self -Refresh.  
Chip Select: All commands are masked when CS is registered HIGH. CS provides for external Rank selection on  
Input  
Input  
systems with multiple Ranks. CS is considered part of the command code.  
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR3 SDRAM. When  
enabled, ODT is only applied to each DQ, DQS, DQS and DM/TDQS, NU/TDQS (When TDQS is enabled via Mode  
Register A11=1 in MR1) signal for x8 configurations. The ODT pin will be ignored if the Mode Register (MR1) is pro-  
grammed to disable ODT.  
ODT  
RAS, CAS, WE  
Input  
Input  
Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.  
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coinci-  
dent with that input data during a Write access. DM is sampled on both edges of DQS. For x8 device, the function of  
DM or TDQS/TDQS is enabled by Mode Register A11 setting in MR1.  
DM  
(DMU), (DML)  
Bank Address Inputs: BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being  
applied. Bank address also determines if the mode register or extended mode register is to be accessed during a  
MRS cycle.  
BA0 - BA2  
A0 - A14  
Input  
Input  
Address Inputs: Provided the row address for Active commands and the column address for Read/Write commands  
to select one location out of the memory array in the respective bank. (A10/AP and A12/BC have additional functions,  
see below)  
The address inputs also provide the op-code during Mode Register Set commands.  
Autoprecharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge should be per-  
formed to the accessed bank after the Read/Write operation. (HIGH:Autoprecharge; LOW: No Autoprecharge)  
A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or  
all banks (A10 HIGH). if only one bank is to be precharged, the bank is selected by bank addresses.  
A10 / AP  
A12 / BC  
Input  
Burst Chop:A12 is sampled during Read and Write commands to determine if burst chop(on-the-fly) will be per-  
Input  
Input  
formed. (HIGH : no burst chop, LOW : burst chopped). See command truth table for details  
Active Low Asynchronous Reset: Reset is active when RESET is LOW, and inactive when RESET is HIGH.  
RESET must be HIGH during normal operation. RESET is a CMOS rail to rail signal with DC high and low at 80% and  
RESET  
DQ  
20% of V , i.e. 1.20V for DC high and 0.30V for DC low.  
DD  
Input/Output Data Input/ Output: Bi-directional data bus.  
Data Strobe: Output with read data, input with write data. Edge-aligned with read data, centered in write data. For the  
x16, DQSL: corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on DQU0-DQU7. The data  
Input/Output strobe DQS, DQSL and DQSU are paired with differential signals DQS, DQSL and DQSU, respectively, to provide dif-  
ferential pair signaling to the system during reads and writes. DDR3 SDRAM supports differential data strobe only and  
does not support single-ended.  
DQS, (DQS)  
Termination Data Strobe: TDQS/TDQS is applicable for X8 DRAMs only. When enabled via Mode Register A11=1 in  
MR1, DRAM will enable the same termination resistance function on TDQS/TDQS that is applied to DQS/DQS. When  
disabled via mode register A11=0 in MR1, DM/TDQS will provide the data mask function and TDQS is not used. x4/  
x16 DRAMs must disable the TDQS function via mode register A11=0 in MR1.  
TDQS, (TDQS)  
NC  
Output  
No Connect: No internal electrical connection is present.  
V
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
DQ Power Supply: 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)  
DQ Ground  
DDQ  
V
SSQ  
V
Power Supply: 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)  
Ground  
DD  
V
SS  
V
Reference voltage for DQ  
REFDQ  
V
Reference voltage for CA  
REFCA  
ZQ  
Reference Pin for ZQ calibration  
NOTE : Input only pins (BA0-BA2, A0-A14, RAS, CAS, WE, CS, CKE, ODT and RESET) do not supply termination.  
- 8 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
5. DDR3 SDRAM Addressing  
1Gb  
Configuration  
# of Bank  
256Mb x 4  
8
128Mb x 8  
8
64Mb x 16  
8
Bank Address  
Auto precharge  
Row Address  
BA0 - BA2  
A10/AP  
A0 - A13  
A0 - A9,A11  
A12/BC  
1 KB  
BA0 - BA2  
A10/AP  
A0 - A13  
A0 - A9  
A12/BC  
1 KB  
BA0 - BA2  
A10/AP  
A0 - A12  
A0 - A9  
A12/BC  
2 KB  
Column Address  
BC switch on the fly  
*1  
Page size  
2Gb  
Configuration  
# of Bank  
512Mb x 4  
8
256Mb x 8  
8
128Mb x 16  
8
Bank Address  
Auto precharge  
Row Address  
BA0 - BA2  
A10/AP  
A0 - A14  
A0 - A9,A11  
A12/BC  
1 KB  
BA0 - BA2  
A10/AP  
A0 - A14  
A0 - A9  
A12/BC  
1 KB  
BA0 - BA2  
A10/AP  
A0 - A13  
A0 - A9  
A12/BC  
2 KB  
Column Address  
BC switch on the fly  
*1  
Page size  
4Gb  
Configuration  
# of Bank  
1Gb x 4  
8
512Mb x 8  
8
256Mb x 16  
8
Bank Address  
Auto precharge  
Row Address  
BA0 - BA2  
A10/AP  
A0 - A15  
A0 - A9,A11  
A12/BC  
1 KB  
BA0 - BA2  
A10/AP  
A0 - A15  
A0 - A9  
A12/BC  
1 KB  
BA0 - BA2  
A10/AP  
A0 - A14  
A0 - A9  
A12/BC  
2 KB  
Column Address  
BC switch on the fly  
*1  
Page size  
8Gb  
Configuration  
# of Bank  
2Gb x 4  
8
1Gb x 8  
8
512Mb x 16  
8
Bank Address  
Auto precharge  
Row Address  
BA0 - BA2  
A10/AP  
BA0 - BA2  
A10/AP  
A0 - A15  
A0 - A9,A11  
A12/BC  
2 KB  
BA0 - BA2  
A10/AP  
A0 - A15  
A0 - A9  
A12/BC  
2 KB  
A0 - A15  
A0 - A9,A11,A13  
A12/BC  
Column Address  
BC switch on the fly  
*1  
2 KB  
Page size  
NOTE 1 : Page size is the number of bytes of data delivered from the array to the internal sense amplifiers when an ACTIVE command is registered.  
Page size is per bank, calculated as follows:  
page size = 2 COLBITS * ORG8  
where, COLBITS = the number of column address bits, ORG = the number of I/O (DQ) bits  
- 9 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
6. Absolute Maximum Ratings  
6.1 Absolute Maximum DC Ratings  
[ Table 4 ] Absolute Maximum DC Ratings  
Symbol  
Parameter  
Voltage on V pin relative to Vss  
Rating  
Units  
NOTE  
V
-0.4 V ~ 1.975 V  
-0.4 V ~ 1.975 V  
-0.4 V ~ 1.975 V  
-55 to +100  
V
1,3  
DD  
DD  
V
Voltage on V  
pin relative to Vss  
DDQ  
V
V
1,3  
1
DDQ  
V
V
Voltage on any pin relative to Vss  
Storage Temperature  
IN, OUT  
T
C  
1, 2  
STG  
NOTE :  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.  
3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREF may be  
equal to or less than 300mV.  
6.2 DRAM Component Operating Temperature Range  
[ Table 5 ] Temperature Range  
Symbol  
Parameter  
rating  
Unit  
NOTE  
T
Operating Temperature Range  
0 to 95  
C  
1, 2, 3  
OPER  
NOTE :  
1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the JEDEC document  
JESD51-2.  
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be main-  
tained between 0-85C under all operating conditions  
3. Some applications require operation of the Extended Temperature Range between 85C and 95C case temperature. Full specifications are guaranteed in this range, but the  
following additional conditions apply:  
a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us.  
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to use the Manual Self-Refresh mode with Extended Temperature Range  
capability (MR2 A6 = 0b and MR2 A7 = 1b), in this case IDD6 current can be increased around 10~20% than normal Temperature range.  
7. AC & DC Operating Conditions  
7.1 Recommended DC operating Conditions  
[ Table 6 ] Recommended DC Operating Conditions  
Rating  
Symbol  
Parameter  
Operation Voltage  
Units  
NOTE  
Min.  
1.283  
1.425  
1.283  
1.425  
Typ.  
1.35  
1.5  
Max.  
1.45  
1.35V  
1.5V  
V
V
V
V
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
V
Supply Voltage  
DD  
1.575  
1.45  
1.35V  
1.5V  
1.35  
1.5  
V
Supply Voltage for Output  
DDQ  
1.575  
NOTE :  
1. Under all conditions VDDQ must be less than or equal to VDD  
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.  
.
3. V & V  
rating are determined by operation voltage.  
DDQ  
DD  
- 10 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
8. AC & DC Input Measurement Levels  
8.1 AC & DC Logic input levels for single-ended signals  
[ Table 7 ] Single-ended AC & DC input levels for Command and Address(1.35V)  
DDR3L-800/1066/1333/1600  
Min. Max.  
Symbol  
Parameter  
Unit  
NOTE  
1.35V  
V
(DC90)  
V
+ 90  
V
DD  
DC input logic high  
mV  
mV  
mV  
mV  
mV  
mV  
V
1
IH.CA  
REF  
V
(DC90)  
V
V
- 90  
REF  
DC input logic low  
1
IL.CA  
SS  
V
(AC160)  
(AC160)  
(AC135)  
(AC135)  
(DC)  
V
+ 160  
REF  
AC input logic high  
Note 2  
1,2,5  
1,2,5  
1,2,5  
1,2,5  
3,4  
IH.CA  
V
V
V
- 160  
AC input logic low  
Note 2  
IL.CA  
REF  
V
+135  
AC input logic high  
Note 2  
IH.CA  
REF  
V
V
-135  
REF  
AC input logic lowM  
Note 2  
IL.CA  
V
0.49*V  
0.51*V  
DD  
Reference Voltage for ADD, CMD inputs  
REFCA  
DD  
NOTE :  
1. For input only pins except RESET, VREF = VREFCA(DC)  
2. See "Overshoot and Undershoot specifications" section.  
3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference: approx. +/- 13.5 mV).  
4. For reference: approx. VDD/2 +/- 13.5 mV  
5. These levels apply for 1.35 Volt operation only. If the device is operated at 1.5 V , the respective levels in JESD79-3 (VIH/L.CA(DC100), VIH/L.CA(AC175), VIHL.CA(AC150),  
VIH/L.CA(AC135), VIH/L.CA(AC125)etc.) apply. The 1.5 V levels (VIH/L.CA(DC100), VIH/L.CA(AC175), VIH/L.CA(AC150), VIH/L.CA(AC135), VIHL.CA(AC125)etc.) do not  
apply when the device is operated in the 1.35 voltage range.  
[ Table 8 ] Single-ended AC & DC input levels for Command and Address(1.5V)  
DDR3-800/1066/1333/1600  
Symbol  
Parameter  
Unit  
NOTE  
Min.  
Max.  
1.5V  
V
(DC100)  
V
+ 100  
V
DC input logic high  
mV  
mV  
mV  
mV  
mV  
mV  
V
1,5  
IH.CA  
REF  
DD  
V
V
(DC100)  
(AC175)  
(AC175)  
(AC150)  
(AC150)  
(DC)  
V
V
- 100  
REF  
DC input logic low  
1,6  
IL.CA  
IH.CA  
SS  
V
+ 175  
AC input logic high  
Note 2  
1,2,7  
1,2,8  
1,2,7  
1,2,8  
3,4,9  
REF  
V
V
- 175  
AC input logic low  
Note 2  
IL.CA  
IH.CA  
REF  
V
V
+150  
AC input logic high  
Note 2  
REF  
V
V
-150  
REF  
AC input logic low  
Note 2  
IL.CA  
V
0.49*V  
0.51*V  
DD  
Reference Voltage for ADD, CMD inputs  
REFCA  
DD  
NOTE :  
1. For input only pins except RESET, VREF = VREFCA(DC)  
2. See "Overshoot and Undershoot specifications" section.  
3. The ac peak noise on VRef may not allow VRef to deviate from VRefCA(DC) by more than +/-1% VDD (for reference: approx. +/- 15 mV).  
4. For reference: approx. VDD/2 +/- 15 mV.  
5. VIH(dc) is used as a simplified symbol for VIH.CA(DC100)  
6. VIL(dc) is used as a simplified symbol for VIL.CA(DC100)  
7. VIH(ac) is used as a simplified symbol for VIH.CA(AC175), VIH.CA(AC150), VIH.CA(AC135), and VIH.CA(AC125); VIH.CA(AC175) value is used when Vref + 0.175V is  
referenced, VIH.CA(AC150) value is used when Vref + 0.150V is referenced, VIH.CA(AC135) value is used when Vref + 0.135V is referenced, and VIH.CA(AC125) value is  
used when Vref + 0.125V is referenced.  
8. VIL(ac) is used as a simplified symbol for VIL.CA(AC175), VIL.CA(AC150), VIL.CA(AC135) and VIL.CA(AC125); VIL.CA(AC175) value is used when Vref - 0.175V is  
referenced, VIL.CA(AC150) value is used when Vref - 0.150V is referenced, VIL.CA(AC135) value is used when Vref - 0.135V is referenced, and VIL.CA(AC125) value is  
used when Vref - 0.125V is referenced.  
9. VrefCA(DC) is measured relative to VDD at the same point in time on the same device  
- 11 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
[ Table 9 ] Single-ended AC & DC input levels for DQ and DM (1.35V)  
DDR3L-800/1066  
Min. Max.  
DDR3L-1333/1600  
Min. Max.  
Symbol  
Parameter  
Unit  
NOTE  
1.35V  
V
(DC90)  
V
+ 90  
V
V
+ 90  
V
DD  
DC input logic high  
mV  
mV  
mV  
mV  
mV  
mV  
1
IH.DQ  
REF  
DD  
REF  
V
(DC90)  
V
V
- 90  
V
V
- 90  
DC input logic low  
AC input logic high  
AC input logic low  
AC input logic high  
AC input logic low  
1
IL.DQ  
SS  
REF  
SS  
REF  
V
(AC160)  
(AC160)  
(AC135)  
(AC135)  
V + 160  
REF  
Note 2  
-
-
1,2,5  
1,2,5  
1,2,5  
1,2,5  
IH.DQ  
V
V
V
V
- 160  
REF  
Note 2  
-
-
IL.DQ  
V
+ 135  
V + 135  
REF  
Note 2  
Note 2  
IH.DQ  
REF  
V
- 135  
V
- 135  
REF  
Note 2  
Note 2  
0.49*V  
IL.DQ  
REF  
Reference Voltage for DQ, DM  
inputs  
VREF (DC)  
0.49*V  
0.51*V  
0.51*V  
DD  
V
3,4  
DQ  
DD  
DD  
DD  
NOTE :  
1. For input only pins except RESET, VREF = VREFDQ(DC)  
2. See "Overshoot and Undershoot specifications" section.  
3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference: approx. +/- 13.5 mV).  
4. For reference: approx. VDD/2 +/- 13.5 mV.  
5. These levels apply for 1.35 Volt operation only. If the device is operated at 1.5 V, the respective levels in JESD79-3 ( VIH/L.DQ(DC100), VIH/L.DQ(AC175), VIH/  
L.DQ(AC150), VIH/L.DQ(AC135), etc. ) apply. The 1.5 V levels (VIH/L.DQ(DC100), VIH/L.DQ(AC175), VIH/L.DQ(AC150), VIH/L.DQ(AC135), etc. ) do not apply when the  
device is operated in the 1.35 voltage range.  
[ Table 10 ] Single-ended AC & DC input levels for DQ and DM (1.5V)  
DDR3-800/1066  
Min. Max.  
DDR3-1333/1600  
Min. Max.  
Symbol  
Parameter  
Unit  
NOTE  
1.5V  
V
(DC100)  
V
V
V
V
+ 100  
V
V
+ 100  
V
DD  
DC input logic high  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
1,5  
1,6  
IH.DQ  
REF  
DD  
REF  
V
(DC100)  
(AC175)  
(AC175)  
(AC150)  
(AC150)  
(AC135)  
(AC135)  
V
V
- 100  
V
V
- 100  
REF  
DC input logic low  
AC input logic high  
AC input logic low  
AC input logic high  
AC input logic low  
AC input logic high  
AC input logic low  
IL.DQ  
IH.DQ  
SS  
REF  
SS  
V
+ 175  
NOTE 2  
-
-
-
1,2,7  
REF  
V
V
- 175  
REF  
NOTE 2  
-
1,2,8  
IL.DQ  
V
+ 150  
V
V
+ 150  
NOTE 2  
NOTE 2  
1,2,7  
IH.DQ  
REF  
REF  
V
V
V
- 150  
V
- 150  
REF  
NOTE 2  
NOTE 2  
1,2,8  
IL.DQ  
REF  
+ 135  
+ 135  
NOTE 2  
NOTE 2  
1,2,7,10  
1,2,8,10  
IH.DQ  
REF  
REF  
V
V
- 135  
V
- 135  
REF  
NOTE 2  
NOTE 2  
IL.DQ  
REF  
Reference Voltage for DQ, DM  
inputs  
VREF (DC)  
0.49*V  
0.51*V  
0.49*V  
0.51*V  
DD  
V
3,4,9  
DQ  
DD  
DD  
DD  
NOTE :  
1. For input only pins except RESET, VREF = VREFDQ(DC)  
2. See "Overshoot and Undershoot specifications" section.  
3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference: approx. +/- 15 mV).  
4. For reference: approx. VDD/2 +/- 15 mV.  
5. VIH(dc) is used as a simplified symbol for VIH.DQ(DC100)  
6. VIL(dc) is used as a simplified symbol for VIL.DQ(DC100)  
7. VIH(ac) is used as a simplified symbol for VIH.DQ(AC175), VIH.DQ(AC150), and VIH.DQ(AC135); VIH.DQ(AC175) value is used when Vref + 0.175V is referenced,  
VIH.DQ(AC150) value is used when Vref + 0.150V is referenced, and VIH.DQ(AC135) value is used when Vref + 0.135V is referenced.  
8. VIL(ac) is used as a simplified symbol for VIL.DQ(AC175), VIL.DQ(AC150), and VIL.DQ(AC135); VIL.DQ(AC175) value is used when Vref - 0.175V is referenced,  
VIL.DQ(AC150) value is used when Vref - 0.150V is referenced, and VIL.DQ(AC135) value is used when Vref - 0.135V is referenced.  
9. VrefCA(DC) is measured relative to VDD at the same point in time on the same device  
10. Optional in DDR3 SDRAM for DDR3-800/1066/1333/1600: Users should refer to the DRAM supplier data sheetand/or the DIMM SPD to determine if DDR3 SDRAM devices  
support this option.  
- 12 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
8.2 VREF Tolerances  
The dc-tolerance limits and ac-noise limits for the reference voltages V  
and V  
are illustrate in Figure 1. It shows a valid reference voltage  
REFCA  
REFDQ  
V
V
(t) as a function of time. (V  
stands for V  
and V  
likewise).  
REFDQ  
REF  
REF  
REF  
REFCA  
(DC) is the linear average of V  
(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirement in Table 7 on  
REF  
page 11. Furthermore V  
(t) may temporarily deviate from V  
(DC) by no more than ± 1% V  
.
REF  
REF  
DD  
voltage  
VDD  
VSS  
time  
Figure 1. Illustration of V  
(DC) tolerance and VREF ac-noise limits  
REF  
The voltage levels for setup and hold time measurements V (AC), V (DC), V (AC) and V (DC) are dependent on V  
.
IH  
IH  
IL  
IL  
REF  
"V  
" shall be understood as V  
(DC), as defined in Figure 1 .  
REF  
REF  
This clarifies, that dc-variations of V  
affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to  
REF  
which setup and hold is measured. System timing and voltage budgets need to account for V  
data-eye of the input signals.  
(DC) deviations from the optimum position within the  
REF  
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with V  
ac-noise. Timing  
REF  
and voltage effects due to ac-noise on V  
up to the specified limit (+/-1% of V ) are included in DRAM timings and their associated deratings.  
DD  
REF  
- 13 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
8.3 AC & DC Logic Input Levels for Differential Signals  
8.3.1 Differential signals definition  
tDVAC  
V
.DIFF.AC.MIN  
IH  
V
.DIFF.MIN  
0.0  
IH  
half cycle  
V .DIFF.MAX  
IL  
V .DIFF.AC.MAX  
IL  
tDVAC  
time  
Figure 1. Definition of differential ac-swing and "time above ac level" tDVAC  
8.3.2 Differential swing requirement for clock (CK - CK) and strobe (DQS - DQS)  
[ Table 11 ] Differential AC & DC Input Levels  
DDR3-800/1066/1333/1600  
Symbol  
Parameter  
1.35V  
1.5V  
unit  
NOTE  
min  
+0.18  
max  
NOTE 3  
-0.18  
min  
+0.20  
max  
NOTE 3  
-0.20  
V
differential input high  
differential input low  
V
V
V
V
1
1
2
2
IHdiff  
V
NOTE 3  
NOTE 3  
ILdiff  
V
(AC)  
(AC)  
2 x (V (AC) - V  
)
2 x (V (AC) - V  
)
differential input high ac  
differential input low ac  
NOTE 3  
NOTE 3  
IHdiff  
IH  
REF  
IH  
REF  
V
2 x (V (AC) - V  
)
2 x (V (AC) - V  
)
REF  
NOTE 3  
NOTE 3  
ILdiff  
NOTE :  
1. Used to define a differential signal slew-rate.  
IL  
REF  
IL  
2. for CK - CK use VIH/VIL(AC) of ADD/CMD and VREFCA; for DQS - DQS use VIH/VIL(AC) of DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group,  
then the reduced level applies also here.  
3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended sig-  
nals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undersheet Specification"  
- 14 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
[ Table 12 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS (1.35V)  
DDR3L-800/1066/1333/1600  
(AC)| = 320mV tDVAC [ps] @ |V  
tDVAC [ps] @ |V  
(AC)| = 270mV  
IH/Ldiff  
Slew Rate [V/ns]  
IH/Ldiff  
min  
189  
189  
162  
109  
91  
max  
min  
201  
201  
179  
134  
119  
100  
76  
max  
> 4.0  
4.0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3.0  
2.0  
1.8  
1.6  
69  
1.4  
40  
1.2  
note  
note  
note  
44  
1.0  
note  
note  
< 1.0  
NOTE: Rising input signal shall become equal to or greater than VIH(ac) level and Falling input signal shall become equal to or less than VIL(ac) level.  
[ Table 13 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS (1.5V)  
DDR3-800/1066/1333/1600  
tDVAC [ps] @ |V  
(AC)| =  
tDVAC [ps] @ |V  
(AC)| = tDVAC [ps] @ |V  
(AC)| =270mV  
IH/Ldiff  
IH/Ldiff  
IH/Ldiff  
Slew Rate [V/ns]  
350mV  
300mV  
(DQS-DQS#)only(Optional)  
min  
75  
max  
min  
175  
170  
167  
119  
102  
81  
max  
min  
214  
214  
191  
146  
131  
113  
88  
max  
> 4.0  
4.0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
57  
3.0  
50  
2.0  
38  
1.8  
34  
1.6  
29  
1.4  
22  
54  
1.2  
note  
note  
note  
19  
56  
1.0  
note  
note  
11  
< 1.0  
note  
NOTE: Rising input differential signal shall become equal to or greater than VIHdiff(ac) level and Falling input differential signal shall become equal to or less than VILdiff(ac)  
level.  
- 15 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
8.3.3 Single-ended requirements for differential signals  
Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU) has also to comply with certain requirements for  
single-ended signals.  
CK and CK have to approximately reach V  
min / V  
max [approximately equal to the ac-levels { V (AC) / V (AC)} for ADD/CMD signals] in every  
SEH  
SEL IH IL  
half-cycle.  
DQS, DQSL, DQSU, DQS, DQSL have to reach V  
proceeding and following a valid transition.  
min / V  
max [approximately the ac-levels { V (AC) / V (AC)} for DQ signals] in every half-cycle  
SEL IH IL  
SEH  
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if V 150(AC)/V 150(AC) is used for ADD/CMD sig-  
IH  
IL  
nals, then these ac-levels apply also for the single-ended signals CK and CK .  
VDD or VDDQ  
VSEH min  
VSEH  
VDD/2 or VDDQ/2  
CK or DQS  
VSEL max  
VSEL  
VSS or VSSQ  
time  
Figure 2. Single-ended requirement for differential signals  
Note that while ADD/CMD and DQ signal requirements are with respect to V  
, the single-ended components of differential signals have a requirement  
REF  
with respect to V /2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-  
DD  
ended components of differential signals the requirement to reach V  
mode characteristics of these signals.  
max, V  
min has no bearing on timing, but adds a restriction on the common  
SEH  
SEL  
[ Table 14 ] Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU  
DDR3-800/1066/1333/1600  
Symbol  
Parameter  
Unit  
NOTE  
Min  
Max  
(V /2)+0.175  
Single-ended high-level for strobes  
Single-ended high-level for CK, CK  
Single-ended low-level for strobes  
Single-ended low-level for CK, CK  
NOTE3  
NOTE3  
V
V
V
V
1, 2  
1, 2  
1, 2  
1, 2  
DD  
V
SEH  
(V /2)+0.175  
DD  
(V /2)-0.175  
NOTE3  
NOTE3  
DD  
V
SEL  
(V /2)-0.175  
DD  
NOTE :  
1. For CK, CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL(AC) of DQs.  
2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the  
reduced level applies also here  
3. These values are not defined, however the single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective  
limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot  
Specification"  
- 16 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
8.4 Differential Input Cross Point Voltage  
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input  
signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage V is measured from the actual  
IX  
cross point of true and complement signal to the mid level between of V and V  
.
SS  
DD  
V
DD  
CK, DQS  
V
IX  
V
/2  
DD  
V
V
IX  
IX  
CK, DQS  
V
SS  
Figure 3. VIX Definition  
[ Table 15 ] Cross point voltage for differential input signals (CK, DQS) : 1.35V  
DDR3L-800/1066/1333/1600  
Symbol  
Parameter  
Unit  
NOTE  
Min  
-150  
-150  
Max  
150  
150  
V
Differential Input Cross Point Voltage relative to V /2 for CK,CK  
mV  
mV  
1
IX  
DD  
V
Differential Input Cross Point Voltage relative to V /2 for DQS,DQS  
IX  
DD  
NOTE :  
1. The relationbetween Vix Min/Max and VSEL/VSEH should satisfy following.  
(VDD/2) + Vix(Min) - VSEL 25mV  
VSEH - ((VDD/2) + Vix(Max)) 25mV  
[ Table 16 ] Cross point voltage for differential input signals (CK, DQS) : 1.5V  
DDR3-800/1066/1333/1600  
Symbol  
Parameter  
Unit  
NOTE  
Min  
-150  
-175  
-150  
Max  
150  
175  
150  
mV  
mV  
mV  
V
V
Differential Input Cross Point Voltage relative to V /2 for CK,CK  
IX  
DD  
1
Differential Input Cross Point Voltage relative to V /2 for DQS,DQS  
IX  
DD  
NOTE :  
1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended swing VSEL / VSEH of at least VDD/2  
±250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns.  
- 17 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
8.5 Slew rate definition for Differential Input Signals  
See 14.3 “Address/Command Setup, Hold and Derating :” on page 50 for single-ended slew rate definitions for address and command signals.  
See 14.4 “Data Setup, Hold and Slew Rate Derating :” on page 56 for single-ended slew rate definitions for data signals.  
8.6 Slew rate definitions for Differential Input Signals  
Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in Table 17 and Figure 4.  
[ Table 17 ] Differential input slew rate definition  
Measured  
Description  
Defined by  
From  
To  
V
V
V
[V  
- V  
Delta TRdiff  
Differential input slew rate for rising edge (CK-CK and DQS-DQS)  
Differential input slew rate for falling edge (CK-CK and DQS-DQS)  
NOTE :  
ILdiffmax  
IHdiffmin  
IHdiffmin  
ILdiffmax] /  
Delta TFdiff  
ILdiffmax] /  
V
[V - V  
IHdiffmin  
IHdiffmin  
ILdiffmax  
The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds.  
VIHdiffmin  
0
VILdiffmax  
delta TFdiff  
delta TRdiff  
Figure 4. Differential Input Slew Rate definition for DQS, DQS, and CK, CK  
9. AC & DC Output Measurement Levels  
9.1 Single-ended AC & DC Output Levels  
[ Table 18 ] Single-ended AC & DC output levels  
Symbol  
Parameter  
DDR3-800/1066/1333/1600  
Units  
NOTE  
V
(DC)  
(DC)  
DC output high measurement level (for IV curve linearity)  
0.8 x V  
0.5 x V  
0.2 x V  
V
V
V
V
V
OH  
DDQ  
DDQ  
DDQ  
V
V
DC output mid measurement level (for IV curve linearity)  
DC output low measurement level (for IV curve linearity)  
AC output high measurement level (for output SR)  
AC output low measurement level (for output SR)  
OM  
(DC)  
OL  
V
(AC)  
(AC)  
V
+ 0.1 x V  
1
1
OH  
TT  
DDQ  
DDQ  
V
V
- 0.1 x V  
TT  
OL  
NOTE : 1. The swing of +/-0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40and an effective test  
load of 25to VTT=VDDQ/2.  
9.2 Differential AC & DC Output Levels  
[ Table 19 ] Differential AC & DC output levels  
Symbol  
(AC)  
Parameter  
DDR3-800/1066/1333/1600  
Units  
NOTE  
V
AC differential output high measurement level (for output SR)  
+0.2 x V  
V
1
OHdiff  
DDQ  
V
(AC)  
AC differential output low measurement level (for output SR)  
-0.2 x V  
V
1
OLdiff  
DDQ  
NOTE : 1. The swing of +/-0.2xVDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40and an effective test  
load of 25to VTT=VDDQ/2 at each of the differential outputs.  
- 18 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
9.3 Single-ended Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between V (AC) and V (AC)  
OL  
OH  
for single ended signals as shown in Table 20 and Figure 5.  
[ Table 20 ] Single-ended output slew rate definition  
Description  
Measured  
Defined by  
[V (AC)-V (AC)] / Delta TRse  
From  
(AC)  
To  
(AC)  
V
V
V
Single ended output slew rate for rising edge  
Single ended output slew rate for falling edge  
OL  
OH  
OH  
OL  
(AC)  
V
(AC)  
[V (AC)-V (AC)] / Delta TFse  
OH OL  
OH  
OL  
NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.  
[ Table 21 ] Single-ended output slew rate  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Operation  
Voltage  
Parameter  
Symbol  
Units  
Min  
1.75  
2.5  
Max  
Min  
1.75  
2.5  
Max  
Min  
1.75  
2.5  
Max  
Min  
1.75  
2.5  
Max  
1)  
1)  
1)  
1)  
1.35V  
1.5V  
V/ns  
V/ns  
5
5
5
5
Single ended output slew rate  
Description : SR : Slew Rate  
SRQse  
5
5
5
5
Q : Query Output (like in DQ, which stands for Data-in, Query-Output)  
se : Single-ended Signals  
For Ron = RZQ/7 setting  
NOTE : 1) In two cased, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane.  
- Case_1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low of low to high) while all remaining DQ signals in  
the same byte lane are static (i.e they stay at either high or low).  
- Case_2 is defined for a single DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the remaining  
DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies.  
VOH(AC)  
VTT  
VOL(AC)  
delta TFse  
delta TRse  
Figure 5. Single-ended Output Slew Rate Definition  
- 19 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
9.4 Differential Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between V  
(AC) and V  
OH-  
OLdiff  
(AC) for differential signals as shown in Table 22 and Figure 6.  
diff  
[ Table 22 ] Differential output slew rate definition  
Description  
Measured  
Defined by  
From  
To  
(AC)  
V
V
(AC)  
V
[V  
(AC)-V  
OLdiff  
(AC)] / Delta TRdiff  
(AC)]/ Delta TFdiff  
Differential output slew rate for rising edge  
Differential output slew rate for falling edge  
OLdiff  
OHdiff  
OHdiff  
(AC)  
V
(AC)  
[V  
(AC)-V  
OHdiff OLdiff  
OHdiff  
OLdiff  
NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.  
[ Table 23 ] Differential output slew rate  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Operation  
Voltage  
Parameter  
Symbol  
Units  
Min  
Max  
12  
Min  
3.5  
5
Max  
Min  
3.5  
5
Max  
12  
Min  
3.5  
5
Max  
12  
1.35V  
1.5V  
3.5  
5
12  
10  
V/ns  
V/ns  
Differential output slew rate  
Description : SR : Slew Rate  
SRQdiff  
10  
10  
10  
Q : Query Output (like in DQ, which stands for Data-in, Query-Output)  
diff : Differential Signals  
For Ron = RZQ/7 setting  
VOHdiff(AC)  
VTT  
OLdiff(AC)  
V
delta TFdiff  
delta TRdiff  
Figure 6. Differential Output Slew Rate Definition  
9.5 Reference Load for AC Timing and Output Slew Rate  
Figure 7 represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate  
measurements.  
It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. Sys-  
tem designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their  
production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics.  
V
DDQ  
DQ  
DQS  
DQS  
CK/CK  
DUT  
V
= V  
/2  
DDQ  
TT  
25  
Reference  
Point  
Figure 7. Reference Load for AC Timing and Output Slew Rate  
- 20 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
9.6 Overshoot/Undershoot Specification  
9.6.1 Address and Control Overshoot and Undershoot specifications  
[ Table 24 ] AC overshoot/undershoot specification for Address and Control pins (A0-A12, BA0-BA2. CS. RAS. CAS. WE. CKE, ODT)  
Specification  
Parameter  
Unit  
DDR3-800  
1.35V  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Maximum peak amplitude allowed for overshoot area (See Figure 8)  
Maximum peak amplitude allowed for undershoot area (See Figure 8)  
0.4  
0.4  
0.4  
0.4  
0.5  
0.4  
0.4  
0.4  
0.4  
0.4  
V
V
Maximum overshoot area above V (See Figure 8)  
0.67  
0.33  
V-ns  
DD  
Maximum undershoot area below V (See Figure 8)  
0.67  
0.5  
0.4  
0.33  
V-ns  
SS  
1.5V  
Maximum peak amplitude allowed for overshoot area (See Figure 8)  
Maximum peak amplitude allowed for undershoot area (See Figure 8)  
0.4  
0.4  
0.4  
0.4  
0.5  
0.4  
0.4  
0.4  
0.4  
0.4  
V
V
Maximum overshoot area above V (See Figure 8)  
0.67  
0.33  
V-ns  
DD  
Maximum undershoot area below V (See Figure 8)  
0.67  
0.5  
0.4  
0.33  
V-ns  
SS  
(A0-A15, BA0-BA3, CS#, RAS#, CAS#, WE#, CKE, ODT)  
NOTE :  
1. The sum of the applied voltage (VDD) and peak amplitude overshoot voltage is not to exceed absolute maximum DC ratings  
2. The sum of applied voltage (VDD) and the peak amplitude undershoot voltage is not to exceed absolute maximum DC ratings  
Maximum Amplitude  
Overshoot Area  
VDD  
VSS  
Volts  
(V)  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
Figure 8. Address and Control Overshoot and Undershoot Definition  
- 21 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
9.6.2 Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications  
[ Table 25 ] AC overshoot/undershoot specification for Clock, Data, Strobe and Mask (DQ, DQS, DQS, DM, CK, CK)  
Specification  
Parameter  
Unit  
DDR3-800  
1.35V  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Maximum peak amplitude allowed for overshoot area (See Figure 9)  
Maximum peak amplitude allowed for undershoot area (See Figure 9)  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
V
V
Maximum overshoot area above V  
(See Figure 9)  
(See Figure 9)  
0.25  
0.19  
0.15  
0.13  
V-ns  
DDQ  
Maximum undershoot area below V  
0.25  
0.19  
0.15  
0.13  
V-ns  
SSQ  
1.5V  
Maximum peak amplitude allowed for overshoot area (See Figure 9)  
Maximum peak amplitude allowed for undershoot area (See Figure 9)  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
V
V
Maximum overshoot area above V  
(See Figure 9)  
(See Figure 9)  
0.25  
0.19  
0.15  
0.13  
V-ns  
DDQ  
Maximum undershoot area below V  
0.25  
0.19  
0.15  
0.13  
V-ns  
SSQ  
(A0-A15, BA0-BA3, CS#, RAS#, CAS#, WE#, CKE, ODT)  
NOTE :  
1. The sum of the applied voltage (VDD) and peak amplitude overshoot voltage is not to exceed absolute maximum DC ratings  
2. The sum of applied voltage (VDD) and the peak amplitude undershoot voltage is not to exceed absolute maximum DC ratings  
Maximum Amplitude  
Overshoot Area  
VDDQ  
VSSQ  
Volts  
(V)  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
Figure 9. Clock, Data, Strobe and Mask Overshoot and Undershoot Definition  
- 22 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
9.7 34ohm Output Driver DC Electrical Characteristics  
A functional representation of the output buffer is shown below. Output driver impedance RON is defined by the value of external reference resistor RZQ  
as follows:  
RON = RZQ/7 (Nominal 34.3ohms +/- 10% with nominal RZQ=240ohm)  
34  
The individual Pull-up and Pull-down resistors (RONpu and RONpd) are defined as follows  
V
-V  
DDQ OUT  
under the condition that RONpd is turned off  
RONpu =  
RONpd =  
l Iout l  
V
OUT  
under the condition that RONpu is turned off  
Output Driver  
l Iout l  
VDDQ  
Ipu  
To  
other  
circuity  
RON  
Pu  
DQ  
Iout  
RON  
Pd  
Vout  
Ipd  
VSSQ  
Figure 10. Output Driver : Definition of Voltages and Currents  
- 23 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
[ Table 26 ] Output Driver DC Electrical Characteristics, assuming RZQ=240ohms ;  
entire operating temperature range ; after proper ZQ calibration  
RONnom  
Resistor  
Vout  
Min  
Nom  
Max  
Units  
Notes  
1.35V  
V
V
= 0.2 x V  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.15  
1.15  
1.45  
1.45  
1.15  
1.15  
1.15  
1.15  
1.45  
1.45  
1.15  
1.15  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
OLdc  
DDQ  
= 0.5 x V  
= 0.8 x V  
= 0.2 x V  
RON34pd  
OMdc  
DDQ  
V
OHdc  
DDQ  
34Ohms  
RZQ/7  
V
OLdc  
DDQ  
V
= 0.5 x V  
RON34pu  
RON40pd  
RON40pu  
OMdc  
DDQ  
DDQ  
DDQ  
V
= 0.8 x V  
= 0.2 x V  
OHdc  
V
V
OLdc  
= 0.5 x V  
= 0.8 x V  
= 0.2 x V  
OMdc  
DDQ  
DDQ  
V
OHdc  
40Ohms  
RZQ/6  
V
OLdc  
DDQ  
V
= 0.5 x V  
OMdc  
DDQ  
DDQ  
V
V
= 0.8 x V  
= 0.5 x V  
OHdc  
Mismatch between Pull-up and Pull-down,  
MMpupd  
-10  
10  
%
1,2,4  
OMdc  
DDQ  
1.5V  
V
= 0.2 x V  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
1,2,3  
OLdc  
DDQ  
V
= 0.5 x V  
RON34pd  
OMdc  
DDQ  
DDQ  
DDQ  
V
= 0.8 x V  
= 0.2 x V  
OHdc  
34Ohms  
RZQ/7  
V
V
OLdc  
= 0.5 x V  
= 0.8 x V  
= 0.2 x V  
RON34pu  
OMdc  
DDQ  
DDQ  
V
OHdc  
V
OLdc  
DDQ  
V
= 0.5 x V  
RON40pd  
OMdc  
DDQ  
DDQ  
DDQ  
V
= 0.8 x V  
= 0.2 x V  
OHdc  
40Ohms  
RZQ/6  
V
V
OLdc  
= 0.5 x V  
= 0.8 x V  
RON40pu  
OMdc  
DDQ  
DDQ  
V
OHdc  
Mismatch between Pull-up and Pull-down,  
MMpupd  
V
= 0.5 x V  
-10  
10  
%
1,2,4  
OMdc  
DDQ  
NOTE :  
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibra-  
tion, see following section on voltage and temperature sensitivity  
2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS  
3. Pull-down and pull-up output driver impedance are recommended to be calibrated at 0.5 X VDDQ. Other calibration schemes may be used to achieve the linearity spec shown  
above, e.g. calibration at 0.2 X VDDQ and 0.8 X VDDQ  
4. Measurement definition for mismatch between pull-up and pull-down, MMpupd: Measure RONpu and RONpd. both at 0.5 X VDDQ  
:
RONpu - RONpd  
x 100  
MMpupd =  
RONnom  
- 24 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
9.7.1 Output Drive Temperature and Voltage Sensitivity  
If temperature and/or voltage change after calibration, the tolerance limits widen according to Table 27 and Table 28.  
T = T - T(@calibration); V = V  
- V  
(@calibration); V = V  
DDQ  
DDQ DD DDQ  
*dR dT and dR dV are not subject to production test but are verified by design and characterization  
ON  
ON  
[ Table 27 ] Output Driver Sensitivity Definition  
Min  
Max  
Units  
RONPU@V  
RON@V  
0.6 - dR dTH * |T| - dRONdVH * |V|  
1.1 + dR dTH * |T| + dRONdVH * |V|  
RZQ/7  
RZQ/7  
RZQ/7  
OHDC  
ON  
ON  
0.9 - dR dTM * |T| - dRONdVM * |V|  
1.1 + dR dTM * |T| + dRONdVM * |V|  
OMDC  
ON  
ON  
RONPD@  
0.6 - dR dTL * |T| - dRONdVL * |V|  
1.1 + dR dTL * |T| + dRONdVL * |V|  
VOLDC  
ON  
ON  
[ Table 28 ] Output Driver Voltage and Temperature Sensitivity  
Speed Bin  
800/1066/1333  
1600  
Units  
Min  
0
Max  
1.5  
Min  
0
Max  
1.5  
dR dTM  
%/C  
%/mV  
%/C  
ON  
dR dVM  
0
0.15  
1.5  
0
0.13  
1.5  
ON  
dR dTL  
0
0
ON  
dR dVL  
0
0.15  
1.5  
0
0.13  
1.5  
%/mV  
%/C  
ON  
dR dTH  
0
0
ON  
dR dVH  
0
0.15  
0
0.13  
%/mV  
ON  
9.8 On-Die Termination (ODT) Levels and I-V Characteristics  
On-Die Termination effective resistance RTT is defined by bits A9, A6 and A2 of MR1 register.  
ODT is applied to the DQ,DM, DQS/DQS and TDQS,TDQS (x8 devices only) pins.  
A functional representation of the on-die termination is shown below. The individual pull-up and pull-down resistors (RTTpu and RTTpd) are defined as  
follows :  
V
-V  
DDQ OUT  
under the condition that RTTpd is turned off  
under the condition that RTTpu is turned off  
RTTpu =  
RTTpd =  
l Iout l  
V
OUT  
l Iout l  
Chip in Termination Mode  
ODT  
VDDQ  
Ipu  
Iout=Ipd-Ipu  
To  
RTTPu  
other  
circuitry  
like  
DQ  
RCV,  
...  
Iout  
RTTPd  
VOUT  
VSSQ  
Ipd  
Figure 11. On-Die Termination : Definition of Voltages and Currents  
- 25 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
9.8.1 ODT DC Electrical Characteristics  
Table 29 provides and overview of the ODT DC electrical characteristics. They values for RTT  
RTT  
RTT  
RTT  
RTT  
120pu240, 40pd80,  
60pd120,  
60pu120,  
120pd240,  
RTT  
RTT  
RTT  
RTT  
RTT  
are not specification requirements, but can be used as design guide lines:  
40pu80,  
30pd60,  
30pu60,  
20pd40,  
20pu40  
[ Table 29 ] ODT DC Electrical Characteristics, assuming RZQ=240ohm +/- 1% entire operating temperature range; after proper ZQ calibration  
1.35V  
MR1 (A9,A6,A2)  
RTT  
RESISTOR  
Vout  
Min  
Nom  
Max  
Unit  
Notes  
V
V
(DC) 0.2XV  
R
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
-5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.15  
1.15  
1.45  
1.45  
1.15  
1.15  
1.65  
1.15  
1.15  
1.45  
1.45  
1.15  
1.15  
1.65  
1.15  
1.15  
1.45  
1.45  
1.15  
1.15  
1.65  
1.15  
1.15  
1.45  
1.45  
1.15  
1.15  
1.65  
1.15  
1.15  
1.45  
1.45  
1.15  
1.15  
1.65  
5
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
OL  
DDQ  
ZQ  
RTT  
0.5XV  
R
120pd240  
DDQ  
ZQ  
(DC) 0.8XV  
R
OH  
DDQ  
ZQ  
V
(DC) 0.2XV  
R
(0,1,0)  
120 ohm  
OL  
DDQ  
ZQ  
RTT  
0.5XV  
R
120pu240  
DDQ  
ZQ  
V
(DC) 0.8XV  
R
OH  
DDQ  
ZQ  
RTT  
V (AC) to V (AC)  
R
/2  
120  
IL  
IH  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
V
(DC) 0.2XV  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
/2  
/2  
/2  
/2  
/2  
/2  
/4  
/3  
/3  
/3  
/3  
/3  
/3  
/6  
/4  
/4  
/4  
/4  
/4  
/4  
/8  
/6  
/6  
/6  
/6  
/6  
/6  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
OL  
DDQ  
RTT  
0.5XV  
60pd120  
DDQ  
V
(DC) 0.8XV  
OH  
DDQ  
V
(DC) 0.2XV  
(0,0,1)  
(0,1,1)  
(1,0,1)  
(1,0,0)  
60 ohm  
40 ohm  
30 ohm  
20 ohm  
OL  
DDQ  
RTT  
0.5XV  
DDQ  
60pu120  
V
(DC) 0.8XV  
DDQ  
OH  
RTT  
V (AC) to V (AC)  
60  
IL  
IH  
V
(DC) 0.2XV  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
OL  
DDQ  
RTT  
0.5XV  
40pd80  
DDQ  
V
(DC) 0.8XV  
OH  
DDQ  
V
(DC) 0.2XV  
OL  
DDQ  
RTT  
0.5XV  
DDQ  
40pu80  
V
(DC) 0.8XV  
DDQ  
OH  
RTT  
V (AC) to V (AC)  
40  
IL  
IH  
V
(DC) 0.2XV  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
OL  
DDQ  
RTT  
0.5XV  
30pd60  
DDQ  
V
(DC) 0.8XV  
OH  
DDQ  
V
(DC) 0.2XV  
OL  
DDQ  
RTT  
0.5XV  
DDQ  
30pu60  
V
(DC) 0.8XV  
DDQ  
OH  
RTT  
V (AC) to V (AC)  
30  
IL  
IH  
V
(DC) 0.2XV  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
OL  
DDQ  
RTT  
0.5XV  
20pd40  
DDQ  
V
(DC) 0.8XV  
OH  
DDQ  
V
(DC) 0.2XV  
OL  
DDQ  
RTT  
0.5XV  
DDQ  
20pu40  
V
(DC) 0.8XV  
DDQ  
OH  
RTT  
V (AC) to V (AC)  
R
/12  
20  
IL  
IH  
ZQ  
Deviation of VM w.r.t VDDQ/2, VM  
%
1,2,5,6  
- 26 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
1.5V  
Vout  
MR1 (A9,A6,A2)  
RTT  
RESISTOR  
Min  
Nom  
Max  
Unit  
Notes  
V
V
(DC) 0.2XV  
R
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
0.6  
0.9  
0.9  
0.9  
0.9  
0.6  
0.9  
-5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
1.1  
1.1  
1.4  
1.4  
1.1  
1.1  
1.6  
5
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
OL  
DDQ  
ZQ  
RTT  
0.5XV  
R
120pd240  
DDQ  
ZQ  
(DC) 0.8XV  
R
OH  
DDQ  
ZQ  
V
(DC) 0.2XV  
R
(0,1,0)  
120 ohm  
OL  
DDQ  
ZQ  
RTT  
0.5XV  
R
120pu240  
DDQ  
ZQ  
V
(DC) 0.8XV  
R
OH  
DDQ  
ZQ  
RTT  
V (AC) to V (AC)  
R
/2  
120  
IL  
IH  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
ZQ  
V
(DC) 0.2XV  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
/2  
/2  
/2  
/2  
/2  
/2  
/4  
/3  
/3  
/3  
/3  
/3  
/3  
/6  
/4  
/4  
/4  
/4  
/4  
/4  
/8  
/6  
/6  
/6  
/6  
/6  
/6  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
OL  
DDQ  
RTT  
0.5XV  
60pd240  
DDQ  
V
(DC) 0.8XV  
OH  
DDQ  
V
(DC) 0.2XV  
(0,0,1)  
(0,1,1)  
(1,0,1)  
(1,0,0)  
60 ohm  
40 ohm  
30 ohm  
20 ohm  
OL  
DDQ  
RTT  
0.5XV  
DDQ  
60pu240  
V
(DC) 0.8XV  
DDQ  
OH  
RTT  
V (AC) to V (AC)  
60  
IL  
IH  
V
(DC) 0.2XV  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
OL  
DDQ  
RTT  
0.5XV  
40pd240  
DDQ  
V
(DC) 0.8XV  
OH  
DDQ  
V
(DC) 0.2XV  
OL  
DDQ  
RTT  
0.5XV  
DDQ  
40pu240  
V
(DC) 0.8XV  
DDQ  
OH  
RTT  
V (AC) to V (AC)  
40  
IL  
IH  
V
(DC) 0.2XV  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
OL  
DDQ  
RTT  
0.5XV  
60pd240  
DDQ  
V
(DC) 0.8XV  
OH  
DDQ  
V
(DC) 0.2XV  
OL  
DDQ  
RTT  
0.5XV  
DDQ  
60pu240  
V
(DC) 0.8XV  
DDQ  
OH  
RTT  
V (AC) to V (AC)  
60  
IL  
IH  
V
(DC) 0.2XV  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,3,4  
1,2,5  
OL  
DDQ  
RTT  
0.5XV  
60pd240  
DDQ  
V
(DC) 0.8XV  
OH  
DDQ  
V
(DC) 0.2XV  
OL  
DDQ  
RTT  
0.5XV  
DDQ  
60pu240  
V
(DC) 0.8XV  
DDQ  
OH  
RTT  
V (AC) to V (AC)  
R
/12  
60  
IL  
IH  
ZQ  
Deviation of VM w.r.t VDDQ/2, VM  
%
1,2,5,6  
- 27 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
NOTE :  
1. The tolerance limits are specified after calibration with stable voltage and temperature. For the behavior of the tolerance limits if temperature or voltage changes after calibra-  
tion, see following section on voltage and temperature sensitivity  
2. The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS  
3. Pull-down and pull-up ODT resistors are recommended to be calibrated at 0.5XVDDQ. Other calibration schemes may be used to achieve the linearity spec shown above, e.g.  
calibration at 0.2XVDDQ and 0.8XVDDQ  
.
4. Not a specification requirement, but a design guide line  
5. Measurement definition for RTT:  
Apply VIH(AC) to pin under test and measure current I(VIH(AC)), then apply VIL(AC) to pin under test and measure current I(VIL(AC)) respectively  
V
(AC) - V (AC)  
IL  
IH  
RTT  
=
I(V (AC)) - I(V (AC))  
IH  
IL  
6. Measurement definition for VM and VM : Measure voltage (VM) at test pin (midpoint) with no load  
2 x VM  
- 1  
x 100  
VM  
=
V
DDQ  
9.8.2 ODT Temperature and Voltage sensitivity  
If temperature and/or voltage change after calibration, the tolerance limits widen according to table below  
T = T - T(@calibration); V = V  
- V  
(@calibration); V = V  
DDQ  
DDQ  
DDQ  
DD  
[ Table 30 ] ODT Sensitivity Definition  
Min  
Max  
Units  
0.9 - dR dT * |T| - dRTTdV * |V|  
1.6 + dR dT * |T| + dRTTdV * |V|  
RTT  
RZQ/2,4,6,8,12  
TT  
TT  
[ Table 31 ] ODT Voltage and Temperature Sensitivity  
Min  
0
Max  
1.5  
Units  
%/C  
dR dT  
TT  
dR dV  
0
0.15  
%/mV  
TT  
NOTE : These parameters may not be subject to production test. They are verified by design and characterization.  
- 28 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
9.9 ODT Timing Definitions  
9.9.1 Test Load for ODT Timings  
Different than for timing measurements, the reference load for ODT timings is defined in Figure 12.  
VDDQ  
DUT  
DQ, DM  
CK,CK  
V
V
=
TT  
SSQ  
DQS , DQS  
TDQS , TDQS  
RTT  
=25 ohm  
VSSQ  
Timing Reference Points  
Figure 12. ODT Timing Reference Load  
9.9.2 ODT Timing Definitions  
Definitions for tAON, tAONPD, tAOF, tAOFPD and tADC are provided in Table 32 and subsequent figures. Measurement reference settings are provided  
in Table 33 .  
[ Table 32 ] ODT Timing Definitions  
Symbol  
tAON  
Begin Point Definition  
End Point Definition  
Figure  
Rising edge of CK - CK defined by the end point of ODTLon  
Rising edge of CK - CK with ODT being first registered high  
Rising edge of CK - CK defined by the end point of ODTLoff  
Rising edge of CK - CK with ODT being first registered low  
Extrapolated point at V  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
SSQ  
SSQ  
tAONPD  
tAOF  
Extrapolated point at V  
End point: Extrapolated point at V  
End point: Extrapolated point at V  
RTT_Nom  
RTT_Nom  
tAOFPD  
Rising edge of CK - CK defined by the end point of ODTLcnw,  
ODTLcwn4 of ODTLcwn8  
End point: Extrapolated point at V  
respectively  
and V  
RTT_Wr RTT_Nom  
tADC  
Figure 17  
[ Table 33 ] Reference Settings for ODT Timing Measurements  
Measured  
RTT_Nom Setting  
RTT_Wr Setting  
V
[V]  
V
[V]  
SW2  
NOTE  
SW1  
Parameter  
R
/4  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
0.05  
0.10  
0.05  
0.10  
0.05  
0.10  
0.05  
0.10  
0.20  
0.10  
0.20  
0.10  
0.20  
0.10  
0.20  
0.10  
0.20  
0.25  
ZQ  
tAON  
R
/12  
ZQ  
R
/4  
ZQ  
tAONPD  
tAOF  
R
/12  
ZQ  
R
/4  
ZQ  
R
/12  
ZQ  
R
/4  
ZQ  
tAOFPD  
tADC  
R
/12  
/12  
ZQ  
ZQ  
R
R
/2  
ZQ  
- 29 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
Begin point : Rising edge of CK - CK  
defined by the end point of ODTLon  
CK  
CK  
V
TT  
tAON  
TSW2  
TSW1  
DQ, DM  
DQS , DQS  
TDQS , TDQS  
VSW2  
VSW1  
V
V
V
V
SSQ  
SSQ  
End point Extrapolated point at V  
SSQ  
Figure 13. Definition of tAON  
Begin point : Rising edge of CK - CK  
with ODT being first registered high  
CK  
CK  
V
TT  
tAONPD  
TSW2  
TSW1  
DQ, DM  
DQS , DQS  
TDQS , TDQS  
VSW2  
VSW1  
V
SSQ  
SSQ  
End point Extrapolated point at V  
SSQ  
Figure 14. Definition of tAONPD  
Begin point : Rising edge of CK - CK  
defined by the end point of ODTLoff  
CK  
CK  
V
TT  
tAOF  
End point Extrapolated point at V  
RTT_Nom  
V
RTT_Nom  
TSW2  
TSW1  
DQ, DM  
DQS , DQS  
TDQS , TDQS  
VSW2  
VSW1  
SSQ  
TD_TAON_DEF  
Figure 15. Definition of tAOF  
- 30 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
Begin point : Rising edge of CK - CK  
with ODT being first registered low  
CK  
CK  
V
TT  
t
AOFPD  
End point Extrapolated point at V  
RTT_Nom  
V
RTT_Nom  
T
SW2  
DQ, DM  
DQS , DQS  
T
SW1  
V
SW2  
V
TDQS , TDQS  
SW1  
V
SSQ  
Figure 16. Definition of tAOFPD  
Begin point : Rising edge of CK - CK  
defined by the end point of ODTLcnw  
Begin point : Rising edge of CK - CK defined by  
the end point of ODTLcwn4 or ODTLcwn8  
CK  
CK  
V
TT  
t
t
ADC  
ADC  
End point Extrapolated point at V  
RTT_Nom  
V
RTT_Nom  
V
RTT_Nom  
T
SW21  
End point  
Extrapolated point  
at V  
T
DQ, DM  
DQS , DQS  
TDQS , TDQS  
SW22  
V
SW2  
T
SW11  
RTT_Nom  
T
SW12  
V
SW1  
End point Extrapolated point at V  
V
RTT_Wr  
RTT_Wr  
V
SSQ  
Figure 17. Definition of tADC  
- 31 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
10. IDD Current Measure Method  
10.1 IDD Measurement Conditions  
In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure 19 shows the setup and test load for IDD and  
IDDQ measurements.  
- IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET, IDD6TC and  
IDD7) are measured as time-averaged currents with all V balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in  
DD  
IDD currents.  
- IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all V  
balls of the DDR3 SDRAM under test tied  
DDQ  
together. Any IDD current is not included in IDDQ currents.  
Attention : IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO  
power to actual IO power as outlined in Figure 20. In DRAM module application, IDDQ cannot be measured separately since V and V  
DD  
DDQ  
are using one merged-power layer in Module PCB.  
For IDD and IDDQ measurements, the following definitions apply :  
- "0" and "LOW" is defined as V <= V AC(max).  
IN  
IL  
- "1" and "HIGH" is defined as V >= V AC(min).  
IN  
IH  
- "FLOATING" is defined as inputs are V  
= V / 2.  
DD  
REF  
- "Timing used for IDD and IDDQ Measured - Loop Patterns" are provided in Table 34  
- "Basic IDD and IDDQ Measurement Conditions" are described in Table 35  
- Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 32 on page 31 through Table 39.  
- IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting  
RON = RZQ/7 (34 Ohm in MR1);  
Qoff = 0B (Output Buffer enabled in MR1);  
RTT_Nom = RZQ/6 (40 Ohm in MR1);  
RTT_Wr = RZQ/2 (120 Ohm in MR2);  
TDQS Feature disabled in MR1  
- Attention : The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started.  
- Define D = {CS, RAS, CAS, WE} := {HIGH, LOW, LOW, LOW}  
- Define D = {CS, RAS, CAS, WE} := {HIGH, HIGH, HIGH, HIGH}  
- RESET Stable time is : During a Cold Bood RESET (Initialization), current reading is valid once power is stable and RESET has been LOW for 1ms;  
During Warm Boot RESET(while operating), current reading is valid after RESET has been LOW for 200ns + tRFC  
[ Table 34 ] Timing used for IDD and IDDQ Measured - Loop Patterns  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Parameter Bin  
tCKmin(IDD)  
Unit  
6-6-6  
2.5  
6
7-7-7  
1.875  
7
9-9-9  
1.5  
9
11-11-11  
1.25  
11  
ns  
CL(IDD)  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
nCK  
tRCDmin(IDD)  
tRCmin(IDD)  
tRASmin(IDD)  
tRPmin(IDD)  
6
7
9
11  
21  
15  
6
27  
20  
7
33  
24  
9
39  
28  
11  
x4/x8  
x16  
16  
20  
4
20  
27  
4
20  
30  
4
24  
tFAW(IDD)  
tRRD(IDD)  
32  
x4/x8  
x16  
5
4
6
5
6
tRFC(IDD) - 512Mb  
tRFC(IDD) - 1Gb  
tRFC(IDD) - 2Gb  
tRFC(IDD) - 4Gb  
tRFC(IDD) - 8Gb  
36  
44  
64  
104  
140  
48  
59  
86  
139  
187  
60  
74  
107  
174  
234  
72  
88  
128  
208  
280  
- 32 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
IDD  
IDDQ  
VDD  
VDDQ  
RESET  
CK/CK  
CKE  
CS  
DQS, DQS  
DQ, DM,  
R
TT = 25 Ohm  
VDDQ/2  
RAS, CAS, WE  
TDQS, TDQS  
A, BA  
ODT  
ZQ  
VSS  
VSSQ  
[NOTE : DIMM level Output test load condition may be different from above]  
Figure 18. Measurement Setup and Test Load for IDD and IDDQ Measurements  
Application specific  
IDDQ  
Test Load  
memory channel  
environment  
Channel  
IO Power  
Simulation  
IDDQ  
Measurement  
IDDQ  
Simulation  
Correlation  
Correction  
Channel IO Power  
Number  
Figure 19. Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement.  
- 33 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
[ Table 35 ] Basic IDD and IDDQ Measurement Conditions  
Symbol  
Description  
Operating One Bank Active-Precharge Current  
CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 34 on page 32 ; BL: 81); AL: 0; CS: High between ACT and PRE; Command, Address,  
Bank Address Inputs: partially toggling according to Table 32 on page 31 ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active  
at a time: 0,0,1,1,2,2,... (see Table 32); Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 32  
IDD0  
IDD1  
Operating One Bank Active-Read-Precharge Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 34 on page 32 ; BL: 81); AL: 0; CS: High between ACT, RD and PRE; Command,  
Address, Bank Address Inputs, Data IO: partially toggling according to Table 33 on page 32 ; DM:stable at 0; Bank Activity: Cycling with one bank active at  
a time: 0,0,1,1,2,2,... (see Table 33); Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 33  
Precharge Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 34 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially tog-  
gling according to Table 34 on page 32 ; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode  
IDD2N  
Registers2); ODT Signal: stable at 0; Pattern Details: see Table 34  
Precharge Standby ODT Current  
CKE: High; External clock: On; tCK, CL: see Table 34 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially tog-  
gling according to Table 35 on page 33 ; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode  
Registers2); ODT Signal: toggling according to Table 35 ; Pattern Details: see Table 35  
IDD2NT  
IDDQ2NT  
IDD2P0  
Precharge Standby ODT IDDQ Current  
Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current  
Precharge Power-Down Current Slow Exit  
CKE: Low; External clock: On; tCK, CL: see Table 34 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0;  
Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pre-  
charge Power Down Mode: Slow Exi3)  
Precharge Power-Down Current Fast Exit  
CKE: Low; External clock: On; tCK, CL: see Table 34 on page 32; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0;  
Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pre-  
charge Power Down Mode: Fast Exit3)  
IDD2P1  
IDD2Q  
IDD3N  
IDD3P  
Precharge Quiet Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 34 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0;  
Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0  
Active Standby Current  
CKE: High; External clock: On; tCK, CL: see Table 34 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially tog-  
gling according to Table 34 on page 32 ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode  
Registers2); ODT Signal: stable at 0; Pattern Details: see Table 34  
Active Power-Down Current  
CKE: Low; External clock: On; tCK, CL: see Table 34 on page 32 ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0;  
Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0  
Operating Burst Read Current  
CKE: High; External clock: On; tCK, CL: see Table 34 on page 32 ; BL: 81); AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: par-  
tially toggling according to Table 36 on page 33 ; Data IO: seamless read data burst with different data between one burst and the next one according to  
Table 36 ; DM:stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 7 on page 11); Output Buffer and  
IDD4R  
IDDQ4R  
IDD4W  
RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 36  
Operating Burst Read IDDQ Current  
Same definition like for IDD4R, however measuring IDDQ current instead of IDD current  
Operating Burst Write Current  
CKE: High; External clock: On; tCK, CL: see Table 34 on page 32 ; BL: 81); AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: par-  
tially toggling according to Table 37 on page 34 ; Data IO: seamless write data burst with different data between one burst and the next one according to  
Table 37; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... (see Table 37); Output Buffer and RTT:  
Enabled in Mode Registers2); ODT Signal: stable at HIGH; Pattern Details: see Table 37  
Burst Refresh Current  
CKE: High; External clock: On; tCK, CL, nRFC: see Table 34 on page 32 ; BL: 81); AL: 0; CS: High between REF; Command, Address, Bank Address  
Inputs: partially toggling according to Table 38 on page 34 ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC (see Table 38);  
Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 38  
IDD5B  
IDD6  
Self Refresh Current: Normal Temperature Range  
TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Normal5); CKE: Low; External clock: Off; CK and CK:  
LOW; CL: see Table 34 on page 32 ; BL: 81); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Self-  
Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: FLOATING  
- 34 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
[ Table 33 ] Basic IDD and IDDQ Measurement Conditions  
Symbol  
Description  
Operating Bank Interleave Read Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: see Table 34 on page 32 ; BL: 81); AL: CL-1; CS: High between ACT and RDA;  
Command, Address, Bank Address Inputs: partially toggling according to Table 39 on page 35 ; Data IO: read data bursts with different data between one  
burst and the next one according to Table 39 ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing,  
IDD7  
IDD8  
see Table 39 ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: see Table 39  
RESET Low Current  
RESET : Low; External clock : off; CK and CK : LOW; CKE : FLOATING ; CS, Command, Address, Bank Address, Data IO : FLOATING ; ODT Signal :  
FLOATING  
NOTE :  
1) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B  
2) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B  
3) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit  
4) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature  
5) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range  
6) Read Burst type : Nibble Sequential, set MR0 A[3]=0B  
- 35 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
1)  
[ Table 36 ] IDD0 Measurement - Loop Pattern  
0
0
1,2  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
3,4  
...  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
PRE  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
nRAS  
0
0
1
0
0
0
00  
0
0
0
0
-
...  
1*nRC + 0  
1*nRC + 1, 2  
1*nRC + 3, 4  
...  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
F
F
F
0
0
0
-
-
-
repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary  
PRE 00  
1*nRC + nRAS  
...  
0
0
1
0
0
0
0
0
F
0
repeat 1...4 until 2*nRC - 1, truncate if necessary  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
1
2
3
4
5
6
7
2*nRC  
4*nRC  
6*nRC  
8*nRC  
10*nRC  
12*nRC  
14*nRC  
NOTE :  
1. DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
2. DQ signals are MID-LEVEL.  
- 36 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
1)  
[ Table 37 ] IDD1 Measurement - Loop Pattern  
0
0
1,2  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
3,4  
...  
repeat pattern 1...4 until nRCD- 1, truncate if necessary  
RD  
repeat pattern 1...4 until nRAS - 1, truncate if necessary  
PRE  
repeat pattern 1...4 until nRC - 1, truncate if necessary  
nRCD  
...  
0
1
0
1
0
0
00  
00  
0
0
0
0
0
0
0
0
00000000  
-
nRAS  
0
0
1
0
0
0
...  
1*nRC+0  
1*nRC + 1, 2  
1*nRC + 3, 4  
...  
ACT  
D, D  
D, D  
0
1
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
F
F
F
0
0
0
-
-
-
repeat pattern nRC + 1,..., 4 until nRC + nRCD - 1, truncate if necessary  
RD 00  
repeat pattern nRC + 1,..., 4 until nRC +nRAS - 1, truncate if necessary  
1*nRC + nRCD  
...  
0
1
0
1
0
0
0
0
F
F
0
0
00110011  
-
1*nRC + nRAS  
...  
PRE  
0
0
1
0
0
0
00  
0
0
repeat pattern nRC + 1,..., 4 until 2 * nRC - 1, truncate if necessary  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
1
2
3
4
5
6
7
2*nRC  
4*nRC  
6*nRC  
8*nRC  
10*nRC  
12*nRC  
14*nRC  
NOTE :  
1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.  
2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL.  
1)  
[ Table 38 ] IDD2 and IDD3N Measurement - Loop Pattern  
0
0
D
D
D
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
-
-
-
-
1
2
3
1
2
3
4
5
6
7
4-7  
repeat Sub-Loop 0, use BA[2:0] = 1 instead  
repeat Sub-Loop 0, use BA[2:0] = 2 instead  
repeat Sub-Loop 0, use BA[2:0] = 3 instead  
repeat Sub-Loop 0, use BA[2:0] = 4 instead  
repeat Sub-Loop 0, use BA[2:0] = 5 instead  
repeat Sub-Loop 0, use BA[2:0] = 6 instead  
repeat Sub-Loop 0, use BA[2:0] = 7 instead  
8-11  
12-15  
16-19  
20-23  
24-27  
28-31  
NOTE :  
1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL.  
2. DQ signals are MID-LEVEL.  
- 37 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
1)  
[ Table 39 ] IDD2NT and IDDQ2NT Measurement - Loop Pattern  
0
0
D
D
D
D
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
F
F
0
0
0
0
-
1
2
3
1
2
3
4
5
6
7
4-7  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4  
repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6  
repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7  
8-11  
12-15  
16-19  
20-23  
24-27  
28-31  
NOTE :  
1. DM must be driven Low all the time. DQS, DQS are MID-LEVEL.  
2. DQ signals are MID-LEVEL.  
1)  
[ Table 40 ] IDD4R and IDDQ4R Measurement - Loop Pattern  
0
0
RD  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
1
-
2,3  
D,D  
RD  
D
-
4
00110011  
5
-
-
6,7  
D,D  
1
2
3
4
5
6
7
8-15  
16-23  
24-31  
32-39  
40-47  
48-55  
56-63  
repeat Sub-Loop 0, but BA[2:0] = 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 0, but BA[2:0] = 3  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 0, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 0, but BA[2:0] = 7  
NOTE :  
1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.  
2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.  
- 38 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
1)  
[ Table 41 ] IDD4W Measurement - Loop Pattern  
0
0
WR  
D
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F
F
F
0
0
0
0
0
0
00000000  
1
-
2,3  
D,D  
WR  
D
-
4
00110011  
5
-
-
6,7  
D,D  
1
2
3
4
5
6
7
8-15  
16-23  
24-31  
32-39  
40-47  
48-55  
56-63  
repeat Sub-Loop 0, but BA[2:0] = 1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 0, but BA[2:0] = 3  
repeat Sub-Loop 0, but BA[2:0] = 4  
repeat Sub-Loop 0, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 0, but BA[2:0] = 7  
NOTE :  
1. DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL.  
2. Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL.  
1)  
[ Table 42 ] IDD5B Measurement - Loop Pattern  
0
1
0
1,2  
REF  
D
0
1
1
0
0
1
0
0
1
1
0
1
0
0
0
0
0
0
00  
00  
00  
0
0
0
0
0
0
0
0
F
0
0
0
-
-
-
3,4  
D,D  
5...8  
repeat cycles 1...4, but BA[2:0] = 1  
repeat cycles 1...4, but BA[2:0] = 2  
repeat cycles 1...4, but BA[2:0] = 3  
repeat cycles 1...4, but BA[2:0] = 4  
repeat cycles 1...4, but BA[2:0] = 5  
repeat cycles 1...4, but BA[2:0] = 6  
repeat cycles 1...4, but BA[2:0] = 7  
9...12  
13...16  
17...20  
21...24  
25...28  
29...32  
33...nRFC - 1  
2
repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary.  
NOTE :  
1. DM must be driven LOW all the time. DQS, DQS are MID-LEVEL.  
2. DQ signals are MID-LEVEL.  
- 39 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
1)  
[ Table 43 ] IDD7 Measurement - Loop Pattern  
0
1
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
00  
00  
00  
0
1
0
0
0
0
0
0
0
0
0
0
-
00000000  
-
0
1
2
...  
repeat above D Command until nRRD - 1  
nRRD  
nRRD + 1  
nRRD + 2  
...  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
00  
00  
00  
0
1
0
0
0
0
F
F
F
0
0
0
-
00110011  
-
repeat above D Command until 2*nRRD-1  
repeat Sub-Loop 0, but BA[2:0] = 2  
repeat Sub-Loop 1, but BA[2:0] = 3  
2
3
2 * nRRD  
3 * nRRD  
D
1
0
0
0
0
3
00  
0
0
F
0
-
4
4 * nRRD  
Assert and repeat above D Command until nFAW - 1, if necessary  
repeat Sub-Loop 0, but BA[2:0] = 4  
5
6
7
8
nFAW  
nFAW+nRRD  
nFAW+2*nRRD  
nFAW+3*nRRD  
repeat Sub-Loop 1, but BA[2:0] = 5  
repeat Sub-Loop 0, but BA[2:0] = 6  
repeat Sub-Loop 1, but BA[2:0] = 7  
D
1
0
0
0
0
7
00  
0
0
F
0
-
9
nFAW+4*nRRD  
Assert and repeat above D Command until 2*nFAW - 1, if necessary  
2*nFAW+0  
2*nFAW+1  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
0
0
0
00  
00  
00  
0
1
0
0
0
0
F
F
F
0
0
0
-
00110011  
-
10  
2*nFAW+2  
Repeat above D Command until 2*nFAW + nRRD - 1  
2*nFAW+nRRD  
ACT  
RDA  
D
0
0
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
00  
00  
00  
0
1
0
0
0
0
0
0
0
0
0
0
-
2*nFAW+nRRD+1  
00000000  
-
11  
2*nFAW+nRRD+2  
Repeat above D Command until 2*nFAW + 2*nRRD - 1  
repeat Sub-Loop 10, but BA[2:0] = 2  
12  
13  
2*nFAW+2*nRRD  
2*nFAW+3*nRRD  
repeat Sub-Loop 11, but BA[2:0] = 3  
D
1
0
0
0
0
3
00  
0
0
0
0
-
14  
2*nFAW+4*nRRD  
Assert and repeat above D Command until 3*nFAW - 1, if necessary  
repeat Sub-Loop 10, but BA[2:0] = 4  
15  
16  
17  
18  
3*nFAW  
3*nFAW+nRRD  
3*nFAW+2*nRRD  
3*nFAW+3*nRRD  
repeat Sub-Loop 11, but BA[2:0] = 5  
repeat Sub-Loop 10, but BA[2:0] = 6  
repeat Sub-Loop 11, but BA[2:0] = 7  
D
1
0
0
0
0
7
00  
0
0
0
0
-
19  
3*nFAW+4*nRRD  
Assert and repeat above D Command until 4*nFAW - 1, if necessary  
NOTE :  
1. DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL.  
2. Burst Sequence driven on each DQ signal by Read Command. Outside burst operation. DQ signals are MID-LEVEL.  
- 40 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
11. 4Gb DDR3 SDRAM Q-die IDD Specification Table  
[ Table 44 ] IDD Specification for 4Gb DDR3 Q-die  
256Mx16 (K4B4G1646Q)  
DDR3-1066  
7-7-7  
DDR3-1333  
9-9-9  
DDR3-1600  
11-11-11  
Symbol  
Unit  
NOTE  
1.35V  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
1.5V  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
1.35V  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
1.5V  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
1.35V  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
1.5V  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
IDD0  
IDD1  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD2P0(slow exit)  
IDD2P1(fast exit)  
IDD2N  
IDD2NT  
IDDQ2NT  
IDD2Q  
IDD3P  
IDD3N  
IDD4R  
IDDQ4R  
IDD4W  
IDD5B  
IDD6  
IDD7  
IDD8  
NOTE : VDD condition : 1.45V for 1.35V operation, 1.575V for 1.5V operation  
- 41 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
12. Input/Output Capacitance  
[ Table 45 ] Input/Output Capacitance  
DDR3-800  
Min Max  
1.35V  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Parameter  
Symbol  
Units NOTE  
Min  
Max  
Min  
Max  
Min  
Max  
Input/output capacitance  
CIO  
CCK  
1.4  
0.8  
0
2.5  
1.6  
0.15  
1.3  
0.2  
0.3  
0.5  
1.4  
0.8  
0
2.5  
1.6  
0.15  
1.3  
0.2  
0.3  
0.5  
1.4  
0.8  
0
2.3  
1.4  
1.4  
0.8  
0
2.2  
1.4  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
1,2,3  
2,3  
(DQ, DM, DQS, DQS, TDQS, TDQS)  
Input capacitance  
(CK and CK)  
Input capacitance delta  
(CK and CK)  
CDCK  
0.15  
1.3  
0.15  
1.2  
2,3,4  
Input capacitance  
CI  
0.75  
0
0.75  
0
0.75  
0
0.75  
0
2,3,6  
(All other input-only pins)  
Input/Output capacitance delta  
(DQS and DQS)  
CDDQS  
CDI_CTRL  
CDI_ADD_CMD  
0.15  
0.2  
0.15  
0.2  
2,3,5  
Input capacitance delta  
-0.5  
-0.5  
-0.5  
-0.5  
-0.4  
-0.4  
-0.4  
-0.4  
2,3,7,8  
2,3,9,10  
(All control input-only pins)  
Input capacitance delta  
0.4  
0.4  
(all ADD and CMD input-only pins)  
Input/output capacitance delta  
CDIO  
CZQ  
-0.5  
-
0.3  
3
-0.5  
-
0.3  
3
-0.5  
-
0.3  
3
-0.5  
-
0.3  
3
pF  
pF  
2,3,11  
(DQ, DM, DQS, DQS, TDQS, TDQS)  
Input/output capacitance of ZQ pin  
2, 3, 12  
1.5V  
Input/output capacitance  
CIO  
CCK  
1.4  
0.8  
0
3.0  
1.6  
0.15  
1.4  
0.2  
0.3  
0.5  
1.4  
0.8  
0
2.7  
1.6  
1.4  
0.8  
0
2.5  
1.4  
1.4  
0.8  
0
2.3  
1.4  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
1,2,3  
2,3  
(DQ, DM, DQS, DQS, TDQS, TDQS)  
Input capacitance  
(CK and CK)  
Input capacitance delta  
(CK and CK)  
CDCK  
0.15  
1.35  
0.2  
0.15  
1.3  
0.15  
1.3  
2,3,4  
Input capacitance  
CI  
0.75  
0
0.75  
0
0.75  
0
0.75  
0
2,3,6  
(All other input-only pins)  
Input capacitance delta  
(DQS and DQS)  
CDDQS  
CDI_CTRL  
CDI_ADD_CMD  
0.15  
0.2  
0.15  
0.2  
2,3,5  
Input capacitance delta  
-0.5  
-0.5  
-0.5  
-0.5  
0.3  
-0.4  
-0.4  
-0.4  
-0.4  
2,3,7,8  
2,3,9,10  
(All control input-only pins)  
Input capacitance delta  
0.5  
0.4  
0.4  
(all ADD and CMD input-only pins)  
Input/output capacitance delta  
CDIO  
CZQ  
-0.5  
-
0.3  
3
-0.5  
-
0.3  
3
-0.5  
-
0.3  
3
-0.5  
-
0.3  
3
pF  
pF  
2,3,11  
(DQ, DM, DQS, DQS, TDQS, TDQS)  
Input/output capacitance of ZQ pin  
2, 3, 12  
NOTE :  
1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS  
2. This parameter is not subject to production test. It is verified by design and characterization.  
The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER( VNA)") with  
DD, VDDQ, VSS, VSSQ applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary). VDD=VDDQ=1.5V or 1.35V, VBIAS=VDD/2 and on-  
V
die termination off.  
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here  
4. Absolute value of CCK-CCK  
5. Absolute value of CIO(DQS)-CIO(DQS)  
6. CI applies to ODT, CS, CKE, A0-A14, BA0-BA2, RAS, CAS, WE.  
7. CDI_CTRL applies to ODT, CS and CKE  
8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK))  
9. CDI_ADD_CMD applies to A0-A14, BA0-BA2, RAS, CAS and WE  
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK))  
11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS))  
12. Maximum external load capacitance on ZQ pin: 5pF  
- 42 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
13. Electrical Characteristics and AC timing for DDR3-800 to DDR3-1600  
13.1 Clock Specification  
The jitter specified is a random jitter meeting a Gaussian distribution. Input clocks violating the min/max values may result in malfunction of the DDR3  
SDRAM device.  
13.1.1 Definition for tCK(avg)  
tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window, where each clock period is calculated from rising edge to  
rising edge.  
N
tCKj  
N=200  
N
j=1  
13.1.2 Definition for tCK(abs)  
tCK(abs) is defind as the absolute clock period, as measured from one rising edge to the next consecutive rising edge. tCK(abs) is not subject to produc-  
tion test.  
13.1.3 Definition for tCH(avg) and tCL(avg)  
tCH(avg) is defined as the average high pulse width, as calculated across any consecutive 200 high pulses:  
tCL(avg) is defined as the average low pulse width, as calculated across any consecutive 200 low pulses:  
N
N
tCHj  
tCLj  
N x tCK(avg) N=200  
N x tCK(avg)  
N=200  
j=1  
j=1  
13.1.4 Definition for note for tJIT(per), tJIT(per, Ick)  
tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg). tJIT(per) = min/max of {tCKi-tCK(avg) where i=1 to 200}  
tJIT(per) defines the single period jitter when the DLL is already locked.  
tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only.  
tJIT(per) and tJIT(per,lck) are not subject to production test.  
13.1.5 Definition for tJIT(cc), tJIT(cc, Ick)  
tJIT(cc) is defined as the absolute difference in clock period between two consecutive clock cycles: tJIT(cc) = Max of {tCKi+1-tCKi}  
tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked.  
tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only.  
tJIT(cc) and tJIT(cc,lck) are not subject to production test.  
13.1.6 Definition for tERR(nper)  
tERR is defined as the cumulative error across n multiple consecutive cycles from tCK(avg). tERR is not subject to production test.  
- 43 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
13.2 Refresh Parameters by Device Density  
[ Table 46 ] Refresh parameters by device density  
Parameter  
Symbol  
1Gb  
110  
7.8  
2Gb  
160  
7.8  
4Gb  
260  
7.8  
8Gb  
350  
7.8  
Units  
ns  
NOTE  
All Bank Refresh to active/refresh cmd time  
tRFC  
0CT  
85C  
95C  
s  
CASE  
Average periodic refresh interval  
tREFI  
85CT  
3.9  
3.9  
3.9  
3.9  
s  
1
CASE  
NOTE :  
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in  
this material.  
13.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin  
DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.  
[ Table 47 ] DDR3-800 Speed Bins  
Speed  
DDR3-800  
6 - 6 - 6  
CL-nRCD-nRP  
Units  
NOTE  
Parameter  
Symbol  
tAA  
min  
15  
max  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
20  
ns  
ns  
tRCD  
15  
-
tRP  
15  
-
-
ns  
ACT to ACT or REF command period  
ACT to PRE command period  
tRC  
52.5  
37.5  
3.0  
2.5  
ns  
tRAS  
9*tREFI  
3.3  
ns  
CL = 5  
CWL = 5  
CWL = 5  
tCK(AVG)  
tCK(AVG)  
ns  
1,2,3,4,9,10  
1,2,3  
CL = 6  
3.3  
ns  
Supported CL Settings  
Supported CWL Settings  
5,6  
5
nCK  
nCK  
[ Table 48 ] DDR3-1066 Speed Bins  
Speed  
DDR3-1066  
7 - 7 - 7  
CL-nRCD-nRP  
Units  
NOTE  
Parameter  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
Symbol  
tAA  
min  
13.125  
13.125  
13.125  
50.625  
37.5  
max  
20  
ns  
ns  
tRCD  
-
tRP  
-
-
ns  
ACT to ACT or REF command period  
ACT to PRE command period  
tRC  
ns  
tRAS  
9*tREFI  
3.3  
ns  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
3.0  
ns  
1,2,3,4,5,9,10  
CL = 5  
CL = 6  
CL = 7  
CL = 8  
Reserved  
ns  
4
1,2,3,5  
1,2,3,4  
4
2.5  
3.3  
ns  
Reserved  
Reserved  
ns  
ns  
1.875  
1.875  
<2.5  
<2.5  
ns  
1,2,3,4,8  
4
Reserved  
ns  
ns  
1,2,3  
Supported CL Settings  
Supported CWL Settings  
5,6,7,8  
5,6  
nCK  
nCK  
- 44 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
[ Table 49 ] DDR3-1333 Speed Bins  
Speed  
DDR3-1333  
CL-nRCD-nRP  
9 -9 - 9  
Units  
NOTE  
Parameter  
Symbol  
min  
max  
13.5  
(13.125)  
Internal read command to first data  
tAA  
20  
ns  
ns  
ns  
ns  
8
8
8
8
13.5  
(13.125)  
ACT to internal read or write delay time  
PRE command period  
tRCD  
tRP  
-
-
-
13.5  
(13.125)  
49.5  
(49.125)  
ACT to ACT or REF command period  
ACT to PRE command period  
tRC  
tRAS  
36  
9*tREFI  
3.3  
ns  
ns  
CWL = 5  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
3.0  
1,2,3,4,6,9,10  
CL = 5  
CWL = 6,7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5,6  
CWL = 7  
CWL = 5,6  
CWL = 7  
Reserved  
ns  
4
1,2,3,6  
1,2,3,4,6  
4
2.5  
3.3  
ns  
CL = 6  
Reserved  
Reserved  
Reserved  
ns  
ns  
ns  
4
CL = 7  
CL = 8  
1.875  
1.875  
<2.5  
<2.5  
ns  
1,2,3,4,6  
1,2,3,4  
4
Reserved  
Reserved  
ns  
ns  
ns  
1,2,3,6  
1,2,3,4  
4
Reserved  
Reserved  
ns  
ns  
CL = 9  
1.5  
1.5  
<1.875  
<1.875  
ns  
1,2,3,4,8  
4
Reserved  
ns  
CL = 10  
ns  
1,2,3  
Supported CL Settings  
Supported CWL Settings  
5,6,7,8,9,10  
5,6,7  
nCK  
nCK  
- 45 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
[ Table 50 ] DDR3-1600 Speed Bins  
Speed  
DDR3-1600  
CL-nRCD-nRP  
11-11-11  
Units  
NOTE  
Parameter  
Symbol  
min  
max  
13.75  
(13.125)  
Internal read command to first data  
tAA  
20  
ns  
ns  
ns  
ns  
8
8
8
8
13.75  
(13.125)  
ACT to internal read or write delay time  
PRE command period  
tRCD  
tRP  
-
-
-
13.75  
(13.125)  
48.75  
(48.125)  
ACT to ACT or REF command period  
ACT to PRE command period  
tRC  
tRAS  
35  
9*tREFI  
3.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
nCK  
nCK  
CWL = 5  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
3.0  
1,2,3,4,7,9,10  
CL = 5  
CWL = 6,7,8  
CWL = 5  
CWL = 6  
CWL = 7, 8  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 8  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 8  
CWL = 5,6  
CWL = 7  
CWL = 8  
CWL = 5,6  
CWL = 7  
CWL = 8  
CWL = 5,6,7  
CWL = 8  
Reserved  
4
1,2,3,7  
1,2,3,4,7  
4
2.5  
3.3  
CL = 6  
Reserved  
Reserved  
Reserved  
4
1.875  
1.875  
<2.5  
<2.5  
1,2,3,4,7  
1,2,3,4,7  
4
CL = 7  
Reserved  
Reserved  
Reserved  
4
1,2,3,7  
1,2,3,4,7  
1,2,3,4  
4
CL = 8  
CL = 9  
Reserved  
Reserved  
Reserved  
1.5  
1.5  
<1.875  
<1.875  
<1.5  
1,2,3,4,7  
1,2,3,4  
4
Reserved  
Reserved  
CL = 10  
CL = 11  
1,2,3,7  
1,2,3,4  
4
Reserved  
Reserved  
1.25  
1,2,3,8  
Supported CL Settings  
Supported CWL Settings  
5,6,7,8,9,10,11  
5,6,7,8  
- 46 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
13.3.1 Speed Bin Table Notes  
Absolute Specification {T  
; V  
= V = 1.35V(1.28V~1.45V) & 1.5V(1.425V~1.575V)};  
OPER  
DDQ DD  
NOTE :  
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements  
from CL setting as well as requirements from CWL setting.  
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guar-  
anteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns],  
rounding up to the next "SupportedCL".  
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or  
1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.  
4. "Reserved" settings are not allowed. User must program a different value.  
5. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/  
Characterization.  
6. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/  
Characterization.  
7. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/  
Characterization.  
8. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to match. For example,  
DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte  
20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte  
18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be programmed accordingly. For example, 49.125ns (tRASmin  
+ tRPmin=36ns+13.125ns) for DDR3-1333(CL9) and 48.125ns (tRASmin+tRPmin=35ns+13.125ns) for DDR3-1600(CL11).  
9. DDR3 800 AC timing apply if DRAM operates at lower than 800 MT/s data rate.  
10. For CL5 support, refer to DIMM SPD information. DRAM is required to support CL5. CL5 is not mandatory in SPD coding.  
- 47 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
14. Timing Parameters by Speed Grade  
[ Table 51 ] Timing Parameters by Speed Bin(Cont.)  
Speed  
Parameter  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Units  
NOTE  
Symbol  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Clock Timing  
tCK(DLL_OF  
F)  
Minimum Clock Cycle Time (DLL off mode)  
8
-
8
-
8
-
8
-
ns  
6
Average Clock Period  
Clock Period  
tCK(avg)  
tCK(abs)  
See Speed Bins Table  
ps  
ps  
tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max + tCK(avg)min + tCK(avg)max +  
tJIT(per)min  
tJIT(per)max  
tJIT(per)min  
tJIT(per)max  
tJIT(per)min  
tJIT(per)max  
tJIT(per)min  
tJIT(per)max  
Average high pulse width  
tCH(avg)  
tCL(avg)  
0.47  
0.53  
0.47  
0.53  
0.47  
0.53  
0.47  
0.53  
tCK(avg)  
Average low pulse width  
0.47  
0.53  
0.47  
0.53  
0.47  
0.53  
0.47  
0.53  
tCK(avg)  
ps  
Clock Period Jitter  
tJIT(per)  
-100  
100  
-90  
90  
-80  
80  
-70  
70  
Clock Period Jitter during DLL locking period  
Cycle to Cycle Period Jitter  
tJIT(per, lck)  
tJIT(cc)  
-90  
90  
-80  
80  
-70  
70  
-60  
60  
ps  
200  
180  
180  
160  
160  
140  
140  
120  
ps  
Cycle to Cycle Period Jitter during DLL locking period  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
Cumulative error across 6 cycles  
Cumulative error across 7 cycles  
Cumulative error across 8 cycles  
Cumulative error across 9 cycles  
Cumulative error across 10 cycles  
Cumulative error across 11 cycles  
Cumulative error across 12 cycles  
tJIT(cc, lck)  
tERR(2per)  
tERR(3per)  
tERR(4per)  
tERR(5per)  
tERR(6per)  
tERR(7per)  
tERR(8per)  
tERR(9per)  
tERR(10per)  
tERR(11per)  
tERR(12per)  
ps  
- 147  
- 175  
- 194  
- 209  
- 222  
- 232  
- 241  
- 249  
- 257  
- 263  
- 269  
147  
175  
194  
209  
222  
232  
241  
249  
257  
263  
269  
- 132  
- 157  
- 175  
- 188  
- 200  
- 209  
- 217  
- 224  
- 231  
- 237  
- 242  
132  
157  
175  
188  
200  
209  
217  
224  
231  
237  
242  
- 118  
- 140  
- 155  
- 168  
- 177  
- 186  
- 193  
- 200  
- 205  
- 210  
- 215  
118  
140  
155  
168  
177  
186  
193  
200  
205  
210  
215  
-103  
-122  
-136  
-147  
-155  
-163  
-169  
-175  
-180  
-184  
-188  
103  
122  
136  
147  
155  
163  
169  
175  
180  
184  
188  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min  
tERR(nper)max = (1 + 0.68ln(n))*tJIT(per)max  
Cumulative error across n = 13, 14 ... 49, 50 cycles  
tERR(nper)  
ps  
24  
Absolute clock HIGH pulse width  
Absolute clock Low pulse width  
Data Timing  
tCH(abs)  
tCL(abs)  
0.43  
0.43  
-
-
0.43  
0.43  
-
-
0.43  
0.43  
-
-
0.43  
0.43  
-
-
tCK(avg)  
tCK(avg)  
25  
26  
DQS,DQS to DQ skew, per group, per access  
DQ output hold time from DQS, DQS  
DQ low-impedance time from CK, CK  
DQ high-impedance time from CK, CK  
tDQSQ  
tQH  
-
200  
-
-
150  
-
-
125  
-
-
100  
-
ps  
tCK(avg)  
ps  
13  
0.38  
-800  
-
0.38  
-600  
-
0.38  
-500  
-
0.38  
-450  
-
13, g  
tLZ(DQ)  
tHZ(DQ)  
400  
400  
300  
300  
250  
250  
225  
225  
13,14, f  
13,14, f  
ps  
1.35V  
tDS(base)  
AC160  
90  
40  
90  
-
-
-
-
-
-
ps  
ps  
d, 17  
d, 17  
d, 17  
-
-
-
-
tDS(base)  
AC135  
140  
45  
25  
Data setup time to DQS, DQS referenced to  
V
(AC)V (AC) levels  
IH  
IL  
1.5V  
tDS(base)  
AC175  
75  
25  
75  
-
-
-
-
-
-
ps  
ps  
-
-
-
-
tDS(base)  
AC150  
125  
30  
10  
1.35V  
75  
1.5V  
65  
400  
tDH(base)  
DC90  
160  
110  
-
55  
-
ps  
-
-
Data hold time from DQS, DQS referenced to  
(DC)V (DC) levels  
V
IH  
IL  
tDH(base)  
DC100  
150  
600  
100  
490  
-
45  
-
ps  
ps  
d, 17  
28  
-
-
-
-
DQ and DM Input pulse width for each input  
tDIPW  
360  
-
-
- 48 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
[ Table 51 ] Timing Parameters by Speed Bin (Cont.)  
Speed  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Units  
NOTE  
Parameter  
Symbol  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Data Strobe Timing  
DQS, DQS differential READ Preamble  
DQS, DQS differential READ Postamble  
DQS, DQS differential output high time  
DQS, DQS differential output low time  
DQS, DQS differential WRITE Preamble  
DQS, DQS differential WRITE Postamble  
tRPRE  
tRPST  
tQSH  
0.9  
0.3  
Note 19  
0.9  
0.3  
Note 19  
0.9  
0.3  
0.4  
0.4  
0.9  
0.3  
Note 19  
0.9  
0.3  
0.4  
0.4  
0.9  
0.3  
Note 19  
tCK(avg) 13, 19, g  
tCK(avg) 11, 13, b  
Note 11  
Note 11  
Note 11  
Note 11  
0.38  
0.38  
0.9  
-
-
-
-
0.38  
0.38  
0.9  
-
-
-
-
-
-
-
-
-
-
-
-
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
13, g  
13, g  
tQSL  
tWPRE  
tWPST  
0.3  
0.3  
DQS, DQS rising edge output access time from rising  
CK, CK  
tDQSCK  
tLZ(DQS)  
tHZ(DQS)  
-400  
-800  
-
400  
400  
400  
-300  
-600  
-
300  
300  
300  
-255  
-500  
-
255  
250  
250  
-225  
-450  
-
225  
225  
225  
ps  
ps  
ps  
13,f  
DQS, DQS low-impedance time (Referenced from RL-  
1)  
13,14,f  
12,13,14  
DQS, DQS high-impedance time (Referenced from  
RL+BL/2)  
DQS, DQS differential input low pulse width  
DQS, DQS differential input high pulse width  
DQS, DQS rising edge to CK, CK rising edge  
DQS,DQS falling edge setup time to CK, CK rising edge  
DQS,DQS falling edge hold time to CK, CK rising edge  
Command and Address Timing  
tDQSL  
tDQSH  
tDQSS  
tDSS  
0.45  
0.45  
-0.25  
0.2  
0.55  
0.55  
0.25  
-
0.45  
0.45  
-0.25  
0.2  
0.55  
0.55  
0.25  
-
0.45  
0.45  
-0.25  
0.2  
0.55  
0.55  
0.25  
-
0.45  
0.45  
-0.27  
0.18  
0.18  
0.55  
0.55  
0.27  
-
tCK(avg) 29, 31  
tCK(avg) 30, 31  
tCK(avg)  
tCK(avg)  
tCK(avg)  
c
c, 32  
c, 32  
tDSH  
0.2  
-
0.2  
-
0.2  
-
-
DLL locking time  
tDLLK  
tRTP  
512  
-
-
512  
-
-
512  
-
-
512  
-
-
nCK  
internal READ Command to PRECHARGE Command  
delay  
max  
(4nCK,7.5ns)  
max  
(4nCK,7.5ns)  
max  
(4nCK,7.5ns)  
max  
(4nCK,7.5ns)  
e
Delay from start of internal write transaction to internal  
read command  
max  
(4nCK,7.5ns)  
max  
(4nCK,7.5ns)  
max  
(4nCK,7.5ns)  
max  
(4nCK,7.5ns)  
tWTR  
-
-
-
-
e,18  
e
WRITE recovery time  
tWR  
15  
4
-
-
15  
4
-
-
15  
4
-
-
15  
4
-
-
ns  
Mode Register Set command cycle time  
tMRD  
nCK  
max  
(12nCK,15ns)  
max  
(12nCK,15ns)  
max  
(12nCK,15ns)  
max  
(12nCK,15ns)  
Mode Register Set command update delay  
tMOD  
-
-
-
-
-
-
-
-
CAS to CAS command delay  
tCCD  
tDAL(min)  
tMPRR  
tRAS  
4
1
4
4
4
nCK  
nCK  
nCK  
ns  
Auto precharge write recovery + precharge time  
Multi-Purpose Register Recovery Time  
ACTIVE to PRECHARGE command period  
WR + roundup (tRP / tCK(AVG))  
-
1
-
1
-
1
-
22  
e
See “Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin”  
max  
(4nCK,10ns)  
max  
(4nCK,7.5ns)  
max  
(4nCK,6ns)  
max  
(4nCK,6ns)  
ACTIVE to ACTIVE command period for 1KB page size  
ACTIVE to ACTIVE command period for 2KB page size  
tRRD  
tRRD  
-
-
-
-
-
-
-
-
e
e
max  
(4nCK,10ns)  
max  
(4nCK,10ns)  
max  
(4nCK,7.5ns)  
max  
(4nCK,7.5ns)  
Four activate window for 1KB page size  
Four activate window for 2KB page size  
tFAW  
tFAW  
40  
50  
-
-
37.5  
50  
-
-
30  
45  
-
-
30  
40  
-
-
ns  
ns  
e
e
1.35V  
tIS(base)  
AC160  
215  
365  
140  
290  
80  
-
-
60  
-
-
ps  
ps  
b,16  
-
-
-
-
tIS(base)  
AC135  
205  
1.5V  
65  
185  
b,16,27  
Command and Address setup time to CK, CK refer-  
enced to V (AC) / V (AC) levels  
IH  
IL  
tIS(base)  
AC175  
200  
350  
125  
275  
-
-
45  
-
-
ps  
ps  
b,16  
-
-
-
-
tIS(base)  
AC150  
190  
1.35V  
150  
170  
b,16,27  
tIH(base)  
DC90  
285  
210  
-
130  
-
ps  
b,16  
-
-
Command and Address hold time from CK, CK refer-  
enced to V (DC) / V (DC) levels  
IH  
IL  
1.5V  
140  
tIH(base)  
DC100  
275  
900  
200  
780  
120  
560  
-
-
ps  
ps  
b,16  
28  
Control & Address Input pulse width for each input  
Calibration Timing  
tIPW  
620  
-
-
-
Power-up and RESET calibration time  
Normal operation Full calibration time  
Normal operation short calibration time  
tZQinitI  
tZQoper  
tZQCS  
512  
256  
64  
-
-
-
512  
256  
64  
-
-
-
512  
256  
64  
-
-
-
512  
256  
64  
-
-
-
nCK  
nCK  
nCK  
23  
- 49 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
[ Table 51 ] Timing Parameters by Speed Bin  
Speed  
DDR3-800  
DDR3-1066  
DDR3-1333  
DDR3-1600  
Units  
NOTE  
Parameter  
Symbol  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Reset Timing  
max(5nCK,  
tRFC +  
max(5nCK,  
tRFC +  
max(5nCK,  
tRFC +  
max(5nCK,  
tRFC +  
Exit Reset from CKE HIGH to a valid command  
tXPR  
-
-
-
-
10ns)  
10ns)  
10ns)  
10ns)  
Self Refresh Timing  
max(5nCK,t  
RFC +  
10ns)  
max(5nCK,t  
RFC +  
10ns)  
max(5nCK,t  
RFC +  
10ns)  
Exit Self Refresh to commands not requiring a locked  
DLL  
max(5nCK,t  
RFC + 10ns)  
tXS  
-
-
-
-
Exit Self Refresh to commands requiring a locked DLL  
tXSDLL  
tCKESR  
tDLLK(min)  
-
-
tDLLK(min)  
-
-
tDLLK(min)  
-
-
tDLLK(min)  
-
-
nCK  
Minimum CKE low width for Self refresh entry to exit  
timing  
tCKE(min)+  
1tCK  
tCKE(min)+  
1tCK  
tCKE(min)+  
1tCK  
tCKE(min) +  
1tCK  
Valid Clock Requirement after Self Refresh Entry  
(SRE) or Power-Down Entry (PDE)  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
tCKSRE  
tCKSRX  
-
-
-
-
-
-
-
-
Valid Clock Requirement before Self Refresh Exit  
(SRX) or Power-Down Exit (PDX) or Reset Exit  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
Power Down Timing  
Exit Power Down with DLL on to any valid com-  
mand;Exit Precharge Power Down with DLL  
frozen to commands not requiring a locked DLL  
max  
(3nCK,  
7.5ns)  
max  
(3nCK,  
7.5ns)  
max  
(3nCK,6ns)  
max  
(3nCK,6ns)  
tXP  
tXPDLL  
tCKE  
-
-
-
-
-
-
-
-
-
-
-
-
max  
(10nCK,  
24ns)  
max  
(10nCK,  
24ns)  
max  
(10nCK,  
24ns)  
max  
(10nCK,  
24ns)  
Exit Precharge Power Down with DLL frozen to com-  
mands requiring a locked DLL  
2
max  
(3nCK,  
7.5ns)  
max  
(3nCK,  
5.625ns)  
max  
(3nCK,  
5.625ns)  
max  
(3nCK,5ns)  
CKE minimum pulse width  
Command pass disable delay  
tCPDED  
tPD  
1
-
1
-
1
-
1
-
nCK  
tCK(avg)  
nCK  
Power Down Entry to Exit Timing  
tCKE(min)  
9*tREFI  
tCKE(min)  
9*tREFI  
tCKE(min)  
9*tREFI  
tCKE(min)  
9*tREFI  
15  
20  
20  
Timing of ACT command to Power Down entry  
Timing of PRE command to Power Down entry  
Timing of RD/RDA command to Power Down entry  
tACTPDEN  
tPRPDEN  
tRDPDEN  
1
1
-
-
-
1
1
-
-
-
1
1
-
-
-
1
1
-
-
-
nCK  
RL + 4 +1  
RL + 4 +1  
RL + 4 +1  
RL + 4 +1  
WL + 4  
+(tWR/  
tCK(avg))  
WL + 4  
+(tWR/  
tCK(avg))  
WL + 4  
+(tWR/  
tCK(avg))  
WL + 4  
+(tWR/  
tCK(avg))  
Timing of WR command to Power Down entry  
(BL8OTF, BL8MRS, BC4OTF)  
tWRPDEN  
tWRAPDEN  
tWRPDEN  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
nCK  
nCK  
nCK  
nCK  
9
10  
9
Timing of WRA command to Power Down entry  
(BL8OTF, BL8MRS, BC4OTF)  
WL + 4  
+WR +1  
WL + 4  
+WR +1  
WL + 4  
+WR +1  
WL + 4 +WR  
+1  
WL + 2  
+(tWR/  
tCK(avg))  
WL + 2  
+(tWR/  
tCK(avg))  
WL + 2  
+(tWR/  
tCK(avg))  
WL + 2  
+(tWR/  
tCK(avg))  
Timing of WR command to Power Down entry  
(BC4MRS)  
Timing of WRA command to Power Down entry  
(BC4MRS)  
WL +2 +WR  
+1  
WL +2 +WR  
+1  
WL +2 +WR  
+1  
WL +2 +WR  
+1  
tWRAPDEN  
tREFPDEN  
10  
Timing of REF command to Power Down entry  
Timing of MRS command to Power Down entry  
ODT Timing  
1
-
-
1
-
-
1
-
-
1
-
-
20,21  
tMRSPDEN tMOD(min)  
tMOD(min)  
tMOD(min)  
tMOD(min)  
ODT high time without write command or with write  
command and BC4  
ODTH4  
ODTH8  
tAONPD  
4
6
2
-
-
4
6
2
-
-
4
6
2
-
-
4
6
2
-
-
nCK  
nCK  
ns  
ODT high time with Write command and BL8  
Asynchronous RTT turn-on delay (Power-Down with  
DLL frozen)  
8.5  
8.5  
8.5  
8.5  
Asynchronous RTT turn-off delay (Power-Down with  
DLL frozen)  
tAOFPD  
tAON  
2
8.5  
400  
0.7  
0.7  
2
8.5  
300  
0.7  
0.7  
2
8.5  
250  
0.7  
0.7  
2
8.5  
225  
0.7  
0.7  
ns  
RTT turn-on  
-400  
0.3  
0.3  
-300  
0.3  
0.3  
-250  
0.3  
0.3  
-225  
0.3  
0.3  
ps  
7,f  
8,f  
f
RTT_NOM and RTT_WR turn-off time from ODTLoff  
reference  
tAOF  
tCK(avg)  
tCK(avg)  
RTT dynamic change skew  
tADC  
Write Leveling Timing  
First DQS/DQS rising edge after write  
leveling mode is programmed  
tWLMRD  
tWLDQSEN  
tWLS  
40  
25  
-
-
-
-
40  
25  
-
-
-
-
40  
25  
-
-
-
-
40  
25  
-
-
-
-
tCK(avg)  
tCK(avg)  
ps  
3
3
DQS/DQS delay after write leveling  
mode is programmed  
Write leveling setup time from rising CK, CK crossing  
to rising DQS, DQS crossing  
325  
325  
245  
245  
195  
195  
165  
165  
Write leveling hold time from rising DQS, DQS cross-  
ing to rising CK, CK crossing  
tWLH  
ps  
Write leveling output delay  
Write leveling output error  
tWLO  
0
0
9
2
0
0
9
2
0
0
9
2
0
0
7.5  
2
ns  
ns  
tWLOE  
- 50 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
14.1 Jitter Notes  
Specific Note a  
Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the  
input clock, counting the actual clock edges.ex) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm,  
another Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min.  
Specific Note b  
These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition  
edge to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e.  
tJIT(per), tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is,  
these parameters should be met whether clock jitter is present or not.  
Specific Note c  
These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)) crossing to its respective clock signal (CK, CK)  
crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative  
to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.  
Specific Note d  
Specific Note e  
These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective data  
strobe signal (DQS(L/U), DQS(L/U)) crossing.  
For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock  
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK(avg)},  
which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the  
device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e. Precharge com-  
mand at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to input clock jitter.  
Specific Note f  
When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input  
clock, where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = +  
193 ps, then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and  
tDQSCK,max(derated) = tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800  
derates to tLZ(DQ),min(derated) = - 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution  
on the min/max usage!)  
Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <=  
12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.  
Specific Note g  
When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input  
clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has  
tCK(avg),act = 2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min +  
tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) =  
tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/  
max usage!)  
- 51 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
14.2 Timing Parameter Notes  
1. Actual value dependant upon measurement level definitions See "Device Operation & Timing Diagram Datasheet".  
2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.  
3. The max values are system dependent.  
4. WR as programmed in mode register  
5. Value must be rounded-up to next higher integer value  
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.  
7. For definition of RTT turn-on time tAON see "Device Operation & Timing Diagram Datasheet"  
8. For definition of RTT turn-off time tAOF see "Device Operation & Timing Diagram Datasheet".  
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.  
10. WR in clock cycles as programmed in MR0  
11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See "Device Operation & Timing  
Diagram Datasheet.  
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated  
by 14.1-Jitter Notes on page 51  
13. Value is only valid for RON34  
14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method.  
15. tREFI depends on T  
OPER  
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,  
(DC) = V DQ(DC). For input only pins except RESET, V (DC)=V CA(DC).  
V
REF  
REF  
REF  
REF  
See Address/Command Setup, Hold and Derating : on page 56. .  
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals,  
(DC)= V DQ(DC). For input only pins except RESET, V (DC)=V CA(DC).  
V
REF  
REF  
REF  
REF  
See Data Setup, Hold and Slew Rate Derating : on page 63.  
18. Start of internal write transaction is defined as follows ;  
For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.  
For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL  
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL  
19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation & Timing Diagram Data-  
sheet"  
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down  
IDD spec will not be applied until finishing those operations.  
21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time  
such as tXPDLL(min) is also required. See "Device Operation & Timing Diagram Datasheet".  
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.  
23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming  
the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The  
appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters.  
One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is sub-  
ject to in the application, is illustrated. The interval could be defined by the following formula:  
ZQCorrection  
(TSens x Tdriftrate) + (VSens x Vdriftrate)  
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.  
For example, if TSens = 1.5% /C, VSens = 0.15% / mV, Tdriftrate = 1C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calcu-  
lated as:  
0.5  
~
~
128ms  
= 0.133  
(1.5 x 1) + (0.15 x 15)  
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.  
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.  
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.  
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alter-  
nate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns].  
28. Pulse width of a input signal is defined as the width between the first crossing of V  
(DC) and the consecutive crossing of V  
(DC)  
REF  
REF  
29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge.  
30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge.  
31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.  
32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.  
- 52 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
14.3 Address/Command Setup, Hold and Derating :  
For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value (see  
Table 52) to the tIS and tIH derating value (see Table 54) respectively.  
Example: tIS (total setup time) = tIS(base) + tIS Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of  
V
(DC) and the first crossing of V (AC)min. Setup (tIS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of  
REF  
IH  
V
(DC) and the first crossing of V (AC)max. If the actual signal is always earlier than the nominal slew rate line between shaded ’V  
(DC) to ac  
REF  
REF  
IL  
region’, use nominal slew rate for derating value (see 20-Fegure Title on page Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with  
respect to strobe) and tIS). If the actual signal is later than the nominal slew rate line anywhere between shaded ’V (DC) to ac region’, the slew rate of  
REF  
a tangent line to the actual signal from the ac level to dc level is used for derating value (see 22-Fegure Title on page Illustration of tangent line for setup  
time tDS (for DQ with respect to strobe) and tIS).  
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V (DC)max and the first crossing of V  
(DC).  
REF  
IL  
Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V (DC)min and the first crossing of V  
(DC). If  
REF  
IH  
the actual signal is always later than the nominal slew rate line between shaded ’dc to V  
(DC) region’, use nominal slew rate for derating value (see 21-  
REF  
Fegure Title on page Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH). If the actual signal is earlier than the nom-  
inal slew rate line anywhere between shaded ’dc to V (DC) region’, the slew rate of a tangent line to the actual signal from the dc level to V (DC)  
REF  
REF  
level is used for derating value (see 23-Fegure Title on page Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH).  
For a valid transition the input signal has to remain above/below V (AC) for some time tVAC (see Table 51).  
IH/IL  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached V  
(AC) at the time of the rising clock  
IH/IL  
transition) a valid input signal is still required to complete the transition and reach V  
(AC).  
IH/IL  
For slew rates in between the values listed in Table 54, the derating values may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
[ Table 52 ] ADD/CMD Setup and Hold Base-Values for 1V/ns (1.35V)  
[ps]  
DDR3L-800  
215  
DDR3L-1066  
DDR3L-1333  
DDR3L-1600  
reference  
Note  
1
tIS(base) AC160  
tIS(base) AC135  
tIH(base)-DC90  
140  
290  
210  
80  
60  
V
V
V
IH/L(AC)  
IH/L(AC)  
IH/L(DC)  
DDR3L  
365  
205  
150  
185  
130  
1,2  
1
285  
NOTE :  
1. AC/DC referenced for 1V/ns Address/Command slew rate and 2 V/ns differential CK-CK# slew rate  
2. The tIS(base) AC135 specifications are adjusted from the tIS(base) AC160 specification by adding an additional 125 ps for DDR3L-800/1066 or 100ps for DDR3L-1333/1600  
of derating to accommodate for the lower alternate threshold of 135 mV and another 25 ps to account for the earlier reference point [(160mv - 135 mV) / 1 V/ns].  
[ Table 53 ] ADD/CMD Setup and Hold Base-Values for 1V/ns (1.5V)  
[ps]  
DDR3-800  
200  
DDR3-1066  
125  
DDR3-1333  
DDR3-1600  
reference  
tIS(base) AC175  
tIS(base) AC150  
tIS(base) AC100  
65  
45  
V
V
V
IH/L(AC)  
IH/L(AC)  
IH/L(DC)  
DDR3  
350  
275  
190  
140  
170  
120  
275  
200  
NOTE:  
1.AC/DC referenced for 1V/ns Address/Command slew rate and 2 V/ns differential CK-CK# slew rate  
2.The tIS(base) AC150 specifications are adjusted from the tIS(base) AC175 specification by adding an additional 125 ps for DDR3-800/1066 or 100ps for DDR3-1333/1600 of  
derating to accommodate for the lower alternate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns].  
- 53 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
[ Table 54 ] Derating values DDR3L-800/1066/1333/1600 tIS/tIH-AC/DC based AC160 Threshold(1.35V)  
tIS, tIH Derating [ps] AC/DC based  
AC160 Threshold -> V (AC) = V  
(DC) + 160mV, V (AC) = V  
(DC) - 160mV  
IH  
REF  
IL  
REF  
CLK,CLK Differential Slew Rate  
1.8 V/ns 1.6 V/ns  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.4V/ns  
1.2V/ns  
tIS  
1.0V/ns  
tIS  
tIS  
tIH  
45  
tIS  
tIH  
45  
tIS  
tIH  
45  
tIS  
tIH  
53  
38  
8
tIS  
tIH  
61  
46  
16  
13  
9
tIS  
104  
77  
24  
23  
21  
19  
16  
4
tIH  
69  
54  
24  
21  
17  
11  
4
tIH  
79  
64  
32  
31  
27  
21  
14  
4
tIH  
95  
80  
50  
47  
43  
37  
30  
20  
5
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
80  
53  
0
80  
53  
0
80  
53  
0
88  
61  
8
96  
69  
16  
15  
13  
11  
8
112  
85  
32  
31  
29  
27  
24  
12  
-8  
120  
93  
40  
39  
37  
35  
32  
20  
0
30  
30  
30  
0
0
0
CMD/  
ADD  
Slew  
rate  
-1  
-3  
-1  
-3  
-1  
-3  
7
5
-3  
-8  
-3  
-8  
-3  
-8  
5
1
-5  
-13  
-20  
-30  
-45  
-5  
-13  
-20  
-30  
-45  
-5  
-13  
-20  
-30  
-45  
3
-5  
3
V/ns  
-8  
-8  
-8  
0
-12  
-22  
-37  
-4  
-20  
-40  
-20  
-40  
-20  
-40  
-12  
-32  
-4  
-14  
-29  
-6  
-24  
-16  
-21  
-11  
[ Table 55 ] Derating values DDR3L-800/1066/1333/1600 tIS/tIH-AC/DC based - Alternate AC135 Threshold (1.35V)  
tIS, tIH Derating [ps] AC/DC based  
Alternate AC135 Threshold -> V (AC) = V  
(DC) + 135mV, V (AC) = V  
(DC) - 135mV  
REF  
IH  
REF  
IL  
CLK,CLK Differential Slew Rate  
1.8 V/ns 1.6 V/ns  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.4V/ns  
tIS  
1.2V/ns  
1.0V/ns  
tIS  
tIH  
45  
tIS  
tIH  
45  
tIS  
tIH  
45  
tIS  
tIH  
53  
38  
8
tIS  
tIH  
61  
46  
16  
13  
9
tIH  
69  
54  
24  
21  
17  
11  
4
tIS  
100  
77  
tIH  
79  
64  
32  
31  
27  
21  
14  
4
tIS  
108  
85  
tIH  
95  
80  
50  
47  
43  
37  
30  
20  
5
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
68  
45  
0
68  
45  
0
68  
45  
0
76  
53  
8
84  
61  
16  
18  
19  
22  
25  
21  
14  
92  
69  
24  
26  
27  
30  
33  
29  
22  
30  
30  
30  
0
0
0
32  
40  
CMD/  
ADD  
Slew  
rate  
2
-3  
2
-3  
2
-3  
10  
11  
14  
17  
13  
6
5
34  
42  
3
-8  
3
-8  
3
-8  
1
35  
43  
6
-13  
-20  
-30  
-45  
6
-13  
-20  
-30  
-45  
6
-13  
-20  
-30  
-45  
-5  
3
38  
46  
V/ns  
9
9
9
-12  
-22  
-37  
-4  
41  
49  
5
5
5
-14  
-29  
-6  
37  
45  
-3  
-3  
-3  
-21  
30  
-11  
38  
[ Table 56 ] Derating values DDR3-800/1066/1333/1600 tIS/tIH-AC/DC based AC175 Threshold(1.5V)  
tIS, tIH Derating [ps] AC/DC based  
Alternate AC175 Threshold -> V (AC) = V  
(DC) + 175mV, V (AC) = V  
(DC) - 175mV  
REF  
IH  
REF  
IL  
CLK,CLK Differential Slew Rate  
1.8 V/ns 1.6 V/ns  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.4V/ns  
tIS  
1.2V/ns  
1.0V/ns  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
58  
42  
8
tIS  
tIH  
66  
50  
16  
12  
6
tIH  
74  
58  
24  
20  
14  
8
tIS  
120  
91  
tIH  
84  
68  
34  
30  
24  
18  
8
tIS  
128  
99  
40  
38  
34  
29  
tIH  
100  
84  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
88  
59  
0
88  
59  
0
88  
59  
0
96  
67  
8
104  
75  
16  
14  
10  
5
112  
83  
24  
22  
18  
13  
7
34  
34  
34  
0
0
0
32  
50  
CMD/  
ADD  
Slew  
rate  
-2  
-4  
-2  
-4  
-2  
-4  
6
4
30  
46  
-6  
-10  
-16  
-26  
-40  
-60  
-6  
-10  
-16  
-26  
-40  
-60  
-6  
-10  
-16  
-26  
-40  
-60  
2
-2  
26  
40  
-11  
-17  
-35  
-62  
-11  
-17  
-35  
-62  
-11  
-17  
-35  
-62  
-3  
-9  
-27  
-54  
-8  
0
21  
34  
V/ns  
-18  
-32  
-52  
-1  
-10  
-24  
-44  
-2  
15  
23  
5
24  
-19  
-46  
-11  
-38  
-16  
-36  
-2  
-6  
10  
-30  
-26  
-22  
-10  
- 54 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
[ Table 57 ] Derating values DDR3-800/1066/1333/1600 tIS/tIH-AC/DC based AC150 Threshold (1.5V)  
tIS, tIH Derating [ps] AC/DC based  
Alternate AC150 Threshold -> V (AC) = V  
(DC) + 150mV, V (AC) = V  
(DC) - 150mV  
REF  
IH  
REF  
IL  
CK,CK Differential Slew Rate  
1.8 V/ns 1.6 V/ns  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.4V/ns  
tIS  
1.2V/ns  
tIS  
1.0V/ns  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
58  
42  
8
tIS  
tIH  
66  
50  
16  
12  
6
tIH  
74  
58  
24  
20  
14  
8
tIH  
84  
68  
34  
30  
24  
18  
8
tIS  
tIH  
100  
84  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
75  
50  
0
75  
50  
0
75  
50  
0
83  
58  
8
91  
66  
16  
16  
16  
16  
15  
6
99  
74  
24  
24  
24  
24  
23  
14  
-1  
107  
82  
32  
32  
32  
32  
31  
22  
7
115  
90  
40  
40  
40  
40  
39  
30  
15  
34  
34  
34  
0
0
0
50  
CMD/  
ADD  
Slew  
rate  
0
-4  
0
-4  
0
-4  
8
4
46  
0
-10  
-16  
-26  
-40  
-60  
0
-10  
-16  
-26  
-40  
-60  
0
-10  
-16  
-26  
-40  
-60  
8
-2  
40  
0
0
0
8
-8  
0
34  
V/ns  
-1  
-10  
-25  
-1  
-10  
-25  
-1  
-10  
-25  
7
-18  
-32  
-52  
-10  
-24  
-44  
-2  
24  
-2  
-17  
-16  
-36  
-6  
10  
-9  
-26  
-10  
[ Table 58 ] Required time t  
Slew Rate[V/ns]  
above V (AC) {blow V (AC)} for valid ADD/CMD transition  
IH IL  
VAC  
1.35V  
DDR3L-800/1066/1333/1600  
1.5V  
DDR3-800/1066/1333/1600  
t
@160mV [ps]  
t
@135mV [ps]  
t
@175mV [ps]  
t
@150mV [ps]  
VAC  
min  
200  
200  
173  
120  
102  
80  
VAC  
min  
213  
213  
190  
145  
130  
111  
87  
VAC  
min  
75  
VAC  
min  
175  
170  
167  
130  
113  
93  
max  
max  
max  
max  
>2.0  
2.0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
57  
1.5  
50  
1.0  
38  
0.9  
34  
0.8  
29  
0.7  
51  
22  
66  
0.6  
13  
55  
Note  
Note  
Note  
30  
0.5  
Note  
10  
Note  
< 0.5  
Note  
10  
Note  
NOTE : Rising input signal shall become equal to or greater than VIH(ac) level and Falling input signal shall become equal to or less than VIL(ac) level.  
- 55 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
NOTE :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
V
V
DDQ  
tVAC  
(AC) min  
IH  
V
to ac  
REF  
region  
V
(DC) min  
IH  
nominal  
slew rate  
V
(DC)  
REF  
nominal slew  
rate  
V (DC) max  
IL  
V
to ac  
REF  
region  
V (AC) max  
IL  
tVAC  
V
SS  
TF  
TR  
Setup Slew Rate  
Rising Signal  
V
(AC)min - V  
(DC)  
REF  
V
(DC) - V (AC)max  
Setup Slew Rate  
Falling Signal  
REF  
IL  
IH  
=
=
TF  
TR  
Figure 20. Illustration of nominal slew rate and t  
(for ADD/CMD with respect to clock).  
for setup time t (for DQ with respect to strobe) and t  
IS  
VAC  
DS  
- 56 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
NOTE :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
V
V
V
DDQ  
(AC) min  
(DC) min  
IH  
IH  
dc to V  
region  
REF  
nominal  
slew rate  
V
(DC)  
REF  
nominal  
slew rate  
dc to V  
region  
REF  
V (DC) max  
IL  
V (AC) max  
IL  
V
SS  
TR  
TF  
Hold Slew Rate  
Rising Signal  
V
(DC) - V (DC)max  
REF  
IL  
Hold Slew Rate  
Falling Signal  
V
(DC)min - V  
(DC)  
IH  
REF  
=
=
TR  
TF  
Figure 21. Illustration of nominal slew rate for hold time t (for DQ with respect to strobe) and t  
DH  
IH  
(for ADD/CMD with respect to clock).  
- 57 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
NOTE :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
V
V
V
DDQ  
tVAC  
nominal  
line  
(AC) min  
(DC) min  
IH  
IH  
V
to ac  
REF  
region  
tangent  
line  
V
(DC)  
REF  
tangent  
line  
V (DC) max  
IL  
V
to ac  
REF  
region  
V (AC) max  
IL  
nominal  
line  
TR  
tVAC  
V
SS  
tangent line[V (AC)min - V  
(DC)]  
REF  
Setup Slew Rate  
Rising Signal  
IH  
=
TR  
TF  
Setup Slew Rate tangent line[V  
Falling Signal  
(DC) - V (AC)max]  
IL  
REF  
=
TF  
Figure 22. Illustration of tangent line for setup time t (for DQ with respect to strobe) and t  
DS  
IS  
(for ADD/CMD with respect to clock)  
- 58 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
NOTE :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
V
V
V
DDQ  
(AC) min  
(DC) min  
IH  
IH  
nominal  
line  
dc to V  
region  
REF  
tangent  
line  
V
(DC)  
REF  
tangent  
line  
dc to V  
region  
REF  
nominal  
line  
V (DC) max  
IL  
V (AC) max  
IL  
V
SS  
TF  
TR  
(DC) - V (DC)max ]  
tangent line [ V  
Hold Slew Rate  
Rising Signal  
REF  
IL  
=
TR  
tangent line [ V (DC)min - V  
(DC) ]  
Hold Slew Rate  
Falling Signal  
IH  
REF  
=
TF  
Figure 23. Illustration of tangent line for hold time t (for DQ with respect to strobe) and t  
DH  
IH  
(for ADD/CMD with respect to clock)  
- 59 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
14.4 Data Setup, Hold and Slew Rate Derating :  
For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value (see  
Table 59) to the tDS and tDH (see Table 55) derating value respectively. Example: tDS (total setup time) = tDS(base) + tDS.  
Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V  
(DC) and the first crossing of V (AC)min.  
REF  
IH  
Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V  
(DC) and the first crossing of V (AC)max  
IL  
REF  
(see 24-Fegure Title on page Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS). If the actual signal is  
always earlier than the nominal slew rate line between shaded ’V  
(DC) to ac region’, use nominal slew rate for derating value. If the actual signal is  
REF  
later than the nominal slew rate line anywhere  
between shaded ’V  
(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see 26-  
REF  
Fegure Title on page Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS).  
Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of V (DC)max and the first crossing of V  
(DC).  
REF  
IL  
Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of V (DC)min and the first crossing of V  
(DC)  
IH  
REF  
(see -Body on page ). If the actual signal is always later than the nominal slew rate line between shaded ’dc level to V  
rate for derating value. If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to V  
(DC) region’, use nominal slew  
(DC) region’, the slew rate of a  
REF  
REF  
tangent line to the actual signal from the dc level to V  
(DC) level is used for derating value (see 27-Fegure Title on page Illustration of tangent line for  
REF  
hold time tDH (for DQ with respect to strobe) and tIH).  
For a valid transition the input signal has to remain above/below V  
(AC) for some time tVAC (see Table 56).  
IH/IL  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached V  
(AC) at the time of the rising clock  
IH/IL  
transition) a valid input signal is still required to complete the transition and reach V  
(AC).  
IH/IL  
For slew rates in between the values listed in the tables the derating values may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
[ Table 59 ] Data Setup and Hold Base-Values  
[ps]  
DDR3-800  
75  
DDR3-1066  
DDR3-1333  
DDR3-1600  
reference  
tDS(base) AC175  
tDS(base) AC150  
tDH(base) DC100  
tDS(base) AC160  
tDS(base) AC135  
tDH(base) DC90  
25  
75  
-
-
V
V
V
V
V
V
(AC)  
(AC)  
(DC)  
(AC)  
(AC)  
(DC)  
IH/L  
IH/L  
IH/L  
IH/L  
IH/L  
IH/L  
DDR3  
125  
30  
65  
-
10  
45  
-
150  
100  
40  
90  
DDR3L  
140  
90  
45  
75  
25  
55  
160  
110  
NOTE : AC/DC referenced for 1V/ns DQ-slew rate and 2 V/ns DQS slew rate  
[ Table 60 ] Derating values DDR3L-800/1066 tDS/tDH-AC/DC based - AC160(1.35V)  
1
tDS, tDH Derating in [ps] AC/DC based  
DQS,DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
80  
53  
0
-
-
-
-
-
-
45  
30  
0
-
-
-
-
-
-
80  
53  
0
-1  
-
-
-
-
-
45  
30  
0
-3  
-
-
-
-
-
80  
53  
0
-1  
-3  
-
-
-
-
45  
30  
0
-3  
-8  
-
-
-
-
-
61  
8
7
5
3
-
-
38  
8
5
1
-5  
-
-
-
-
-
16  
13  
9
3
-4  
-
-
-
-
23  
21  
19  
16  
4
-
-
-
21  
17  
11  
4
-6  
-
-
-
-
-
-
-
-
-
-
-
-
35  
32  
20  
0
-
-
-
-
-
37  
30  
20  
5
16  
15  
13  
11  
8
DQ  
Slew  
rate  
-
-
29  
27  
24  
12  
-8  
27  
21  
14  
4
V/ns  
-
-
-
-
-
-
-
-
-11  
NOTE : 1. Cell contents shaded in red are defined as ’not supported’.  
[ Table 61 ] Derating values for DDR3L-800/1066/1333/1600 tDS/tDH - AC135 (1.35V)  
tDS, tDH Derating in [ps] AC/DC based  
DQS,DQS Differential Slew Rate  
1.8 V/ns 1.6 V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
1
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
68  
45  
0
-
-
-
-
-
-
45  
30  
0
-
-
-
-
-
-
68  
45  
0
2
-
-
-
-
-
45  
30  
0
-3  
-
-
-
-
-
68  
45  
0
2
3
-
-
-
-
45  
30  
0
-3  
-8  
-
-
-
-
-
53  
8
10  
11  
14  
-
-
38  
8
5
1
-5  
-
-
-
-
-
16  
13  
9
3
-4  
-
-
-
-
26  
27  
30  
33  
29  
-
-
-
-
21  
17  
11  
4
-6  
-
-
-
-
-
35  
38  
41  
37  
30  
-
-
-
-
27  
21  
14  
4
-
-
-
-
-
-
-
-
16  
18  
19  
22  
25  
-
DQ  
Slew  
rate  
-
-
46  
49  
45  
38  
37  
30  
20  
5
V/ns  
-
-
-
-
-
-
-11  
NOTE : 1. Cell contents shaded in red are defined as ’not supported’.  
- 60 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
[ Table 62 ] Derating values DDR3-800/1066 tDS/tDH - AC175 (1.5V)  
tDS, tDH Derating in [ps] AC/DC based  
DQS,DQS Differential Slew Rate  
1.8 V/ns 1.6 V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
1
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
88  
59  
0
-
-
-
-
-
-
50  
34  
0
-
-
-
-
-
-
88  
59  
0
-2  
-
-
-
-
-
50  
34  
0
-4  
-
-
-
-
-
88  
59  
0
-2  
-6  
-
-
-
-
50  
34  
0
-4  
-10  
-
-
-
-
-
67  
8
6
2
-3  
-
-
42  
8
-
-
-
-
16  
12  
6
0
-10  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
16  
14  
10  
5
-1  
-
DDR3 DQ  
Slew  
800/ rate  
1066 V/ns  
4
22  
18  
13  
7
-11  
-
20  
14  
8
-2  
-16  
-
-
-2  
-8  
-
-
-
26  
21  
15  
-2  
-30  
24  
18  
8
-6  
-26  
-
-
29  
23  
6
34  
24  
10  
-10  
-
-
-
-
-22  
NOTE : 1. Cell contents shaded in red are defined as ’not supported’.  
[ Table 63 ] Derating values for DDR3-800/1066/1333/1600 tDS/tDH - AC150 (1.5V)  
1
tDS, tDH Derating in [ps] AC/DC based  
DQS,DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
75  
50  
0
-
-
-
-
-
-
50  
34  
0
-
-
-
-
-
-
75  
50  
0
0
-
-
-
-
-
50  
34  
0
-4  
-
-
-
-
-
75  
50  
0
0
0
-
-
-
-
50  
34  
0
-4  
-10  
-
-
-
-
-
58  
8
8
8
8
-
-
42  
8
-
-
-
-
16  
12  
6
0
-10  
-
-
-
-
24  
24  
24  
23  
14  
-
-
-
-
-
-
-
-
32  
32  
31  
22  
7
-
-
-
-
-
-
-
-
-
-
-
-
16  
16  
16  
16  
15  
-
DQ  
Slew  
rate  
4
20  
14  
8
-2  
-16  
-
-2  
-8  
-
-
-
24  
18  
8
-6  
-26  
-
-
40  
39  
30  
15  
34  
24  
10  
-10  
V/ns  
-
-
-
-
NOTE : 1. Cell contents shaded in red are defined as ’not supported’.  
[ Table 64 ] Required time t  
Slew Rate[V/ns]  
above V (AC) {blow V (AC)} for valid DQ transition  
VAC  
IH  
IL  
1.35V  
1.5V  
DDR3L-800/1066  
(AC160)  
DDR3L-800/1066/  
1333/1600 (AC135)  
DDR3-800/1066  
(AC175)  
DDR3-800/1066/  
1333/1600 (AC150)  
DDR3-800/1066/  
1333/1600 (AC135)  
t
[ps]  
t
[ps]  
t
[ps]  
t
[ps]  
t
[ps]  
VAC  
VAC  
VAC  
VAC  
VAC  
min  
165  
165  
138  
85  
max  
min  
113  
113  
90  
max  
min  
75  
57  
50  
38  
34  
29  
max  
min  
105  
105  
80  
max  
min  
113  
113  
90  
max  
>2.0  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
<0.5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
45  
30  
45  
67  
30  
13  
30  
45  
11  
Note  
Note  
Note  
Note  
Note  
11  
16  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
Note  
NOTE : Rising input signal shall become equal to or greater than VIH(ac) level and Falling input signal shall become equal to or less than VIL(ac) level.  
- 61 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
NOTE :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
V
V
DDQ  
tVAC  
(AC) min  
IH  
V
to ac  
REF  
region  
V
(DC) min  
IH  
nominal  
slew rate  
V
(DC)  
REF  
nominal slew  
rate  
V (DC) max  
IL  
V
to ac  
REF  
region  
V (AC) max  
IL  
tVAC  
V
SS  
TF  
TR  
Setup Slew Rate  
Rising Signal  
V
(AC)min - V  
(DC)  
REF  
V
(DC) - V (AC)max  
Setup Slew Rate  
Falling Signal  
REF  
IL  
IH  
=
=
TF  
TR  
Figure 24. Illustration of nominal slew rate and t  
(for ADD/CMD with respect to clock).  
for setup time t (for DQ with respect to strobe) and t  
IS  
VAC  
DS  
- 62 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
NOTE :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
V
V
V
DDQ  
(AC) min  
(DC) min  
IH  
IH  
dc to V  
region  
REF  
nominal  
slew rate  
V
(DC)  
REF  
nominal  
slew rate  
dc to V  
region  
REF  
V (DC) max  
IL  
V (AC) max  
IL  
V
SS  
TR  
TF  
Hold Slew Rate  
Rising Signal  
V
(DC) - V (DC)max  
REF  
IL  
Hold Slew Rate  
Falling Signal  
V
(DC)min - V  
(DC)  
IH  
REF  
=
=
TR  
TF  
Figure 25. Illustration of nominal slew rate for hold time t (for DQ with respect to strobe) and t  
DH  
IH  
(for ADD/CMD with respect to clock).  
- 63 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
NOTE :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
V
V
V
DDQ  
tVAC  
nominal  
line  
(AC) min  
(DC) min  
IH  
IH  
V
to ac  
REF  
region  
tangent  
line  
V
(DC)  
REF  
tangent  
line  
V (DC) max  
IL  
V
to ac  
REF  
region  
V (AC) max  
IL  
nominal  
line  
TR  
tVAC  
V
SS  
tangent line[V (AC)min - V  
(DC)]  
REF  
Setup Slew Rate  
Rising Signal  
IH  
=
TR  
TF  
Setup Slew Rate tangent line[V  
Falling Signal  
(DC) - V (AC)max]  
IL  
REF  
=
TF  
Figure 26. Illustration of tangent line for setup time t (for DQ with respect to strobe) and t  
DS  
IS  
(for ADD/CMD with respect to clock)  
- 64 -  
Preliminary  
Rev. 0.5  
K4B4G1646Q  
datasheet  
DDR3L SDRAM  
NOTE :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
V
V
V
DDQ  
(AC) min  
(DC) min  
IH  
IH  
nominal  
line  
dc to V  
region  
REF  
tangent  
line  
V
(DC)  
REF  
tangent  
line  
dc to V  
region  
REF  
nominal  
line  
V (DC) max  
IL  
V (AC) max  
IL  
V
SS  
TF  
TR  
(DC) - V (DC)max ]  
tangent line [ V  
Hold Slew Rate  
Rising Signal  
REF  
IL  
=
TR  
tangent line [ V (DC)min - V  
(DC) ]  
Hold Slew Rate  
Falling Signal  
IH  
REF  
=
TF  
Figure 27. Illustration of tangent line for hold time t (for DQ with respect to strobe) and t  
DH  
IH  
(for ADD/CMD with respect to clock)  
- 65 -  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY