K4D551638F-LC60 [SAMSUNG]

DDR DRAM, 16MX16, CMOS, PDSO66,;
K4D551638F-LC60
型号: K4D551638F-LC60
厂家: SAMSUNG    SAMSUNG
描述:

DDR DRAM, 16MX16, CMOS, PDSO66,

动态存储器 双倍数据速率 光电二极管
文件: 总16页 (文件大小:206K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
256M GDDR SDRAM  
K4D551638F-TC  
256Mbit GDDR SDRAM  
Revision 2.1  
April 2005  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.  
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,  
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,  
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL  
INFORMATION IN THIS DOCUMENT IS PROVIDED  
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar  
applications where Product failure could result in loss of life or personal or physical harm, or any military or  
defense application, or any governmental procurement to which special terms or provisions may apply.  
Samsung Electronics reserves the right to change products or specification without notice.  
- 1 -  
Rev 2.1 (Apr. 2005)  
256M GDDR SDRAM  
K4D551638F-TC  
Revision History  
Revision 2.1(April 29, 2005)  
• Mofidied CKE input functional description on page 5.  
• Added K4D551638F-TC60 from the data sheet.  
Revision 2.0(March 24, 2005)  
• Removed K4D551638F-TC60 from the data sheet.  
• Typo corrected.  
Revision 1.9(February 24, 2005)  
• Typo corrected.  
Revision 1.8 (August 30, 2004)  
• DC Spec defined for -TC33/36/40  
Revision 1.7 (June 15, 2004)  
• Changed VDD/VDDQ of K4D551638F-TC33 from 2.8V + 0.1V to 2.8V(min)/2.95V(max)  
• Spec for -TC33/36/40 still in target  
Revision 1.6 (March 31, 2004)  
• AC Changes : Refer to the AC characteristics of page 13 and 14.  
Revision 1.5 (March 18, 2004)  
• Added K4D551638F-TC33 in the data sheet.  
Target spec defined for -TC33  
Revision 1.4 (February 27, 2004)  
• Added K4D551638F-TC36/40 in the data sheet.  
Target spec defined for -TC36/40  
Revision 1.3 (December 5, 2003)  
• Changed VDD/VDDQ of K4D551638F-TC50 from 2.5V + 5% to 2.6V + 0.1V  
Revision 1.2 (November 11, 2003)  
• "Wrtie-Interrupted by Read Function" is supported  
Revision 1.1 (October 13, 2003)  
• Defined ICC7 value  
Revision 1.0 (October 10, 2003)  
• Defined DC spec  
• Changed part number of 16Mx16 GDDR F-die from K4D561638F-TC to K4D551638F-TC.  
Revision 0.1 (October 2, 2003) - Target Spec  
• Added Lead free package part number in the data sheet.  
• Removed K4D561638F-TC40 from the data sheet.  
- 2 -  
Rev 2.1 (Apr. 2005)  
256M GDDR SDRAM  
K4D551638F-TC  
4M x 16Bit x 4 Banks Graphic Double Data Rate Synchronous DRAM  
with Bi-directional Data Strobe and DLL  
FEATURES  
• 2.6V + 0.1V power supply for device operation  
• 2.6V + 0.1V power supply for I/O interface  
• SSTL_2 compatible inputs/outputs  
• 4 banks operation  
• 2 DQS’s ( 1DQS / Byte )  
• Data I/O transactions on both edges of Data strobe  
• DLL aligns DQ and DQS transitions with Clock transition  
• Edge aligned data & data strobe output  
• Center aligned data & data strobe input  
• DM for write masking only  
• MRS cycle with address key programs  
-. Read latency 3 (clock)  
-. Burst length (2, 4 and 8)  
• Auto & Self refresh  
-. Burst type (sequential & interleave)  
• All inputs except data & DM are sampled at the positive  
going edge of the system clock  
• 64ms refresh period (8K cycle)  
• 66pin TSOP-II  
• Maximum clock frequency up to 300MHz  
• Maximum data rate up to 600Mbps/pin  
• Differential clock input  
• No Write-Interrupted by Read Function  
ORDERING INFORMATION  
Part NO.  
Max Freq.  
300MHz  
275MHz  
250MHz  
200MHz  
166MHz  
Max Data Rate  
600Mbps/pin  
550Mbps/pin  
500Mbps/pin  
400Mbps/pin  
333Mbps/pin  
Interface  
VDD & VDDQ  
2.8V ~ 2.95V  
2.8V+0.1V  
Package  
K4D551638F-TC33  
K4D551638F-TC36  
K4D551638F-TC40  
K4D551638F-TC50  
K4D551638F-TC60*  
SSTL_2  
66pin TSOP-II  
2.6V+0.1V  
2.5V+0.125V  
1. K4D551638F-LC is the Lead Free package part number.  
2. For the K4D551638F-TC60, VDD & VDDQ = 2.5V + 5%  
3. For the K4D551638F-TC36, VDD & VDDQ = 2.8V + 0.1V  
4. For the K4D551638F-TC33, VDD & VDDQ = 2.8V ~ 2.95V  
GENERAL DESCRIPTION  
FOR 4M x 16Bit x 4 Bank GDDR SDRAM  
The K4D551638F is 268,435,456 bits of hyper synchronous data rate Dynamic RAM organized as 4 x 4,194,304 words by  
16 bits, fabricated with SAMSUNGs high performance CMOS technology. Synchronous features with Data Strobe allow  
extremely high performance up to 1.1GB/s/chip. I/O transactions are possible on both edges of the clock cycle. Range of  
operating frequencies, programmable burst length and programmable latencies allow the device to be useful for a variety  
of high performance memory system applications.  
- 3 -  
Rev 2.1 (Apr. 2005)  
256M GDDR SDRAM  
K4D551638F-TC  
PIN CONFIGURATION (Top View)  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
VSS  
1
VDD  
DQ0  
VDDQ  
DQ1  
DQ2  
VSSQ  
DQ3  
DQ4  
VDDQ  
DQ5  
DQ6  
VSSQ  
DQ7  
NC  
DQ15  
VSSQ  
DQ14  
DQ13  
VDDQ  
DQ12  
DQ11  
VSSQ  
DQ10  
DQ9  
VDDQ  
DQ8  
NC  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
66 PIN TSOP(II)  
(400mil x 875mil)  
(0.65 mm Pin Pitch)  
VSSQ  
UDQS  
NC  
VDDQ  
LDQS  
NC  
VREF  
VSS  
VDD  
NC  
UDM  
CK  
LDM  
WE  
CK  
CAS  
RAS  
CS  
22  
23  
CKE  
NC  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
A12  
NC  
A11  
BA0  
BA1  
AP/A10  
A0  
A9  
A8  
A7  
A6  
A1  
A5  
A2  
A4  
A3  
VSS  
VDD  
PIN DESCRIPTION  
CK,CK  
CKE  
Differential Clock Input  
Clock Enable  
BA0, BA1  
A0 ~A12  
DQ0 ~ DQ15  
VDD  
Bank Select Address  
Address Input  
Data Input/Output  
Power  
CS  
Chip Select  
RAS  
Row Address Strobe  
Column Address Strobe  
Write Enable  
CAS  
VSS  
Ground  
WE  
VDDQ  
Power for DQs  
Ground for DQs  
No Connection  
Reference voltage  
L(U)DQS  
L(U)DM  
RFU  
Data Strobe  
VSSQ  
Data Mask  
NC  
Reserved for Future Use  
VREF  
- 4 -  
Rev 2.1 (Apr. 2005)  
256M GDDR SDRAM  
K4D551638F-TC  
INPUT/OUTPUT FUNCTIONAL DESCRIPTION  
Sym-  
Type  
Function  
The differential system clock Input.  
CK, CK*1  
Input  
Input  
Input  
All of the inputs are sampled on the rising edge of the clock except DQ’s and DM’s  
that are sampled on both edges of the DQS.  
Activates the CK signal when high and deactivates the CK signal when low. By  
deactivating the clock, CKE low indicates the Power down mode or Self refresh  
mode.CKE is synchronous for Power down entry and exit, and for Self refresh  
entry. CKE is asynchronous for Self refresh exit, and for output disable. CKE must  
be maintained high through Read and Write accesses. Input buffers, excluding CK,  
CK and CKE are disbled during Power down. Input buffers, excluding CKE are dis-  
abled during Self refresh. CKE is an SSTL_2 input, but will detect a LVCMOS low  
level after Vdd is applied upon 1st power up. After Vref has become stable during  
the power on and intialization sequence, it must be maintained for proper opera-  
tion of the CKE receiver. For proper Self refresh entry and exit, Vref must be main-  
tained to this input.  
CKE  
CS enables the command decoder when low and disabled the command decoder  
when high. When the command decoder is disabled, new commands are ignored  
but previous operations continue.  
CS  
Latches row addresses on the positive going edge of the CK with RAS low.  
Enables row access & precharge.  
RAS  
CAS  
WE  
Input  
Input  
Input  
Latches column addresses on the positive going edge of the CK with CAS low.  
Enables column access.  
Enables write operation and row precharge.  
Latches data in starting from CAS, WE active.  
Data input and output are synchronized with both edge of DQS.  
For the x16, LDQS corresponds to the data on DQ0-DQ7 ; UDQS corresponds to  
the data on DQ8-DQ15.  
LDQS,UDQS  
LDM,UDM  
Input/Output  
Input  
Data in Mask. Data In is masked by DM Latency=0 when DM is  
high in burst write. For the x16, LDM corresponds to the data on DQ0-DQ7 ; UDM  
correspons to the data on DQ8-DQ15.  
DQ0 ~ DQ15  
BA0, BA1  
Input/Output  
Input  
Data inputs/Outputs are multiplexed on the same pins.  
Selects which bank is to be active.  
Row/Column addresses are multiplexed on the same pins.  
Row addresses : RA0 ~ RA12, Column addresses : CA0 ~ CA8.  
A0 ~ A12  
VDD/VSS  
Input  
Power Supply  
Power Supply  
Power Supply  
Power and ground for the input buffers and core logic.  
Isolated power supply and ground for the output buffers to provide improved noise  
immunity.  
VDDQ/VSSQ  
VREF  
Reference voltage for inputs, used for SSTL interface.  
NC/RFU  
No connection/  
This pin is recommended to be left "No connection" on the device  
Reserved for future use  
*1 : The timing reference point for the differential clocking is the cross point of CK and CK.  
For any applications using the single ended clocking, apply VREF to CK pin.  
- 5 -  
Rev 2.1 (Apr. 2005)  
256M GDDR SDRAM  
K4D551638F-TC  
BLOCK DIAGRAM (4Mbit x 16I/O x 4 Bank)  
16  
Intput Buffer  
LWE  
CK, CK  
Data Input Register  
Serial to parallel  
LDMi  
Bank Select  
4Mx16  
4Mx16  
4Mx16  
4Mx16  
32  
16  
x16  
DQi  
CK,CK  
ADDR  
Column Decoder  
Latency & Burst Length  
Data Strobe  
Programming Register  
LWCBR  
DLL  
LCKE  
LRAS LCBR  
LWE  
LCAS  
CK,CK  
LDMi  
Timing Register  
UDM  
CK,CK  
CKE  
CS  
RAS  
CAS  
WE  
LDM  
- 6 -  
Rev 2.1 (Apr. 2005)  
256M GDDR SDRAM  
K4D551638F-TC  
FUNCTIONAL DESCRIPTION  
Power-Up Sequence  
DDR SDRAMs must be powered up and initialized in a predefined manner to prevent undefined operations.  
1. Apply power and keep CKE at low state (All other inputs may be undefined)  
- Apply VDD before VDDQ .  
- Apply VDDQ before VREF & VTT  
2. Start clock and maintain stable condition for minimum 200us.  
3. The minimum of 200us after stable power and clock(CK,CK ), apply NOP and take CKE to be high .  
4. Issue precharge command for all banks of the device.  
5. Issue a EMRS command to enable DLL  
*1  
6. Issue a MRS command to reset DLL. The additional 200 clock cycles are required to lock the DLL.  
*1,2 7. Issue precharge command for all banks of the device.  
8. Issue at least 2 or more auto-refresh commands.  
9. Issue a mode register set command with A8 to low to initialize the mode register.  
*1 The additional 200cycles of clock input is required to lock the DLL after enabling DLL.  
*2 Sequence of 6&7 is regardless of the order.  
Power up & Initialization Sequence  
0
1
2
3
4
5
6
7
8
9
10  
11  
12 13  
14  
15 16 17  
18  
19  
CK,CK  
tRP  
2 Clock min.  
tRFC  
tRFC  
2 Clock min.  
tRP  
2 Clock min.  
Command  
precharge  
ALL Banks  
MRS  
DLL Reset  
precharge  
ALL Banks  
1st Auto  
Refresh  
2nd Auto  
Refresh  
Mode  
Register Set  
Any  
Command  
EMRS  
200 Clock min.  
Inputs must be  
stable for 200us  
* When the operating frequency is changed, DLL reset should be required again.  
After DLL reset again, the minimum 200 cycles of clock input is needed to lock the DLL.  
- 7 -  
Rev 2.1 (Apr. 2005)  
256M GDDR SDRAM  
K4D551638F-TC  
MODE REGISTER SET(MRS)  
The mode register stores the data for controlling the various operating modes of DDR SDRAM. It programs CAS latency,  
addressing mode, burst length, test mode, DLL reset and various vendor specific options to make DDR SDRAM useful for  
variety of different applications. The default value of the mode register is not defined, therefore the mode register must be  
written after EMRS setting for proper operation. The mode register is written by asserting low on CS, RAS, CAS and  
WE(The DDR SDRAM should be in active mode with CKE already high prior to writing into the mode register). The state of  
address pins A0 ~ A12 and BA0, BA1 in the same cycle as CS, RAS, CAS and WE going low is written in the mode register.  
Minimum two clock cycles are requested to complete the write operation in the mode register. The mode register contents  
can be changed using the same command and clock cycle requirements during operation as long as all banks are in the  
idle state. The mode register is divided into various fields depending on functionality. The burst length uses A0 ~ A2,  
addressing mode uses A3, CAS latency(read latency from column address) uses A4 ~ A6. A7 is used for test mode. A8 is  
used for DLL reset. A7,A8, BA0 and BA1 must be set to low for normal MRS operation. Refer to the table for specific codes  
for various burst length, addressing modes and CAS latencies.  
Address Bus  
BA1 BA0  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
RFU  
0
RFU  
DLL  
TM  
CAS Latency  
BT  
Burst Length  
Mode Register  
Burst Type  
DLL  
Test Mode  
A7  
A3  
0
Type  
A8  
0
DLL Reset  
No  
mode  
Sequential  
Interleave  
0
1
Normal  
Test  
1
1
Yes  
0
Burst Length  
Burst Type  
Sequential Interleave  
CAS Latency  
A2  
A1  
A0  
BA0  
0
An ~ A0  
MRS  
A6 A5 A4 Latency  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserve  
2
Reserve  
2
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Reserved  
Reserved  
3
1
EMRS  
4
4
8
8
* RFU(Reserved for future use)  
should stay "0" during MRS  
cycle.  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserved  
Reserved  
Reserved  
Reserved  
MRS Cycle  
0
1
2
3
4
5
6
7
8
CK, CK  
Precharge  
All Banks  
Any  
Command  
Command  
NOP  
NOP  
NOP  
MRS  
NOP  
NOP  
NOP  
tMRD=2 tCK  
tRP  
*1 : MRS can be issued only at all banks precharge state.  
*2 : Minimum tRP is required to issue MRS command.  
- 8 -  
Rev 2.1 (Apr. 2005)  
256M GDDR SDRAM  
K4D551638F-TC  
EXTENDED MODE REGISTER SET(EMRS)  
The extended mode register stores the data for enabling or disabling DLL and selecting output driver  
strength. The default value of the extended mode register is not defined, therefore the extened mode register  
must be written after power up for enabling or disabling DLL. The extended mode register is written by assert-  
ing low on CS, RAS, CAS, WE and high on BA0(The DDR SDRAM should be in all bank precharge with CKE  
already high prior to writing into the extended mode register). The state of address pins A0, A2 ~ A5, A7 ~ A12  
and BA1 in the same cycle as CS, RAS, CAS and WE going low are written in the extended mode register. A1  
and A6 are used for setting driver strength to normal, weak or matched impedance. Two clock cycles are  
required to complete the write operation in the extended mode register. The mode register contents can be  
changed using the same command and clock cycle requirements during operation as long as all banks are in  
the idle state. A0 is used for DLL enable or disable. "High" on BA0 is used for EMRS. All the other address  
pins except A0,A1,A6 and BA0 must be set to low for proper EMRS operation. Refer to the table for specific  
codes.  
BA1  
BA0  
1
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Address Bus  
Extended  
Mode Register  
RFU  
RFU  
D.I.C  
RFU  
D.I.C DLL  
A0  
0
DLL Enable  
Enable  
Disable  
BA0  
An ~ A0  
MRS  
Output Driver Impedence Control  
A6 A1  
0
1
Full  
Weak  
Matched  
N/A  
100%  
60%  
0
0
1
1
0
1
0
1
1
EMRS  
30%  
Do not use  
*1 : RFU(Reserved for future use) should stay "0" during EMRS cycle.  
- 9 -  
Rev 2.1 (Apr. 2005)  
256M GDDR SDRAM  
K4D551638F-TC  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Voltage on any pin relative to Vss  
Voltage on VDD supply relative to Vss  
Voltage on VDDQ supply relative to Vss  
Storage temperature  
Symbol  
VIN, VOUT  
VDD  
Value  
Unit  
-0.5 ~ 3.6  
-1.0 ~ 3.6  
-0.5 ~ 3.6  
-55 ~ +150  
2.0  
V
V
VDDQ  
TSTG  
V
°C  
W
mA  
Power dissipation  
PD  
Short circuit current  
IOS  
50  
Note :  
Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.  
Functional operation should be restricted to recommended operating condition.  
Exposure to higher than recommended voltage for extended periods of time could affect device reliability.  
POWER & DC OPERATING CONDITIONS(SSTL_2 In/Out)  
Recommended operating conditions(Voltage referenced to VSS=0V, TA=0 to 65°C)  
Parameter  
Device Supply voltage  
Output Supply voltage  
Reference voltage  
Symbol  
VDD  
Min  
2.5  
Typ  
Max  
Unit  
V
Note  
2.6  
2.7  
2.7  
1, 7  
VDDQ  
VREF  
Vtt  
2.5  
2.6  
V
1
0.49*VDDQ  
VREF-0.04  
VREF+0.15  
-0.30  
-
0.51*VDDQ  
VREF+0.04  
VDDQ+0.30  
VREF-0.15  
-
V
2
Termination voltage  
VREF  
V
3
Input logic high voltage  
Input logic low voltage  
Output logic high voltage  
Output logic low voltage  
Input leakage current  
Output leakage current  
VIH(DC)  
VIL(DC)  
VOH  
-
-
-
-
-
-
V
4
V
5
Vtt+0.76  
-
V
IOH=-15.2mA  
VOL  
Vtt-0.76  
5
V
IOL=+15.2mA  
IIL  
-5  
uA  
uA  
6
6
IOL  
-5  
5
Note :  
1. Under all conditions VDDQ must be less than or equal to VDD.  
2. VREF is expected to equal 0.50*VDDQ of the transmitting device and to track variations in the DC level of the same. Peak to  
peak noise on the VREF may not exceed + 2% of the DC value. Thus, from 0.50*VDDQ, VREF is allowed + 25mV for DC error  
and an additional + 25mV for AC noise.  
3. Vtt of the transmitting device must track VREF of the receiving device.  
4. VIH(max.)= VDDQ +1.5V for a pulse width and it can not be greater than 1/3 of the cycle rate.  
5. VIL(mim.)= -1.5V for a pulse width and it can not be greater than 1/3 of the cycle rate.  
6. For any pin under test input of 0V < VIN < VDD is acceptable. For all other pins that are not under test VIN=0V.  
7. For the K4D551638F-TC60 , VDD & VDDQ =2.5V + 5%,  
For the K4D551638F-TC36 , VDD & VDDQ =2.8V + 0.1V  
and For the K4D551638F-TC33 , VDD & VDDQ = 2.8V ~ 2.95V  
- 10 -  
Rev 2.1 (Apr. 2005)  
256M GDDR SDRAM  
K4D551638F-TC  
DC CHARACTERISTICS  
Recommended operating conditions Unless Otherwise Noted, TA=0 to 65°C)  
Version  
-40  
Parameter  
Symbol  
Test Condition  
Unit  
Note  
-33  
-36  
-50  
-60  
Burst Lenth=2 tRC tRC(min)  
IOL=0mA, tCC= tCC(min)  
Operating Current  
(One Bank Active)  
ICC1  
210  
205  
165  
5
150  
125  
mA  
mA  
mA  
mA  
mA  
mA  
1
Precharge Standby Current  
in Power-down mode  
ICC2P  
ICC2N  
ICC3P  
ICC3N  
ICC4  
6
6
45  
4
25  
55  
75  
250  
3
20  
CKE VIL(max), tCC= tCC(min)  
CKE VIH(min), CS VIH(min),  
tCC= tCC(min)  
Precharge Standby Current  
in Non Power-down mode  
50  
37  
60  
80  
320  
Active Standby Current  
power-down mode  
70  
65  
35  
CKE VIL(max), tCC= tCC(min)  
CKE VIH(min), CS VIH(min),  
tCC= tCC(min)  
Active Standby Current in  
in Non Power-down mode  
100  
405  
95  
56  
Operating Current  
(Burst Mode)  
tRC tRFC(min)tRC tRFC(min)  
Page Burst, All Banks activated.  
400  
200  
Refresh Current  
ICC5  
ICC6  
275  
4
270  
4
220  
4
200  
3
180  
3
mA  
mA  
2
tRC tRFC(min)  
CKE 0.2V  
Self Refresh Current  
Operating Current  
(4Bank Interleaving)  
Burst Length=4, tRC tRFC(min)  
IOL=0mA, tCC = tCC(min)  
ICC7  
520  
515  
410  
380  
350  
mA  
Note : 1. Measured with outputs open.  
2. Refresh period is 64ms  
AC INPUT OPERATING CONDITIONS  
Recommended operating conditions(Voltage referenced to VSS=0V, VDD=2.6V+ 0.1V, VDDQ=2.6V+ 0.1V ,TA=0 to 65°C)  
Parameter  
Symbol  
VIH  
Min  
VREF+0.35  
-
Typ  
Max  
-
Unit  
Note  
Input High (Logic 1) Voltage; DQ  
-
-
-
-
V
V
V
V
Input Low (Logic 0) Voltage; DQ  
VIL  
VREF-0.35  
VDDQ+0.6  
0.5*VDDQ+0.2  
Clock Input Differential Voltage; CK and CK  
Clock Input Crossing Point Voltage; CK and CK  
VID  
0.7  
1
2
VIX  
0.5*VDDQ-0.2  
Note :  
1. VID is the magnitude of the difference between the input level on CK and the input level on CK  
2. The value of VIX is expected to equal 0.5*VDDQ of the transmitting device and must track variations in the DC level of the same  
- 11 -  
Rev 2.1 (Apr. 2005)  
256M GDDR SDRAM  
K4D551638F-TC  
AC OPERATING TEST CONDITIONS (VDD=2.6V ± 0.1V, TA= 0 to 65°C)  
Parameter  
Value  
Unit  
V
Note  
Input reference voltage for CK(for single ended)  
CK and CK signal maximum peak swing  
CK signal minimum slew rate  
0.50*VDDQ  
1.5  
V
1.0  
VREF+0.35/VREF-0.35  
VREF  
V/ns  
V
Input Levels(VIH/VIL)  
Input timing measurement reference level  
Output timing measurement reference level  
Output load condition  
V
Vtt  
V
See Fig.1  
Vtt=0.5*VDDQ  
RT=50Ω  
Output  
Z0=50Ω  
VREF  
=0.5*VDDQ  
CLOAD=30pF  
(Fig. 1) Output Load Circuit  
CAPACITANCE (VDD=2.6V, TA= 25°C, f=1MHz)  
Parameter  
Input capacitance( CK, CK )  
Symbol  
CIN1  
Min  
1.0  
Max  
5.0  
Unit  
pF  
pF  
Input capacitance(A0~A12, BA0~BA1)  
CIN2  
1.0  
4.0  
Input capacitance  
( CKE, CS, RAS,CAS, WE )  
CIN3  
1.0  
4.0  
pF  
Data & DQS input/output capacitance(DQ0~DQ15)  
Input capacitance(DM0 ~ DM3)  
COUT  
CIN4  
1.0  
1.0  
6.5  
6.5  
pF  
pF  
DECOUPLING CAPACITANCE GUIDE LINE  
Recommended decoupling capacitance added to power line at board.  
Parameter  
Symbol  
CDC1  
Value  
Unit  
Decoupling Capacitance between VDD and VSS  
Decoupling Capacitance between VDDQ and VSSQ  
0.1 + 0.01  
0.1 + 0.01  
uF  
uF  
CDC2  
Note :  
1. VDD and VDDQ pins are separated each other.  
All VDD pins are connected in chip. All VDDQ pins are connected in chip.  
2. VSS and VSSQ pins are separated each other  
All VSS pins are connected in chip. All VSSQ pins are connected in chip.  
- 12 -  
Rev 2.1 (Apr. 2005)  
256M GDDR SDRAM  
K4D551638F-TC  
AC CHARACTERISTICS  
-33  
-36  
-40  
-50  
-60  
Parameter  
Symbol  
Unit Note  
Min  
3.3  
0.45  
0.45  
-0.6  
-0.6  
-
Max  
10  
0.55  
0.55  
0.6  
0.6  
0.35  
1.1  
0.6  
1.15  
-
Min  
3.6  
0.45  
0.45  
-0.6  
-0.6  
-
Max  
10  
0.55  
0.55  
0.6  
0.6  
0.4  
1.1  
0.6  
1.15  
-
Min  
4.0  
0.45  
0.45  
-0.6  
-0.6  
-
Max  
10  
0.55  
0.55  
0.6  
0.6  
0.4  
1.1  
0.6  
1.15  
-
Min  
5.0  
Max  
10  
0.55  
0.55  
0.55  
0.65  
0.4  
1.1  
0.6  
1.28  
-
Min  
6.0  
Max  
12  
0.55  
0.55  
0.6  
0.7  
0.45  
1.1  
0.6  
1.25  
-
CK cycle time  
CL=3 tCK  
ns  
tCK  
tCK  
ns  
CK high level width  
tCH  
0.45  
0.45  
-0.55  
-0.65  
-
0.45  
0.45  
-0.6  
-0.7  
-
CK low level width  
tCL  
DQS out access time from CK  
Output access time from CK  
tDQSCK  
tAC  
ns  
Data strobe edge to Dout edge tDQSQ  
ns  
tCK  
tCK  
tCK  
ns  
1
Read preamble  
tRPRE  
tRPST  
0.9  
0.9  
0.4  
0.85  
0
0.9  
0.4  
0.85  
0
0.9  
0.9  
Read postamble  
0.4  
0.4  
0.4  
CK to valid DQS-in  
DQS-In setup time  
DQS-in hold time  
tDQSS  
tWPRES  
tWPREH  
tWPST  
tDQSH  
tDQSL  
0.85  
0
0.72  
0
0.75  
0
0.35  
0.4  
-
0.35  
0.4  
0.4  
0.4  
0.9  
0.9  
0.4  
0.4  
-
0.35  
0.4  
0.4  
0.4  
0.9  
0.9  
0.4  
0.4  
-
0.25  
0.4  
-
0.25  
0.4  
-
tCK  
tCK  
tCK  
tCK  
ns  
DQS write postamble  
DQS-In high level width  
DQS-In low level width  
0.6  
0.6  
0.6  
-
0.6  
0.6  
0.6  
-
0.6  
0.6  
0.6  
-
0.6  
-
0.6  
-
0.4  
0.4  
0.9  
0.9  
0.35  
0.35  
0.35  
0.35  
0.6  
0.35  
0.35  
0.8  
-
-
Address and Control input setup tIS  
Address and Control input hold tIH  
DQ and DM setup time to DQS tDS  
-
-
-
-
-
0.6  
-
0.8  
-
ns  
-
-
-
0.4  
-
0.45  
0.45  
-
ns  
DQ and DM hold time to DQS  
tDH  
-
-
-
0.4  
-
-
ns  
tCLmin  
or  
tCHmin  
tHP-  
tCLmin  
or  
tCHmin  
tCLmin  
or  
tCHmin  
tCLmin  
or  
tCHmin  
tCLmin  
or  
tCHmin  
tHP-  
Clock half period  
tHP  
-
-
-
-
-
-
-
-
-
-
ns  
ns  
1
1
Data output hold time from DQS tQH  
tHP-0.4  
tHP-0.4  
tHP-0.5  
0.35  
0.55  
Note 1 :  
- The JEDEC DDR specification currently defines the output data valid window(tDV) as the time period when the data  
strobe and all data associated with that data strobe are coincidentally valid.  
- The previously used definition of tDV(=0.35tCK) artificially penalizes system timing budgets by assuming  
the worst case output vaild window even then the clock duty cycle applied to the device is better than 45/55%  
- A new AC timing term, tQH which stands for data output hold time from DQS is difined to account for clock duty cycle  
variation and replaces tDV  
- tQHmin = tHP-X where  
. tHP=Minimum half clock period for any given cycle and is defined by clock high or clock low time(tCH,tCL)  
. X=A frequency dependent timing allowance account for tDQSQmax  
- 13 -  
Rev 2.1 (Apr. 2005)  
256M GDDR SDRAM  
K4D551638F-TC  
AC CHARACTERISTICS (I)  
-33  
-36  
-40  
-50  
-60  
Parameter  
Symbol  
Unit Note  
Min  
15  
17  
10  
5
Max  
-
Min  
15  
17  
10  
5
Max  
-
Min  
13  
15  
9
Max  
-
Min  
12  
14  
8
Max  
-
Min  
10  
12  
7
Max  
-
Row cycle time  
tRC  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
Refresh row cycle time  
tRFC  
-
-
-
-
-
Row active time  
tRAS  
100K  
100K  
100K  
100K  
100K  
RAS to CAS delay for Read  
RAS to CAS delay for Write  
Row precharge time  
tRCDRD  
tRCDWR  
tRP  
-
-
-
-
-
-
-
-
4
-
-
-
-
4
-
-
-
-
3
-
-
-
-
3
3
2
2
2
5
5
4
4
3
Row active to Row active  
Last data in to Row precharge @Nor-  
mal Precharge  
tRRD  
3
3
3
2
2
tWR  
3
3
-
-
3
3
-
-
3
3
-
-
3
3
-
-
3
3
-
-
tCK  
tCK  
1
Last data in to Row precharge @Auto  
Precharge  
tWR_A  
1
1
Last data in to Read command  
Col. address to Col. address  
Mode register set cycle time  
Auto precharge write recovery + Pre-  
charge  
tCDLR  
tCCD  
tMRD  
3
1
2
-
-
-
2
1
2
-
-
-
2
1
2
-
-
-
2
1
2
-
-
-
1
1
2
-
-
-
tCK  
tCK  
tCK  
tDAL  
8
-
-
-
-
8
-
-
-
-
7
-
-
-
-
7
-
-
-
-
6
-
-
-
-
tCK  
tCK  
ns  
Exit self refresh to read command  
tXSR  
tPDEX  
tREF  
200  
3tCK  
+tIS  
7.8  
200  
3tCK  
+tIS  
7.8  
200  
3tCK  
+tIS  
7.8  
200  
1tCK  
+tIS  
7.8  
200  
1tCK  
+tIS  
7.8  
Power down exit time  
Refresh interval time  
us  
Note : 1. For normal write operation, even numbers of Din are to be written inside DRAM  
AC CHARACTERISTICS (II)  
(Unit : Number of Clock)  
K4D551638F-TC33  
Frequency  
Cas Latency  
tRC  
tRFC  
tRAS  
tRCDRD tRCDWR  
tRP  
tRRD  
tDAL  
Unit  
300MHz ( 3.3ns )  
3
15  
17  
10  
5
3
5
3
8
tCK  
K4D551638F-TC36  
Frequency  
Cas Latency  
tRC  
tRFC  
tRAS  
tRCDRD tRCDWR  
tRP  
tRRD  
tDAL  
Unit  
275MHz ( 3.6ns )  
3
15  
17  
10  
5
3
5
3
8
tCK  
K4D551638F-TC40  
Frequency  
250MHz ( 4.0ns )  
200MHz ( 5.0ns )  
Unit  
tCK  
tCK  
Cas Latency  
tRC  
13  
12  
tRFC  
15  
14  
tRAS  
9
8
tRCDRD tRCDWR  
tRP  
4
4
tRRD  
3
3
tDAL  
7
7
3
3
4
4
2
2
K4D551638F-TC50  
Frequency  
Unit  
Cas Latency  
tRC  
tRFC  
tRAS  
tRCDRD tRCDWR  
tRP  
tRRD  
tDAL  
200MHz ( 5.0ns )  
3
12  
14  
8
4
2
4
3
7
tCK  
K4D551638F-TC60  
Frequency  
Unit  
Cas Latency  
tRC  
tRFC  
tRAS  
tRCDRD tRCDWR  
tRP  
tRRD  
tDAL  
166MHz ( 6.0ns )  
3
10  
12  
7
3
2
3
2
6
tCK  
- 14 -  
Rev 2.1 (Apr. 2005)  
256M GDDR SDRAM  
K4D551638F-TC  
Write Interrupted by a Read & DM  
A burst write can be interrupted by a read command of any bank. The DQs must be in the high impedance state at  
least one clock cycle before the interrupting read data appear on the outputs to avoid data contention. When the read  
command is registered, any residual data from the burst write cycle must be masked by DM. The delay from the last data  
to read command (tCDLR) is required to avoid the data contention DRAM inside. Data that are presented on the DQ pins  
before the read command is initiated will actually be written to the memory. Read command interrupting write can not be  
issued at the next clock edge of that of write command.  
< Burst Length=8, CAS Latency=3 >  
0
1
2
3
4
5
6
7
8
CK  
CK  
Command  
NOP  
WRITE  
NOP  
DQSSmax  
NOP  
NOP  
CDLR  
READ  
NOP  
NOP  
NOP  
t
t
DQS  
5
tWPRES*  
CAS Latency=3  
Din 7  
Din 0 Din 1 Din 2 Din 3 Din 4 Din 5 Din 6  
CDLR  
Dout 0 Dou
DQ  
s
tDQSSmin  
t
DQS  
5
CAS Latency=3  
tWPRES*  
Din 6  
Din 0 Din 1 Din 2 Din 3 Din 4 Din 5  
Din 7  
DQ  
s
Dout 0 Dou
DM  
The following function established how a Read command may interrupt a Write burst and which input data is not written  
into the memory.  
1. For Read commands interrupting a Write burst, the minimum Write to Read command delay is 2 clock cycles. The  
case where the Write to Read delay is 1 clock cycle is disallowed  
2. For Read commands interrupting a Write burst, the DM pin must be used to mask the input data words whcich imme-  
diately precede the interrupting Read operation and the input data word which immediately follows the interrupting  
Read operation  
3. For all cases of a Read interrupting a Write, the DQ and DQS buses must be released by the driving chip (i.e., the  
memory controller) in time to allow the buses to turn around before the GDDR drives them during a read operation.  
4. If input Write data is masked by the Read command, the DQS input is ignored by the GDDR.  
* This function is only supported in 200/166MHz.  
- 15 -  
Rev 2.1 (Apr. 2005)  
256M GDDR SDRAM  
K4D551638F-TC  
PACKAGE DIMENSIONS (66pin TSOP-II)  
Units : Millimeters  
#66  
#34  
(10×)  
(10×)  
#1  
#33  
+0.075  
-0.035  
0.125  
(1.50)  
22.22±0.10  
(10×)  
(10×)  
0.10 MAX  
0.25TYP  
(0.71)  
0.65TYP  
0.65±0.08  
0.30±0.08  
[
]
0.075 MAX  
NOTE  
1. (  
0×~8×  
) IS REFERENCE  
2. [  
] IS ASSY OUT QUALITY  
- 16 -  
Rev 2.1 (Apr. 2005)  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY