K4H510438E-TCA2 [SAMSUNG]

128Mb DDR SDRAM; 128MB DDR SDRAM
K4H510438E-TCA2
型号: K4H510438E-TCA2
厂家: SAMSUNG    SAMSUNG
描述:

128Mb DDR SDRAM
128MB DDR SDRAM

动态存储器 双倍数据速率
文件: 总53页 (文件大小:669K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
128Mb DDR SDRAM  
DDR SDRAM Specification  
Version 1.0  
- 1 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
Revision History  
Version 0 (May, 1998)  
- First version for internal review  
Version 0.1(June, 1998)  
- Added x4 organization  
Version 0.2(Sep,1998)  
1. Added "Issue prcharge command for all banks of the device" as the fourth step of power-up squence.  
2. In power down mode timing diagram, NOP condition is added to precharge power down exit.  
Version 0.3(Dec,1998)  
- Added QFC Function.  
- Added DC current value  
- Reduce I/O capacitance values  
Version 0.4(Feb,1999)  
-Added DDR SDRAM history for reference(refer to the following page)  
-Added low power version DC spec  
Version 0.5(Apr,1999)  
-Revised following first showing for JEDEC standard  
-Added DC target current based on new DC test condition  
Version 0.6(July 1,1999)  
1.Modified binning policy  
From  
To  
-Z (133Mhz)  
-8 (125Mhz)  
-0 (100Mhz)  
-Z (133Mhz/266Mbps@CL=2)  
-Y (133Mhz/266Mbps@CL=2.5)  
-0 (100Mhz/200Mbps@CL=2)  
2.Modified the following AC spec values  
From.  
To.  
-Z  
-0  
-Z  
-Y  
-0  
tAC  
+/- 0.75ns  
+/- 1ns  
+/- 0.75ns  
+/- 0.75ns  
+/- 0.5ns  
0.5 ns  
+/- 0.75ns  
+/- 0.75ns  
+/- 0.5ns  
0.5 ns  
+/- 0.8ns  
+/- 0.8ns  
+/- 0.6ns  
0.6 ns  
tDQSCK  
tDQSQ  
tDS/tDH  
+/- 0.75ns  
+/- 1ns  
+/- 0.5ns  
+/- 0.75ns  
0.75 ns  
0.5 ns  
*1  
2.5tCK-tDQSS  
1tCK +/- 0.75ns  
tCK/2 +/- 0.75ns  
tCK/2 +/- 0.75ns  
2.5tCK-tDQSS  
1tCK +/- 1ns  
tCK/2 +/- 1ns  
tCK/2 +/- 1ns  
1tCK  
1tCK  
1tCK  
tCDLR  
*1  
0.9/1.1 tCK  
0.4/0.6 tCK  
+/- 0.75ns  
0.9/1.1 tCK  
0.4/0.6 tCK  
+/- 0.75ns  
0.9/1.1 tCK  
0.4/0.6 tCK  
+/-0.8ns  
tPRE  
*1  
tRPST  
*1  
tHZQ  
*1  
: Changed description method for the same functionality. This means no difference from the previous version.  
3.Changed the following AC parameter symbol  
From.  
tDQCK  
To.  
Output data access time from CK/CK  
tAC  
Version 0.61(August 9,1999)  
- Changed the some values of "write with auto precharge" table for different bank in page 31.  
Asserted  
For Different Bank  
command  
3
4
Old  
New  
Old  
New  
Illegal  
Illegal  
Read  
Legal  
Legal  
Illegal  
Illegal  
Legal  
Legal  
*1  
Read + AP  
- 2 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
Revision History(continued)  
Version 0.7 (March, 2000)  
- Changed 128Mb spec from target to Preliminary version.  
- Changed partnames as follows.  
from  
to  
KM44L32031BT-G(L)Z/Y/0  
KM48L16031BT-G(L)Z/Y/0  
KM416L8031BT-G(L)Z/Y/0  
K4H280438B-TC(L)A2/B0/A0  
K4H280838B-TC(L)A2/B0/A0  
K4H281638B-TC(L)A2/B0/A0  
- Changed input cap. spec.  
from  
to  
CK/CK  
2.5pF ~ 3.5pF  
2.0pF ~ 3.0pF w/ Delta Cin = 0.25pF  
4.0pF ~ 5.0pF w/ Delta Cin = 0.5pF  
2.0pF ~ 3.0pF with Delta Cin = 0.5pF  
DQ/DQS/DM  
CMD/Addr  
4.0pF ~ 5.5pF  
2.5pF ~ 3.5pF  
- Changed operating condition.  
from  
to  
Vil/Vih(ac)  
V /V (dc)  
Vref +/- 0.35V  
Vref +/- 0.18V  
Vref +/- 0.31V  
Vref +/- 0.15V  
IL IH  
- Added Overshoot/Undershoot spec  
. Vih(max) = 4.2V, the overshoot voltage duration is £ 3ns at VDD.  
. Vil(min) =- 1.5V, the overshoot voltage duration is £ 3ns at VSS.  
- Changed AC parameters as follows.  
from  
to  
Comments  
tDQSQ  
tDV  
+/- 0.5(PC266), +/- 0.6(PC200)  
+/- 0.35tCK  
+0.5(PC266), +0.6(PC200)  
-
Removed  
tHPmin - 0.75ns(PC266)  
tHPmin - 1.0ns(PC200)  
tCLmin or tCHmin  
tQH  
-
-
New Definition  
tHP  
New Definition  
- Added DC spec values.  
Version 0.71 (April, 2000)  
- Corrected a typo for tRAS at 133Mhz/CL2.5 from 48ns t0 45ns.  
- Corrected a typo in "General Information" table from 64Mx4 to 8Mx16.  
Version 0.72(May,2000)  
- Changed DC spec item & test condition  
Version 0.73(June,2000)  
- Added updated DC spec values  
- Deleted tDAL in AC parameter  
Version 1.0(November,2000)  
- Eliminate "preliminary"  
- 3 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
Contents  
2
9
Revision History  
General Information  
10  
10  
10  
1. Key Features  
1.1 Features  
1.2 Operating Frequencies  
2. Package Pinout & Dimension  
11  
11  
12  
13  
2.1 Package Pintout  
2.2 Input/Output Function Description  
2.3 66 Pin TSOP(II)/MS-024FC Package Physical Dimension  
14  
14  
3. Functional Description  
3.1 Simplified State Diagram  
15  
15  
16  
16  
18  
19  
19  
20  
20  
20  
3.2 Basic Functionality  
3.2.1 Power-Up Sequence  
3.2.2 Mode Register Definition  
3.2.2.1 Mode Register Set(MRS)  
3.2.2.2 Extended Mode Register Set(EMRS)  
3.2.3 Precharge  
3.2.4 No Operation(NOP) & Device Deselect  
3.2.5 Row Active  
3.2.6 Read Bank  
3.2.7 Write Bank  
21  
21  
22  
23  
23  
24  
25  
3.3 Essential Functionality for DDR SDRAM  
3.3.1 Burst Read Operation  
3.3.2 Burst Write Operation  
3.3.3 Read Interrupted by a Read  
3.3.4 Read Interrupted by a Write & Burst Stop  
3.3.5 Read Interrupted by a Precharge  
3.3.6 Write Interrupted by a Write  
- 4 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
3.3.7 Write Interrupted by a Read & DM  
26  
27  
28  
29  
30  
31  
32  
33  
3.3.8 Write Interrupted by a Precharge & DM  
3.3.9 Burst Stop  
3.3.10 DM masking  
3.3.11 Read With Auto Precharge  
3.3.12 Write With Auto Precharge  
3.3.13 Auto Refresh & Self Refresh  
3.3.14 Power Down  
34  
35  
40  
4. Command Truth Table  
5. Functional Truth Table  
6. Absolute Maximum Rating  
7. DC Operating Conditions & Specifications  
7.1 DC Operating Conditions  
7.2 DC Specifications  
40  
41  
42  
42  
43  
8. AC Operating Conditions & Timming Specification  
8.1 AC Operating Conditions  
8.2 AC Timming Parameters & Specification  
45  
45  
9. AC Operating Test Conditions  
10. Input/Output Capacitance  
11. IBIS: I/V Characteristics for Input and Output Buffers  
11.1 Normal strength driver  
46  
46  
48  
11.2 Half strength driver( will be included in the future)  
12. QFC function  
49  
49  
49  
50  
50  
51  
52  
QFC definition  
QFC timming on Read Operation  
QFC timming on Write operation with tDQSSmax  
QFC timming on Write operation with tDQSSmin  
QFC timming example for interrupted writes operation  
Timing Diagram  
- 5 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
List of tables  
Table 1 : Operating frequency and DLL jitter  
Table 2. : Column address configurtion  
Table 3 : Input/Output function description  
Table 4 : Burst address ordering for burst length  
Table 5 : Bank selection for precharge by bank address bits  
Table 6 : Operating description when new command asserted while  
read with auto precharge is issued  
10  
11  
12  
17  
19  
30  
Table 7 : Operating description when new command asserted while  
write with auto precharge is issued  
31  
Table 8 : Command truth table  
Table 9-1 : Functional truth table  
34  
35  
36  
37  
38  
39  
40  
40  
42  
42  
44  
45  
45  
47  
Table9-2:Functionaltruthtable(contiued)  
Table 9-3 : Functional truth table (contiued)  
Table 9-4 : Functional truth table (contiued)  
Table 9-5 : Functional truth table (cotinued)  
Table 10 : Absolute maximum raings  
Table 11 : DC operating condtion  
Table 12 : DC specification  
Table 13 : AC operating condition  
Table 14 : AC timing parameters and specifications  
Table 15 : AC operating test conditions  
Table 16 : Input/Output capacitance  
Table 17 : Pull down and pull up current values  
- 6 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
List of figures  
Figure 1 : 128Mb Package Pinout  
Figure 2 : Package dimension  
Figure 3 :State digram  
Figure 4 : Power up and initialization sequence  
Figure 5 : Mode register set  
Figure 6 : Mode register set sequence  
Figure 7 : Extend mode register set  
Figure 8 : Bank activation command cycle timing  
Figure 9 : Burst read operation timing  
Figure 10 : Burst write operation timing  
Figure 11 : Read interrupted by a read timing  
Figure 12 : Read interrupted by a write and burst stop timing  
Figure 13 : Read interrupted by a precharge timing  
Figure 14 : Write interrupted by a write timing  
Figure 15 : Write interrupted by a read and DM timing  
Figure 16 : Write interrupted by a precharge and DM timing  
Figure 17 : Burst stop timing  
11  
13  
14  
15  
16  
17  
18  
20  
21  
22  
23  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
32  
33  
45  
46  
Figure 18 : DM masking timing  
Figure 19 : Read with auto precharge timing  
Figure 20 : Write with auto precharge timing  
Figure 21 : Auto refresh timing  
Figure 22 : Self refresh timing  
Figure 23 : Power down entry and exit timing  
Figure 24 : Output Load Circuit (SSTL_2)  
Figure 25 : I / V characteristics for input/output buffers:  
pull-up(above) and pull-down(below)  
Figure 26 : QFC timing on read operation  
Figure 27 : QFC timing on write operation with tDQSSmax  
Figure 28 : QFC timing on write operation with tDQSSmin  
Figure 29 : QFC timing example for interrupted writes operation  
49  
50  
50  
51  
- 7 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
General Information  
Organization  
32Mx4  
133Mhz w/ CL=2  
K4H280438B-TCA2  
K4H280438B-TLA2  
K4H280838B-TCA2  
K4H280838B-TLA2  
K4H281638B-TCA2  
K4H281638B-TLA2  
133Mhz w/ CL=2.5  
K4H280438B-TCB0  
K4H280438B-TLB0  
K4H280838B-TCB0  
K4H280838B-TLB0  
K4H281638B-TCB0  
K4H281638B-TLB0  
100Mhz w/ CL=2  
K4H280438B-TCA0  
K4H280438B-TLA0  
K4H280838B-TCA0  
K4H280838B-TLA0  
K4H281638B-TCA0  
K4H281638B-TLA0  
16Mx8  
8Mx16  
1
2
3
4
5
6
7
8
9
10  
11  
K 4 H XX XX X X X - X X XX  
Memory  
DRAM  
Speed  
Temperature & Power  
Package  
Small Classification  
Density and Refresh  
Version  
Organization  
Bank  
Interface (VDD & VDDQ)  
1. SAMSUNG Memory : K  
2. DRAM : 4  
3. Small Classification  
8. Version  
M : 1st Generation  
A : 2nd Generation  
B : 3rd Generation  
C : 4th Generation  
D : 5th Generation  
E : 6th Generation  
H
: DDR SDRAM  
4. Density & Refresh  
64 : 64M 4K/64ms  
28 : 128M 4K/64ms  
56 : 256M 8K/64ms  
51 : 512M 8K/64ms  
1G : 1G 16K/32ms  
9. Package  
T : TSOP2 (400mil x 875mil)  
10. Temperature & Power  
C : (Commercial, Normal)  
L : (Commercial, Low)  
5. Organization  
04 : x4  
08 : x8  
16 : x16  
32 : x32  
11. Speed  
A0 : 10ns@CL2  
A2 : 7.5ns@CL2  
B0 : 7.5ns@CL2.5  
6. Bank  
3 : 4 Bank  
7. Interface (VDD & VDDQ)  
8: SSTL-2(2.5V, 2.5V)  
- 8 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
1. Key Features  
1.1 Features  
Double-data-rate architecture; two data transfers per clock cycle  
• Bidirectional data strobe(DQS)  
• Four banks operation  
• Differential clock inputs(CK and CK)  
• DLL aligns DQ and DQS transition with CK transition  
• MRS cycle with address key programs  
-. Read latency 2, 2.5 (clock)  
-. Burst length (2, 4, 8)  
-. Burst type (sequential & interleave)  
• All inputs except data & DM are sampled at the positive going edge of the system clock(CK)  
• Data I/O transactions on both edges of data strobe  
• Edge aligned data output, center aligned data input  
• LDM,UDM/DM for write masking only  
• Auto & Self refresh  
• 15.6us refresh interval(4K/64ms refresh)  
• Maximum burst refresh cycle : 8  
• 66pin TSOP II package  
1.2 Operating Frequencies  
- A2(DDR266A)  
133MHz@CL2  
-
- B0(DDR266B)  
100MHz  
- A0(DDR200)  
100MHz  
-
Speed @CL2  
Speed @CL2.5  
DLL jitter  
133MHz  
±0.75ns  
±0.75ns  
±0.8ns  
*CL : Cas Latency  
Table 1. Operating frequency and DLL jitter  
- 9 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
1. Package Pinout & Dimension  
2.1 Package Pinout  
8Mb x 16  
16Mb x 8  
32Mb x 4  
VSS  
NC  
VSSQ  
NC  
DQ3  
VDDQ  
NC  
NC  
VSSQ  
NC  
DQ2  
VDDQ  
NC  
NC  
VSSQ  
DQS  
NC  
VREF  
VSS  
DM  
CK  
VSS  
DQ7  
VSSQ  
NC  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
VSS  
1
VDD  
DQ0  
VDDQ  
DQ1  
DQ2  
VSSQ  
DQ3  
DQ4  
VDDQ  
DQ5  
DQ6  
VSSQ  
DQ7  
NC  
VDD  
DQ0  
VDDQ  
NC  
VDD  
NC  
DQ15  
VSSQ  
DQ14  
DQ13  
VDDQ  
DQ12  
DQ11  
VSSQ  
DQ10  
DQ9  
VDDQ  
DQ8  
NC  
2
3
VDDQ  
NC  
4
DQ6  
VDDQ  
NC  
5
DQ1  
VSSQ  
NC  
DQ0  
VSSQ  
NC  
6
7
DQ5  
VSSQ  
NC  
8
DQ2  
VDDQ  
NC  
NC  
9
VDDQ  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
66 PIN TSOP(II)  
(400mil x 875mil)  
DQ4  
VDDQ  
NC  
DQ3  
VSSQ  
NC  
DQ1  
VSSQ  
NC  
(0.65 mm PIN PITCH)  
NC  
NC  
NC  
Bank Address  
BA0-BA1  
VSSQ  
DQS  
NC  
VSSQ  
UDQS  
NC  
VDDQ  
LDQS  
NC  
VDDQ  
NC  
VDDQ  
NC  
Row Address  
A0-A11  
NC  
NC  
VREF  
VSS  
DM  
CK  
VREF  
VSS  
VDD  
VDD  
VDD  
QFC/NC  
LDM  
WE  
QFC/NC QFC/NC  
Auto Precharge  
A10  
UDM  
CK  
NC  
WE  
CAS  
RAS  
CS  
NC  
WE  
CAS  
RAS  
CS  
CK  
CK  
CK  
CAS  
RAS  
CS  
22  
23  
CKE  
NC  
NC  
A11  
A9  
CKE  
NC  
CKE  
NC  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
NC  
NC  
NC  
NC  
NC  
MS-024FC  
A11  
A11  
BA0  
BA0  
BA1  
AP/A10  
A0  
BA0  
BA1  
AP/A10  
A0  
A9  
A9  
BA1  
A8  
A8  
A8  
AP/A10  
A0  
A7  
A7  
A7  
A6  
A6  
A6  
A1  
A1  
A1  
A5  
A5  
A5  
A2  
A2  
A2  
A4  
A4  
A4  
A3  
A3  
A3  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
FIgure 1. 128Mb package Pinout  
Organization  
32Mx4  
Column Address  
A0-A9, A11  
A0-A9  
16Mx8  
8Mx16  
A0-A8  
DM is internally loaded to match DQ and DQS identically.  
Table 2. Column address configuration  
- 10 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
2.2 Input/Output Function Description  
SYMBOL  
TYPE  
DESCRIPTION  
CK, CK  
Input  
Clock : CK and CK are differential clock inputs. All address and control input signals are sam-  
pled on the positive edge of CK and negative edge of CK. Output (read) data is referenced to  
both edges of CK. Internal clock signals are derived from CK/CK.  
CKE  
Input  
Clock Enable : CKE HIGH activates, and CKE LOW deactivates internal clock signals, and  
device input buffers and output drivers. Deactivating the clock provides PRECHARGE  
POWER-DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWER-DOWN  
(row ACTIVE in any bank). CKE is synchronous for all functions except for disabling outputs,  
which is achieved asynchronously. Input buffers, excluding CK, CK and CKE are disabled  
during power-down and self refresh modes, providing low standby power. CKE will recognize  
an LVCMOS LOW level prior to VREF being stable on power-up.  
CS  
Input  
Chip Select : CS enables(registered LOW) and disables(registered HIGH) the command  
decoder. All commands are masked when CS is registered HIGH. CS provides for external  
bank selection on systems with multiple banks. CS is considered part of the command code.  
RAS, CAS, WE  
LDM,(U)DM  
Input  
Input  
Command Inputs : RAS, CAS and WE (along with CS) define the command being entered.  
Input Data Mask : DM is an input mask signal for write data. Input data is masked when DM is  
sampled HIGH along with that input data during a WRITE access. DM is sampled on both  
edges of DQS. DM pins include dummy loading internally, to matches the DQ and DQS load-  
ing. For the x16, LDM corresponds to the data on DQ0-DQ7 ; UDM correspons to the data on  
DQ8-DQ15.  
BA0, BA1  
A [n : 0]  
Input  
Input  
Bank Addres Inputs : BA0 and BA1 define to which bank an ACTIVE, READ, WRITE or PRE-  
CHARGE command is being applied.  
Address Inputs : Provide the row address for ACTIVE commands, and the column address  
and AUTO PRECHARGE bit for READ/WRITE commands, to select one location out of the  
memory array in the respective bank. A10 is sampled during a PRECHARGE command to  
determine whether the PRECHARGE applies to one bank (A10 LOW) or all banks (A10  
HIGH). If only one bank is to be precharged, the bank is selected by BA0, BA1. The address  
inputs also provide the op-code during a MODE REGISTER SET command. BA0 and BA1  
define which mode register is loaded during the MODE REGISTER SET command (MRS or  
EMRS).  
DQ  
I/O  
I/O  
Data Input/Output : Data bus  
LDQS,(U)DQS  
Data Strobe : Output with read data, input with write data. Edge-aligned with read data, cen-  
tered in write data. Used to capture write data. For the x16, LDQS corresponds to the data on  
DQ0-DQ7 ; UDQS corresponds to the data on DQ8-DQ15.  
QFC  
Output  
FET Control : Optional. Output during every Read and Write access. Can be used to control  
isolation switches on modules.  
NC  
-
No Connect : No internal electrical connection is present.  
DQ Power Supply : +2.5V ± 0.2V.  
DQ Ground.  
VDDQ  
VSSQ  
VDD  
Supply  
Supply  
Supply  
Supply  
Input  
Power Supply : +2.5V ± 0.2V (device specific).  
Ground.  
VSS  
VREF  
SSTL_2 reference voltage.  
Table 3. Input/Output Function Description  
- 11 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
2.3 66 Pin TSOP(II)/MS-024FC Package Physical Dimension  
Units : Millimeters  
#66  
#34  
(10×)  
(10×)  
#1  
#33  
+0.075  
-0.035  
0.125  
(1.50)  
22.22±0.10  
(10×)  
(10×)  
0.10 MAX  
0.25TYP  
(0.71)  
0.65TYP  
0.65±0.08  
0.30±0.08  
[
]
0.075 MAX  
NOTE  
1. (  
0×~8×  
) IS REFERENCE  
2. [  
] IS ASSY OUT QUALITY  
Figure 2. Package dimension  
- 12 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
3. Functional Description  
3.1 Simplified State Diagram  
SELF  
REFRESH  
REFS  
REFSX  
REFA  
MRS  
MODE  
REGISTER  
SET  
AUTO  
REFRESH  
IDLE  
ACT  
CKEL  
CKEH  
POWER  
DOWN  
POWER  
DOWN  
CKEL  
CKEH  
ROW  
ACTIVE  
BURST STOP  
READ  
WRITE  
WRITEA  
READA  
READ  
WRITE
READ  
WRITEA  
READA  
READA  
PRE  
PRE  
WRITEA  
READA  
PRE  
POWER  
APPLIED  
POWER  
ON  
PRE  
CHARGE  
PRE  
Automatic Sequence  
Command Sequence  
WRITEA : Write with autoprecharge  
READA : Read with autoprecharge  
Figure 3. State diagram  
- 13 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
3.2 Basic Functionality  
3.2.1 Power-Up and Initialization Sequence  
The following sequence is required for POWER UP and Initialization.  
1. Apply power and attempt to maintain CKE at a low state(all other inputs may be undefined.)  
- Apply VDD before or at the same time as VDDQ.  
- Apply VDDQ before or at the same time as VTT & Vref.  
2. Start clock and maintain stable condition for a minimum of 200us.  
3. The minimum of 200us after stable power and clock(CK, CK), apply NOP & take CKE high.  
4. Issue precharge commands for all banks of the device.  
5. Issue EMRS to enable DLL.(To issue "DLL Enable" command, provide "Low" to A0, "High" to BA0 and "Low"  
to all of the rest address pins, A1~A11 and BA1)  
*1  
6. Issue a mode register set command for "DLL reset". The additional 200 cycles of clock input is required to  
lock the DLL.  
(To issue DLL reset command, provide "High" to A8 and "Low" to BA0)  
7. Issue precharge commands for all banks of the device.  
*1  
*2  
8. Issue 2 or more auto-refresh commands.  
9. Issue a mode register set command with low to A8 to initialize device operation.  
*1 Every "DLL enable" command resets DLL. Therefore sequence 6 can be skipped during power up.  
Instead of it, the additional 200 cycles of clock input is required to lock the DLL after enabling DLL.  
*2 Sequence of 6 & 7 is regardless of the order.  
Power up & Initialization Sequence  
0
1
2
3
4
5
6
7
8
9
10  
11  
12 13  
14  
15  
16  
17  
18  
19  
CK  
CK  
tRFC  
tRFC  
2 Clock min.  
tRP  
2 Clock min.  
2 Clock min.  
tRP  
Command  
precharge  
ALL Banks  
precharge  
ALL Banks  
2nd Auto  
Refresh  
MRS  
DLL Reset  
1st Auto  
Refresh  
Mode  
Register Set  
Any  
Command  
EMRS  
min.200 Cycle  
Figure 4. Power up and initialization sequence  
- 14 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
3.2.2 Mode Register Definition  
3.2.2.1 Mode Register Set(MRS)  
The mode register stores the data for controlling the various operating modes of DDR SDRAM. It programs  
CAS latency, addressing mode, burst length, test mode, DLL reset and various vendor specific options to make  
DDR SDRAM useful for variety of different applications. The default value of the mode register is not defined,  
therefore the mode register must be written after EMRS setting for proper DDR SDRAM operation. The mode  
register is written by asserting low on CS, RAS, CAS, WE and BA0(The DDR SDRAM should be in all bank pre-  
charge with CKE already high prior to writing into the mode register). The states of address pins A0 ~ A11 in  
the same cycle as CS, RAS, CAS, WE and BA0 going low are written in the mode register. Two clock cycles  
are requested to complete the write operation in the mode register. The mode register contents can be  
changed using the same command and clock cycle requirements during operation as long as all banks are in  
the idle state. The mode register is divided into various fields depending on functionality. The burst length uses  
A0 ~ A2, addressing mode uses A3, CAS latency(read latency from column address) uses A4 ~ A6. A7 is used  
for test mode. A8 is used for DLL reset. A7 must be set to low for normal MRS operation. Refer to the table for  
specific codes for various burst lengths, addressing modes and CAS latencies.  
Address Bus  
BA1 BA0 A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Mode Register  
RFU  
0
RFU  
DLL TM  
CAS Latency  
BT  
Burst Length  
A8  
0
DLL Reset  
No  
A3  
0
Burst Type  
Sequential  
A7  
0
mode  
Normal  
Test  
1
Yes  
1
Interleave  
1
Burst Length  
CAS Latency  
Latency  
A2  
A1  
A0  
A6  
0
A5  
0
A4  
0
Latency  
Sequential  
Reserve  
2
Interleave  
Reserved  
Reserved  
2
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserve  
2
BA0  
0
An ~ A0  
0
0
1
(Existing)MRS Cycle  
0
1
0
4
4
1
Extended Funtions(EMRS)  
0
1
1
Reserved  
Reserved  
Reserved  
2.5  
8
8
1
0
0
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
1
0
1
* RFU(Reserved for future use)  
should stay "0" during MRS  
cycle.  
1
1
0
1
1
1
Reserved  
Figure 5. Mode Register Set  
- 15 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
Burst Address Ordering for Burst Length  
Burst  
Starting  
Sequential Mode  
Interleave Mode  
Length Address(A2, A1, A0)  
xx0  
0, 1  
0, 1  
2
xx1  
1, 0  
1, 0  
x00  
0, 1, 2, 3  
0, 1, 2, 3  
x01  
1, 2, 3, 0  
1, 0, 3, 2  
4
x10  
2, 3, 0, 1  
2, 3, 0, 1  
x11  
000  
001  
010  
3, 0, 1, 2  
3, 2, 1, 0  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 4, 5, 6, 7, 0  
2, 3, 4, 5, 6, 7, 0, 1  
3, 4, 5, 6, 7, 0, 1, 2  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 0, 1, 2, 3, 4  
6, 7, 0, 1, 2, 3, 4, 5  
7, 0, 1, 2, 3, 4, 5, 6  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
011  
8
100  
101  
110  
111  
Table 4. Burst address ordering for burst length  
DLL Enable/Disable  
The DLL must be enabled for normal operation. DLL enable is required during power-up initialization, and  
upon returing to normal operation after having disabled the DLL for the purpose of debug or evaluation (upon  
exiting Self Refresh Mode, the DLL is enabled automatically). Any time the DLL is enabled, 200 clock cycles  
must occur before a READ command can be issued.  
Output Drive Strength  
The normal drive strength for all outputs is specified to be SSTL_2, Class II. Some vendors might also support  
a weak driver strength option, intended for lighter load and/or point-to-point environments. I-V curves for the  
normal drive strength and weak drive strength will be included in a future revision of this document.  
Mode Register Set  
0
1
2
3
4
5
6
7
8
CK  
CK  
*1  
Mode  
Register Set  
Precharge  
All Banks  
Any  
Command  
Command  
*2  
tCK  
tRP  
2 Clock min.  
*1 : MRS can be issued only at all bank precharge state.  
*2 : Minimum tRP is required to issue MRS command.  
Figure 6. Mode Register Set sequence  
- 16 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
3.2.2.2 Extended Mode Register Set(EMRS)  
The extended mode register stores the data for enabling or disabling DLL, QFC and selecting output driver  
size. The default value of the extended mode register is not defined, therefore the extened mode register must  
be written after power up for enabling or disabling DLL. The extended mode register is written by asserting low  
on CS, RAS, CAS, WE and high on BA0(The DDR SDRAM should be in all bank precharge with CKE already  
high prior to writing into the extended mode register). The state of address pins A0 ~ A11 and BA1 in the  
same cycle as CS, RAS, CAS and WE going low are written in the extended mode register. Two clock cycles  
are required to complete the write operation in the extended mode register. The mode register contents can  
be changed using the same command and clock cycle requirements during operation as long as all banks are  
in the idle state. A0 is used for DLL enable or disable. "High" on BA0 is used for EMRS. All the other address  
pins except A0 and BA0 must be set to low for proper EMRS operation. Refer to the table for specific codes.  
Address Bus  
BA1 BA0 A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
DLL  
Extended Mode Register  
1
D.I.C  
RFU  
RFU : Must be set "0"  
QFC  
Output Driver Impedence Control  
A0  
0
DLL Enable  
Enable  
0
1
Normal  
Weak  
1
Disable  
BA0  
An ~ A0  
0
1
(Existing)MRS Cycle  
Extended Funtions(EMRS)  
QFC control  
0
1
Disable(Default)  
Enable  
Figure 7. Extend Mode Register set  
- 17 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
3.2.3 Precharge  
The precharge command is used to precharge or close a bank that has been activated. The precharge com-  
mand is issued when CS, RAS and WE are low and CAS is high at the rising edge of the clock. The precharge  
command can be used to precharge each bank respectively or all banks simultaneously. The bank select  
addresses(BA0, BA1) are used to define which bank is precharged when the command is initiated. For write  
cycle, tWR(min.) must be satisfied until the precharge command can be issued. After tRP from the precharge,  
an active command to the same bank can be initiated.  
Bank Selection for Precharge by Bank address bits  
A10/AP  
BA1  
0
BA0  
0
Precharge  
Bank A Only  
Bank B Only  
Bank C Only  
Bank D Only  
All Banks  
0
0
0
0
1
0
1
1
0
1
1
X
X
Table 5. Bank selection for precharge by Bank address bits  
3.2.4 No Operation(NOP) & Device Deselect  
The device should be deselected by deactivating the CS signal. In this mode DDR SDRAM should ignore  
all the control inputs. The DDR SDRAMs are put in NOP mode when CS is active and by deactivating RAS,  
CAS and WE. For both Deselect and NOP the device should finish the current operation when this com-  
mand is issued.  
- 18 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
3.2.5 Row Active  
The Bank Activation command is issued by holding CAS and WE high with CS and RAS low at the rising  
edge of the clock(CK). The DDR SDRAM has four independent banks, so two Bank Select addresses(BA0,  
BA1) are required. The Bank Activation command must be applied before any Read or Write operation is exe-  
cuted. The delay from the Bank Activation command to the first read or write command must meet or exceed  
the minimum of RAS to CAS delay time(tRCD min). Once a bank has been activated, it must be precharged  
before another Bank Activation command can be applied to the same bank. The minimum time interval  
between interleaved Bank Activation commands(Bank A to Bank B and vice versa) is the Bank to Bank delay  
time(tRRD min).  
Bank Activation Command Cycle (CAS Latency = 2)  
Tn  
Tn+1  
Tn+2  
0
1
2
CK  
CK  
Bank A  
Row Addr.  
Bank A  
Col. Addr.  
Bank B  
Row Addr.  
Bank A  
Row. Addr.  
Address  
RAS-CAS delay(tRCD)  
RAS-RAS delay time(tRRD)  
Bank A  
Bank A  
Activate  
Write A  
Bank B  
Activate  
NOP  
NOP  
Command  
with Auto  
Activate  
Precharge  
ROW Cycle Time(tRC)  
: Don¢t care  
Figure 8. Bank activation command cycle timing  
3.2.6 Read Bank  
This command is used after the row activate command to initiate the burst read of data. The read command  
is initiated by activating RAS, CS, CAS, and deasserting WE at the same clock sampling(rising) edge as  
described in the command truth table. The length of the burst and the CAS latency time will be determined by  
the values programmed during the MRS command.  
3.2.7 Write Bank  
This command is used after the row activate command to initiate the burst write of data. The write com-  
mand is initiated by activating RAS, CS, CAS, and WE at the same clock sampling(rising) edge as described in  
the command truth table. The length of the burst will be determined by the values programmed during the  
MRS command.  
- 19 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
3.3 Essential Functionality for DDR SDRAM  
The essential functionality that is required for the DDR SDRAM device is described in this chapter  
3.3.1 Burst Read Operation  
Burst Read operation in DDR SDRAM is in the same manner as the current SDRAM such that the Burst read  
command is issued by asserting CS and CAS low while holding RAS and WE high at the rising edge of the  
clock(CK) after tRCD from the bank activation. The address inputs (A0~A9) determine the starting address for  
the Burst. The Mode Register sets type of burst(Sequential or interleave) and burst length(2, 4, 8). The first  
output data is available after the CAS Latency from the READ command, and the consecutive data are pre-  
sented on the falling and rising edge of Data Strobe(DQS) adopted by DDR SDRAM until the burst length is  
completed.  
< Burst Length=4, CAS Latency= 2, 2.5 >  
0
1
2
3
4
5
6
7
8
CK  
CK  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
t
t
RPST  
RPRE  
DQS  
CAS Latency=2  
Dout 0 Dout 1 Dout 2 Dout 3  
DQ ¢s  
DQS  
CAS Latency=2.5  
Dout 0 Dout 1 Dout 2 Dout 3  
DQ ¢s  
Figure 9. Burst read operation timing  
- 20 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
3.3.2 Burst Write Operation  
The Burst Write command is issued by having CS, CAS, and WE low while holding RAS high at the rising  
edge of the clock(CK). The address inputs determine the starting column address. There is no write latency  
relative to DQS required for burst write cycle. The first data of a burst write cycle must be applied on the DQ  
pins tDS(Data-in setup time) prior to data strobe edge enabled after tDQSS from the rising edge of the  
clock(CK) that the write command is issued. The remaining data inputs must be supplied on each subsequent  
falling and rising edge of Data Strobe until the burst length is completed. When the burst has been finished, any  
additional data supplied to the DQ pins will be ignored.  
< Burst Length=4 >  
0
1
2
3
4
5
6
7
8
*1  
CK  
CK  
Command  
DQS  
NOP  
WRITEA  
NOP  
WRITEB  
NOP  
NOP  
NOP  
NOP  
NOP  
tDQSSmax  
*1  
t
WPRES*1  
Din 3  
Din 0 Din 1 Din 2  
Din 3  
Din 0 Din 1 Din 2  
DQ ¢s  
Figure 10. Burst write operation timing  
1. The specific requirement is that DQS be valid(High or Low) on or before this CK edge. The case shown  
(DQS going from High_Z to logic Low) applies when no writes were previously in progress on the bus.  
If a previous write was in progress, DQS could be High at this time, depending on tDQSS.  
- 21 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
3.3.3 Read Interrupted by a Read  
A Burst Read can be interrupted before completion of the burst by new Read command of any bank. When  
the previous burst is interrupted, the remaining addresses are overridden by the new address with the full burst  
length. The data from the first Read command continues to appear on the outputs until the CAS latency from  
the interrupting Read command is satisfied. At this point the data from the interrupting Read command  
appears. Read to Read interval is minimum 1 Clock.  
< Burst Length=4, CAS Latency=2 >  
0
1
2
3
4
5
6
7
8
CK  
CK  
READ A  
READ B  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
DQS  
CAS Latency=2  
Dout A  
0
Dout A  
1
Dout B  
0
Dout B  
1
Dout B  
2
Dout B  
3
DQ ¢s  
Figure 11. Read interrupted by a read timing  
3.3.4 Read Interrupted by a Write & Burst Stop  
To interrupt a burst read with a write command, Burst Stop command must be asserted to avoid data conten-  
tion on the I/O bus by placing the DQs(Output drivers) in a high impedance state. To insure the DQs are tri-  
stated one cycle before the beginning the write operation, Burst stop command must be applied at least 2  
clock cycles for CL=2 and at least 3 clock cycles for CL=2.5 before the Write command.  
< Burst Length=4, CAS Latency=2 >  
0
1
2
3
4
5
6
7
8
CK  
CK  
WRITE  
NOP  
Command  
READ  
Burst Stop  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS  
CAS Latency=2  
Dout 0 Dout 1  
Din 0  
Din 1 Din 2  
Din 3  
DQ ¢s  
Figure 12. Read interrupted by a write and burst stop timing.  
The following functionality establishes how a Write command may interrupt a Read burst.  
1. For Write commands interrupting a Read burst, a Burst Terminate command is required to stop the read  
burst and tristate the DQ bus prior to valid input write data. Once the Burst Terminate command has been  
issued, the minimum delay to a Write command = RU(CL) [CL is the CAS Latency and RU means round up  
to the nearest integer].  
2. It is illegal for a Write command to interrupt a Read with autoprecharge command.  
- 22 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
3.3.5 Read Interrupted by a Precharge  
A Burst Read operation can be interrupted by precharge of the same bank. The minimum 1 clock is required  
for the read to precharge intervals. A precharge command to output disable latency is equivalent to the CAS  
latency.  
< Burst Length=8, CAS Latency=2 >  
0
1
2
3
4
5
6
7
8
CK  
CK  
1tCK  
Precharge  
Command  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS  
CAS Latency=2  
Dout 4 Dout 5 Dout 6 Dout 7  
Dout 0 Dout 1 Dout 2 Dout 3  
DQ ¢s  
Interrupted by precharge  
Figure 13. Read interrupted by a precharge timing  
When a burst Read command is issued to a DDR SDRAM, a Precharge command may be issued to the same  
bank before the Read burst is complete. The following functionality determines when a Precharge command  
may be given during a Read burst and when a new Bank Activate command may be issued to the same bank.  
1. For the earliest possible Precharge command without interrupting a Read burst, the Precharge command  
may be given on the rising clock edge which is CL clock cycles before the end of the Read burst where CL  
is the CAS Latency. A new Bank Activate command may be issued to the same bank after tRP (RAS  
Precharge time).  
2. When a Precharge command interrupts a Read burst operation, the Precharge command may be given on  
the rising clock edge which is CL clock cycles before the last data from the interrupted Read burst where  
CL is the CAS Latency. Once the last data word has been output, the output buffers are tristated. A new  
Bank Activate command may be issued to the same bank after tRP.  
3. For a Read with autoprecharge command, a new Bank Activate command may be issued to the same  
bank after tRP where tRP begins on the rising clock edge which is CL clock cycles before the end of the  
Read burst where CL is the CAS Latency. During Read with autoprecharge, the initiation of the internal  
precharge occurs at the same time as the earliest possible external Precharge command would initiate a  
precharge operation without interrupting the Read burst as described in 1 above.  
4. For all cases above, tRP is an analog delay that needs to be converted into clock cycles. The number of  
clock cycles between a Precharge command and a new Bank Activate command to the same bank equals  
tRP/tCK (where tCK is the clock cycle time) with the result rounded up to the nearest integer number of  
clock cycles. (Note that rounding to X.5 is not possible since the Precharge and Bank Activate commands  
can only be given on a rising clock edge).  
In all cases, a Precharge operation cannot be initiated unless tRAS(min) [minimum Bank Activate to Precharge  
time] has been satisfied. This includes Read with autoprecharge commands where tRAS(min) must still be  
satisfied such that a Read with autoprecharge command has the same timing as a Read command followed by  
the earliest possible Precharge command which does not interrupt the burst.  
- 23 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
3.3.6 Write Interrupted by a Write  
A Burst Write can be interrupted before completion of the burst by a new Write command, with the only restric-  
tion that the interval that separates the commands must be at least one clock cycle. When the previous burst  
is interrupted, the remaining addresses are overridden by the new address and data will be written into the  
device until the programmed burst length is satisfied.  
< Burst Length=4 >  
0
1
2
3
4
5
6
7
8
CK  
CK  
1tCK  
Command  
NOP  
WRITE A  
WRITE b  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS  
Din A  
0
Din A  
1
Din B  
0
Din B  
1
Din B  
2
Din B3  
DQ ¢s  
Figure 14. Write interrupted by a write timing  
- 24 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
3.3.7 Write Interrupted by a Read & DM  
A burst write can be interrupted by a read command of any bank. The DQs must be in the high impedance  
state at least one clock cycle before the interrupting read data appear on the outputs to avoid data contention.  
When the read command is registered, any residual data from the burst write cycle must be masked by DM.  
The delay from the last data to read command (tCDLR) is required to avoid the data contention DRAM inside.  
Data that are presented on the DQ pins before the read command is initiated will actually be written to the  
memory. Read command interrupting write can not be issued at the next clock edge of that of write command.  
< Burst Length=8, CAS Latency=2 >  
0
1
2
3
4
5
6
7
8
CK  
CK  
NOP  
WRITE  
NOP  
NOP  
NOP  
tCDLR  
READ  
NOP  
NOP  
NOP  
Command  
tDQSSmax  
DQS  
5
t
WPRES*  
CAS Latency=2  
CAS Latency=2  
Din 7  
Din 0  
Din 1 Din 2  
Din 3  
Din 4  
tCDLR  
Din 5  
Din 6  
Dout 0 Dout 1 Dout 2 Do  
DQ ¢s  
tDQSSmin  
DQS  
5
t
WPRES*  
Din 6  
Din 0 Din 1  
Din 2  
Din 3  
Din 4  
Din 5  
Din 7  
DQ ¢s  
Dout 0 Dout 1 Dout 2 Do  
DM  
Figure 15. Write interrupted by a read and DM timing  
The following function established how a Read command may interrupt a Write burst and which input data is  
not written into the memory.  
1. For Read commands interrupting a Write burst, the minimum Write to Read command delay is 2 clock  
cycles. The case where the Write to Read delay is 1 clock cycle is disallowed  
2. For Read commands interrupting a Write burst, the DM pin must be used to mask the input data words  
whcich immediately precede the interrupting Read operation and the input data word which immediately  
follows the interrupting Read operation  
3. For all cases of a Read interrupting a Write, the DQ and DQS buses must be released by the driving chip  
(i.e., the memory controller) in time to allow the buses to turn around before the DDR SDRAM drives them  
during a read operation.  
4. If input Write data is masked by the Read command, the DQS input is ignored by the DDR SDRAM.  
5. Refer to "3.3.2 Burst write operation"  
- 25 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
3.3.8 Write Interrupted by a Precharge & DM  
A burst write operation can be interrupted before completion of the burst by a precharge of the same bank.  
Random column access is allowed. A write recovery time(tWR) is required from the last data to precharge  
command. When precharge command is asserted, any residual data from the burst write cycle must be  
masked by DM.  
< Burst Length=8 >  
0
1
2
3
4
5
6
7
8
CK  
CK  
NOP  
Precharge  
Command  
NOP  
WRITE A  
NOP  
NOP  
NOP  
WRITEB  
NOP  
tDQSSmax  
DQS  
tWR  
Dina0 Dina1 Dina2 Dina3 Dina4 Dina5 Dina6 Dina7  
5
t
WPRES*  
Dinb0  
DQ ¢s  
tDQSSmin  
DQS  
5
WPRES*  
t
Dina6 Dina7  
Dina0 Dina1 Dina2 Dina3 Dina4 Dina5  
Dinb0 Dinb1  
DQ ¢s  
DM  
Figure 16. Write interrupted by a precharge and DM timing  
Precharge timing for Write operations in DRAMs requires enough time to allow write recovery” which is the  
time required by a DRAM core to properly store a full 0 or 1 level before a Precharge operation. For DDR  
SDRAM, a timing parameter, tWR, is used to indicate the required amount of time between the last valid write  
operation and a Precharge command to the same bank.  
The precharge timing for writes is a complex definition since the write data is sampled by the data strobe and  
the address is sampled by the input clock. Inside the SDRAM, the data path is eventually synchronized with  
the address path by switching clock domains from the data strobe clock domain to the input clock domain.  
This makes the definition of when a precharge operation can be initiated after a write very complex since the  
write recovery parameter must reference only the clock domain that is used to time the internal write operation,  
i.e., the input clock domain.  
tWR starts on the rising clock edge after the last possible DQS edge that strobed in the last valid data and  
ends on the rising clock edge that strobes in the precharge command.  
1. For the earliest possible Precharge command following a Write burst without interrupting the burst, the  
minimum time for write recovery is defined by tWR.  
2. When a precharge command interrupts a Write burst operation, the data mask pin, DM, is used to mask  
input data during the time between the last valid write data and the rising clock edge on which the  
Precharge command is given. During this time, the DQS input is still required to strobe in the state of DM.  
The minimum time for write recovery is defined by tWR.  
- 26 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
3. For a Write with autoprecharge command, a new Bank Activate command may be issued to the same  
bank after tWR+tRP where tWR+tRP starts on the falling DQS edge that strobed in the last valid data and  
ends on the rising clock edge that strobes in the Bank Activate command. During write with  
autoprecharge, the initiation of the internal precharge occurs at the same time as the earliest possible  
external Precharge command without interrupting the Write burst as described in 1 above.  
4. In all cases, a Precharge operation cannot be initiated unless tRAS(min) [minimum Bank Activate to  
Precharge time] has been satisfied. This includes Write with autoprecharge commands where tRAS(min)  
must still be satisfied such that a Write with autoprecharge command has the same timing as a Write  
command followed by the earliest possible Precharge command which does not interrupt the burst.  
5. Refer to "3.3.2 Burst write operation"  
3.3.9 Burst Stop  
The burst stop command is initiated by having RAS and CAS high with CS and WE low at the rising edge of  
the clock(CK). The burst stop command has the fewest restrictions making it the easiest method to use when  
terminating a burst read operation before it has been completed. When the burst stop command is issued dur-  
ing a burst read cycle, the pair of data and DQS(Data Strobe) go to a high impedance state after a delay which  
is equal to the CAS latency set in the mode register. The burst stop command, however, is not supported dur-  
ing a write burst operation.  
< Burst Length=4, CAS Latency= 2, 2.5 >  
0
1
2
3
4
5
6
7
8
CK  
CK  
Command  
READ A  
Burst Stop  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS  
CAS Latency=2  
The burst ends after a delay equal to the CAS latency.  
Dout 0 Dout 1  
DQ ¢s  
DQS  
CAS Latency=2.5  
Dout 0 Dout 1  
DQ ¢s  
Figure 17. Burst stop timing  
The Burst Stop command is a mandatory feature for DDR SDRAMs. The following functionality is required:  
1. The BST command may only be issued on the rising edge of the input clock, CK.  
2. BST is only a valid command during Read bursts.  
3. BST during a Write burst is undefined and shall not be used.  
4. BST applies to all burst lengths.  
5. BST is an undefined command during Read with autoprecharge and shall not be used.  
- 27 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
6. When terminating a burst Read command, the BST command must be issued L  
(BST Latency) clock  
BST  
cycles before the clock edge at which the output buffers are tristated, where L  
equals the CAS latency  
BST  
for read operations. This is shown in previous page Figure with examples for CAS latency (CL) of 1.5, 2,  
2.5, 3 and 3.5 (only selected CAS latencies are required by the DDR SDRAM standards, the others are  
optional).  
7. When the burst terminates, the DQ and DQS pins are tristated.  
The BST command is not byte controllable and applies to all bits in the DQ data word and the(all) DQS pin(s).  
3.3.10 DM masking  
The DDR SDRAM has a data mask function that can be used in conjunction with data write cycle, not read  
cycle. When the data mask is activated (DM high) during write operation, DDR SDRAM does not accept the  
corresponding data.(DM to data-mask latency is zero).  
DM must be issued at the rising or falling edge of data strobe.  
< Burst Length=8 >  
0
1
2
3
4
5
6
7
8
CK  
CK  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
tDQSS  
DQS  
DQ ¢s  
DM  
Din 1 Din 2 Din 3 Din 4 Din 5 Din 6 Din7  
Din 0  
masked by DM=H  
Figure 18. DM masking timing  
- 28 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
3.3.11 Read With Auto Precharge  
If a read with auto-precharge command is initiated, the DDR SDRAM automatically enters the precharge  
operation BL/2 clock later from a read with auto-precharge command when tRAS(min) is satisfied. If not, the  
start point of precharge operation will be delayed until tRAS(min) is satisfied. Once the precharge operation  
has started the bank cannot be reactivated and the new command can not be asserted until the precharge  
time(tRP) has been satisfied.  
< Burst Length=4, CAS Latency= 2, 2.5>  
0
1
2
3
4
5
6
7
8
CK  
CK  
BANK A  
ACTIVE  
READ A  
Auto Precharge  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
t
RAS(min.)  
DQS  
CAS Latency=2  
Dout 0 Dout 1 Dout 2 Dout 3  
tRP  
DQ ¢s  
* Bank can be reactivated at the  
completion of precharge  
DQS  
CAS Latency=2.5  
DQ ¢s  
Dout 0 Dout 1 Dout 2 Dout 3  
Begin Auto-Precharge  
Figure 19. Read with auto precharge timing  
When the Read with Auto precharge command is issued, new command can be asserted at 3,4 and 5  
respectively as follows,  
Asserted  
command  
For same Bank  
For Different Bank  
4
3
4
5
3
5
READ +  
No AP*1  
READ+  
No AP  
READ  
Illegal  
Legal  
Legal  
Legal  
Legal  
READ +  
AP  
READ +  
AP  
READ+AP  
Illegal  
Legal  
Legal  
Active  
Illegal  
Legal  
Illegal  
Legal  
Illegal  
Illegal  
Legal  
Legal  
Legal  
Legal  
Legal  
Legal  
Precharge  
: AP = Auto Precharge  
*1  
Table 6. Operating description when new command asserted  
while read with auto precharge is issued  
- 29 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
3.3.12 Write with Auto Precharge  
If A10 is high when write command is issued , the write with auto-precharge function is performed. Any new  
command to the same bank should not be issued until the internal precharge is completed. The internal pre-  
charge begins after keeping tWR(min).  
< Burst Length=4 >  
0
1
2
3
4
5
6
7
8
CK  
CK  
BANK A  
ACTIVE  
WRITE A  
Auto Precharge  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
DQS  
* Bank can be reactivated at  
completion of tRP  
DQ ¢s  
Din 0 Din 1 Din 2 Din 3  
tWR  
tRP  
Internal precharge start  
Figure 20. Write with auto precharge timing  
Burst length = 4  
For same Bank  
For Different Bank  
Asserted  
command  
3
4
5
6
7
8
3
4
5
6
7
WRITE+  
WRITE+  
No AP  
WRITE+  
No AP  
WRITE  
Illegal  
Illegal  
Illegal Legal  
Illegal Legal  
Legal Legal Legal Legal  
Legal Legal Legal Legal  
*1  
No AP  
WRITE+  
AP  
WRITE+  
AP  
WRITE+  
AP  
WRITE+  
AP  
Illegal  
Illegal  
READ+NO  
READ+NO READ+  
READ+  
NO AP  
READ  
Illegal  
Illegal  
Illegal Illegal Illegal Legal Legal Legal  
Illegal Illegal Illegal Legal Legal Legal  
*2  
AP+DM  
NO AP  
AP+DM  
READ +  
AP+DM  
READ +  
AP+DM  
READ+ READ +  
READ+AP  
AP  
AP  
Active  
Illegal  
Illegal  
Illegal  
Illegal  
Illegal  
Illegal  
Illegal  
Illegal  
Illegal  
Illegal  
Illegal Legal  
Illegal Legal  
Legal Legal Legal Legal  
Legal Legal Legal Legal  
Precharge  
*1  
: AP = Auto Precharge  
*2  
: DM : Refer to " 3.3.7 Write Interrupted by a Read & DM " in page 25.  
Table 7. Operating description when new command asserted  
while write with auto precharge is issued  
- 30 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
3.3.13 Auto Refresh & Self Refresh  
Auto Refresh  
An auto refresh command is issued by having CS, RAS and CAS held low with CKE and WE high at the ris-  
ing edge of the clock(CK). All banks must be precharged and idle for tRP(min) before the auto refresh com-  
mand is applied. No control of the external address pins is required once this cycle has started because of the  
internal address counter. When the refresh cycle has completed, all banks will be in the idle state. A delay  
between the auto refresh command and the next activate command or subsequent auto refresh command  
must be greater than or equal to the tRFC(min).  
CK  
CK  
Auto  
Refresh  
PRE  
CMD  
Command  
= High  
CKE  
tRP  
tRFC  
Figure 21. Auto refresh timing  
Self Refresh  
A self refresh command is defined by having CS, RAS, CAS and CKE held low with WE high at the rising  
edge of the clock(CK). Once the self refresh command is initiated, CKE must be held low to keep the device in  
self refresh mode. During the self refresh operation, all inputs except CKE are ignored. The clock is internally  
disabled during self refresh operation to reduce power consumption. The self refresh is exited by supplying  
stable clock input before returning CKE high, asserting deselect or NOP command and then asserting CKE  
high for longer than tXSR for locking of DLL.  
CK  
CK  
Self  
Refresh  
Active  
Read  
Command  
CKE  
*1  
tXSA  
2
tXSR*  
Figure 22. Self refresh timing  
1. Exit self refresh to bank active command, a write command can be applied as far as tRCD is satisfied after  
any bank active command.  
2. Exit self refresh to read command  
- 31 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
3.3.14 Power down  
The power down mode is entered when CKE is low and exited when CKE is high. Once the power down  
mode is initiated, all of the receiver circuits except clock, CKE and DLL circuit tree are gated off to reduce  
power consumption. All banks should be in idle state prior to entering the precharge power down mode and  
CKE should be set high at least 1tck+tIS prior to row active command . During power down mode, refresh  
operations cannot be performed, therefore the device cannot be remained in power down mode longer than  
the refresh period(Data retension time) of the device.  
CK  
CK  
Active  
power  
down  
Entry  
Active  
power  
down  
Exit  
Precharge  
power  
down  
Precharge  
Active  
Read  
Command  
CKE  
Entry  
Figure 23. Power down entry and exit timing  
- 32 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
4. Command Truth Table  
A11,  
A9 ~ A0  
COMMAND  
CKEn-1  
CKEn  
CS  
RAS  
CAS  
WE BA0,1  
A10/AP  
Note  
Register  
Register  
Extended MRS  
H
H
X
X
H
L
L
L
L
L
L
L
L
L
OP CODE  
OP CODE  
1, 2  
1, 2  
3
Mode Register Set  
Auto Refresh  
H
L
L
L
H
X
X
Entry  
3
Refresh  
Self  
Refresh  
L
H
L
H
X
L
H
X
H
H
X
3
Exit  
L
H
H
H
X
X
3
Bank Active & Row Addr.  
H
V
V
Row Address  
Column  
Address  
(A0~A9)  
Read &  
Column Address  
Auto Precharge Disable  
Auto Precharge Enable  
Auto Precharge Disable  
Auto Precharge Enable  
L
4
4
L
H
L
H
H
Column  
Address  
(A0~A9)  
Write &  
Column Address  
L
4
H
H
H
X
X
X
L
L
L
H
H
L
L
H
H
L
L
L
V
H
4, 6  
7
Burst Stop  
Precharge  
X
Bank Selection  
All Banks  
V
X
L
X
H
5
H
L
X
V
X
X
H
X
V
X
X
H
X
V
X
X
H
X
V
X
V
X
X
H
X
V
Entry  
Exit  
H
L
L
H
L
Active Power Down  
X
X
H
L
Entry  
H
Precharge Power Down Mode  
X
H
L
Exit  
L
H
H
H
X
DM  
X
X
8
9
9
H
L
X
H
X
H
No operation (NOP) : Not defined  
(V=Valid, X=Don¢t Care, H=Logic High, L=Logic Low)  
Table 8. Command truth table  
1. OP Code : Operand Code. A0 ~ A11 & BA0 ~ BA1 : Program keys. (@EMRS/MRS)  
2.EMRS/ MRS can be issued only at all banks precharge state.  
A new command can be issued 2 clock cycles after EMRS or MRS.  
3. Auto refresh functions are same as the CBR refresh of DRAM.  
The automatical precharge without row precharge command is meant by "Auto".  
Auto/self refresh can be issued only at all banks precharge state.  
4. BA0 ~ BA1 : Bank select addresses.  
If both BA0 and BA1 are "Low" at read, write, row active and precharge, bank A is selected.  
If both BA0 is "High" and BA1 is "Low" at read, write, row active and precharge, bank B is selected.  
If both BA0 is "Low" and BA1 is "High" at read, write, row active and precharge, bank C is selected.  
If both BA0 and BA1 are "High" at read, write, row active and precharge, bank D is selected.  
5. If A10/AP is "High" at row precharge, BA0 and BA1 are ignored and all banks are selected.  
6. During burst write with auto precharge, new read/write command can not be issued.  
Another bank read/write command can be issued after the end of burst.  
New row active of the associated bank can be issued at tRP after the end of burst.  
7. Burst stop command is valid at every burst length.  
8. DM sampled at the rising and falling edges of the DQS and Data-in are masked at the both edges (Write DM latency is 0).  
9. This combination is not defined for any function, which means "No Operation(NOP)" in DDR SDRAM.  
- 33 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
5. Functional Truth Table  
Current State  
CS RAS CAS WE  
Address  
Command  
Burst Stop  
Action  
PRECHARGE  
STANDBY  
L
L
L
L
L
L
L
H
H
L
H
L
L
X
H
L
X
ILLEGAL*2  
ILLEGAL*2  
BA, CA, A10  
BA, RA  
BA, A10  
X
READ/WRITE  
Active  
H
H
L
Bank Active, Latch RA  
ILLEGAL*4  
L
PRE/PREA  
Refresh  
L
H
L
AUTO-Refresh*5  
Mode Register Set*5  
NOP  
L
L
Op-Code, Mode-Add MRS  
ACTIVE  
H
H
L
X
Burst Stop  
STANDBY  
Begin Read, Latch CA,  
Determine Auto-Precharge  
L
L
H
H
L
L
H
L
BA, CA, A10  
READ/READA  
Begin Write, Latch CA,  
Determine Auto-Precharge  
BA, CA, A10  
WRITE/WRITEA  
L
L
L
L
L
L
L
L
L
H
H
H
L
H
L
BA, RA  
BA, A10  
X
Active  
Bank Active/ILLEGAL*2  
Precharge/Precharge All  
ILLEGAL  
PRE/PREA  
Refresh  
H
L
L
Op-Code, Mode-Add MRS  
ILLEGAL  
READ  
H
L
X
Burst Stop  
Terminate Burst  
Terminate Burst, Latch CA,  
Begin New Read, Determine  
Auto-Precharge*3  
L
H
L
H
BA, CA, A10  
READ/READA  
L
L
L
L
L
H
L
L
L
L
L
H
H
L
L
H
L
BA, CA, A10  
BA, RA  
BA, A10  
X
WRITE/WRITEA ILLEGAL  
Active  
Bank Active/ILLEGAL*2  
PRE/PREA  
Refresh  
Terminate Burst, Precharge  
ILLEGAL  
H
L
L
Op-Code, Mode-Add MRS  
ILLEGAL  
Table 9-1. Functional truth table  
- 34 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
Current State  
CS RAS CAS WE  
Address  
Command  
Burst Stop  
Action  
WRITE  
L
H
H
L
X
ILLEGAL  
Terminate Burst With DM=High,  
Latch CA, Begin Read, Deter-  
mine Auto-Precharge*3  
L
H
L
H
BA, CA, A10  
BA, CA, A10  
READ/READA  
Terminate Burst, Latch CA,  
Begin new Write, Determine  
Auto-Precharge*3  
L
H
L
L
WRITE/WRITEA  
L
L
L
L
H
H
H
L
BA, RA  
BA, A10  
X
Active  
Bank Active/ILLEGAL*2  
Terminate Burst With DM=High,  
Precharge  
PRE/PREA  
Refresh  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
ILLEGAL  
ILLEGAL  
ILLEGAL  
*6  
Op-Code, Mode-Add MRS  
READ with  
AUTO  
H
H
H
L
H
L
L
X
Burst Stop  
READ/READA  
H
L
BA, CA, A10  
BA, CA, A10  
BA, RA  
BA, A10  
X
*6  
PRECHARGE  
(READA)  
L
WRITE/WRITEA ILLEGAL  
H
H
L
H
L
Active  
*6  
L
PRE/PREA  
Refresh  
*6  
L
H
L
ILLEGAL  
ILLEGAL  
ILLEGAL  
*7  
L
L
Op-Code, Mode-Add MRS  
WRITE with  
AUTO  
H
H
H
L
H
L
L
X
Burst Stop  
READ/READA  
WRITE/WRITEA *7  
H
L
BA, CA, A10  
BA, CA, A10  
BA, RA  
BA, A10  
X
*7  
RECHARGE  
(WRITEA)  
L
H
H
L
H
L
Active  
*7  
L
PRE/PREA  
Refresh  
*7  
L
H
L
ILLEGAL  
ILLEGAL  
L
L
Op-Code, Mode-Add MRS  
Table 9-2. Functional truth table  
- 35 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
Current State  
CS RAS CAS WE  
Address  
Command  
Burst Stop  
Action  
PRECHARG-  
ING  
(DURING tRP)  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
L
H
L
L
X
H
L
X
ILLEGAL*2  
ILLEGAL*2  
ILLEGAL*2  
BA, CA, A10  
BA, RA  
BA, A10  
X
READ/WRITE  
Active  
H
H
L
L
PRE/PREA  
Refresh  
NOP*4(Idle after tRP)  
ILLEGAL  
L
H
L
L
L
Op-Code, Mode-Add MRS  
ILLEGAL  
ROW  
ACTIVATING  
H
H
L
H
L
L
X
Burst Stop  
ILLEGAL*2  
ILLEGAL*2  
ILLEGAL*2  
ILLEGAL*2  
ILLEGAL  
X
H
L
BA, CA, A10  
BA, RA  
BA, A10  
X
READ/WRITE  
Active  
(FROM ROW  
ACTIVE TO  
tRCD)  
H
H
L
L
PRE/PREA  
Refresh  
L
H
L
L
L
Op-Code, Mode-Add MRS  
ILLEGAL  
WRITE  
RECOVERING  
H
H
H
L
H
L
L
X
Burst Stop  
ILLEGAL*2  
ILLEGAL*2  
WRITE  
H
L
BA, CA, A10  
BA, CA, A10  
BA, RA  
BA, A10  
X
READ  
(DURING tWR  
OR tCDLR)  
L
WRITE  
Active  
H
H
L
H
L
ILLEGAL*2  
ILLEGAL*2  
ILLEGAL  
L
PRE/PREA  
Refresh  
L
H
L
L
L
Op-Code, Mode-Add MRS  
ILLEGAL  
Table 9-3. Functional truth table  
- 36 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
Current State  
CS RAS CAS WE  
Address  
Command  
Burst Stop  
Action  
RE-  
FRESHING  
L
L
L
L
L
L
L
L
L
L
L
L
H
H
L
L
L
L
H
H
L
L
L
L
H
L
L
X
H
L
X
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
BA, CA, A10  
BA, RA  
BA, A10  
X
READ/WRITE  
Active  
H
H
L
PRE/PREA  
Refresh  
H
L
L
Op-Code, Mode-Add MRS  
MODE  
REGISTER  
SETTING  
H
L
L
X
Burst Stop  
X
H
L
BA, CA, A10  
BA, RA  
BA, A10  
X
READ/WRITE  
Active  
H
H
L
PRE/PREA  
Refresh  
H
L
L
Op-Code, Mode-Add MRS  
Table 9-4. Functional truth table  
- 37 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
CKE CKE  
Current State  
CS  
RAS CAS  
WE  
Add  
Action  
n-1  
n
H
H
H
H
H
L
SELF-  
L
H
L
L
L
L
X
X
H
H
H
L
X
H
H
L
X
H
L
X
Exit Self-Refresh  
Exit Self-Refresh  
ILLEGAL  
*8  
REFRESHING  
L
X
X
X
X
X
X
L
L
X
X
X
ILLEGAL  
L
X
X
ILLEGAL  
L
X
NOPeration(Maintain Self-Refresh)  
Exit Power Down(Idle after tPDEX)  
POWER  
DOWN  
L
H
X
X
X
X
L
H
H
H
H
H
H
H
L
L
H
L
L
L
L
L
L
X
H
X
X
L
X
X
L
X
X
L
X
X
H
X
H
L
X
X
X
X
X
X
X
X
X
X
NOPeration(Maintain Power Down)  
Refer to Function True Table  
Enter Self-Refresh  
ALL BANKS  
*9  
IDLE  
H
L
X
H
H
H
L
X
H
H
L
Enter Power Down  
Enter Power Down  
L
ILLEGAL  
L
X
X
X
X
ILLEGAL  
L
X
X
X
ILLEGAL  
X
X
X
X
Refer to Current State=Power Down  
Refer to Function Truth Table  
ANY STATE  
other than  
H
listed above  
Table 9-5. Functional truth table  
ABBREVIATIONS :  
H=High Level, L=Low level, X=Don¢t Care  
Note :  
1. All entries assume that CKE was High during the preceding clock cycle and the current clock cycle.  
2. ILLEGAL to bank in specified state ; function may be legal in the bank indicated by BA, depending on the state of that bank.  
3. Must satisfy bus contention, bus turn around and write recovery requirements.  
4. NOP to bank precharging or in idle sate. May precharge bank indicated by BA.  
5. ILLEGAL if any bank is not idle.  
6. Refer to "3.3.11 Read with Auto Precharge" in page 29 for detailed information.  
7. Refer to "3.3.12 Write with Auto Precharge" in page 30 for detailed information.  
8. CKE Low to High transition will re-enable CK, CK and other inputs asynchronously. A minimum setup time must be satisfied  
before issuing any command other than EXIT.  
9. Power-Down and Self-Refresh can be entered only from All Bank Idle state.  
ILLEGAL = Device operation and/or data integrity are not guaranteed.  
- 38 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
6. Absolute Maximum Rating  
Parameter  
Symbol  
, V  
OUT  
Value  
Unit  
V
Voltage on any pin relative to V  
V
-0.5 ~ 3.6  
SS  
IN  
Voltage on V supply relative to V  
-1.0 ~ 3.6  
-0.5 ~ 3.6  
V
V
DD  
SS  
V
, V  
DDQ  
DD  
Voltage on V  
supply relative to V  
SS  
DDQ  
V
DDQ  
STG  
Storage temperature  
Power dissipation  
Short circuit current  
T
-55 ~ +150  
°C  
W
P
1.0  
50  
D
I
mA  
OS  
Note : Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.  
Functional operation should be restricted to recommend operation condition.  
Exposure to higher than recommended voltage for extended periods of time could affect device reliability  
Table 10. Absolute maximum ratings  
7. DC Operating Conditions & Specifications  
7.1 DC Operating Conditions  
Recommended operating conditions(Voltage referenced to VSS=0V, TA=0 to 70°C)  
Parameter  
Supply voltage(for device with a nominal VDD of 2.5V)  
I/O Supply voltage  
Symbol  
VDD  
Min  
2.3  
Max  
2.7  
Unit  
Note  
VDDQ  
VREF  
2.3  
2.7  
V
V
I/O Reference voltage  
0.49*VDDQ  
VREF-0.04  
VREF+0.15  
-0.3  
0.51*VDDQ  
VREF+0.04  
VDDQ+0.3  
VREF-0.15  
VDDQ+0.3  
VDDQ+0.6  
2
1
2
I/O Termination voltage(system)  
Input logic high voltage  
V
V
TT  
VIH(DC)  
VIL(DC)  
VIN(DC)  
VID(DC)  
II  
V
Input logic low voltage  
V
Input Voltage Level, CK and CK inputs  
Input Differential Voltage, CK and CK inputs  
Input leakage current  
-0.3  
V
0.3  
V
3
-2  
uA  
uA  
mA  
mA  
Output leakage current  
IOZ  
-5  
5
Output High Current (V  
= 1.95V)  
= 0.35V)  
IOH  
-16.8  
16.8  
OUT  
OUT  
Output Low Current (V  
IOL  
Notes 1. VREF is expected to be equal to 0.5*VDDQ of the transmitting device, and to track variations in the DC level of the same. Peak-to-  
peak noise on VREF may not exceed 2% of the DC value  
2.V is not applied directly to the device. V is a system supply for signal termination resistors, is expected to be set equal to  
TT  
TT  
VREF, and must track variations in the DC level of VREF  
3. VID is the magnitude of the difference between the input level on CK and the input level on CK.  
Table 11. DC operating condition  
- 39 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
7.2 DDR SDRAM SPEC Items and Test Conditions  
Conditions  
Symbol  
IDD0  
Typical  
Worst  
Operating current - One bank Active-Precharge;  
-
-
tRC=tRCmin;tCK=100Mhz for DDR200, 133Mhz for DDR266A & DDR266B;  
DQ,DM and DQS inputs changing twice per clock cycle;  
address and control inputs changing once per clock cycle  
Operating current - One bank operation ; One bank open, BL=4, Reads  
- Refer to the following page for detailed test condition  
IDD1  
-
-
-
-
Percharge power-down standby current; All banks idle; power - down mode;  
CKE = <VIL(max); tCK=100Mhz for DDR200, 133Mhz for DDR266A & DDR266B;  
Vin = Vref for DQ,DQS and DM  
IDD2P  
Precharge Floating standby current; CS# > =VIH(min);All banks idle;  
CKE > = VIH(min); tCK=100Mhz for DDR200, 133Mhz for DDR266A & DDR266B;  
Address and other control inputs changing once per clock cycle;  
Vin = Vref for DQ,DQS and DM  
IDD2F  
IDD2Q  
-
-
-
-
Precharge Quiet standby current; CS# > = VIH(min); All banks idle;  
CKE > = VIH(min); tCK = 100Mhz for DDR200, 133Mhz for DDR266A & DDR266B;  
Address and other control inputs stable with keeping >= VIH(min) or =<VIL(max);  
Vin = Vref for DQ ,DQS and DM  
Active power - down standby current ; one bank active; power-down mode;  
CKE=< VIL (max); tCK = 100Mhz for DDR200, 133Mhz for DDR266A & DDR266B;  
Vin = Vref for DQ,DQS and DM  
IDD3P  
IDD3N  
-
-
-
-
Active standby current; CS# >= VIH(min); CKE>=VIH(min);  
one bank active; active - precharge; tRC=tRASmax; tCK = 100Mhz for DDR200,  
133Mhz for DDR266A & DDR266B; DQ, DQS and DM inputs changing twice  
per clock cycle; address and other control inputs changing once  
per clock cycle  
Operating current - burst read; Burst length = 2; reads; continguous burst;  
One bank active; address and control inputs changing once per clock cycle;  
CL=2 at tCK = 100Mhz for DDR200, CL=2 at tCK = 133Mhz for DDR266A, CL=2.5 at tCK =  
133Mhz for DDR266B ; 50% of data changing at every burst; lout = 0 m A  
IDD4R  
IDD4W  
-
-
-
-
Operating current - burst write; Burst length = 2; writes; continuous burst;  
One bank active address and control inputs changing once per clock cycle;  
CL=2 at tCK = 100Mhz for DDR200, CL=2 at tCK = 133Mhz for DDR266A,  
CL=2.5 at tCK = 133Mhz for DDR266B ; DQ, DM and DQS inputs changing twice  
per clock cycle, 50% of input data changing at every burst  
Auto refresh current; tRC = tRFC(min) - 8*tCK for DDR200 at 100Mhz,  
10*tCK for DDR266A & DDR266B at 133Mhz; distributed refresh  
IDD5  
IDD6  
IDD7  
-
-
-
-
-
-
Self refresh current; CKE =< 0.2V; External clock should be on;  
tCK = 100Mhz for DDR200, 133Mhz for DDR266A & DDR266B  
Orerating current - Four bank operation ; Four bank interleaving with BL=4  
-Refer to the following page for detailed test condition  
Typical case: VDD = 2.5V, T = 25C’  
Worst case : VDD = 2.7V, T = 10C’  
- 40 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
7.3 DDR SDRAM I spec table  
DD  
32Mx4  
K4H280438B-TCA2  
K4H280438B-TCB0  
(DDR266B)  
K4H280438B-TCA0  
(DDR200)  
(DDR266A)  
Symbol  
Unit  
Notes  
typical  
worst  
95  
typical  
85  
worst  
95  
typical  
75  
worst  
85  
IDD0  
IDD1  
85  
125  
21  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
140  
25  
125  
21  
140  
25  
120  
18  
130  
22  
IDD2P  
IDD2F  
IDD2Q  
IDD3P  
IDD3N  
IDD4R  
IDD4W  
IDD5  
40  
45  
40  
45  
35  
40  
30  
35  
30  
35  
25  
30  
25  
30  
25  
30  
20  
25  
35  
40  
35  
40  
30  
35  
140  
125  
185  
2
155  
140  
200  
2
140  
125  
185  
2
155  
140  
200  
2
115  
100  
175  
2
130  
115  
190  
2
IDD6  
Normal  
Low power  
IDD7  
1
1
1
1
1
1
Optional  
250  
265  
250  
265  
240  
255  
16Mx8  
K4H280838BT-CA2  
(DDR266A)  
K4H280838B-TCB0  
(DDR266B)  
K4H280838B-TCA0  
(DDR200)  
Symbol  
Unit  
Notes  
typical  
90  
worst  
95  
typical  
90  
worst  
95  
typical  
80  
worst  
85  
IDD0  
IDD1  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
140  
21  
150  
25  
140  
21  
150  
25  
125  
19  
135  
23  
IDD2P  
IDD2F  
IDD2Q  
IDD3P  
IDD3N  
IDD4R  
IDD4W  
IDD5  
40  
45  
40  
45  
35  
40  
30  
35  
30  
35  
27  
32  
25  
30  
25  
30  
20  
25  
40  
45  
40  
45  
30  
35  
150  
135  
195  
2
165  
150  
205  
2
150  
135  
195  
2
165  
150  
205  
2
125  
105  
180  
2
140  
120  
190  
2
IDD6  
Normal  
Low power  
IDD7  
1
1
1
1
1
1
Optional  
260  
280  
260  
280  
250  
275  
- 41 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
8Mx16  
K4H281638B-TCA2  
K4H281638B-TCB0  
(DDR266B)  
K4H281638B-TCA0  
(DDR200)  
(DDR266A)  
typical worst  
95  
Symbol  
Unit  
Notes  
typical  
90  
worst  
95  
typical  
80  
worst  
85  
IDD0  
IDD1  
90  
140  
21  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
155  
25  
140  
21  
155  
25  
135  
20  
150  
24  
IDD2P  
IDD2F  
IDD2Q  
IDD3P  
IDD3N  
IDD4R  
IDD4W  
IDD5  
40  
45  
40  
45  
35  
40  
30  
35  
30  
35  
27  
32  
25  
30  
25  
30  
20  
25  
45  
50  
45  
50  
35  
40  
210  
150  
195  
2
245  
165  
210  
2
210  
150  
195  
2
245  
165  
210  
2
155  
110  
180  
2
175  
125  
190  
2
IDD6  
Normal  
Low power  
IDD7  
1
1
1
1
1
1
Optional  
300  
340  
300  
340  
275  
300  
Table 12. 128Mb DDR SDRAM IDD SPEC Table  
< Detailed test conditions for DDR SDRAM IDD1 & IDD7 >  
IDD1 : Operating current: One bank operation  
1. Typical Case : Vdd = 2.5V, T=25’C  
2. Worst Case : Vdd = 2.7V, T= 10’C  
3. Only one bank is accessed with tRC(min), Burst Mode, Address and Control inputs on NOP edge are changing once  
per clock cycle. lout = 0mA  
4. Timing patterns  
- DDR200(100Mhz, CL=2) : tCK = 10ns, CL2, BL=4, tRCD = 2*tCK, tRAS = 5*tCK  
Read : A0 N R0 N N P0 N A0 N - repeat the same timing with random address changing  
*50% of data changing at every burst  
- DDR266B(133Mhz, CL=2.5) : tCK = 7.5ns, CL=2.5, BL=4, tRCD = 3*tCK, tRC = 9*tCK, tRAS = 5*tCK  
Read : A0 N N R0 N P0 N N N A0 N - repeat the same timing with random address changing  
*50% of data changing at every burst  
- DDR266A (133Mhz, CL=2) : tCK = 7.5ns, CL=2, BL=4, tRCD = 3*tCK, tRC = 9*tCK, tRAS = 5*tCK  
Read : A0 N N R0 N P0 N N N A0 N - repeat the same timing with random address changing  
*50% of data changing at every burst  
Legend : A=Activate, R=Read, W=Write, P=Precharge, N=NOP  
- 42 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
IDD7 : Operating current: Four bank operation  
1. Typical Case : Vdd = 2.5V, T=25’C  
2. Worst Case : Vdd = 2.7V, T= 10’C  
3. Four banks are being interleaved with tRC(min), Burst Mode, Address and Control inputs on NOP edge are not  
changing. lout = 0mA  
4. Timing patterns  
- DDR200(100Mhz, CL=2) : tCK = 10ns, CL2, BL=4, tRRD = 2*tCK, tRCD= 3*tCK, Read with autoprecharge  
Read : A0 N A1 R0 A2 R1 A3 R2 A0 R3 A1 R0 - repeat the same timing with random address changing  
*50% of data changing at every burst  
- DDR266B(133Mhz, CL=2.5) : tCK = 7.5ns, CL=2.5, BL=4, tRRD = 2*tCK, tRCD = 3*tCK  
Read with autoprecharge  
Read : A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N A1 R0 - repeat the same timing with random address changing  
*50% of data changing at every burst  
- DDR266A (133Mhz, CL=2) : tCK = 7.5ns, CL2=2, BL=4, tRRD = 2*tCK, tRCD = 3*tCK  
Read : A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N A1 R0 - repeat the same timing with random address changing  
*50% of data changing at every burst  
Legend : A=Activate, R=Read, W=Write, P=Precharge, N=NOP  
8. AC Operating Conditions & Timming Specification  
8.1 AC Operating Conditions  
Max  
Parameter/Condition  
Symbol  
Min  
Unit  
Note  
Input High (Logic 1) Voltage, DQ, DQS and DM signals  
Input Low (Logic 0) Voltage, DQ, DQS and DM signals.  
Input Differential Voltage, CK and CK inputs  
VIH(AC) VREF + 0.31  
VIL(AC)  
V
V
V
V
1
2
3
4
VREF - 0.31  
VDDQ+0.6  
VID(AC) 0.62  
Input Crossing Point Voltage, CK and CK inputs  
VIX(AC) 0.5*VDDQ-0.2  
0.5*VDDQ+0.2  
Note 1. Vih(max) = 4.2V. The overshoot voltage duration is £ 3ns at VDD.  
2. Vil(min) = -1.5V. The undershoot voltage duration is £ 3ns at VSS.  
3. VID is the magnitude of the difference between the input level on CK and the input on CK.  
4. The value of V is expected to equal 0.5*V of the transmitting device and must track variations in the DC level of the same.  
IX  
DDQ  
Table 13. AC operating conditions  
- 43 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
8.2 AC Timming Parameters & Specifications  
K4H281638B  
K4H281638B  
K4H281638B  
-TCA2 (DDR266A) -TCB0 (DDR266B) -TCA0 (DDR200)  
Parameter  
Symbol  
Unit Note  
Min  
65  
75  
45  
20  
20  
15  
2
Max  
Min  
65  
75  
45  
20  
20  
15  
2
Max  
Min  
70  
80  
48  
20  
20  
15  
2
Max  
Row cycle time  
tRC  
ns  
ns  
Refresh row cycle time  
Row active time  
tRFC  
tRAS  
tRCD  
tRP  
120K  
120K  
120K  
ns  
RAS to CAS delay  
ns  
Row precharge time  
ns  
Row active to Row active delay  
Write recovery time  
tRRD  
tWR  
ns  
tCK  
tCK  
tCK  
ns  
Last data in to Read command  
Col. address to Col. address delay  
tCDLR  
tCCD  
tCK  
1
1
1
1
1
1
Clock cycle time  
CL=2.0  
CL=2.5  
7.5  
15  
15  
10  
7.5  
15  
15  
10  
15  
15  
ns  
Clock high level width  
Clock low level width  
tCH  
0.45  
0.55  
0.45  
0.55  
0.45  
0.55  
tCK  
tCL  
0.45  
-0.75  
-0.75  
-
0.55  
+0.75  
+0.75  
+0.5  
1.1  
0.45  
-0.75  
-0.75  
-
0.55  
+0.75  
+0.75  
+0.5  
1.1  
0.45  
-0.8  
-0.8  
-
0.55  
+0.8  
+0.8  
+0.6  
1.1  
tCK  
ns  
DQS-out access time from CK/CK  
Output data access time from CK/CK  
Data strobe edge to ouput data edge  
Read Preamble  
tDQSCK  
tAC  
ns  
tDQSQ  
tRPRE  
tRPST  
tHZQ  
ns  
0.9  
0.9  
0.9  
0.4  
-0.8  
0.75  
0
tCK  
tCK  
Read Postamble  
0.4  
0.6  
0.4  
0.6  
0.6  
Data out high impedence time from CK/CK  
CK to valid DQS-in  
-0.75  
0.75  
0
+0.75  
1.25  
-0.75  
0.75  
0
+0.75  
1.25  
+0.8  
1.25  
ns  
tCK  
ns  
2
3
tDQSS  
tWPRES  
tWPREH  
tDQSH  
DQS-in setup time  
DQS-in hold time  
0.25  
0.4  
0.25  
0.4  
0.25  
0.4  
tCK  
DQS-in high level width  
0.6  
0.6  
0.6  
0.6  
1.1  
tCK  
DQS-in low level width  
tDQSL  
tDSC  
tIS  
0.4  
0.9  
0.9  
0.9  
15  
0.6  
1.1  
0.4  
0.9  
0.9  
0.9  
15  
0.6  
1.1  
0.4  
0.9  
1.1  
1.1  
16  
tCK  
tCK  
ns  
DQS-in cycle time  
Address and Control Input setup time  
Address and Control Input hold time  
Mode register set cycle time  
DQ & DM setup time to DQS  
DQ & DM hold time to DQS  
tIH  
ns  
tMRD  
tDS  
ns  
0.5  
0.5  
0.6  
ns  
tDH  
ns  
0.5  
0.5  
1.75  
10  
0.6  
DQ & DM input pulse width  
Power down exit time  
tDIPW  
tPDEX  
tXSW  
1.75  
10  
2
ns  
ns  
ns  
10  
Exit self refresh to write command  
95  
116  
- 44 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
-A2(PC266@CL=2)  
-B0(PC266@CL=2.5) -A0(PC200@CL=2)  
Parameter  
Symbol  
Unit Note  
Min  
75  
Max  
Min  
75  
Max  
Min  
80  
Max  
Exit self refresh to bank active command tXSA  
ns  
Cycle  
us  
7
Exit self refresh to read command  
Refresh interval time 64Mb, 128Mb  
256Mb  
tXSR  
200  
15.6  
7.8  
200  
15.6  
7.8  
200  
15.6  
7.8  
1
1
tREF  
us  
tHPmin  
-0.75ns  
tHPmin  
-0.75ns  
tHPmin  
-1.0ns  
Output DQS valid window  
Clock half period  
tQH  
tHP  
-
-
-
-
-
-
ns  
ns  
tCLmin  
or tCHmin  
tCLmin  
or tCHmin  
tCLmin  
or tCHmin  
DQS write postamble time  
tWPST  
tQCS  
0.25  
0.9  
0.25  
0.9  
0.25  
0.9  
tCK  
tCK  
tCK  
ns  
4
QFC setup to first DQS edge on reads  
QFC hold after last DQS edge on reads  
Write command to QFC delay on write  
Write burst end to QFC delay on write  
1.1  
0.6  
1.1  
0.6  
1.1  
0.6  
tQCH  
0.4  
0.4  
0.4  
tQCSW  
tQCHW  
4.0  
4.0  
4.0  
1.25ns  
-
0.5tCK  
1.25ns  
-
0.5tCK  
1.25ns  
-
0.5tCK  
5
6
Write burst end to QFC delay on write  
interrupted by Precharge  
tQCHWI  
1.5tCK  
1.5tCK  
1.5tCK  
1. Maximum burst refresh of 8  
2. tHZQ transitions occurs in the same access time windows as valid data transitions. These parameters are not referenced  
to a specific voltage level, but specify when the device output is no longer driving.  
3. The specific requirement is that DQS be valid(High or Low) on or before this CK edge. The case shown(DQS going from  
High_Z to logic Low) applies when no writes were previously in progress on the bus. If a previous write was in progress,  
DQS could be High at this time, depending on tDQSS.  
4. The maximum limit for this parameter is not a device limit. The device will operate with a great value for this parameter,  
but system performance (bus turnaround) will degrade accordingly.  
5. The value of tQCSW min. is 1.25ns from the last low going data strobe edge to QFC high. And the value of  
tQCSW max. is 0.5tcK from the first high going clock edge after the last low going data strobe edge to QFC  
high.  
6. the value of tQCSWI max. is 1.5tcK from the first high going clock edge after the last low going data strobe  
edge to QFC high.  
7. A write command can be applied with tRCD satisfied after this command.  
Table 14. AC timing parameters and specifications  
- 45 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
9. AC Operating Test Conditions  
(VDD=2.5V, VDDQ=2.5V, TA= 0 to 70°C)  
Parameter  
Input reference voltage for Clock  
Input signal maximum peak swing  
Input signal minimum slew rate  
Input Levels(VIH/VIL)  
Value  
Unit  
V
Note  
0.5 * VDDQ  
1.5  
V
1.0  
VREF+0.31/VREF-0.31  
VREF  
V/ns  
V
Input timing measurement reference level  
Output timing measurement reference level  
Output load condition  
V
Vtt  
V
See Load Circuit  
Table 15. AC operating test conditions  
Vtt=0.5*VDDQ  
RT=50W  
Output  
Z0=50W  
CLOAD=30pF  
VREF  
=0.5*VDDQ  
Figure 24. Output Load Circuit (SSTL_2)  
10. Input/Output Capacitance  
(VDD=2.5, VDDQ=2.5V, TA= 25°C, f=1MHz)  
Parameter  
Symbol  
Min  
Max  
Delta Cap(max)  
Unit  
Input capacitance  
(A0 ~ A11, BA0 ~ BA1, CKE, CS, RAS,CAS, WE)  
CIN1  
2
3.0  
0.5  
pF  
Input capacitance( CK, CK )  
Data & DQS input/output capacitance  
Input capacitance(DM)  
CIN2  
COUT  
CIN3  
2
3.0  
5.0  
5.0  
0.25  
pF  
pF  
pF  
4.0  
4.0  
0.5  
Table 16. Input/output capacitance  
- 46 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
11. IBIS: I/V Characteristics for Input and Output Buffers  
11.1 Normal strength driver  
1. The nominal pulldown V-I curve for DDR SDRAM devices will be within the inner bounding lines of the V-I curve of Figure a.  
2. The full variation in driver pulldown current from minimum to maximum process, temperature and voltage will lie within the outer  
bounding lines the of the V-I curve of Figure a.  
Maximum  
1 6 0  
1 4 0  
1 2 0  
Typical High  
1 0 0  
8 0  
Typical Low  
6 0  
Minimum  
4 0  
2 0  
0
0. 0  
0. 5  
1. 0  
1. 5  
2. 0  
2. 5  
Vout(V)  
3. The nominal pullup V-I curve for DDR SDRAM devices will be within the inner bounding lines of the V-I curve of below Figure b.  
4. The Full variation in driver pullup current from minimum to maximum process, temperature and voltage will lie within the outer  
bounding lines of the V-I curve of Figrue b.  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0
- 20  
Minumum  
- 40  
Typical Low  
- 60  
- 80  
- 100  
- 120  
- 140  
- 160  
- 180  
- 200  
- 220  
Typical High  
Maximum  
Vout(V)  
5. The full variation in the ratio of the maximum to minimum pullup and pulldown current will not exceed 1.7, for device drain to source  
voltage from 0 to VDDQ/2  
6. The Full variation in the ratio of the nominal pullup to pulldown current should be unity ±10%, for device drain to source voltages  
from 0 to VDDQ/2  
Figure 25. I/V characteristics for input/output buffers:Pull up(above) and pull down(below)  
- 47 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
Pulldown Current (mA)  
pullup Current (mA)  
Voltage  
(V)  
Typical  
Low  
Typical  
High  
Typical  
Low  
Typical  
Minimum  
High  
Minimum  
Maximum  
Maximum  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
6.0  
6.8  
13.5  
20.1  
26.6  
33.0  
39.1  
44.2  
49.8  
55.2  
60.3  
65.2  
69.9  
74.2  
78.4  
82.3  
85.9  
89.1  
92.2  
95.3  
97.2  
99.1  
100.9  
101.9  
102.8  
103.8  
104.6  
105.4  
4.6  
9.6  
-6.1  
-7.6  
-4.6  
-10.0  
-20.0  
12.2  
18.1  
24.1  
29.8  
34.6  
39.4  
43.7  
47.5  
51.3  
54.1  
56.2  
57.9  
59.3  
60.1  
60.5  
61.0  
61.5  
62.0  
62.5  
62.9  
63.3  
63.8  
64.1  
64.6  
64.8  
65.0  
9.2  
18.2  
-12.2  
-18.1  
-24.0  
-29.8  
-34.3  
-38.1  
-41.1  
-41.8  
-46.0  
-47.8  
-49.2  
-50.0  
-50.5  
-50.7  
-51.0  
-51.1  
-51.3  
-51.5  
-51.6  
-51.8  
-52.0  
-52.2  
-52.3  
-52.5  
-52.7  
-52.8  
-14.5  
-9.2  
13.8  
18.4  
23.0  
27.7  
32.2  
36.8  
39.6  
42.6  
44.8  
46.2  
47.1  
47.4  
47.7  
48.0  
48.4  
48.9  
49.1  
49.4  
49.6  
49.8  
49.9  
50.0  
50.2  
50.4  
50.5  
26.0  
-21.2  
-13.8  
-18.4  
-23.0  
-27.7  
-32.2  
-36.0  
-38.2  
-38.7  
-39.0  
-39.2  
-39.4  
-39.6  
-39.9  
-40.1  
-40.2  
-40.3  
-40.4  
-40.5  
-40.6  
-40.7  
-40.8  
-40.9  
-41.0  
-41.1  
-41.2  
-29.8  
33.9  
-27.7  
-38.8  
41.8  
-34.1  
-46.8  
49.4  
-40.5  
-54.4  
56.8  
-46.9  
-61.8  
63.2  
-53.1  
-69.5  
69.9  
-59.4  
-77.3  
76.3  
-65.5  
-85.2  
82.5  
-71.6  
-93.0  
88.3  
-77.6  
-100.6  
-108.1  
-115.5  
-123.0  
-130.4  
-136.7  
-144.2  
-150.5  
-156.9  
-163.2  
-169.6  
-176.0  
-181.3  
-187.6  
-192.9  
-198.2  
93.8  
-83.6  
99.1  
-89.7  
103.8  
108.4  
112.1  
115.9  
119.6  
123.3  
126.5  
129.5  
132.4  
135.0  
137.3  
139.2  
140.8  
-95.5  
-101.3  
-107.1  
-112.4  
-118.7  
-124.0  
-129.3  
-134.6  
-139.9  
-145.2  
-150.5  
-155.3  
-160.1  
Table 17. Pull down and pull up current values  
Temperature (Tambient)  
Typical  
Minimum  
Maximum  
25°C  
70°C  
0°C  
Vdd/Vddq  
Typical  
2.5V  
Minimum  
Maximum  
2.3V  
2.7V  
The above characteristics are specified under best, worst and normal process variation/conditions  
- 48 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
11.2 Half strength driver  
1. The nominal pulldown V-I curve for DDR SDRAM devices will be within the inner bounding lines of the V-I curve of Figure a.  
2. The full variation in driver pulldown current from minimum to maximum process, temperature and voltage will lie within the outer  
bounding lines the of the V-I curve of Figure a.  
9 0  
Maximum  
8 0  
7 0  
6 0  
Typical High  
5 0  
4 0  
Typical Low  
Minimum  
3 0  
2 0  
1 0  
0
0. 0  
1. 0  
2. 0  
Vout(V)  
3. Thenominal pullup V-I curve for DDR SDRAM devices will be within the inner bounding lines of the V-I curve of below Figure b.  
4. The Full variation in driver pullup current from minimum to maximum process, temperature and voltage will lie within the outer  
bounding lines of the V-I curve of Figrue b.  
0. 0  
0. 5  
1. 0  
1. 5  
2. 0  
2. 5  
0
- 1 0  
- 2 0  
Minumum  
- 3 0  
- 4 0  
- 5 0  
- 6 0  
Typical Low  
Typical High  
Maximum  
- 7 0  
- 8 0  
- 9 0  
Vout(V)  
5. The full variation in the ratio of the maximum to minimum pullup and pulldown current will not exceed 1.7, for device drain to source  
voltage from 0 to VDDQ/2  
6. The Full variation in the ratio of the nominal pullup to pulldown current should be unity ±10%, for device drain to source voltages  
from 0 to VDDQ/2  
Figure 26. I/V characteristics for input/output buffers:Pull up(above) and pull down(below)  
- 49 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
Pulldown Current (mA)  
pullup Current (mA)  
Voltage  
(V)  
Typical  
Low  
Typical  
High  
Typical  
Low  
Typical  
Minimum  
High  
Minimum  
Maximum  
Maximum  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
3.4  
3.8  
2.6  
5.0  
-3.5  
-4.3  
-2.6  
-5.0  
6.9  
7.6  
5.2  
9.9  
-6.9  
-8.2  
-5.2  
-9.9  
10.3  
13.6  
16.9  
19.6  
22.3  
24.7  
26.9  
29.0  
30.6  
31.8  
32.8  
33.5  
34.0  
34.3  
34.5  
34.8  
35.1  
35.4  
35.6  
35.8  
36.1  
36.3  
36.5  
36.7  
36.8  
11.4  
15.1  
18.7  
22.1  
25.0  
28.2  
31.3  
34.1  
36.9  
39.5  
42.0  
44.4  
46.6  
48.6  
50.5  
52.2  
53.9  
55.0  
56.1  
57.1  
57.7  
58.2  
58.7  
59.2  
59.6  
7.8  
14.6  
19.2  
23.6  
28.0  
32.2  
35.8  
39.5  
43.2  
46.7  
50.0  
53.1  
56.1  
58.7  
61.4  
63.5  
65.6  
67.7  
69.8  
71.6  
73.3  
74.9  
76.4  
77.7  
78.8  
79.7  
-10.3  
-13.6  
-16.9  
-19.4  
-21.5  
-23.3  
-24.8  
-26.0  
-27.1  
-27.8  
-28.3  
-28.6  
-28.7  
-28.9  
-28.9  
-29.0  
-29.2  
-29.2  
-29.3  
-29.5  
-29.5  
-29.6  
-29.7  
-29.8  
-29.9  
-12.0  
-15.7  
-19.3  
-22.9  
-26.5  
-30.1  
-33.6  
-37.1  
-40.3  
-43.1  
-45.8  
-48.4  
-50.7  
-52.9  
-55.0  
-56.8  
-58.7  
-60.0  
-61.2  
-62.4  
-63.1  
-63.8  
-64.4  
-65.1  
-65.8  
-7.8  
-14.6  
-19.2  
-23.6  
-28.0  
-32.2  
-35.8  
-39.5  
-43.2  
-46.7  
-50.0  
-53.1  
-56.1  
-58.7  
-61.4  
-63.5  
-65.6  
-67.7  
-69.8  
-71.6  
-73.3  
-74.9  
-76.4  
-77.7  
-78.8  
-79.7  
10.4  
13.0  
15.7  
18.2  
20.8  
22.4  
24.1  
25.4  
26.2  
26.6  
26.8  
27.0  
27.2  
27.4  
27.7  
27.8  
28.0  
28.1  
28.2  
28.3  
28.3  
28.4  
28.5  
28.6  
-10.4  
-13.0  
-15.7  
-18.2  
-20.4  
-21.6  
-21.9  
-22.1  
-22.2  
-22.3  
-22.4  
-22.6  
-22.7  
-22.7  
-22.8  
-22.9  
-22.9  
-23.0  
-23.0  
-23.1  
-23.2  
-23.2  
-23.3  
-23.3  
Table 18. Pull down and pull up current values  
Temperature (Tambient)  
Typical  
Minimum  
Maximum  
25°C  
70°C  
0°C  
Vdd/Vddq  
Typical  
2.5V  
Minimum  
Maximum  
2.3V  
2.7V  
The above characteristics are specified under best, worst and normal process variation/conditions  
- 50 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
12. QFC function  
QFC definition  
when drive low on reads coincident with the start of DQS, this DRAM output signal says that one cycle later  
there will be the first valid DQS output and returned to HI-Z after this finishing a burst operation. It is also  
driven low shortly after a write command is received and returned to HI-Z shortly after the last data strobe  
transition is received. Whenever the device is in standby, the signal is HI-Z. DQS is intended to enable an  
external data switch. QFC can be enabled or disabled through EMRS control.  
QFC timing on Read operation  
QFC on reads is enabled coincident with the start of DQS preamble, and disabled coincident with the end of  
DQS postamble  
CL = 2, BL = 2  
0
1
2
3
4
5
6
7
8
CK  
CK  
Read  
Command  
DQS  
DQS’  
QFC  
Dout 0 Dout 1  
Hi-Z  
tQCH  
t
QCS  
Figure 26. QFC timing on read operation  
- 51 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
QFC timing on Write operation  
QFC on writes is enabled as soon as possible after the clock edge of write command and disabled as soon  
as possible after the last DQS-in low going edge.  
BL = 2  
0
1
2
3
4
5
6
7
8
CK  
CK  
Command  
Write  
DQS@tDQSSmax  
DQS’ @tDQSSmax  
QFC  
Dout 0 Dout 1  
*2tQCHW max.  
*1tQCHW min.  
Hi-Z  
tQCSW  
Figure 27. : QFC timing on write operation with tDQSSmax  
BL = 2  
0
1
2
3
4
5
6
7
8
CK  
CK  
Command  
Write  
DQS@tDQSSmin  
DQS’ @tDQSSmin  
QFC  
Dout 0 Dout 1  
*2tQCHW max.  
*1tQCHW min.  
Hi-Z  
tQCSW  
Figure 28. : QFC timing on write operation with tDQSSmin  
1. The value of tQCSW min. is 1.25ns from the last low going data strobe edge to QFC tri-state.  
2. The value of tQCSW max. is 0.5tcK from the first high going clock edge after the last low going data strobe  
edge to QFC tri-state.  
- 52 -  
REV. 1.0 November. 2. 2000  
128Mb DDR SDRAM  
QFC timing example for interrupted Writes operation  
BL = 8  
0
1
2
3
4
5
6
7
8
CK  
CK  
Command  
DQS  
Precharge  
Write  
DQS’  
QFC  
Dout 2  
Dout 0 Dout 1  
Dout 3  
Hi-Z  
tQCHWI max  
tQCSW  
Figure 29. : QFC timing example for Interrupted writes operation  
- 53 -  
REV. 1.0 November. 2. 2000  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY