K4H510438M-TLA20 [SAMSUNG]

DDR DRAM, 128MX4, 0.75ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, TSOP2-66;
K4H510438M-TLA20
型号: K4H510438M-TLA20
厂家: SAMSUNG    SAMSUNG
描述:

DDR DRAM, 128MX4, 0.75ns, CMOS, PDSO66, 0.400 X 0.875 INCH, 0.65 MM PITCH, TSOP2-66

动态存储器 双倍数据速率 光电二极管 内存集成电路
文件: 总52页 (文件大小:626K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
512Mb DDR SDRAM  
DDR SDRAM Specification  
Version 0.7  
- 1 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
Revision History  
Version 0.0 (May, 2000)  
- Prototype 512Mb specification  
- DC current is "TBD" and will be defined from M-die  
Version 0.1(Apr,2001)  
- Added DC target spec values  
- Deleted tDAL in AC parameter X  
- Changed V (DC), Input differential voltage, CK and CK inputs min. from 0.3V to 0.36V.  
ID  
- Added V (DC), Input crossing point voltage, CK and CK inputs to 1.15V ~1.35V.  
IX  
- Added Output high/low current(I ,I ) for half strength driver.  
OH OL  
- Added Pullup current to pulldown current ratio to 0.71 ~ 1.4.  
- Changed V (AC), Input differential voltage, CK and CK inputs min. from 0.62V to 0.7V.  
ID  
- Changed tCK max from 15ns to 12ns for all speed binning.  
- Changed tDQSH/tDQSL min. from 0.4tCK to 0.35tCK.  
- Added tHZ/tLZ(Data-out high/Low impedence time from CK/CK)  
- Added tQHS(Data hold skew factor)  
- Added tDSS/tDSH(DQS falling edge to/from CK rising - setup/hold time)  
- Added overshoot/undershoot spec  
- Added tSL(I), tSL(IO), tSL(O)  
Value  
Parameter  
Definition  
Unit  
Min.  
0.5  
0.5  
1.0  
0.7  
Max.  
tSL(I)  
tSL(IO)  
tSL(O)  
tSL(O)  
Input Slew Rate(for input only)  
Input Slew Rate(for I/O pins)  
Output Slew Rate(x4,x8)  
Output Slew Rate(x16)  
V/ns  
V/ns  
V/ns  
V/ns  
4.5  
5
- Changed from supporting QFC function to not supporting QFC function(Deleted all QFC function supported)  
- Changed name and specification from IDD7 to IDD7A  
Description  
from  
to  
Orerating current - Four bank operation IDD7(50% of data changing at every burst) IDD7A(100% of data changing at every burst)  
Version 0.2(July,2001)  
- Changed the target spec. to preliminary spec.  
- Updated the DC current  
- Updated the table at page#29  
Version 0.3(August,2001)  
- Changed the DC current  
Version 0.4(October,2001)  
- Modificated typo.  
- Changed pin # 17 from NC to A13 in Package pinout.  
- Revised "Write with autoprecharge" table in page 29.  
- Added tIS and tPDEX parameters in "power down" timing of page 31.  
- Revised "Absolute maximum rating" table in page 38.  
. Changed "Voltage on VDDQ supply relative to VSS" value from -0.5~3.6V to -1~3.6V  
. Changed "power dissipation" value from 1.0W to 1.5W.  
- Revised AC parameter table  
- 2 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
From  
To  
DDR266A  
DDR266B  
Min. Max.  
DDR200  
DDR266A  
DDR266B  
DDR200  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
+0.8  
tACmin  
-400ps  
tACmax  
-400ps  
tACmin  
-400ps  
tACmax tACmin  
-400ps -400ps  
tACmax  
-400ps  
tHZ(DQ)  
tLZ(DQ)  
-0.75  
-0.75  
+0.75  
-0.75  
-0.75  
+0.75  
-0.8  
-0.8  
tACmin  
-400ps  
tACmax  
-400ps  
tACmin  
-400ps  
tACmax tACmin  
-400ps  
tACmax  
-400ps  
+0.75  
+0.75  
+0.8  
-400ps  
tHZ(DQS)  
tLZ(DQS)  
-0.75  
-0.75  
+0.75  
+0.75  
-0.75  
-0.75  
+0.75  
+0.75  
-0.8  
-1.1  
+0.8  
-0.8  
tWPST  
(tCK)  
0.25  
0.25  
0.25  
0.4  
0.6  
0.4  
0.6  
0.4  
0.6  
tPDEX  
10ns  
10ns  
10ns  
7.5ns  
7.5ns  
10ns  
Version 0.5(November,2001)  
- Deleted tHZ/tLZ of DQS  
Version 0.6(November,2001)  
- Deleted typical current in IDD spec. table  
- Included address and control input setup/hold time(tIS/tIH) at slow slew rate in DDR200/266 AC specification  
- Deleted Exit self refresh to write command(tXSW) in DDR200/266 AC specification  
- Rename tXSA(exit self refresh to bank active command) to tXSNR(exit self refresh to non read command) at DDR200/266  
- Rename tXSR(exit self refresh to read command) to tXSRD at DDR200/266  
- Rename tWPREH(DQS in hold time) to tWPRE at DDR200/266  
- Rename tREF(Refresh interval time) to tREFI at DDR200/266  
- Added tDAL(tWR+tRP)  
- Updated current value  
Version 0.7(May,2002)  
- Changed the preliminary spec. to final spec  
- Corrected typo in package pinout  
- 3 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
Contents  
Revision History  
2
General Information  
7
1. Key Features  
8
8
8
1.1 Features  
1.2 Operating Frequencies  
2. Package Pinout & Dimension  
2.1 Package Pintout  
9
9
2.2 Input/Output Function Description  
10  
11  
2.3 66 Pin TSOP(II)/MS-024FC Package Physical Dimension  
3. Functional Description  
12  
12  
3.1 Simplified State Diagram  
3.2 Basic Functionality  
13  
13  
3.2.1 Power-Up Sequence  
3.2.2 Mode Register Definition  
3.2.2.1 Mode Register Set(MRS)  
3.2.2.2 Extended Mode Register Set(EMRS)  
3.2.3 Precharge  
14  
14  
16  
17  
17  
18  
18  
18  
3.2.4 No Operation(NOP) & Device Deselect  
3.2.5 Row Active  
3.2.6 Read Bank  
3.2.7 Write Bank  
3.3 Essential Functionality for DDR SDRAM  
3.3.1 Burst Read Operation  
19  
19  
20  
21  
21  
22  
23  
3.3.2 Burst Write Operation  
3.3.3 Read Interrupted by a Read  
3.3.4 Read Interrupted by a Write & Burst Stop  
3.3.5 Read Interrupted by a Precharge  
3.3.6 Write Interrupted by a Write  
- 4 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
3.3.7 Write Interrupted by a Read & DM  
24  
25  
26  
27  
28  
29  
30  
31  
3.3.8 Write Interrupted by a Precharge & DM  
3.3.9 Burst Stop  
3.3.10 DM masking  
3.3.11 Read With Auto Precharge  
3.3.12 Write With Auto Precharge  
3.3.13 Auto Refresh & Self Refresh  
3.3.14 Power Down  
4. Command Truth Table  
5. Functional Truth Table  
6. Absolute Maximum Rating  
32  
33  
38  
7. DC Operating Conditions & Specifications  
7.1 DC Operating Conditions  
7.2 DC Specifications  
38  
38  
39  
8. AC Operating Conditions & Timming Specification  
8.1 AC Operating Conditions  
42  
42  
43  
43  
44  
45  
8.2 AC Overshoot/Undershoot specification  
8.2.1 Overshoot/Undershoot specification for Address and Control Pins  
8.2.2 Overshoot/Undershoot specification for Data Pins  
8.3 AC Timming Parameters & Specification  
9. AC Operating Test Conditions  
10. Input/Output Capacitance  
11. IBIS: I/V Characteristics for Input and Output Buffers  
11.1 Normal strength driver  
48  
48  
49  
49  
50  
56  
11.2 Half strength driver  
Timing Diagram  
- 5 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
List of tables  
Table 1 : Operating frequency and DLL jitter  
Table 2. : Column address configurtion  
8
9
Table 3 : Input/Output function description  
10  
15  
17  
Table 4 : Burst address ordering for burst length  
Table 5 : Bank selection for precharge by bank address bits  
Table 6 : Operating description when new command asserted while  
read with auto precharge is issued  
28  
Table 7 : Operating description when new command asserted while  
write with auto precharge is issued  
Table 8 : Command truth table  
29  
32  
33  
34  
35  
36  
37  
38  
38  
41  
42  
43  
44  
45  
48  
48  
50  
52  
Table 9-1 : Functional truth table  
Table 9-2 : Functional truth table (contiued)  
Table 9-3 : Functional truth table (contiued)  
Table 9-4 : Functional truth table (contiued)  
Table 9-5 : Functional truth table (cotinued)  
Table 10 : Absolute maximum raings  
Table 11 : DC operating condtion  
Table 12 : DC specification  
Table 13 : AC operating condition  
Table 14 : Overshoot/Undershoot specification for Address and Control Pins  
Table 15 : Overshoot/Undershoot specification for Data Pins  
Table 16 : AC timing parameters and specifications  
Table 17 : AC operating test conditions  
Table 18 : Input/Output capacitance  
Table 19 : Pull down and pull up current values(For normal strength driver)  
Table 20 : Pull down and pull up current values(For half strength driver)  
- 6 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
List of figures  
Figure 1 : 512Mb Package Pinout  
9
Figure 2 : Package dimension  
Figure 3 : State digram  
Figure 4 : Power up and initialization sequence  
Figure 5 : Mode register set  
Figure 6 : Mode register set sequence  
Figure 7 : Extend mode register set  
Figure 8 : Bank activation command cycle timing  
Figure 9 : Burst read operation timing  
11  
12  
13  
14  
15  
16  
18  
19  
20  
21  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
30  
31  
43  
44  
48  
Figure 10 : Burst write operation timing  
Figure 11 : Read interrupted by a read timing  
Figure 12 : Read interrupted by a write and burst stop timing  
Figure 13 : Read interrupted by a precharge timing  
Figure 14 : Write interrupted by a write timing  
Figure 15 : Write interrupted by a read and DM timing  
Figure 16 : Write interrupted by a precharge and DM timing  
Figure 17 : Burst stop timing  
Figure 18 : DM masking timing  
Figure 19 : Read with auto precharge timing  
Figure 20 : Write with auto precharge timing  
Figure 21 : Auto refresh timing  
Figure 22 : Self refresh timing  
Figure 23 : Power down entry and exit timing  
Figure 24 : AC overshoot/Undershoot Definition  
Figure 25 : AC overshoot/Undershoot Definition  
Figure 26 : Output Load Circuit (SSTL_2)  
Figure 27 : I / V characteristics for input/output buffers(For normal strength driver):  
pull-up(above) and pull-down(below)  
49  
51  
Figure 28 : I / V characteristics for input/output buffers(For half strength driver):  
pull-up(above) and pull-down(below)  
- 7 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
General Information  
Organization  
128Mx4  
133Mhz w/ CL=2  
K4H510438M-TCA2  
K4H510438M-TLA2  
K4H510838M-TCA2  
K4H510838M-TLA2  
133Mhz w/ CL=2.5  
K4H510438M-TCB0  
K4H510438M-TLB0  
K4H510838M-TCB0  
K4H510838M-TLB0  
100Mhz w/ CL=2  
K4H510438M-TCA0  
K4H510438M-TLA0  
K4H510838M-TCA0  
K4H510838M-TLA0  
64Mx8  
1
2
3
4
5
6
7
8
9
10  
11  
K 4 H XX XX X X X - X X XX  
Memory  
DRAM  
Speed  
Temperature & Power  
Package  
Small Classification  
Density and Refresh  
Version  
Organization  
Bank  
Interface (VDD & VDDQ)  
1. SAMSUNG Memory : K  
2. DRAM : 4  
3. Small Classification  
8. Version  
M : 1st Generation  
A : 2nd Generation  
B : 3rd Generation  
C : 4th Generation  
D : 5th Generation  
E : 6th Generation  
H
: DDR SDRAM  
4. Density & Refresh  
64 : 64M 4K/64ms  
28 : 128M 4K/64ms  
56 : 256M 8K/64ms  
51 : 512M 8K/64ms  
1G : 1G 16K/32ms  
9. Package  
T : TSOP2 (400mil x 875mil)  
10. Temperature & Power  
C : (Commercial, Normal)  
L : (Commercial, Low)  
5. Organization  
04 : x4  
08 : x8  
16 : x16  
32 : x32  
11. Speed  
A0 : 10ns@CL2  
A2 : 7.5ns@CL2  
B0 : 7.5ns@CL2.5  
6. Bank  
3 : 4 Bank  
7. Interface (VDD & VDDQ)  
8: SSTL-2(2.5V, 2.5V)  
- 8 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
1. Key Features  
1.1 Features  
Double-data-rate architecture; two data transfers per clock cycle  
• Bidirectional data strobe(DQS)  
• Four banks operation  
• Differential clock inputs(CK and CK)  
• DLL aligns DQ and DQS transition with CK transition  
• MRS cycle with address key programs  
-. Read latency 2, 2.5 (clock)  
-. Burst length (2, 4, 8)  
-. Burst type (sequential & interleave)  
• All inputs except data & DM are sampled at the positive going edge of the system clock(CK)  
• Data I/O transactions on both edges of data strobe  
• Edge aligned data output, center aligned data input  
• DM for write masking only  
• Auto & Self refresh  
• 7.8us refresh interval(8K/64ms refresh)  
• Maximum burst refresh cycle : 8  
• 66pin TSOP II package  
1.2 Operating Frequencies  
- A2(DDR266A)  
133MHz  
- B0(DDR266B)  
100MHz  
- A0(DDR200)  
100MHz  
-
Speed @CL2  
Speed @CL2.5  
DLL jitter  
133MHz  
133MHz  
±0.75ns  
±0.75ns  
±0.8ns  
*CL : Cas Latency  
Table 1. Operating frequency and DLL jitter  
- 9 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
2. Package Pinout & Dimension  
2.1 Package Pinout  
64Mb x 8  
128Mb x 4  
VSS  
NC  
VSSQ  
NC  
DQ3  
VDDQ  
NC  
NC  
VSSQ  
NC  
DQ2  
VDDQ  
NC  
NC  
VSSQ  
DQS  
NC  
VREF  
VSS  
DM  
CK  
VSS  
DQ7  
VSSQ  
NC  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
1
VDD  
DQ0  
VDDQ  
NC  
VDD  
NC  
2
3
VDDQ  
NC  
4
DQ6  
VDDQ  
NC  
5
DQ1  
VSSQ  
NC  
DQ0  
VSSQ  
NC  
6
7
DQ5  
VSSQ  
NC  
8
DQ2  
VDDQ  
NC  
NC  
9
VDDQ  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
66 PIN TSOP(II)  
(400mil x 875mil)  
(0.65 mm PIN PITCH)  
DQ4  
VDDQ  
NC  
DQ3  
VSSQ  
NC  
DQ1  
VSSQ  
NC  
NC  
NC  
NC  
Bank Address  
BA0-BA1  
VSSQ  
DQS  
NC  
VDDQ  
NC  
VDDQ  
NC  
Row Address  
A0-A12  
NC  
NC  
VREF  
VSS  
DM  
CK  
VDD  
NC  
VDD  
NC  
Auto Precharge  
A10  
NC  
NC  
WE  
CAS  
RAS  
CS  
WE  
CAS  
RAS  
CS  
CK  
CK  
22  
23  
CKE  
NC  
A12  
CKE  
NC  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
A12  
NC  
NC  
MS-024FC  
A11  
A11  
BA0  
BA1  
BA0  
BA1  
A9  
A9  
A8  
A8  
AP/A10 AP/A10  
A7  
A7  
A0  
A1  
A0  
A1  
A6  
A6  
A5  
A5  
A2  
A2  
A4  
A4  
A3  
A3  
VSS  
VSS  
VDD  
VDD  
FIgure 1. 256Mb package Pinout  
Organization  
128Mx4  
Column Address  
A0-A9, A11,A12  
A0-A9,A11  
64Mx8  
DM is internally loaded to match DQ and DQS identically.  
Table 2. Column address configuration  
- 10 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
2.2 Input/Output Function Description  
SYMBOL  
TYPE  
DESCRIPTION  
CK, CK  
Input  
Clock : CK and CK are differential clock inputs. All address and control input signals are sam-  
pled on the positive edge of CK and negative edge of CK. Output (read) data is referenced to  
both edges of CK. Internal clock signals are derived from CK/CK.  
CKE  
Input  
Clock Enable : CKE HIGH activates, and CKE LOW deactivates internal clock signals, and  
device input buffers and output drivers. Deactivating the clock provides PRECHARGE  
POWER-DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWER-DOWN  
(row ACTIVE in any bank). CKE is synchronous for all functions except for disabling outputs,  
which is achieved asynchronously. Input buffers, excluding CK, CK and CKE are disabled  
during power-down and self refresh modes, providing low standby power. CKE will recognize  
an LVCMOS LOW level prior to VREF being stable on power-up.  
CS  
Input  
Chip Select : CS enables(registered LOW) and disables(registered HIGH) the command  
decoder. All commands are masked when CS is registered HIGH. CS provides for external  
bank selection on systems with multiple banks. CS is considered part of the command code.  
RAS, CAS, WE  
LDM,(U)DM  
Input  
Input  
Command Inputs : RAS, CAS and WE (along with CS) define the command being entered.  
Input Data Mask : DM is an input mask signal for write data. Input data is masked when DM is  
sampled HIGH along with that input data during a WRITE access. DM is sampled on both  
edges of DQS. DM pins include dummy loading internally, to matches the DQ and DQS load-  
ing. For the x16, LDM corresponds to the data on DQ0-DQ7 ; UDM correspons to the data on  
DQ8-DQ15.  
BA0, BA1  
A [n : 0]  
Input  
Input  
Bank Addres Inputs : BA0 and BA1 define to which bank ACTIVE, READ, WRITE or PRE-  
CHARGE command is being applied.  
Address Inputs : Provide the row address for ACTIVE commands, the column address and  
AUTO PRECHARGE bit for READ/WRITE commands, to select one location out of the mem-  
ory array in the respective bank. A10 is sampled during a PRECHARGE command to deter-  
mine whether the PRECHARGE applies to one bank (A10 LOW) or all banks (A10 HIGH). If  
only one bank is to be precharged, the bank is selected by BA0, BA1. The address inputs also  
provide the op-code during a MODE REGISTER SET command. BA0 and BA1 define which  
mode register is loaded during the MODE REGISTER SET command (MRS or EMRS).  
DQ  
I/O  
I/O  
Data Input/Output : Data bus  
LDQS,(U)DQS  
Data Strobe : Output with read data, input with write data. Edge-aligned with read data, cen-  
tered in write data. Used to capture write data. For the x16, LDQS corresponds to the data on  
DQ0-DQ7 ; UDQS corresponds to the data on DQ8-DQ15.  
NC  
-
No Connect : No internal electrical connection is present.  
DQ Power Supply : +2.5V ± 0.2V.  
DQ Ground.  
VDDQ  
VSSQ  
VDD  
Supply  
Supply  
Supply  
Supply  
Input  
Power Supply : +2.5V ± 0.2V (device specific).  
Ground.  
VSS  
VREF  
SSTL_2 reference voltage.  
Table 3. Input/Output Function Description  
- 11 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
2.3 66 Pin TSOP(II)/MS-024FC Package Physical Dimension  
Units : Millimeters  
#66  
#34  
(10×)  
(10×)  
#1  
#33  
+0.075  
-0.035  
0.125  
(1.50)  
22.22±0.10  
(10×)  
(10×)  
0.10 MAX  
0.25TYP  
(0.71)  
0.65TYP  
0.65±0.08  
0.30±0.08  
[
]
0.075 MAX  
NOTE  
1. (  
0×~8×  
) IS REFERENCE  
2. [  
] IS ASSY OUT QUALITY  
Figure 2. Package dimension  
- 12 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
3. Functional Description  
3.1 Simplified State Diagram  
SELF  
REFRESH  
REFS  
REFSX  
REFA  
MRS  
MODE  
REGISTER  
SET  
AUTO  
REFRESH  
IDLE  
ACT  
CKEL  
CKEH  
POWER  
DOWN  
POWER  
DOWN  
CKEH  
CKEL  
ROW  
ACTIVE  
BURST STOP  
READ  
WRITE  
WRITEA  
READA  
READ  
WRITE
READ  
WRITEA  
READA  
READA  
PRE  
PRE  
WRITEA  
READA  
PRE  
POWER  
APPLIED  
POWER  
ON  
PRE  
CHARGE  
PRE  
Automatic Sequence  
Command Sequence  
WRITEA : Write with autoprecharge  
READA : Read with autoprecharge  
Figure 3. State diagram  
- 13 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
3.2 Basic Functionality  
3.2.1 Power-Up and Initialization Sequence  
The following sequence is required for POWER UP and Initialization.  
1. Apply power and attempt to maintain CKE at a low state(all other inputs may be undefined.)  
- Apply VDD before or at the same time as VDDQ.  
- Apply VDDQ before or at the same time as VTT & Vref.  
No power sequencing is specified during power up or power down given the following criteria:  
VDD and VDDQ are driven from a single power converter output, and  
VTT is limited to 1.44V (reflecting VDDQ(max)/2 + 50mV VREF variation +40m V VTT variation), and  
VREF tracks VDDQ/2, and  
• A minimum resistance of 42 ohms(22 ohm series resistor + 22 ohm parallel resistor 5% tolerance)  
limits the input current from the VTT supply into any pin.  
If the above criteria cannot be met by the system design, the following table must be adhered  
to during power up:  
Voltage Description  
Sequencing  
Voltage Relationship to avoid latch-up  
<VDD + 0.3V  
VDDQ  
VTT  
After or with VDD  
After or with VDDQ  
After or with VDDQ  
< VDDQ +0.3V  
VREF  
<VDDQ +0.3V  
2. Start clock and maintain stable condition for a minimum of 200us.  
3. The minimum of 200us after stable power and clock(CK, CK), apply NOP & take CKE high.  
4. Issue precharge commands for all banks of the device.  
5. Issue EMRS to enable DLL.(To issue "DLL Enable" command, provide "Low" to A0, "High" to BA0 and  
"Low" to all of the rest address pins, A1~A11 and BA1)  
6. Issue a mode register set command for "DLL reset". The additional 200 cycles of clock input is required  
to lock the DLL. (To issue DLL reset command, provide "High" to A8 and "Low" to BA0)  
*1 7. Issue precharge commands for all banks of the device.  
8. Issue 2 or more auto-refresh commands.  
9. Issue a mode register set command with low to A8 to initialize device operation.  
*1 Sequence of 6 & 7 is regardless of the order.  
Power up & Initialization Sequence  
0
1
2
3
4
5
6
7
8
9
10  
11  
12 13  
14  
15  
16  
17  
18  
19  
CK  
CK  
tRFC  
tRFC  
2 Clock min.  
tRP  
2 Clock min.  
2 Clock min.  
tRP  
Command  
2nd Auto  
Refresh  
precharge  
ALL Banks  
MRS  
DLL Reset  
precharge  
ALL Banks  
1st Auto  
Refresh  
Mode  
Register Set  
Any  
Command  
EMRS  
min.200 Cycle  
Figure 4. Power up and initialization sequence  
- 14 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
3.2.2 Mode Register Definition  
3.2.2.1 Mode Register Set(MRS)  
The mode register stores the data for controlling the various operating modes of DDR SDRAM. It programs  
CAS latency, addressing mode, burst length, test mode, DLL reset and various vendor specific options to make  
DDR SDRAM useful for variety of different applications. The default value of the mode register is not defined,  
therefore the mode register must be written after EMRS setting for proper DDR SDRAM operation. The mode  
register is written by asserting low on CS, RAS, CAS, WE and BA0(The DDR SDRAM should be in all bank pre-  
charge with CKE already high prior to writing into the mode register). The states of address pins A0 ~ A12 in  
the same cycle as CS, RAS, CAS, WE and BA0 going low are written in the mode register. Two clock cycles  
are requested to complete the write operation in the mode register. The mode register contents can be  
changed using the same command and clock cycle requirements during operation as long as all banks are in  
the idle state. The mode register is divided into various fields depending on functionality. The burst length uses  
A0 ~ A2, addressing mode uses A3, CAS latency(read latency from column address) uses A4 ~ A6. A7 is used  
for test mode. A8 is used for DLL reset. A7 must be set to low for normal MRS operation. Refer to the table for  
specific codes for various burst lengths, addressing modes and CAS latencies.  
Address Bus  
BA1  
A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
A12  
BA0  
0
Mode Register  
RFU  
RFU  
DLL TM  
CAS Latency  
BT  
Burst Length  
A8  
0
DLL Reset  
No  
A7  
0
mode  
Normal  
Test  
A3  
0
Burst Type  
Sequential  
1
Yes  
1
1
Interleave  
Burst Length  
CAS Latency  
Burst Length  
A2  
A1  
A0  
A6  
0
A5  
0
A4  
0
Latency  
Sequential  
Reserve  
2
Interleave  
Reserve  
2
Reserve  
Reserve  
2
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
BA0  
An ~ A0  
(Existing)MRS Cycle  
Extended Funtions(EMRS)  
0
0
1
0
1
0
1
0
4
4
0
1
1
(3)  
8
8
1
0
0
Reserve  
(1.5)  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
1
0
1
* RFU(Reserved for future use)  
must stay "0" during MRS  
cycle.  
1
1
0
2.5  
1
1
1
Reserve  
Figure 5. Mode Register Set  
- 15 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
Burst Address Ordering for Burst Length  
Burst  
Starting  
Sequential Mode  
Interleave Mode  
Length Address(A2, A1, A0)  
xx0  
0, 1  
0, 1  
2
xx1  
1, 0  
1, 0  
x00  
0, 1, 2, 3  
0, 1, 2, 3  
x01  
1, 2, 3, 0  
1, 0, 3, 2  
4
x10  
2, 3, 0, 1  
2, 3, 0, 1  
x11  
000  
001  
010  
3, 0, 1, 2  
3, 2, 1, 0  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 4, 5, 6, 7, 0  
2, 3, 4, 5, 6, 7, 0, 1  
3, 4, 5, 6, 7, 0, 1, 2  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 0, 1, 2, 3, 4  
6, 7, 0, 1, 2, 3, 4, 5  
7, 0, 1, 2, 3, 4, 5, 6  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
011  
8
100  
101  
110  
111  
Table 4. Burst address ordering for burst length  
Mode Register Set  
0
1
2
3
4
5
6
7
8
CK  
CK  
*1  
Mode  
Register Set  
Precharge  
All Banks  
Any  
Command  
Command  
*2  
tCK  
tRP  
2 Clock min.  
*1 : MRS can be issued only at all bank precharge state.  
*2 : Minimum tRP is required to issue MRS command.  
Figure 6. Mode Register Set sequence  
- 16 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
3.2.2.2 Extended Mode Register Set(EMRS)  
The extended mode register stores the data for enabling or disabling DLL and selecting output driver size.  
The default value of the extended mode register is not defined, therefore the extened mode register must be  
written after power up for enabling or disabling DLL. The extended mode register is written by asserting low on  
CS, RAS, CAS, WE and high on BA0(The DDR SDRAM should be in all bank precharge with CKE already  
high prior to writing into the extended mode register). The state of address pins A0 ~ A11 and BA1 in the  
same cycle as CS, RAS, CAS and WE going low are written in the extended mode register. Two clock cycles  
are required to complete the write operation in the extended mode register. The mode register contents can  
be changed using the same command and clock cycle requirements during operation as long as all banks are  
in the idle state. A0 is used for DLL enable or disable. "High" on BA0 is used for EMRS. All the other address  
pins except A0 and BA0 must be set to low for proper EMRS operation. Refer to the table for specific codes.  
Address Bus  
A12  
A11 A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
BA1 BA0  
DLL  
Extended Mode Register  
1
D.I.C  
*RFU  
*RFU  
Output Driver Impedence Control  
A0  
0
DLL Enable  
Enable  
0
1
Normal  
Weak  
1
Disable  
BA0  
0
An ~ A0  
(Existing)MRS Cycle  
1
Extended Funtions(EMRS)  
*RFU : Must be set "0"  
Figure 7. Extend Mode Register set  
DLL Enable/Disable  
The DLL must be enabled for normal operation. DLL enable is required during power-up initialization, and  
upon returing to normal operation after having disabled the DLL for the purpose of debug or evaluation (upon  
exiting Self Refresh Mode, the DLL is enabled automatically). Any time the DLL is enabled, 200 clock cycles  
must occur before a READ command can be issued.  
Output Drive Strength  
The normal drive strength for all outputs is specified to be SSTL_2, Class II. Samsung supports a weak driver  
strength option, intended for lighter load and/or point-to-point environments. I-V curves for the normal drive  
strength and weak drive strength are included in 11.1~2 of this document.  
- 17 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
3.2.3 Precharge  
The precharge command is used to precharge or close a bank that has been activated. The precharge com-  
mand is issued when CS, RAS and WE are low and CAS is high at the rising edge of the clock. The precharge  
command can be used to precharge each bank respectively or all banks simultaneously. The bank select  
addresses(BA0, BA1) are used to define which bank is precharged when the command is initiated. For write  
cycle, tWR(min.) must be satisfied until the precharge command can be issued. After tRP from the precharge,  
an active command to the same bank can be initiated.  
Bank Selection for Precharge by Bank address bits  
A10/AP  
BA1  
0
BA0  
0
Precharge  
Bank A Only  
Bank B Only  
Bank C Only  
Bank D Only  
All Banks  
0
0
0
0
1
0
1
1
0
1
1
X
X
Table 5. Bank selection for precharge by Bank address bits  
3.2.4 No Operation(NOP) & Device Deselect  
The device should be deselected by deactivating the CS signal. In this mode DDR SDRAM should ignore  
all the control inputs. The DDR SDRAMs are put in NOP mode when CS is active and by deactivating RAS,  
CAS and WE. For both Deselect and NOP the device should finish the current operation when this com-  
mand is issued.  
- 18 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
3.2.5 Row Active  
The Bank Activation command is issued by holding CAS and WE high with CS and RAS low at the rising  
edge of the clock(CK). The DDR SDRAM has four independent banks, so two Bank Select addresses(BA0,  
BA1) are required. The Bank Activation command must be applied before any Read or Write operation is exe-  
cuted. The delay from the Bank Activation command to the first read or write command must meet or exceed  
the minimum of RAS to CAS delay time(tRCD min). Once a bank has been activated, it must be precharged  
before another Bank Activation command can be applied to the same bank. The minimum time interval  
between interleaved Bank Activation commands(Bank A to Bank B and vice versa) is the Bank to Bank delay  
time(tRRD min).  
Bank Activation Command Cycle (CAS Latency = 2)  
Tn  
Tn+1  
Tn+2  
0
1
2
CK  
CK  
Bank A  
Row Addr.  
Bank A  
Col. Addr.  
Bank B  
Row Addr.  
Bank A  
Row. Addr.  
Address  
RAS-CAS delay(tRCD)  
RAS-RAS delay time(tRRD)  
Bank A  
Bank A  
Activate  
Write A  
Bank B  
Activate  
NOP  
NOP  
Command  
with Auto  
Activate  
Precharge  
ROW Cycle Time(tRC)  
: Don¢t care  
Figure 8. Bank activation command cycle timing  
3.2.6 Read Bank  
This command is used after the row activate command to initiate the burst read of data. The read command  
is initiated by activating RAS, CS, CAS, and deasserting WE at the same clock sampling(rising) edge as  
described in the command truth table. The length of the burst and the CAS latency time will be determined by  
the values programmed during the MRS command.  
3.2.7 Write Bank  
This command is used after the row activate command to initiate the burst write of data. The write com-  
mand is initiated by activating RAS, CS, CAS, and WE at the same clock sampling(rising) edge as described in  
the command truth table. The length of the burst will be determined by the values programmed during the  
MRS command.  
- 19 -  
Rev. 0.7 May, 2002  
3.3 Essential Functionality for DDR SDRAM  
The essential functionality that is required for the DDR SDRAM device is described in this chapter  
3.3.1 Burst Read Operation  
Burst Read operation in DDR SDRAM is in the same manner as the current SDRAM such that the Burst read  
command is issued by asserting CS and CAS low while holding RAS and WE high at the rising edge of the  
clock(CK) after tRCD from the bank activation. The address inputs (A0~A9) determine the starting address for  
the Burst. The Mode Register sets type of burst(Sequential or interleave) and burst length(2, 4, 8). The first  
output data is available after the CAS Latency from the READ command, and the consecutive data are pre-  
sented on the falling and rising edge of Data Strobe(DQS) adopted by DDR SDRAM until the burst length is  
completed.  
< Burst Length=4, CAS Latency= 2, 2.5 >  
0
1
2
3
4
5
6
7
8
CK  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
t
RPST  
RPRE  
DQS  
CAS Latency=2  
Dout 0 Dout 1 Dout 2 Dout 3  
DQ ¢s  
DQS  
CAS Latency=2.5  
Dout 0 Dout 1 Dout 2 Dout 3  
DQ ¢s  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
3.3.2 Burst Write Operation  
The Burst Write command is issued by having CS, CAS, and WE low while holding RAS high at the rising  
edge of the clock(CK). The address inputs determine the starting column address. There is no write latency  
relative to DQS required for burst write cycle. The first data of a burst write cycle must be applied on the DQ  
pins tDS(Data-in setup time) prior to data strobe edge enabled after tDQSS from the rising edge of the  
clock(CK) that the write command is issued. The remaining data inputs must be supplied on each subsequent  
falling and rising edge of Data Strobe until the burst length is completed. When the burst has been finished, any  
additional data supplied to the DQ pins will be ignored.  
< Burst Length=4 >  
0
1
2
3
4
5
6
7
8
*1  
CK  
CK  
Command  
DQS  
NOP  
WRITEA  
NOP  
WRITEB  
NOP  
NOP  
NOP  
NOP  
NOP  
tDQSSmax  
*1  
t
WPRES*1  
Din 3  
Din 0 Din 1 Din 2  
Din 3  
Din 0 Din 1 Din 2  
DQ ¢s  
Figure 10. Burst write operation timing  
1. The specific requirement is that DQS be valid(High or Low) on or before this CK edge. The case shown  
(DQS going from High_Z to logic Low) applies when no writes were previously in progress on the bus.  
If a previous write was in progress, DQS could be High at this time, depending on tDQSS.  
- 21 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
3.3.3 Read Interrupted by a Read  
A Burst Read can be interrupted before completion of the burst by new Read command of any bank. When  
the previous burst is interrupted, the remaining addresses are overridden by the new address with the full burst  
length. The data from the first Read command continues to appear on the outputs until the CAS latency from  
the interrupting Read command is satisfied. At this point the data from the interrupting Read command  
appears. Read to Read interval is minimum 1 Clock.  
< Burst Length=4, CAS Latency=2 >  
0
1
2
3
4
5
6
7
8
CK  
CK  
READ A  
READ B  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
DQS  
CAS Latency=2  
Dout A  
0
Dout A  
1
Dout B  
0
Dout B  
1
Dout B  
2
Dout B  
3
DQ ¢s  
Figure 11. Read interrupted by a read timing  
3.3.4 Read Interrupted by a Write & Burst Stop  
To interrupt a burst read with a write command, Burst Stop command must be asserted to avoid data conten-  
tion on the I/O bus by placing the DQs(Output drivers) in a high impedance state. To insure the DQs are tri-  
stated one cycle before the beginning the write operation, Burst stop command must be applied at least 2  
clock cycles for CL=2 and at least 3 clock cycles for CL=2.5 before the Write command.  
< Burst Length=4, CAS Latency=2 >  
0
1
2
3
4
5
6
7
8
CK  
CK  
WRITE  
NOP  
Command  
READ  
Burst Stop  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS  
CAS Latency=2  
Dout 0 Dout 1  
Din 0  
Din 1 Din 2  
Din 3  
DQ ¢s  
Figure 12. Read interrupted by a write and burst stop timing.  
The following functionality establishes how a Write command may interrupt a Read burst.  
1. For Write commands interrupting a Read burst, a Burst Terminate command is required to stop the read  
burst and tristate the DQ bus prior to valid input write data. Once the Burst Terminate command has been  
issued, the minimum delay to a Write command = RU(CL) [CL is the CAS Latency and RU means round up  
to the nearest integer].  
2. It is illegal for a Write command to interrupt a Read with autoprecharge command.  
- 22 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
A Burst Read operation can be interrupted by precharge of the same bank. The minimum 1 clock is required  
for the read to precharge intervals. A precharge command to output disable latency is equivalent to the  
latency.  
CAS Latency=2 >  
1
2
4
5
7
8
CK  
CK  
Precharge  
Command  
NOP  
NOP  
NOP  
NOP  
NOP  
CAS Latency=2  
Dout 4  
Dout 6 Dout 7  
Dout 1 Dout 2  
DQ ¢  
Interrupted by precharge  
Figure 13. Read interrupted by a precharge timing  
When a burst Read command is issued to a DDR SDRAM, a Precharge command may be issued to the same  
bank before the Read burst is complete. The following functionality determines when a Precharge command  
1. For the earliest possible Precharge command without interrupting a Read burst, the Precharge command  
is the CAS  
Precharge time).  
2.  
the rising clock edge which is CL clock cycles before the last data from the interrupted Read burst where  
CL is the  
Latency. Once the last data word has been output, the output buffers are tristated. A new  
Bank Activate command may be issued to the same bank after tRP.  
For a Read with autoprecharge command, a new Bank Activate command may be issued to the same  
bank after tRP where tRP begins on the rising clock edge which is CL clock cycles before the end of the  
CAS Latency. During Read with autoprecharge, the initiation of the internal  
precharge operation without interrupting the Read burst as described in 1 above.  
4.  
clock cycles between a Precharge command and a new Bank Activate command to the same bank equals  
tRP/tCK (where tCK is the clock cycle time) with the result rounded up to the nearest integer number of  
can only be given on a rising  
In all cases, a Precharge operation cannot be initiated unless tRAS(min) [minimum Bank Activate to Precharge  
time] has been satisfied. This includes Read with autoprecharge commands where tRAS(min) must still be  
the earliest possible Precharge command which does not interrupt the burst.  
- 23 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
3.3.6 Write Interrupted by a Write  
A Burst Write can be interrupted before completion of the burst by a new Write command, with the only restric-  
tion that the interval that separates the commands must be at least one clock cycle. When the previous burst  
is interrupted, the remaining addresses are overridden by the new address and data will be written into the  
device until the programmed burst length is satisfied.  
< Burst Length=4 >  
0
1
2
3
4
5
6
7
8
CK  
CK  
1tCK  
Command  
NOP  
WRITE A  
WRITE b  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS  
Din A  
0
Din A  
1
Din B  
0
Din B  
1
Din B  
2
Din B3  
DQ ¢s  
Figure 14. Write interrupted by a write timing  
- 24 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
3.3.7 Write Interrupted by a Read & DM  
A burst write can be interrupted by a read command of any bank. The DQs must be in the high impedance  
state at least one clock cycle before the interrupting read data appear on the outputs to avoid data contention.  
When the read command is registered, any residual data from the burst write cycle must be masked by DM.  
The delay from the last data to read command (tCDLR) is required to avoid the data contention DRAM inside.  
Data that are presented on the DQ pins before the read command is initiated will actually be written to the  
memory. Read command interrupting write can not be issued at the next clock edge of that of write command.  
< Burst Length=8 >  
0
1
2
3
4
5
6
7
8
CK  
CK  
NOP  
Precharge  
Command  
NOP  
WRITE A  
NOP  
NOP  
NOP  
WRITEB  
NOP  
tDQSSmax  
DQS  
5
tWR  
Dina0 Dina1 Dina2 Dina3 Dina4 Dina5 Dina6 Dina7  
t
WPRES*  
Dinb0  
DQ ¢s  
tDQSSmin  
DQS  
5
WPRES*  
t
Dina6 Dina7  
Dina0 Dina1 Dina2 Dina3 Dina4 Dina5  
Dinb0 Dinb1  
DQ ¢s  
DM  
Figure 15. Write interrupted by a read and DM timing  
The following function established how a Read command may interrupt a Write burst and which input data is  
not written into the memory.  
1. For Read commands interrupting a Write burst, the minimum Write to Read command delay is 2 clock  
cycles. The case where the Write to Read delay is 1 clock cycle is disallowed  
2. For Read commands interrupting a Write burst, the DM pin must be used to mask the input data words  
whcich immediately precede the interrupting Read operation and the input data word which immediately  
follows the interrupting Read operation  
3. For all cases of a Read interrupting a Write, the DQ and DQS buses must be released by the driving chip  
(i.e., the memory controller) in time to allow the buses to turn around before the DDR SDRAM drives them  
during a read operation.  
4. If input Write data is masked by the Read command, the DQS input is ignored by the DDR SDRAM.  
5. Refer to "3.3.2 Burst write operation"  
- 25 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
3.3.8 Write Interrupted by a Precharge & DM  
Random column access is allowed. A write recovery time(tWR) is required from the last data to precharge  
command. When precharge command is asserted, any residual data from the burst write cycle must be  
< Burst Length=8 >  
0
1
3
4
6
7
CK  
NOP  
Precharge  
Command  
WRITE A  
NOP  
NOP  
WRITEB  
tDQSSmax  
tWR  
Dina  
5
WPRES*  
Dina0  
Dina1  
1
Dina  
Dina  
Dina3  
Dina4  
4
6
Dina  
Dinb0  
DQ ¢  
tDQSSmin  
5
WPRES*  
Dina  
7
Dina  
2
5
0
Dinb  
DQ ¢  
DM  
Figure 16. Write interrupted by a precharge and DM timing  
Precharge timing for Write operations in DRAMs requires enough time to allow write recovery” which is the  
SDRAM, a timing parameter, tWR, is used to indicate the required amount of time between the last valid write  
operation and a Precharge command to the same bank.  
the address is sampled by the input clock. Inside the SDRAM, the data path is eventually synchronized with  
the address path by switching clock domains from the data strobe clock domain to the input clock domain.  
write recovery parameter must reference only the clock domain that is used to time the internal write operation,  
i.e., the input clock domain.  
ends on the rising clock edge that strobes in the precharge command.  
1. For the earliest possible Precharge command following a Write burst without interrupting the burst, the  
2. When a precharge command interrupts a Write burst operation, the data mask pin, DM, is used to mask  
input data during the time between the last valid write data and the rising clock edge on which the  
The minimum time for write recovery is defined by tWR.  
-
512Mb DDR SDRAM  
3. For a Write with autoprecharge command, a new Bank Activate command may be issued to the same  
bank after tWR+tRP where tWR+tRP starts on the falling DQS edge that strobed in the last valid data and  
ends on the rising clock edge that strobes in the Bank Activate command. During write with  
autoprecharge, the initiation of the internal precharge occurs at the same time as the earliest possible  
external Precharge command without interrupting the Write burst as described in 1 above.  
4. In all cases, a Precharge operation cannot be initiated unless tRAS(min) [minimum Bank Activate to  
Precharge time] has been satisfied. This includes Write with autoprecharge commands where tRAS(min)  
must still be satisfied such that a Write with autoprecharge command has the same timing as a Write  
command followed by the earliest possible Precharge command which does not interrupt the burst.  
5. Refer to "3.3.2 Burst write operation"  
3.3.9 Burst Stop  
The burst stop command is initiated by having RAS and CAS high with CS and WE low at the rising edge of  
the clock(CK). The burst stop command has the fewest restrictions making it the easiest method to use when  
terminating a burst read operation before it has been completed. When the burst stop command is issued dur-  
ing a burst read cycle, the pair of data and DQS(Data Strobe) go to a high impedance state after a delay which  
is equal to the CAS latency set in the mode register. The burst stop command, however, is not supported dur-  
ing a write burst operation.  
< Burst Length=4, CAS Latency= 2, 2.5 >  
0
1
2
3
4
5
6
7
8
CK  
CK  
Command  
READ A  
Burst Stop  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS  
CAS Latency=2  
The burst ends after a delay equal to the CAS latency.  
Dout 0 Dout 1  
DQ ¢s  
DQS  
CAS Latency=2.5  
Dout 0 Dout 1  
DQ ¢s  
Figure 17. Burst stop timing  
The Burst Stop command is a mandatory feature for DDR SDRAMs. The following functionality is required:  
1. The BST command may only be issued on the rising edge of the input clock, CK.  
2. BST is only a valid command during Read bursts.  
3. BST during a Write burst is undefined and shall not be used.  
4. BST applies to all burst lengths.  
5. BST is an undefined command during Read with autoprecharge and shall not be used.  
- 27 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
6. When terminating a burst Read command, the BST command must be issued L  
BST  
cycles before the clock edge at which the output buffers are tristated, where L  
CAS latency  
CAS latency (CL) of 1.5, 2,  
CAS latencies are required by the DDR SDRAM standards, the others are  
BST  
7. When the burst terminates, the DQ and DQS pins are tristated.  
The BST command is not byte controllable and applies to all bits in the DQ data word and the(all) DQS pin(s).  
3.3.10 DM masking  
cycle. When the data mask is activated (DM high) during write operation, DDR SDRAM does not accept the  
corresponding data.(DM to data-mask latency is zero).  
< Burst Length=8 >  
0
2
3
5
6
8
CK  
CK  
NOP  
Din 0  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
t
Din 1  
Din 3 Din 4  
Din 6 Din7  
DQ ¢  
DM  
DS  
t
-
512Mb DDR SDRAM  
3.3.11 Read With Auto Precharge  
If a read with auto-precharge command is initiated, the DDR SDRAM automatically enters the precharge  
operation BL/2 clock later from a read with auto-precharge command when tRAS(min) is satisfied. If not, the  
start point of precharge operation will be delayed until tRAS(min) is satisfied. Once the precharge operation  
has started the bank cannot be reactivated and the new command can not be asserted until the precharge  
time(tRP) has been satisfied.  
< Burst Length=4, CAS Latency= 2, 2.5>  
0
1
2
3
4
5
6
7
8
CK  
CK  
BANK A  
ACTIVE  
READ A  
Auto Precharge  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
t
RAS(min.)  
DQS  
CAS Latency=2  
Dout 0 Dout 1 Dout 2 Dout 3  
tRP  
DQ ¢s  
* Bank can be reactivated at the  
completion of precharge  
DQS  
CAS Latency=2.5  
DQ ¢s  
Dout 0 Dout 1 Dout 2 Dout 3  
Begin Auto-Precharge  
Figure 19. Read with auto precharge timing  
When the Read with Auto precharge command is issued, new command can be asserted at 3,4 and 5  
respectively as follows,  
Asserted  
command  
For same Bank  
4
For Different Bank  
4
3
5
3
5
READ +  
No AP*1  
READ+  
No AP  
READ  
Illegal  
Legal  
Legal  
Legal  
Legal  
READ +  
AP  
READ +  
AP  
READ+AP  
Illegal  
Legal  
Legal  
Active  
Illegal  
Legal  
Illegal  
Legal  
Illegal  
Illegal  
Legal  
Legal  
Legal  
Legal  
Legal  
Legal  
Precharge  
*1  
: AP = Auto Precharge  
Table 6. Operating description when new command asserted  
while read with auto precharge is issued  
- 29 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
If A10 is high when write command is issued , the write with auto-precharge function is performed. Any new  
command to the same bank should not be issued until the internal precharge is completed. The internal pre-  
<100Mhz, Burst Length=4 >  
0
1
2
3
4
5
6
7
8
CK  
CK  
BANK A  
ACTIVE  
WRITE A  
Auto Precharge  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
DQS  
* Bank can be reactivated at  
completion of tRP  
DQ ¢s  
Din 0 Din 1 Din 2 Din 3  
tWR  
tRP  
tDAL  
Internal precharge start  
Figure 20. Write with auto precharge timing  
Burst length = 4  
Asserted  
For same Bank  
For Different Bank  
4
5
7
8
4
5
7
WRITE+  
No AP  
WRITE  
Illegal  
Illegal  
Illegal  
Legal  
Legal  
Legal  
Legal Legal  
*1  
No AP  
WRITE+  
WRITE+  
AP  
Illegal  
Legal  
Legal Legal  
AP  
READ+NO  
READ+NO READ+  
NO AP  
Illegal  
Illegal  
Illegal Illegal  
Illegal Illegal  
Illegal Legal  
Illegal Legal  
*2  
READ +  
READ+  
AP  
READ+AP  
AP+DM  
Active  
Illegal  
Illegal  
Illegal  
Illegal  
Illegal  
Illegal  
Illegal Legal  
Illegal Legal  
Legal Legal  
Legal Legal  
Precharge  
*1  
: AP = Auto Precharge  
: DM : Refer to " 3.3.7 Write Interrupted by a Read & DM " in page 25.  
Table 7. Operating description when new command asserted  
while write with auto precharge is issued  
- 30 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
3.3.13 Auto Refresh & Self Refresh  
Auto Refresh  
An auto refresh command is issued by having CS, RAS and CAS held low with CKE and WE high at the ris-  
ing edge of the clock(CK). All banks must be precharged and idle for tRP(min) before the auto refresh com-  
mand is applied. No control of the external address pins is required once this cycle has started because of the  
internal address counter. When the refresh cycle has completed, all banks will be in the idle state. A delay  
between the auto refresh command and the next activate command or subsequent auto refresh command  
must be greater than or equal to the tRFC(min).  
CK  
CK  
Auto  
Refresh  
PRE  
CMD  
Command  
= High  
CKE  
tRP  
tRFC  
Figure 21. Auto refresh timing  
Self Refresh  
A self refresh command is defined by having CS, RAS, CAS and CKE held low with WE high at the rising  
edge of the clock(CK). Once the self refresh command is initiated, CKE must be held low to keep the device in  
self refresh mode. During the self refresh operation, all inputs except CKE are ignored. The clock is internally  
disabled during self refresh operation to reduce power consumption. The self refresh is exited by supplying  
stable clock input before returning CKE high, asserting deselect or NOP command and then asserting CKE  
high for longer than tXSR for locking of DLL.  
CK  
CK  
Self  
Refresh  
Active  
Read  
Command  
CKE  
*1  
tXSNR  
2
tXSRD*  
Figure 22. Self refresh timing  
1. Exit self refresh to bank active command, a write command can be applied as far as tRCD is satisfied after  
any bank active command.  
2. Exit self refresh to read command  
- 31 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
3.3.14 Power down  
The power down mode is entered when CKE is low and exited when CKE is high. Once the power down  
mode is initiated, all of the receiver circuits except clock, CKE and DLL circuit tree are gated off to reduce  
power consumption. All banks should be in idle state prior to entering the precharge power down mode and  
CKE should be set high at least 1tck+tIS prior to row active command . During power down mode, refresh  
operations cannot be performed, therefore the device cannot be remained in power down mode longer than  
the refresh period(Data retension time) of the device.  
CK  
CK  
Active  
power  
down  
Entry  
Active  
power  
down  
Exit  
Precharge  
power  
down  
Precharge  
Active  
Read  
Command  
CKE  
Entry  
t
IS  
t
PDEX  
Figure 23. Power down entry and exit timing  
- 32 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
4. Command Truth Table  
COMMAND  
(V=Valid, X=Don¢t Care, H=Logic High, L=Logic Low)  
A11,A12  
A9 ~ A0  
CKEn-1  
CKEn  
CS  
RAS  
CAS  
WE  
BA0,1  
A10/AP  
Note  
Register  
Register  
Extended MRS  
Mode Register Set  
Auto Refresh  
H
H
X
X
H
L
L
L
L
L
L
L
L
L
OP CODE  
OP CODE  
1, 2  
1, 2  
3
H
L
L
L
H
X
X
Entry  
3
Refresh  
Self  
L
H
L
H
X
L
H
X
H
H
X
H
3
Refresh  
Exit  
L
H
H
H
X
X
3
Bank Active & Row Addr.  
V
V
Row Address  
L
Read &  
Column Address  
Auto Precharge Disable  
Auto Precharge Enable  
Auto Precharge Disable  
Auto Precharge Enable  
4
4
Column  
Address  
L
H
L
H
H
L
Write &  
Column Address  
4
Column  
Address  
H
H
H
X
X
X
L
L
L
H
H
L
L
H
H
L
L
L
V
H
4, 6  
7
Burst Stop  
Precharge  
X
Bank Selection  
All Banks  
V
X
L
X
H
5
H
L
X
V
X
X
H
X
V
X
X
H
X
V
X
X
H
X
V
X
V
X
X
H
X
V
Entry  
Exit  
H
L
L
H
L
Active Power Down  
X
X
X
H
L
Entry  
H
Precharge Power Down Mode  
H
L
Exit  
L
H
H
H
X
DM  
X
X
8
9
9
H
L
X
H
X
H
No operation (NOP) : Not defined  
Table 8. Command truth table  
1. OP Code : Operand Code. A0 ~ A11 & BA0 ~ BA1 : Program keys. (@EMRS/MRS)  
2.EMRS/ MRS can be issued only at all banks precharge state.  
A new command can be issued 2 clock cycles after EMRS or MRS.  
3. Auto refresh functions are same as the CBR refresh of DRAM.  
The automatical precharge without row precharge command is meant by "Auto".  
Auto/self refresh can be issued only at all banks precharge state.  
4. BA0 ~ BA1 : Bank select addresses.  
If both BA0 and BA1 are "Low" at read, write, row active and precharge, bank A is selected.  
If both BA0 is "High" and BA1 is "Low" at read, write, row active and precharge, bank B is selected.  
If both BA0 is "Low" and BA1 is "High" at read, write, row active and precharge, bank C is selected.  
If both BA0 and BA1 are "High" at read, write, row active and precharge, bank D is selected.  
5. If A10/AP is "High" at row precharge, BA0 and BA1 are ignored and all banks are selected.  
6. During burst write with auto precharge, new read/write command can not be issued.  
Another bank read/write command can be issued after the end of burst.  
New row active of the associated bank can be issued at tRP after the end of burst.  
7. Burst stop command is valid at every burst length.  
8. DM sampled at the rising and falling edges of the DQS and Data-in are masked at the both edges (Write DM latency is 0).  
9. This combination is not defined for any function, which means "No Operation(NOP)" in DDR SDRAM.  
- 33 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
5. Functional Truth Table  
Current State  
CS RAS CAS WE  
Address  
Command  
Burst Stop  
Action  
PRECHARGE  
STANDBY  
L
L
L
L
L
L
L
H
H
L
H
L
L
X
H
L
X
ILLEGAL*2  
ILLEGAL*2  
BA, CA, A10  
BA, RA  
BA, A10  
X
READ/WRITE  
Active  
H
H
L
Bank Active, Latch RA  
ILLEGAL*4  
L
PRE/PREA  
Refresh  
L
H
L
AUTO-Refresh*5  
Mode Register Set*5  
NOP  
L
L
Op-Code, Mode-Add MRS  
ACTIVE  
H
H
L
X
Burst Stop  
STANDBY  
Begin Read, Latch CA,  
Determine Auto-Precharge  
L
L
H
H
L
L
H
L
BA, CA, A10  
READ/READA  
Begin Write, Latch CA,  
Determine Auto-Precharge  
BA, CA, A10  
WRITE/WRITEA  
L
L
L
L
L
L
L
L
L
H
H
H
L
H
L
BA, RA  
BA, A10  
X
Active  
Bank Active/ILLEGAL*2  
Precharge/Precharge All  
ILLEGAL  
PRE/PREA  
Refresh  
H
L
L
Op-Code, Mode-Add MRS  
ILLEGAL  
READ  
H
L
X
Burst Stop  
Terminate Burst  
Terminate Burst, Latch CA,  
Begin New Read, Determine  
Auto-Precharge*3  
L
H
L
H
BA, CA, A10  
READ/READA  
L
L
L
L
L
H
L
L
L
L
L
H
H
L
L
H
L
BA, CA, A10  
BA, RA  
BA, A10  
X
WRITE/WRITEA ILLEGAL  
Active  
Bank Active/ILLEGAL*2  
PRE/PREA  
Refresh  
Terminate Burst, Precharge  
ILLEGAL  
H
L
L
Op-Code, Mode-Add MRS  
ILLEGAL  
Table 9-1. Functional truth table  
- 34 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
Current State  
CS RAS CAS WE  
Address  
Command  
Burst Stop  
Action  
WRITE  
L
H
H
L
X
ILLEGAL  
Terminate Burst With DM=High,  
Latch CA, Begin Read, Deter-  
mine Auto-Precharge*3  
L
H
L
H
BA, CA, A10  
BA, CA, A10  
READ/READA  
Terminate Burst, Latch CA,  
Begin new Write, Determine  
Auto-Precharge*3  
L
H
L
L
WRITE/WRITEA  
L
L
L
L
H
H
H
L
BA, RA  
BA, A10  
X
Active  
Bank Active/ILLEGAL*2  
Terminate Burst With DM=High,  
Precharge  
PRE/PREA  
Refresh  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
ILLEGAL  
ILLEGAL  
ILLEGAL  
*6  
Op-Code, Mode-Add MRS  
READ with  
AUTO  
H
H
H
L
H
L
L
X
Burst Stop  
READ/READA  
H
L
BA, CA, A10  
BA, CA, A10  
BA, RA  
BA, A10  
X
*6  
PRECHARGE  
(READA)  
L
WRITE/WRITEA ILLEGAL  
H
H
L
H
L
Active  
*6  
L
PRE/PREA  
Refresh  
*6  
L
H
L
ILLEGAL  
ILLEGAL  
ILLEGAL  
*7  
L
L
Op-Code, Mode-Add MRS  
WRITE with  
AUTO  
H
H
H
L
H
L
L
X
Burst Stop  
READ/READA  
WRITE/WRITEA *7  
H
L
BA, CA, A10  
BA, CA, A10  
BA, RA  
BA, A10  
X
*7  
RECHARGE  
(WRITEA)  
L
H
H
L
H
L
Active  
*7  
L
PRE/PREA  
Refresh  
*7  
L
H
L
ILLEGAL  
ILLEGAL  
L
L
Op-Code, Mode-Add MRS  
Table 9-2. Functional truth table  
- 35 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
Current State  
CS RAS CAS WE  
Address  
Command  
Burst Stop  
Action  
PRECHARG-  
ING  
(DURING tRP)  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
L
H
L
L
X
H
L
X
ILLEGAL*2  
ILLEGAL*2  
ILLEGAL*2  
BA, CA, A10  
BA, RA  
BA, A10  
X
READ/WRITE  
Active  
H
H
L
L
PRE/PREA  
Refresh  
NOP*4(Idle after tRP)  
ILLEGAL  
L
H
L
L
L
Op-Code, Mode-Add MRS  
ILLEGAL  
ROW  
ACTIVATING  
H
H
L
H
L
L
X
Burst Stop  
ILLEGAL*2  
ILLEGAL*2  
ILLEGAL*2  
ILLEGAL*2  
ILLEGAL  
X
H
L
BA, CA, A10  
BA, RA  
BA, A10  
X
READ/WRITE  
Active  
(FROM ROW  
ACTIVE TO  
tRCD)  
H
H
L
L
PRE/PREA  
Refresh  
L
H
L
L
L
Op-Code, Mode-Add MRS  
ILLEGAL  
WRITE  
RECOVERING  
H
H
H
L
H
L
L
X
Burst Stop  
ILLEGAL*2  
ILLEGAL*2  
WRITE  
H
L
BA, CA, A10  
BA, CA, A10  
BA, RA  
BA, A10  
X
READ  
(DURING tWR  
OR tCDLR)  
L
WRITE  
Active  
H
H
L
H
L
ILLEGAL*2  
ILLEGAL*2  
ILLEGAL  
L
PRE/PREA  
Refresh  
L
H
L
L
L
Op-Code, Mode-Add MRS  
ILLEGAL  
Table 9-3. Functional truth table  
- 36 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
Current State  
CS RAS CAS WE  
Address  
Command  
Burst Stop  
Action  
RE-  
FRESHING  
L
L
L
L
L
L
L
L
L
L
L
L
H
H
L
L
L
L
H
H
L
L
L
L
H
L
L
X
H
L
X
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
BA, CA, A10  
BA, RA  
BA, A10  
X
READ/WRITE  
Active  
H
H
L
PRE/PREA  
Refresh  
H
L
L
Op-Code, Mode-Add MRS  
MODE  
REGISTER  
SETTING  
H
L
L
X
Burst Stop  
X
H
L
BA, CA, A10  
BA, RA  
BA, A10  
X
READ/WRITE  
Active  
H
H
L
PRE/PREA  
Refresh  
H
L
L
Op-Code, Mode-Add MRS  
Table 9-4. Functional truth table  
- 37 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
CKE CKE  
Current State  
CS  
RAS CAS  
WE  
Add  
Action  
n-1  
n
H
H
H
H
H
L
SELF-  
L
H
L
L
L
L
X
X
H
H
H
L
X
H
H
L
X
H
L
X
Exit Self-Refresh  
Exit Self-Refresh  
ILLEGAL  
*8  
REFRESHING  
L
X
X
X
X
X
X
L
L
X
X
X
ILLEGAL  
L
X
X
ILLEGAL  
L
X
NOPeration(Maintain Self-Refresh)  
Exit Power Down(Idle after tPDEX)  
POWER  
DOWN  
L
H
X
X
X
X
L
H
H
H
H
H
H
H
L
L
H
L
L
L
L
L
L
X
H
X
X
L
X
X
L
X
X
L
X
X
H
X
H
L
X
X
X
X
X
X
X
X
X
X
NOPeration(Maintain Power Down)  
Refer to Function True Table  
Enter Self-Refresh  
ALL BANKS  
*9  
IDLE  
H
L
X
H
H
H
L
X
H
H
L
Enter Power Down  
Enter Power Down  
L
ILLEGAL  
L
X
X
X
X
ILLEGAL  
L
X
X
X
ILLEGAL  
X
X
X
X
Refer to Current State=Power Down  
Refer to Function Truth Table  
ANY STATE  
other than  
H
listed above  
Table 9-5. Functional truth table  
ABBREVIATIONS :  
H=High Level, L=Low level, X=Don¢t Care  
Note :  
1. All entries assume that CKE was High during the preceding clock cycle and the current clock cycle.  
2. ILLEGAL to bank in specified state ; function may be legal in the bank indicated by BA, depending on the state of that bank.  
3. Must satisfy bus contention, bus turn around and write recovery requirements.  
4. NOP to bank precharging or in idle sate. May precharge bank indicated by BA.  
5. ILLEGAL if any bank is not idle.  
6. Refer to "3.3.11 Read with Auto Precharge" in page 29 for detailed information.  
7. Refer to "3.3.12 Write with Auto Precharge" in page 30 for detailed information.  
8. CKE Low to High transition will re-enable CK, CK and other inputs asynchronously. A minimum setup time must be satisfied  
before issuing any command other than EXIT.  
9. Power-Down and Self-Refresh can be entered only from All Bank Idle state.  
ILLEGAL = Device operation and/or data integrity are not guaranteed.  
- 38 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
6. Absolute Maximum Rating  
Parameter  
Symbol  
, V  
OUT  
Value  
Unit  
Voltage on any pin relative to V  
V
-0.5 ~ 3.6  
V
SS  
IN  
Voltage on V & V  
supply relative to V  
V
, V  
-1.0 ~ 3.6  
-55 ~ +150  
1.5  
V
°C  
W
DD  
DDQ  
SS  
DD  
DDQ  
STG  
Storage temperature  
Power dissipation  
Short circuit current  
T
P
D
I
50  
mA  
OS  
Note : Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.  
Functional operation should be restricted to recommend operation condition.  
Exposure to higher than recommended voltage for extended periods of time could affect device reliability.  
Table 10. Absolute maximum ratings  
7. DC Operating Conditions & Specifications  
7.1 DC Operating Conditions  
Recommended operating conditions(Voltage referenced to VSS=0V, TA=0 to 70°C)  
Parameter  
Supply voltage(for device with a nominal VDD of 2.5V)  
I/O Supply voltage  
Symbol  
VDD  
Min  
2.3  
Max  
2.7  
Unit  
Note  
VDDQ  
VREF  
2.3  
2.7  
V
V
I/O Reference voltage  
VDDQ/2-50mV VDDQ/2+50mV  
1
2
4
4
I/O Termination voltage(system)  
Input logic high voltage  
V
VREF-0.04  
VREF+0.04  
VDDQ+0.3  
VREF-0.15  
VDDQ+0.3  
VDDQ+0.6  
1.35  
V
TT  
VIH(DC)  
VIL(DC)  
VIN(DC)  
VID(DC)  
VIX(DC)  
II  
VREF+0.15  
-0.3  
V
Input logic low voltage  
V
Input Voltage Level, CK and CK inputs  
Input Differential Voltage, CK and CK inputs  
Input crossing point voltage, CK and CK inputs  
Input leakage current  
-0.3  
V
0.3  
V
3
5
1.15  
-2  
V
2
uA  
uA  
Output leakage current  
IOZ  
-5  
5
Output High Current(Normal strengh driver)  
IOH  
IOL  
IOH  
-16.8  
16.8  
-9  
mA  
mA  
mA  
;V  
= V + 0.84V  
OUT  
TT  
Output High Current(Normal strengh driver)  
;V = V - 0.84V  
OUT  
TT  
Output High Current(Half strengh driver)  
;V = V + 0.45V  
OUT  
TT  
Output High Current(Half strengh driver)  
;V = V - 0.45V  
IOL  
9
mA  
OUT  
TT  
Table 11. DC operating condition  
- 39 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
Notes 1. Includes ± 25mV margin for DC offset on VREF, and a combined total of ± 50mV margin for all AC noise and DC offset on VREF,  
bandwidth limited to 20MHz. The DRAM must accommodate DRAM current spikes on VREF and internal DRAM noise coupled  
TO VREF, both of which may result in VREF noise. VREF should be de-coupled with an inductance of £ 3nH.  
2.V is not applied directly to the device. V is a system supply for signal termination resistors, is expected to be set equal to  
TT  
TT  
VREF, and must track variations in the DC level of VREF  
3. VID is the magnitude of the difference between the input level on CK and the input level on CK.  
4. These parameters should be tested at the pin on actual components and may be checked at either the pin or the pad in  
simulation. The AC and DC input specifications are relative to a VREF envelop that has been bandwidth limited to 200MHZ.  
5. The value of VIX is expected to equal 0.5*VDDQ of the transmitting device and must track variations in the dc level of the same.  
6. These charactericteristics obey the SSTL-2 class II standards.  
7.2 DDR SDRAM SPEC Items and Test Conditions  
Conditions  
Symbol  
IDD0  
Operating current - One bank Active-Precharge;  
tRC=tRCmin;  
DQ,DM and DQS inputs changing twice per clock cycle;  
address and control inputs changing once per clock cycle  
Operating current - One bank operation ; One bank open, BL=4, Reads  
IDD1  
- Refer to the following page for detailed test condition  
Percharge power-down standby current; All banks idle; power - down mode;  
CKE = <VIL(max); Vin = Vref for DQ,DQS and DM  
IDD2P  
IDD2F  
Precharge Floating standby current; CS# > =VIH(min);All banks idle;  
CKE > = VIH(min); Address and other control inputs changing once per clock cycle;  
Vin = Vref for DQ,DQS and DM  
Precharge Quiet standby current; CS# > = VIH(min); All banks idle;  
CKE > = VIH(min);  
IDD2Q  
Address and other control inputs stable with keeping >= VIH(min) or =<VIL(max);  
Vin = Vref for DQ ,DQS and DM  
Active power - down standby current ; one bank active; power-down mode;  
CKE=< VIL (max); Vin = Vref for DQ,DQS and DM  
IDD3P  
IDD3N  
Active standby current; CS# >= VIH(min); CKE>=VIH(min);  
one bank active; active - precharge; tRC=tRASmax;  
DQ, DQS and DM inputs changing twice per clock cycle;  
address and other control inputs changing once per clock cycle  
Operating current - burst read; Burst length = 2; reads; continguous burst;  
One bank active; address and control inputs changing once per clock cycle;  
50% of data changing at every burst; lout = 0 m A  
IDD4R  
IDD4W  
Operating current - burst write; Burst length = 2; writes; continuous burst;  
One bank active address and control inputs changing once per clock cycle;  
DQ, DM and DQS inputs changing twice  
per clock cycle, 50% of input data changing at every burst  
Auto refresh current; tRC = tRFC(min) - 8*tCK for DDR200 at 100Mhz,  
IDD5  
10*tCK for DDR266A & DDR266B at 133Mhz; distributed refresh  
Self refresh current; CKE =< 0.2V; External clock should be on;  
IDD6  
tCK = 100Mhz for DDR200, 133Mhz for DDR266A & DDR266B  
Orerating current - Four bank operation ; Four bank interleaving with BL=4  
IDD7A  
-Refer to the following page for detailed test condition  
- 40 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
7.3 DDR SDRAM IDD spec table  
(VDD=2.7V, T = 10°C)  
128Mx4  
64Mx8  
K4H510438M- K4H510438M- K4H510838M- K4H510838M-  
Symbol  
Unit  
Notes  
TCA2/CB0  
TCA0  
TCA2/CB0  
TCA0  
(DDR266A/B)  
(DDR200)  
(DDR266A/B)  
(DDR200)  
IDD0  
IDD1  
165  
190  
6
150  
175  
5
165  
190  
6
150  
175  
5
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD2P  
IDD2F  
IDD2Q  
IDD3P  
IDD3N  
IDD4R  
IDD4W  
IDD5  
50  
40  
50  
40  
25  
20  
25  
20  
50  
40  
50  
40  
95  
80  
95  
80  
200  
220  
310  
5
160  
180  
290  
5
220  
250  
310  
5
190  
220  
290  
5
IDD6  
Normal  
Low power  
IDD7A  
3
3
3
3
Optional  
460  
400  
480  
420  
Table 13. DDR SDRAM IDD spec Table  
< Detailed test conditions for DDR SDRAM IDD1 & IDD7 >  
IDD1 : Operating current: One bank operation  
1. Only one bank is accessed with tRC(min), Burst Mode, Address and Control inputs on NOP edge are changing once  
per clock cycle. lout = 0mA  
2. Timing patterns  
- DDR200(100Mhz, CL=2) : tCK = 10ns, CL2, BL=4, tRCD = 2*tCK, tRAS = 5*tCK  
Read : A0 N R0 N N P0 N A0 N - repeat the same timing with random address changing  
*50% of data changing at every burst  
- DDR266B(133Mhz, CL=2.5) : tCK = 7.5ns, CL=2.5, BL=4, tRCD = 3*tCK, tRC = 9*tCK, tRAS = 5*tCK  
Read : A0 N N R0 N P0 N N N A0 N - repeat the same timing with random address changing  
*50% of data changing at every burst  
- DDR266A (133Mhz, CL=2) : tCK = 7.5ns, CL=2, BL=4, tRCD = 3*tCK, tRC = 9*tCK, tRAS = 5*tCK  
Read : A0 N N R0 N P0 N N N A0 N - repeat the same timing with random address changing  
*50% of data changing at every burst  
IDD7A : Operating current: Four bank operation  
1. Four banks are being interleaved with tRC(min), Burst Mode, Address and Control inputs on NOP edge are not  
changing. lout = 0mA  
2. Timing patterns  
- DDR200(100Mhz, CL=2) : tCK = 10ns, CL2, BL=4, tRRD = 2*tCK, tRCD= 3*tCK, Read with autoprecharge  
Read : A0 N A1 R0 A2 R1 A3 R2 A0 R3 A1 R0 - repeat the same timing with random address changing  
*100% of data changing at every burst  
- DDR266B(133Mhz, CL=2.5) : tCK = 7.5ns, CL=2.5, BL=4, tRRD = 2*tCK, tRCD = 3*tCK  
Read with autoprecharge  
Read : A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N A1 R0 - repeat the same timing with random address changing  
*100% of data changing at every burst  
- DDR266A (133Mhz, CL=2) : tCK = 7.5ns, CL2=2, BL=4, tRRD = 2*tCK, tRCD = 3*tCK,Read with autoprecharge  
Read : A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N A1 R0 - repeat the same timing with random address changing  
*100% of data changing at every burst  
Legend : A=Activate, R=Read, W=Write, P=Precharge, N=NOP  
- 41 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
8. AC Operating Conditions & Timming Specification  
8.1 AC Operating Conditions  
Max  
Parameter/Condition  
Symbol  
Min  
Unit  
Note  
Input High (Logic 1) Voltage, DQ, DQS and DM signals  
Input Low (Logic 0) Voltage, DQ, DQS and DM signals.  
Input Differential Voltage, CK and CK inputs  
VIH(AC) VREF + 0.31  
VIL(AC)  
V
V
V
V
3
3
1
2
VREF - 0.31  
VDDQ+0.6  
VID(AC) 0.7  
Input Crossing Point Voltage, CK and CK inputs  
VIX(AC) 0.5*VDDQ-0.2  
0.5*VDDQ+0.2  
Note  
1. VID is the magnitude of the difference between the input level on CK and the input on CK.  
2. The value of V is expected to equal 0.5*V of the transmitting device and must track variations in the DC level of the same.  
IX  
DDQ  
3. These parameters should be tested at the pim on actual components and may be checked at either the pin or the pad in simula-  
tion. the AC and DC input specificatims are refation to a Vref envelope that has been bandwidth limited 20MHz.  
Table 13. AC operating conditions  
- 42 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
8.2 AC Overshoot/Undershoot specification  
8.2.1 Overshoot/Undershoot specification for Address and Control Pins  
Parameter  
Specification Notes  
Maximum peak amplitude allowed for overshoot (See Figure 1):  
Maximum peak amplitude allowed for undershoot (See Figure 1):  
1.6 V  
1.6 V  
1,2,3  
1,2,3  
The area between the overshoot signal and VDD must be less than or  
equal to (See Figure 1):  
4.5 V-ns  
4.5 V-ns  
1,2,3  
1,2,3  
The area between the undershoot signal and GND must be less than or  
equal to (See Figure 1):  
Table 14. Overshoot/Undershoot specification for Address and Control Pins  
VDD  
Overshoot  
5
Maximum Amplitude = 1.6V  
4
3
2
Area = 4.5V-ns  
1
0
-1  
-2  
Maximum Amplitude = 1.6V  
GND  
-3  
-4  
-5  
0
0.6875  
0.5 1.0  
1.5  
2.5  
3.5  
4.5  
5.5  
6.3125  
6.0 6.5  
undershoot  
7.0  
2.0  
3.0  
4.0  
5.0  
Tims(ns)  
Figure 24. AC overshoot/Undershoot Definition  
Notes:  
1. This specification is intended for only DDR200, DDR266A and DDR266B devices.  
2. This specification is intended for only devices with NO clamp protection  
3. This compliance is to be verified by design only.  
- 43 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
8.2.2 Overshoot/Undershoot specification for Data Pins  
Parameter  
Specification Notes  
Maximum peak amplitude allowed for overshoot (See Figure 2):  
Maximum peak amplitude allowed for undershoot (See Figure 2):  
1.2 V  
1.2 V  
1,2,3  
1,2,3  
The area between the overshoot signal and VDD must be less than or  
equal to (See Figure 2):  
2.5 V-ns  
2.5 V-ns  
1,2,3  
1,2,3  
The area between the undershoot signal and GND must be less than or  
equal to (See Figure 2):  
Table 15. Overshoot/Undershoot specification for Data Pins  
VDDQ  
Overshoot  
5
Maximum Amplitude = 1.2V  
4
3
2
Area = 2.5V-ns  
1
0
-1  
-2  
-3  
-4  
-5  
Maximum Amplitude = 1.2V  
GND  
0
0.5 1.0 1.42 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 5.68 6.0 6.5 7.0  
Tims(ns)  
undershoot  
Figure 25. AC overshoot/Undershoot Definition  
Notes:  
1. This specification is intended for only DDR200, DDR266A and DDR266B devices.  
2. This specification is intended for only devices with NO clamp protection  
3. This compliance is to be verified by design only.  
- 44 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
8.3 AC Timming Parameters & Specifications  
-TCA2  
(DDR266A)  
-TCB0  
(DDR266B)  
-TCA0  
(DDR200)  
Parameter  
Symbol  
Unit  
Note  
Min  
Max  
Min  
Max  
Min  
Max  
Row cycle time  
tRC  
tRFC  
tRAS  
tRCD  
tRP  
65  
75  
65  
75  
70  
80  
48  
20  
20  
15  
15  
1
ns  
ns  
Refresh row cycle time  
Row active time  
45  
120K  
45  
120K  
120K  
ns  
RAS to CAS delay  
20  
20  
ns  
Row precharge time  
20  
20  
ns  
Row active to Row active delay  
Write recovery time  
tRRD  
tWR  
15  
15  
ns  
15  
15  
ns  
Last data in to Read command  
Col. address to Col. address delay  
tWTR  
tCCD  
1
1
tCK  
tCK  
ns  
1
1
1
CL=2.0  
CL=2.5  
7.5  
7.5  
0.45  
0.45  
-0.75  
-0.75  
-
12  
12  
10  
12  
12  
10  
12  
5
5
Clock cycle time  
tCK  
7.5  
0.45  
0.45  
-0.75  
-0.75  
-
ns  
Clock high level width  
tCH  
tCL  
0.55  
0.55  
+0.75  
+0.75  
0.5  
0.55  
0.55  
+0.75  
+0.75  
0.5  
0.45  
0.45  
-0.8  
-0.8  
-
0.55  
0.55  
+0.8  
+0.8  
0.6  
tCK  
tCK  
ns  
Clock low level width  
DQS-out access time from CK/CK  
tDQSCK  
tAC  
Output data access time from CK/CK  
Data strobe edge to ouput data edge  
Read Preamble  
ns  
tDQSQ  
tRPRE  
tRPST  
tDQSS  
tWPRES  
tWPRE  
tDSS  
tDSH  
tDQSH  
tDQSL  
tDSC  
tIS  
ns  
5
2
0.9  
0.4  
0.75  
0
1.1  
0.9  
0.4  
0.75  
0
1.1  
0.9  
0.4  
0.75  
0
1.1  
tCK  
tCK  
tCK  
ns  
Read Postamble  
0.6  
0.6  
0.6  
CK to valid DQS-in  
1.25  
1.25  
1.25  
DQS-in setup time  
DQS-in hold time  
0.25  
0.2  
0.2  
0.35  
0.35  
0.9  
0.9  
0.9  
1.0  
1.0  
-0.75  
-0.75  
0.5  
0.5  
1.0  
0.67  
0.25  
0.2  
0.2  
0.35  
0.35  
0.9  
0.9  
0.9  
1.0  
1.0  
-0.75  
-0.75  
0.5  
0.5  
1.0  
0.67  
0.25  
0.2  
0.2  
0.35  
0.35  
0.9  
1.1  
1.1  
1.1  
1.1  
-0.8  
-0.8  
0.5  
0.5  
1.0  
0.67  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
ns  
DQS falling edge to CK rising-setup time  
DQS falling edge from CK rising-hold time  
DQS-in high level width  
DQS-in low level width  
DQS-in cycle time  
1.1  
1.1  
1.1  
Address and Control Input setup time(fast)  
Address and Control Input hold time(fast)  
Address and Control Input setup time(slow)  
Address and Control Input hold time(slow)  
Data-out high impedence time from CK/CK  
Data-out low impedence time from CK/CK  
Input Slew Rate(for input only pins)  
Input Slew Rate(for I/O pins)  
Output Slew Rate(x4,x8)  
6
6
6
6
tIH  
ns  
tIS  
ns  
tIH  
ns  
tHZ  
+0.75  
+0.75  
+0.75  
+0.75  
+0.8  
+0.8  
ns  
tLZ  
ns  
tSL(I)  
tSL(IO)  
tSL(O)  
V/ns  
V/ns  
V/ns  
6
7
4.5  
1.5  
4.5  
1.5  
4.5  
1.5  
10  
Output Slew Rate Matching Ratio(rise to fall) tSLMR  
- 45 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
-TCA2  
(DDR266A)  
-TCB0  
(DDR266B)  
-TCA0  
(DDR200)  
Parameter  
Symbol  
Unit  
Note  
Min  
Max  
Min  
Max  
Min  
Max  
Mode register set cycle time  
DQ & DM setup time to DQS  
DQ & DM hold time to DQS  
tMRD  
tDS  
15  
15  
16  
ns  
ns  
ns  
0.5  
0.5  
0.6  
7,8,9  
7,8,9  
tDH  
0.5  
0.5  
0.6  
Control & Address input pulse width  
DQ & DM input pulse width  
Power down exit time  
tIPW  
tDIPW  
tPDEX  
2.2  
1.75  
7.5  
75  
2.2  
1.75  
7.5  
75  
2.5  
2
ns  
ns  
10  
ns  
Exit self refresh to non-Read command tXSNR  
80  
ns  
4
Exit self refresh to read command  
Refresh interval time  
tXSRD  
tREFI  
200  
7.8  
200  
7.8  
200  
7.8  
tCK  
us  
1
5
tHP  
-tQHS  
tHP  
-tQHS  
tHP  
-tQHS  
Output DQS valid window  
Clock half period  
tQH  
tHP  
-
-
-
-
-
-
ns  
ns  
tCLmin  
or tCHmin  
tCLmin  
or tCHmin  
tCLmin  
or tCHmin  
Data hold skew factor  
tQHS  
0.75  
0.6  
0.75  
0.6  
0.8  
0.6  
ns  
DQS write postamble time  
tWPST  
0.4  
20  
0.4  
20  
0.4  
20  
tCK  
3
Active to Read with Auto precharge  
command  
tRAP  
Autoprecharge write recovery +  
Precharge time  
(tWR/tCK)  
+
(tWR/tCK)  
+
(tWR/tCK)  
+
tDAL  
tCK  
11  
(tRP/tCK)  
(tRP/tCK)  
(tRP/tCK)  
1. Maximum burst refresh cycle : 8  
2. The specific requirement is that DQS be valid(High or Low) on or before this CK edge. The case shown(DQS going from  
High_Z to logic Low) applies when no writes were previously in progress on the bus. If a previous write was in progress,  
DQS could be High at this time, depending on tDQSS.  
3. The maximum limit for this parameter is not a device limit. The device will operate with a great value for this parameter,  
but system performance (bus turnaround) will degrade accordingly.  
4. A write command can be applied with tRCD satisfied after this command.  
5. For registered DIMMs, tCL and tCH are ³ 45% of the period including both the half period jitter (tJIT(HP)) of the PLL and the half period  
jitter due to crosstalk (tJIT(crosstalk)) on the DIMM.  
6. Input Setup/Hold Slew Rate Derating  
Input Setup/Hold Slew Rate  
DtIS  
(ps)  
0
DtIH  
(ps)  
0
(V/ns)  
0.5  
0.4  
+50  
+100  
+50  
+100  
0.3  
This derating table is used to increase t /t in the case where the input slew rate is below 0.5V/ns. Input setup/hold slew rate  
IS IH  
based on the lesser of AC-AC slew rate and DC-DC slew rate.  
7. I/O Setup/Hold Slew Rate Derating  
I/O Setup/Hold Slew Rate  
DtDS  
(ps)  
0
DtDH  
(ps)  
0
(V/ns)  
0.5  
0.4  
+75  
+150  
+75  
+150  
0.3  
This derating table is used to increase t /t in the case where the I/O slew rate is below 0.5V/ns. I/O setup/hold slew rate  
DS DH  
based on the lesser of AC-AC slew rate and DC-DC slew rate.  
- 46 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
8. I/O Setup/Hold Plateau Derating  
I/O Input Level  
(mV)  
DtDS  
DtDH  
(ps)  
(ps)  
+50  
± 280  
+50  
This derating table is used to increase tDS/tDH in the case where the input level is flat below VREF ± 310mV for a duration of  
up to 2ns.  
9. I/O Delta Rise/Fall Rate(1/slew-rate) Derating  
Delta Rise/Fall Rate  
DtDS  
(ps)  
0
DtDH  
(ps)  
0
(ns/V)  
0
±0.25  
±0.5  
+50  
+100  
+50  
+100  
This derating table is used to increase tDS/tDH in the case where the DQ and DQS slew rates differ. The Delta Rise/Fall Rate  
is calated as 1/SlewRate1-1/SlewRate2. For example, if slew rate 1 = 5V/ns and slew rate 2 =.4V/ns then the Delta Rise/Fall  
Rate =-0/5ns/V. Input S/H slew rate based on larger of AC-AC delta rise/fall rate and DC-DC delta rise/fall rate.  
10. This parameter is fir system simulation purpose. It is guranteed by design.  
11. For each of the terms, if not already an integer, round to the next highest integer. tCK is actual to the system clock cycle time.  
<Reference>  
The following table specifies derating values for the specifications listed if the single-ended clock skew rate is less than 1.0V/ns.  
CK slew rate  
DtIH/tIS  
DtDSS/tDSH  
DtAC/tDQSCK  
DtLZ(min)  
DtHZ(max)  
(Single ended)  
(ps)  
(ps)  
(ps)  
(ps)  
(ps)  
1.0V/ns  
0.75V/ns  
0.5V/ns  
0
0
0
0
0
+50  
+100  
+50  
+100  
+50  
+100  
-50  
-100  
+50  
+100  
Table 17. AC timing parameters and specifications  
- 47 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
9. AC Operating Test Conditions  
(VDD=2.5V, VDDQ=2.5V, TA= 0 to 70°C)  
Parameter  
Input reference voltage for Clock  
Input signal maximum peak swing  
Input signal minimum slew rate (for imput only)  
Input slew rate (I/O pins)  
Value  
Unit  
V
Note  
0.5 * VDDQ  
1.5  
V
0.5  
V/ns  
V/ns  
V
0.5  
VREF+0.31/VREF-0.31  
VREF  
Input Levels(VIH/VIL)  
Input timing measurement reference level  
Output timing measurement reference level  
Output load condition  
V
Vtt  
V
See Load Circuit  
Table 17. AC operating test conditions  
Vtt=0.5*VDDQ  
RT=50W  
Output  
Z0=50W  
VREF  
=0.5*VDDQ  
CLOAD=30pF  
Figure 26. Output Load Circuit (SSTL_2)  
10. Input/Output Capacitance  
(VDD=2.5, VDDQ=2.5V, TA= 25°C, f=1MHz)  
Parameter  
Symbol  
Min  
Max  
Delta Cap(max)  
Unit  
Input capacitance  
(A0 ~ A11, BA0 ~ BA1, CKE, CS, RAS,CAS, WE)  
CIN1  
2
3.0  
0.5  
pF  
Input capacitance( CK, CK )  
Data & DQS input/output capacitance  
Input capacitance(DM)  
CIN2  
COUT  
CIN3  
2
3.0  
5.0  
5.0  
0.25  
pF  
pF  
pF  
4.0  
4.0  
0.5  
Table 18. Input/output capacitance  
- 48 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
11. IBIS: I/V Characteristics for Input and Output Buffers  
11.1 Normal strength driver  
1. The full variation in driver pulldown current from minimum to maximum process, temperature, and voltage will lie within the outer  
bounding lines of the V-I curve of Figure a.  
2. The full variation in driver pulldown current from minimum to maximum process, temperature and voltage will lie within the outer  
bounding lines the of the V-I curve of Figure a.  
Maximum  
1 6 0  
1 4 0  
1 2 0  
Typical High  
1 0 0  
8 0  
Typical Low  
6 0  
Minimum  
4 0  
2 0  
0
0. 0  
0. 5  
1. 0  
1. 5  
2. 0  
2. 5  
Vout(V)  
3. The full variation in driver pullup current from minimum to maximun process, temperature, and voltage will lie within the outer  
bounding lines of the V-I curve of Figure b.  
4. The variation in the driver pullup current at nominal temperature and voltage is expected, but not guaranteed, to lie within the  
inner boungding lines of the V-I curve of Figure b as  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0
- 20  
Minumum  
- 40  
Typical Low  
- 60  
- 80  
- 100  
- 120  
- 140  
- 160  
- 180  
- 200  
- 220  
Typical High  
Maximum  
Vout(V)  
5. The full variation in the ratio of the maximum to minimum pullup and pulldown current will not exceed 1.7, for device drain to source  
voltage from 0 to VDDQ/2  
6. The Full variation in the ratio of the nominal pullup to pulldown current should be unity ±10%, for device drain to source voltages  
from 0 to VDDQ/2  
Figure 27. I/V characteristics for input/output buffers:Pull up(above) and pull down(below)  
- 49 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
Pulldown Current (mA)  
pullup Current (mA)  
Voltage  
(V)  
Typical  
Low  
Typical  
High  
Typical  
Low  
Typical  
Minimum  
High  
Minimum  
Maximum  
Maximum  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
6.0  
6.8  
13.5  
20.1  
26.6  
33.0  
39.1  
44.2  
49.8  
55.2  
60.3  
65.2  
69.9  
74.2  
78.4  
82.3  
85.9  
89.1  
92.2  
95.3  
97.2  
99.1  
100.9  
101.9  
102.8  
103.8  
104.6  
105.4  
4.6  
9.6  
-6.1  
-7.6  
-4.6  
-10.0  
-20.0  
12.2  
18.1  
24.1  
29.8  
34.6  
39.4  
43.7  
47.5  
51.3  
54.1  
56.2  
57.9  
59.3  
60.1  
60.5  
61.0  
61.5  
62.0  
62.5  
62.9  
63.3  
63.8  
64.1  
64.6  
64.8  
65.0  
9.2  
18.2  
-12.2  
-18.1  
-24.0  
-29.8  
-34.3  
-38.1  
-41.1  
-41.8  
-46.0  
-47.8  
-49.2  
-50.0  
-50.5  
-50.7  
-51.0  
-51.1  
-51.3  
-51.5  
-51.6  
-51.8  
-52.0  
-52.2  
-52.3  
-52.5  
-52.7  
-52.8  
-14.5  
-9.2  
13.8  
18.4  
23.0  
27.7  
32.2  
36.8  
39.6  
42.6  
44.8  
46.2  
47.1  
47.4  
47.7  
48.0  
48.4  
48.9  
49.1  
49.4  
49.6  
49.8  
49.9  
50.0  
50.2  
50.4  
50.5  
26.0  
-21.2  
-13.8  
-18.4  
-23.0  
-27.7  
-32.2  
-36.0  
-38.2  
-38.7  
-39.0  
-39.2  
-39.4  
-39.6  
-39.9  
-40.1  
-40.2  
-40.3  
-40.4  
-40.5  
-40.6  
-40.7  
-40.8  
-40.9  
-41.0  
-41.1  
-41.2  
-29.8  
33.9  
-27.7  
-38.8  
41.8  
-34.1  
-46.8  
49.4  
-40.5  
-54.4  
56.8  
-46.9  
-61.8  
63.2  
-53.1  
-69.5  
69.9  
-59.4  
-77.3  
76.3  
-65.5  
-85.2  
82.5  
-71.6  
-93.0  
88.3  
-77.6  
-100.6  
-108.1  
-115.5  
-123.0  
-130.4  
-136.7  
-144.2  
-150.5  
-156.9  
-163.2  
-169.6  
-176.0  
-181.3  
-187.6  
-192.9  
-198.2  
93.8  
-83.6  
99.1  
-89.7  
103.8  
108.4  
112.1  
115.9  
119.6  
123.3  
126.5  
129.5  
132.4  
135.0  
137.3  
139.2  
140.8  
-95.5  
-101.3  
-107.1  
-112.4  
-118.7  
-124.0  
-129.3  
-134.6  
-139.9  
-145.2  
-150.5  
-155.3  
-160.1  
Table 19. Pull down and pull up current values  
Temperature (Tambient)  
Typical  
Minimum  
Maximum  
25°C  
70°C  
0°C  
Vdd/Vddq  
Typical  
2.5V  
Minimum  
Maximum  
2.3V  
2.7V  
The above characteristics are specified under best, worst and normal process variation/conditions  
- 50 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
11.2 Weak strength driver  
1. The nominal pulldown V-I curve for DDR SDRAM devices will be within the inner bounding lines of the V-I curve of Figure a.  
2. The full variation in driver pulldown current from minimum to maximum process, temperature and voltage will lie within the outer  
bounding lines the of the V-I curve of Figure a.  
9 0  
Maximum  
8 0  
7 0  
6 0  
Typical High  
5 0  
4 0  
Typical Low  
Minimum  
3 0  
2 0  
1 0  
0
0. 0  
1. 0  
2. 0  
Vout(V)  
3. Thenominal pullup V-I curve for DDR SDRAM devices will be within the inner bounding lines of the V-I curve of below Figure b.  
4. The Full variation in driver pullup current from minimum to maximum process, temperature and voltage will lie within the outer  
bounding lines of the V-I curve of Figrue b.  
0. 0  
0. 5  
1. 0  
1. 5  
2. 0  
2. 5  
0
- 1 0  
- 2 0  
Minumum  
- 3 0  
- 4 0  
- 5 0  
- 6 0  
Typical Low  
Typical High  
Maximum  
- 7 0  
- 8 0  
- 9 0  
Vout(V)  
5. The full variation in the ratio of the maximum to minimum pullup and pulldown current will not exceed 1.7, for device drain to source  
voltage from 0 to VDDQ/2  
6. The Full variation in the ratio of the nominal pullup to pulldown current should be unity ±10%, for device drain to source voltages  
from 0 to VDDQ/2  
Figure 28. I/V characteristics for input/output buffers:Pull up(above) and pull down(below)  
- 51 -  
Rev. 0.7 May, 2002  
512Mb DDR SDRAM  
Pulldown Current (mA)  
pullup Current (mA)  
Voltage  
(V)  
Typical  
Low  
Typical  
High  
Typical  
Low  
Typical  
Minimum  
High  
Minimum  
Maximum  
Maximum  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
3.4  
3.8  
2.6  
5.0  
-3.5  
-4.3  
-2.6  
-5.0  
6.9  
7.6  
5.2  
9.9  
-6.9  
-8.2  
-5.2  
-9.9  
10.3  
13.6  
16.9  
19.6  
22.3  
24.7  
26.9  
29.0  
30.6  
31.8  
32.8  
33.5  
34.0  
34.3  
34.5  
34.8  
35.1  
35.4  
35.6  
35.8  
36.1  
36.3  
36.5  
36.7  
36.8  
11.4  
15.1  
18.7  
22.1  
25.0  
28.2  
31.3  
34.1  
36.9  
39.5  
42.0  
44.4  
46.6  
48.6  
50.5  
52.2  
53.9  
55.0  
56.1  
57.1  
57.7  
58.2  
58.7  
59.2  
59.6  
7.8  
14.6  
19.2  
23.6  
28.0  
32.2  
35.8  
39.5  
43.2  
46.7  
50.0  
53.1  
56.1  
58.7  
61.4  
63.5  
65.6  
67.7  
69.8  
71.6  
73.3  
74.9  
76.4  
77.7  
78.8  
79.7  
-10.3  
-13.6  
-16.9  
-19.4  
-21.5  
-23.3  
-24.8  
-26.0  
-27.1  
-27.8  
-28.3  
-28.6  
-28.7  
-28.9  
-28.9  
-29.0  
-29.2  
-29.2  
-29.3  
-29.5  
-29.5  
-29.6  
-29.7  
-29.8  
-29.9  
-12.0  
-15.7  
-19.3  
-22.9  
-26.5  
-30.1  
-33.6  
-37.1  
-40.3  
-43.1  
-45.8  
-48.4  
-50.7  
-52.9  
-55.0  
-56.8  
-58.7  
-60.0  
-61.2  
-62.4  
-63.1  
-63.8  
-64.4  
-65.1  
-65.8  
-7.8  
-14.6  
-19.2  
-23.6  
-28.0  
-32.2  
-35.8  
-39.5  
-43.2  
-46.7  
-50.0  
-53.1  
-56.1  
-58.7  
-61.4  
-63.5  
-65.6  
-67.7  
-69.8  
-71.6  
-73.3  
-74.9  
-76.4  
-77.7  
-78.8  
-79.7  
10.4  
13.0  
15.7  
18.2  
20.8  
22.4  
24.1  
25.4  
26.2  
26.6  
26.8  
27.0  
27.2  
27.4  
27.7  
27.8  
28.0  
28.1  
28.2  
28.3  
28.3  
28.4  
28.5  
28.6  
-10.4  
-13.0  
-15.7  
-18.2  
-20.4  
-21.6  
-21.9  
-22.1  
-22.2  
-22.3  
-22.4  
-22.6  
-22.7  
-22.7  
-22.8  
-22.9  
-22.9  
-23.0  
-23.0  
-23.1  
-23.2  
-23.2  
-23.3  
-23.3  
Table 20. Pull down and pull up current values  
Temperature (Tambient)  
Typical  
Minimum  
Maximum  
25°C  
70°C  
0°C  
Vdd/Vddq  
Typical  
2.5V  
Minimum  
Maximum  
2.3V  
2.7V  
The above characteristics are specified under best, worst and normal process variation/conditions  
- 52 -  
Rev. 0.7 May, 2002  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY