K4H511638D-LB3 [SAMSUNG]

512Mb D-die DDR SDRAM Specification 66 TSOP-II with Pb-Free (RoHS compliant); 512MB D-死DDR SDRAM规格66 TSOP- II与无铅(符合RoHS)
K4H511638D-LB3
型号: K4H511638D-LB3
厂家: SAMSUNG    SAMSUNG
描述:

512Mb D-die DDR SDRAM Specification 66 TSOP-II with Pb-Free (RoHS compliant)
512MB D-死DDR SDRAM规格66 TSOP- II与无铅(符合RoHS)

动态存储器 双倍数据速率
文件: 总24页 (文件大小:365K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
512Mb D-die DDR SDRAM Specification  
66 TSOP-II with Pb-Free  
(RoHS compliant)  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.  
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,  
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,  
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL  
INFORMATION IN THIS DOCUMENT IS PROVIDED  
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar  
applications where Product failure could result in loss of life or personal or physical harm, or any military or  
defense application, or any governmental procurement to which special terms or provisions may apply.  
* Samsung Electronics reserves the right to change products or specification without notice.  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
Table of Contents  
1.0 Key Features ...............................................................................................................................4  
2.0 Ordering Information...................................................................................................................4  
3.0 Operating Frequencies................................................................................................................4  
4.0 Pin Description ............................................................................................................................5  
5.0 Package Physical Dimension .....................................................................................................6  
6.0 Block Diagram (16Mbit x8 / 8Mbit x16 I/O x4 Banks)................................................................7  
7.0 Input/Output Function Description ............................................................................................8  
8.0 Command Truth Table.................................................................................................................9  
9.0 General Description...................................................................................................................10  
10.0 Absolute Maximum Rating .....................................................................................................10  
11.0 DC Operating Conditions........................................................................................................10  
12.0 DDR SDRAM Spec Items & Test Conditions .........................................................................11  
13.0 Input/Output Capacitance ......................................................................................................11  
14.0 Detailed test condition for DDR SDRAM IDD1 & IDD7A ......................................................12  
15.0 DDR SDRAM IDD spec table ..................................................................................................13  
16.0 AC Operating Conditions .......................................................................................................14  
17.0 AC Overshoot/Undershoot specification for Address and Control Pins............................14  
18.0 Overshoot/Undershoot specification for Data, Strobe and Mask Pins...............................15  
19.0 AC Timming Parameters & Specifications ...........................................................................16  
20.0 System Characteristics for DDR SDRAM ..............................................................................17  
21.0 Component Notes....................................................................................................................18  
22.0 System Notes...........................................................................................................................20  
23.0 IBIS : I/V Characteristics for Input and Output Buffers........................................................21  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
Revision History  
Revision  
0.0  
Month  
December  
January  
April  
Year  
2004  
2005  
2005  
2005  
History  
- First version for internal review  
- Preliminary spec release  
- Added notice  
0.1  
0.2  
0.3  
June  
- Changed Mater format.  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
1.0 Key Features  
• VDD : 2.5V ± 0.2V, VDDQ : 2.5V ± 0.2V for DDR266, 333  
• VDD : 2.6V ± 0.1V, VDDQ : 2.6V ± 0.1V for DDR400  
• Double-data-rate architecture; two data transfers per clock cycle  
• Bidirectional data strobe [DQS] (x4,x8) & [L(U)DQS] (x16)  
• Four banks operation  
• Differential clock inputs(CK and CK)  
• DLL aligns DQ and DQS transition with CK transition  
• MRS cycle with address key programs  
-. Read latency : DDR266(2, 2.5 Clock), DDR333(2.5 Clock), DDR400(3 Clock)  
-. Burst length (2, 4, 8)  
-. Burst type (sequential & interleave)  
• All inputs except data & DM are sampled at the positive going edge of the system clock(CK)  
• Data I/O transactions on both edges of data strobe  
• Edge aligned data output, center aligned data input  
• LDM,UDM for write masking only (x16)  
• DM for write masking only (x4, x8)  
• Auto & Self refresh  
• 7.8us refresh interval(8K/64ms refresh)  
• Maximum burst refresh cycle : 8  
• 66pin TSOP II Pb-Free package  
RoHS compliant  
2.0 Ordering Information  
Part No.  
Org.  
Max Freq.  
Interface  
Package  
K4H510838D-UC/LCC  
K4H510838D-UC/LB3  
K4H510838D-UC/LA2  
K4H510838D-UC/LB0  
K4H511638D-UC/LCC  
K4H511638D-UC/LB3  
K4H511638D-UC/LA2  
K4H511638D-UC/LB0  
CC(DDR400@CL=3)  
B3(DDR333@CL=2.5)  
A2(DDR266@CL=2)  
B0(DDR266@CL=2.5)  
CC(DDR400@CL=3)  
B3(DDR333@CL=2.5)  
A2(DDR266@CL=2)  
B0(DDR266@CL=2.5)  
64M x 8  
SSTL2  
66pin TSOP II  
32M x 16  
SSTL2  
66pin TSOP II  
3.0 Operating Frequencies  
CC(DDR400@CL=3)  
B3(DDR333@CL=2.5)  
A2(DDR266@CL=2.0)  
B0(DDR266@CL=2.5)  
Speed @CL2  
Speed @CL2.5  
Speed @CL3  
CL-tRCD-tRP  
-
133MHz  
166MHz  
-
133MHz  
133MHz  
-
100MHz  
133MHz  
-
166MHz  
200MHz  
3-3-3  
2.5-3-3  
2-3-3  
2.5-3-3  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
4.0 Pin Description  
32Mb x 16  
64Mb x 8  
V
SS  
V
SS  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
1
V
DD  
V
DD  
DQ  
7
DQ15  
2
DQ  
0
DQ  
0
VSSQ  
VSSQ  
3
VDDQ  
VDDQ  
NC  
DQ  
DQ14  
DQ13  
4
DQ  
1
2
NC  
6
5
DQ  
DQ  
1
VDDQ  
VDDQ  
6
VSSQ  
VSSQ  
NC  
DQ  
DQ12  
DQ11  
7
DQ  
3
4
NC  
5
8
DQ  
DQ  
2
DDQ  
NC  
VSSQ  
VSSQ  
9
VDDQ  
V
NC  
DQ  
DQ10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
DQ  
5
6
66Pin TSOPII  
(400mil x 875mil)  
(0.65mm Pin Pitch)  
4
DQ  
9
DQ  
DQ  
3
VDDQ  
VDDQ  
VSSQ  
VSSQ  
NC  
NC  
DQ  
8
DQ  
7
NC  
NC  
DDQ  
NC  
NC  
NC  
NC  
Bank Address  
BA0~BA1  
VSSQ  
VSSQ  
VDDQ  
V
DQS  
NC  
UDQS  
NC  
LDQS  
NC  
Auto Precharge  
A10  
VREF  
VREF  
VDD  
VDD  
VSS  
VSS  
NC  
LDM  
WE  
NC  
NC  
DM  
CK  
UDM  
CK  
WE  
CAS  
RAS  
CS  
CK  
CK  
CAS  
RAS  
CS  
CKE  
NC  
CKE  
NC  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
A
A
A
A
A
A
A
A
12  
11  
9
A
A
A
A
A
A
A
A
12  
11  
9
NC  
NC  
BA  
0
BA  
0
BA  
1
BA  
1
8
8
AP/A10 AP/A10  
7
7
A
A
A
A
0
1
2
3
A
A
A
A
0
1
2
3
6
6
5
5
4
4
VSS  
VSS  
VDD  
VDD  
512Mb TSOP-II Package Pinout  
Organization  
64Mx8  
Row Address  
A0~A12  
Column Address  
A0-A9, A11  
A0-A9  
32Mx16  
A0~A12  
DM is internally loaded to match DQ and DQS identically.  
Row & Column address configuration  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
5.0 Package Physical Dimension  
Units : Millimeters  
#66  
#34  
(10×)  
(10×)  
#1  
#33  
+0.075  
-0.035  
0.125  
(1.50)  
22.22±0.10  
(10×)  
(10×)  
0.10 MAX  
0.25TYP  
(0.71)  
0.65TYP  
0.65±0.08  
0.30±0.08  
[
]
0.075 MAX  
NOTE  
1. (  
0×~8×  
) IS REFERENCE  
2. [  
] IS ASSY OUT QUALITY  
66pin TSOPII / Package dimension  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
6.0 Block Diagram (16Mb x 8 / 8Mb x 16 I/O x4 Banks)  
LWE  
x8/16  
CK, CK  
Data Input Register  
Serial to parallel  
LDM (x8)  
LUDM (x16)  
Bank Select  
x8/16/32  
8Mx16/ 4Mx32  
8Mx16/ 4Mx32  
8Mx16/ 4Mx32  
8Mx16/ 4Mx32  
x16/32  
x8/16  
x8/16  
DQi  
CK, CK  
ADD  
Column Decoder  
Latency & Burst Length  
Data Strobe  
Programming Register  
LWCBR  
LCKE  
LDM (x8)  
LUDM (x16)  
LRAS LCBR  
LWE  
LCAS  
CK, CK  
DM Input Register  
Timing Register  
LDM (x8)  
LUDM (x16)  
CK, CK  
CKE  
CS  
RAS  
CAS  
WE  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
7.0 Input/Output Function Description  
SYMBOL  
TYPE  
DESCRIPTION  
Clock : CK and CK are differential clock inputs. All address and control input signals are sam-  
pled on the positive edge of CK and negative edge of CK. Output (read) data is referenced to  
both edges of CK. Internal clock signals are derived from CK/CK.  
CK, CK  
Input  
Clock Enable : CKE HIGH activates, and CKE LOW deactivates internal clock signals, and  
device input buffers and output drivers. Taking CKE Low provides PRECHARGE POWER-  
DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWER-DOWN (row  
ACTIVE in any bank). CKE is synchronous for POWER-DOWN entry and exit, and for SELF  
REFRESH entry. CKE is asynchronous for SELF REFRESH exit, and for output disable. CKE  
must be maintained high throughput READ and WRITE accesses. Input buffers, excluding CK,  
CK and CKE are disabled during POWER-DOWN. Input buffers, excluding CKE are disabled  
during SELF REFRESH. CKE is an SSTL_2 input, but will detect an LVCMOS Low level after  
Vdd is applied upon 1st power up, After VREF has become stable during the power on and ini-  
CKE  
Input  
tialization sequence, it must be maintained for proper operation of the CKE receiver. For  
proper SELF-REFRESH entry and exit, VREF must be maintained to this input.  
Chip Select : CS enables(registered LOW) and disables(registered HIGH) the command  
decoder. All commands are masked when CS is registered HIGH. CS provides for external  
bank selection on systems with multiple banks. CS is considered part of the command code.  
CS  
Input  
Input  
RAS, CAS, WE  
Command Inputs : RAS, CAS and WE (along with CS) define the command being entered.  
Input Data Mask : DM is an input mask signal for write data. Input data is masked when DM is  
sampled HIGH along with that input data during a WRITE access. DM is sampled on both  
edges of DQS. Although DM pins are input only, the DM loading matches the DQ and DQS  
loading. For the x16, LDM corresponds to the data on DQ0~D7 ; UDM corresponds to the data  
on DQ8~DQ15. DM may be driven high, low, or floating during READs.  
LDM,(UDM)  
BA0, BA1  
Input  
Input  
Bank Addres Inputs : BA0 and BA1 define to which bank an ACTIVE, READ, WRITE or PRE-  
CHARGE command is being applied.  
Address Inputs : Provide the row address for ACTIVE commands, and the column address and  
AUTO PRECHARGE bit for READ/WRITE commands, to select one location out of the mem-  
ory array in the respective bank. A10 is sampled during a PRECHARGE command to deter-  
mine whether the PRECHARGE applies to one bank (A10 LOW) or all banks (A10 HIGH). If  
only one bank is to be precharged, the bank is selected by BA0, BA1. The address inputs also  
provide the op-code during a MODE REGISTER SET command. BA0 and BA1 define which  
mode register is loaded during the MODE REGISTER SET command (MRS or EMRS).  
A [0 : 12]  
Input  
DQ  
I/O  
I/O  
Data Input/Output : Data bus  
Data Strobe : Output with read data, input with write data. Edge-aligned with read data, cen-  
tered in write data. Used to capture write data. For the x16, LDQS corresponds to the data on  
DQ0~D7 ; UDQS corresponds to the data on DQ8~DQ15  
LDQS,(U)DQS  
NC  
-
No Connect : No internal electrical connection is present.  
DQ Power Supply : +2.5V ± 0.2V. (+2.6V ±0.1V for DDR400)  
DQ Ground.  
VDDQ  
VSSQ  
VDD  
Supply  
Supply  
Supply  
Supply  
Input  
Power Supply : +2.5V ± 0.2V. (+2.6V ±0.1V for DDR400)  
Ground.  
VSS  
VREF  
SSTL_2 reference voltage.  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
(V=Valid, X=Dont Care, H=Logic High, L=Logic Low)  
8.0 Command Truth Table  
A0 ~ A9,  
COMMAND  
CKEn-1 CKEn CS RAS CAS  
WE BA0,1 A10/AP  
Note  
A11 ~ A12  
Register  
Register  
Extended MRS  
Mode Register Set  
Auto Refresh  
H
H
X
X
H
L
L
L
L
L
L
L
L
L
OP CODE  
OP CODE  
1, 2  
1, 2  
3
3
3
H
L
L
L
H
X
Entry  
Refresh  
Self  
Refresh  
L
H
L
H
X
L
H
X
H
H
X
H
Exit  
L
H
H
H
X
X
X
3
Bank Active & Row Addr.  
Read &  
Column Address  
V
V
Row Address  
Auto Precharge Disable  
Auto Precharge Enable  
Auto Precharge Disable  
Auto Precharge Enable  
L
H
L
4
4
4
4, 6  
7
Column  
Address  
L
H
L
H
Write &  
Column Address  
Column  
Address  
H
H
H
X
X
X
L
L
L
H
H
L
L
H
H
L
L
L
V
H
Burst Stop  
Precharge  
X
Bank Selection  
All Banks  
V
X
L
H
X
5
H
L
X
H
L
X
V
X
X
H
X
V
X
X
H
X
V
X
X
H
X
V
X
V
X
X
H
X
V
Entry  
Exit  
H
L
L
H
L
Active Power Down  
X
X
Entry  
H
Precharge Power Down Mode  
H
L
Exit  
L
H
H
H
X
DM(UDM/LDM for x16 only)  
No operation (NOP) : Not defined  
Note :  
X
X
8
9
9
H
L
X
H
X
H
1. OP Code : Operand Code. A0 ~ A13& BA0 ~ BA1 : Program keys. (@EMRS/MRS)  
2. EMRS/MRS can be issued only at all banks precharge state.  
A new command can be issued 2 clock cycles after EMRS or MRS.  
3. Auto refresh functions are same as the CBR refresh of DRAM.  
The automatical precharge without row precharge command is meant by "Auto".  
Auto/self refresh can be issued only at all banks precharge state.  
4. BA0 ~ BA1 : Bank select addresses.  
If both BA0 and BA1 are "Low" at read, write, row active and precharge, bank A is selected.  
If BA0 is "High" and BA1 is "Low" at read, write, row active and precharge, bank B is selected.  
If BA0 is "Low" and BA1 is "High" at read, write, row active and precharge, bank C is selected.  
If both BA0 and BA1 are "High" at read, write, row active and precharge, bank D is selected.  
5. If A10/AP is "High" at row precharge, BA0 and BA1 are ignored and all banks are selected.  
6. During burst write with auto precharge, new read/write command can not be issued.  
Another bank read/write command can be issued after the end of burst.  
New row active of the associated bank can be issued at tRP after the end of burst.  
7. Burst stop command is valid at every burst length.  
8. DM(x4/8) sampled at the rising and falling edges of the DQS and Data-in are masked at the both edges (Write DM latency is 0).  
UDM/LDM(x16 only) sampled at the rising and falling edges of the UDQS/LDQS and Data-in are masked at the both edges  
(Write UDM/LDM latency is 0).  
9. This combination is not defined for any function, which means "No Operation(NOP)" in DDR SDRAM.  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
16M x 8Bit x 4 Banks / 8M x 16Bit x 4 Banks Double Data Rate SDRAM  
9.0 General Description  
The K4H510838D / K4H511638D is 536,870,912 bits of double data rate synchronous DRAM organized as 4x 16,777,216 / 4x  
8,388,608 words by 8/16bits, fabricated with SAMSUNGs high performance CMOS technology. Synchronous features with Data Strobe  
allow extremely high performance up to 400Mb/s per pin. I/O transactions are possible on both edges of DQS. Range of operating fre-  
quencies, programmable burst length and programmable latencies allow the device to be useful for a variety of high performance mem-  
ory system applications.  
10.0 Absolute Maximum Rating  
Parameter  
Symbol  
Value  
Unit  
Voltage on any pin relative to VSS  
VIN, VOUT  
-0.5 ~ 3.6  
V
Voltage on VDD & VDDQ supply relative to VSS  
Storage temperature  
VDD, VDDQ  
TSTG  
PD  
-1.0 ~ 3.6  
-55 ~ +150  
1.5  
V
°C  
W
Power dissipation  
Short circuit current  
IOS  
50  
mA  
Note : Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.  
Functional operation should be restricted to recommend operation condition.  
Exposure to higher than recommended voltage for extended periods of time could affect device reliability.  
Recommended operating conditions(Voltage referenced to VSS=0V, TA=0 to 70°C)  
11.0 DC Operating Conditions  
Parameter  
Symbol  
VDD  
Min  
2.3  
Max  
2.7  
Unit Note  
Supply voltage(for device with a nominal VDD of 2.5V for DDR266/333)  
Supply voltage(for device with a nominal VDD of 2.6V for DDR400)  
I/O Supply voltage(for device with a nominal VDD of 2.5V for DDR266/333)  
I/O Supply voltage(for device with a nominal VDD of 2.5V for DDR400)  
VDD  
VDDQ  
VDDQ  
2.5  
2.3  
2.5  
2.7  
2.7  
V
2.7  
I/O Reference voltage  
I/O Termination voltage(system)  
VREF  
VTT  
0.49*VDDQ  
VREF-0.04  
0.51*VDDQ  
VREF+0.04  
V
V
1
2
Input logic high voltage  
Input logic low voltage  
Input Voltage Level, CK and CK inputs  
Input Differential Voltage, CK and CK inputs  
V-I Matching: Pullup to Pulldown Current Ratio  
Input leakage current  
VIH(DC)  
VIL(DC)  
VIN(DC)  
VID(DC)  
VI(Ratio)  
II  
VREF+0.15  
-0.3  
VDDQ+0.3  
VREF-0.15  
VDDQ+0.3  
VDDQ+0.6  
1.4  
V
V
V
V
-0.3  
0.36  
0.71  
-2  
3
4
-
2
5
uA  
uA  
mA  
Output leakage current  
Output High Current(Normal strengh driver) ;VOUT = VTT + 0.84V  
IOZ  
-5  
IOH  
-16.8  
Output High Current(Normal strengh driver) ;VOUT = VTT - 0.84V  
Output High Current(Half strengh driver) ;VOUT = VTT + 0.45V  
Output High Current(Half strengh driver) ;VOUT = VTT - 0.45V  
Note :  
IOL  
IOH  
IOL  
16.8  
-9  
mA  
mA  
mA  
9
1. VREF is expected to be equal to 0.5*VDDQ of the transmitting device, and to track variations in the dc level of same. Peak-to peak noise on VREF may  
not exceed +/-2% of the dc value.  
2. VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF, and must track vari-  
ations in the DC level of VREF  
3. VID is the magnitude of the difference between the input level on CK and the input level on CK.  
4. The ratio of the pullup current to the pulldown current is specified for the same temperature and voltage, over the entire temperature and voltage range,  
for device drain to source voltages from 0.25V to 1.0V. For a given output, it represents the maximum difference between pullup and pulldown drivers  
due to process variation. The full variation in the ratio of the maximum to minimum pullup and pulldown current will not exceed 1.7 for device drain to  
source voltages from 0.1 to 1.0.  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
12.0 DDR SDRAM Spec Items & Test Conditions  
Conditions  
Symbol  
IDD0  
Operating current - One bank Active-Precharge;  
tRC=tRCmin; tCK=10ns for DDR200, tCK=7.5ns for DDR266, 6ns for DDR333, 5ns for DDR400;  
DQ,DM and DQS inputs changing once per clock cycle;  
address and control inputs changing once every two clock cycles.  
Operating current - One bank operation ; One bank open, BL=4, Reads  
IDD1  
- Refer to the following page for detailed test condition  
Precharge power-down standby current; All banks idle; power - down mode;  
CKE = <VIL(max); tCK=10ns for DDR200,tCK=7.5ns for DDR266, 6ns for DDR333, 5ns for DDR400;  
Vin = Vref for DQ,DQS and DM.  
IDD2P  
Precharge Floating standby current; CS# > =VIH(min);All banks idle; CKE > = VIH(min); tCK=10ns for  
DDR200,tCK=7.5ns for DDR266, 6ns for DDR333, 5ns for DDR400; Address and other control inputs changing  
once per clock cycle; Vin = Vref for DQ,DQS and DM  
IDD2F  
Precharge Quiet standby current; CS# > = VIH(min); All banks idle;  
CKE > = VIH(min); tCK=10ns for DDR200, tCK=7.5ns for DDR266, 6ns for DDR333, 5ns for DDR400; Address and  
other control inputs stable at >= VIH(min) or =<VIL(max); Vin = Vref for DQ ,DQS and DM  
IDD2Q  
IDD3P  
Active power - down standby current ; one bank active; power-down mode;  
CKE=< VIL (max); tCK=10ns for DDR200,tCK=7.5ns for DDR266, 6ns for DDR333, 5ns for DDR400;  
Vin = Vref for DQ,DQS and DM  
Active standby current; CS# >= VIH(min); CKE>=VIH(min);  
one bank active; active - precharge; tRC=tRASmax; tCK=10ns for DDR200,tCK=7.5ns for DDR266, 6ns for  
DDR333, 5ns for DDR400; DQ, DQS and DM inputs changing twice per clock cycle; address and other control  
inputs changing once per clock cycle  
Operating current - burst read; Burst length = 2; reads; continguous burst; One bank active; address and control  
inputs changing once per clock cycle; CL=2 at tCK=10ns for DDR200, CL=2 at 7.5ns for DDR266(A2), CL=2.5 at  
tCK=7.5ns for DDR266(B0), tCK=6ns for DDR333, CL=3 at tCK=5ns for DDR400; 50% of data changing on every  
transfer; lout = 0 m A  
IDD3N  
IDD4R  
IDD4W  
Operating current - burst write; Burst length = 2; writes; continuous burst;  
One bank active address and control inputs changing once per clock cycle; CL=2 at tCK=10ns for DDR200, CL=2  
at tCK=7.5ns for DDR266(A2), CL=2.5 at tCK=7.5ns for DDR266(B0), 6ns for DDR333, 5ns for DDR400; DQ, DM  
and DQS inputs changing twice per clock cycle, 50% of input data changing at every burst  
Auto refresh current; tRC = tRFC(min) which is 12*tCK for DDR200 at tCK=10ns; 16*tCK for DDR266 at  
IDD5  
IDD6  
tCK=7.5ns; 20*tCK for DDR333 at tCK=6ns, 24*tCK for DDR400 at tCK=5ns; distributed refresh  
Self refresh current; CKE =< 0.2V; External clock on; tCK=10ns for DDR200, tCK=7.5ns for DDR266, 6ns for  
DDR333, 5ns for DDR400.  
Operating current - Four bank operation ; Four bank interleaving with BL=4  
IDD7A  
-Refer to the following page for detailed test condition  
( TA= 25°C, f=100MHz)  
13.0 Input/Output Capacitance  
Parameter  
Symbol  
Min  
Max  
DeltaCap(max)  
Unit  
Note  
Input capacitance  
(A0 ~ A12, BA0 ~ BA1, CKE, CS, RAS,CAS, WE)  
CIN1  
2
3
0.5  
pF  
4
Input capacitance( CK, CK )  
Data & DQS input/output capacitance  
Input capacitance(DM for x4/8, UDM/LDM for x16)  
Note :  
CIN2  
COUT  
CIN3  
2
4
4
3
5
5
0.25  
pF  
pF  
pF  
4
1,2,3,4  
1,2,3,4  
0.5  
1.These values are guaranteed by design and are tested on a sample basis only.  
2. Although DM is an input -only pin, the input capacitance of this pin must model the input capacitance of the DQ and DQS pins.  
This is required to match signal propagation times of DQ, DQS, and DM in the system.  
3. Unused pins are tied to ground.  
4. This parameteer is sampled. For DDR266 and DDR333 VDDQ = +2.5V +0.2V, VDD = +3.3V +0.3V or +0.25V+0.2V. For  
DDR400, VDDQ = +2.6V +0.1V, VDD = +2.6V +0.1V. For all devices, f=100MHz, tA=25°C, Vout(dc) = VDDQ/2, Vout(peak to  
peak) = 0.2V. DM inputs are grouped with I/O pins - reflecting the fact that they are matched in loading (to facilitate trace  
matching at the board level).  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
14.0 Detailed test condition for DDR SDRAM IDD1 & IDD7A  
IDD1 : Operating current: One bank operation  
1. Typical Case: Fro DDR200,266,333: Vdd = 2.5V, T=25’C; For DDR400: Vdd=2.6V,T=25’C  
Worst Case : Vdd = 2.7V, T= 10’c  
2. Only one bank is accessed with tRC(min), Burst Mode, Address and Control inputs on NOP edge are changing once  
per clock cycle. lout = 0mA  
3. Timing patterns  
- B0(133Mhz, CL=2.5) : tCK = 7.5ns, CL=2.5, BL=4, tRCD = 3*tCK, tRC = 9*tCK, tRAS = 6*tCK  
Read : A0 N N R0 N N P0 N N A0 N - repeat the same timing with random address changing  
*50% of data changing at every burst  
- A2 (133Mhz, CL=2) : tCK = 7.5ns, CL=2, BL=4, tRCD = 3*tCK, tRC = 9*tCK, tRAS = 6*tCK  
Read : A0 N N R0 N N P0 N N A0 N - repeat the same timing with random address changing  
*50% of data changing at every burst  
- B3(166Mhz, CL=2.5) : tCK=6ns, CL=2.5, BL=4, tRCD=3*tCK, tRC = 10*tCK, tRAS=7*tCK  
Read : A0 N N R0 N N P0 N N A0 N - repeat the same timing with random address changing  
*50% of data changing at every burst  
- CC(200Mhz,CL = 3) : tCK = 5ns, CL = 3, BL = 4, tRCD = 3*tCK , tRC = 11*tCK, tRAS = 8*tCK  
Read : A0 N N R0 N N N N P0 N N - repeat the same timing with random address changing  
*50% of data changing at every transfer  
Legend : A=Activate, R=Read, W=Write, P=Precharge, N=DESELECT  
IDD7A : Operating current: Four bank operation  
1. Typical Case: Fro DDR200,266,333: Vdd = 2.5V, T=25’C; For DDR400: Vdd=2.6V,T=25’C  
Worst Case : Vdd = 2.7V, T= 10’ C  
2. Four banks are being interleaved with tRC(min), Burst Mode, Address and Control inputs on NOP edge are not  
changing. lout = 0mA  
4. Timing patterns  
- B0(133Mhz, CL=2.5) : tCK = 7.5ns, CL=2.5, BL=4, tRRD = 2*tCK, tRCD = 3*tCK, Read with autoprecharge  
Read : A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N A1 R0 - repeat the same timing with random address changing  
*50% of data changing at every burst  
- A2(133Mhz, CL=2) : tCK = 7.5ns, CL2=2, BL=4, tRRD = 2*tCK, tRCD = 3*tCK, Read with autoprecharge  
Read : A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N A1 R0 - repeat the same timing with random address changing  
*50% of data changing at every burst  
- B3(166Mhz,CL=2.5) : tCK=6ns, CL=2.5, BL=4, tRRD=2*tCK, tRCD=3*tCK, Read with autoprecharge  
Read : A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N A1 R0 - repeat the same timing with random address changing  
*50% of data changing at every burst  
- CC(200Mhz,CL = 3) : tCK = 5ns, CL = 3, BL = 4, tRCD = 3*tCK , tRC = 11*tCK, tRAS = 8*tCK  
Read : A0 N N R0 N N N N P0 N N - repeat the same timing with random address changing  
*50% of data changing at every transfer  
Legend : A=Activate, R=Read, W=Write, P=Precharge, N=DESELECT  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
(VDD=2.7V, T = 10°C)  
15.0 DDR SDRAM IDD spec table  
64Mx8 (K4H510838D)  
Symbol  
Unit Notes  
CC(DDR400@CL=3) B3(DDR333@CL=2.5) A2(DDR266@CL=2.0) B0(DDR266@CL=2.5)  
IDD0  
IDD1  
120  
150  
5
105  
135  
5
95  
125  
5
95  
125  
5
mA  
mA  
IDD2P  
IDD2F  
IDD2Q  
IDD3P  
IDD3N  
IDD4R  
IDD4W  
IDD5  
mA  
30  
30  
30  
25  
30  
45  
125  
130  
195  
5
30  
25  
30  
45  
125  
130  
195  
5
mA  
25  
25  
mA  
45  
30  
mA  
60  
45  
mA  
155  
175  
220  
5
140  
150  
205  
5
mA  
mA  
mA  
Normal  
Low power  
IDD7A  
mA  
IDD6  
3
3
3
3
mA Optional  
mA  
385  
360  
325  
325  
32Mx16 (K4H511638D)  
CC(DDR400@CL=3) B3(DDR333@CL=2.5) A2(DDR266@CL=2.0) B0(DDR266@CL=2.5)  
Symbol  
Unit Notes  
IDD0  
IDD1  
120  
160  
5
105  
140  
5
95  
130  
5
95  
130  
5
mA  
mA  
IDD2P  
IDD2F  
IDD2Q  
IDD3P  
IDD3N  
IDD4R  
IDD4W  
IDD5  
mA  
30  
30  
30  
25  
30  
45  
155  
160  
195  
5
30  
25  
30  
45  
155  
160  
195  
5
mA  
25  
25  
mA  
45  
30  
mA  
60  
45  
mA  
190  
215  
220  
5
170  
185  
205  
5
mA  
mA  
mA  
Normal  
Low power  
IDD7A  
mA  
IDD6  
3
3
3
3
mA Optional  
mA  
400  
380  
345  
345  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
16.0 AC Operating Conditions  
Parameter/Condition  
Symbol  
VIH(AC)  
VIL(AC)  
VID(AC)  
Min  
VREF + 0.31  
Max  
Unit  
V
V
V
V
Note  
Input High (Logic 1) Voltage, DQ, DQS and DM signals  
Input Low (Logic 0) Voltage, DQ, DQS and DM signals.  
Input Differential Voltage, CK and /CK inputs  
Input Crossing Point Voltage, CK and /CK inputs  
Note :  
VREF - 0.31  
VDDQ+0.6  
0.7  
1
2
VIX(AC) 0.5*VDDQ-0.2 0.5*VDDQ+0.2  
1. VID is the magnitude of the difference between the input level on CK and the input level on /CK.  
2. The value of VIX is expected to equal 0.5*VDDQ of the transmitting device and must track variations in the dc level of the same.  
17.0 AC Overshoot/Undershoot specification for Address and Control Pins  
Specification  
Parameter  
DDR400  
TBD  
DDR333  
TBD  
DDR200/266  
1.5 V  
Maximum peak amplitude allowed for overshoot  
Maximum peak amplitude allowed for undershoot  
TBD  
TBD  
1.5 V  
The area between the overshoot signal and VDD must be less than or equal to  
The area between the undershoot signal and GND must be less than or equal to  
TBD  
TBD  
TBD  
TBD  
4.5 V-ns  
4.5 V-ns  
VDD  
Overshoot  
5
4
3
Maximum Amplitude = 1.5V  
2
Area = 4.5V-ns  
1
0
-1  
-2  
Maximum Amplitude = 1.5V  
GND  
-3  
-4  
-5  
0
0.6875  
0.5 1.0  
1.5  
2.5  
3.5  
4.5  
5.5  
6.3125  
6.0 6.5  
undershoot  
7.0  
2.0  
3.0  
4.0  
5.0  
Tims(ns)  
AC overshoot/Undershoot Definition  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
18.0 Overshoot/Undershoot specification for Data, Strobe and Mask Pins  
Specification  
Parameter  
DDR400  
TBD  
DDR333  
TBD  
DDR200/266  
1.2 V  
Maximum peak amplitude allowed for overshoot  
Maximum peak amplitude allowed for undershoot  
TBD  
TBD  
1.2 V  
The area between the overshoot signal and VDD must be less than or equal to  
The area between the undershoot signal and GND must be less than or equal to  
TBD  
TBD  
TBD  
TBD  
2.4 V-ns  
2.4 V-ns  
VDDQ  
Overshoot  
5
Maximum Amplitude = 1.2V  
4
3
2
Area = 2.4V-ns  
1
0
-1  
-2  
-3  
-4  
-5  
Maximum Amplitude = 1.2V  
GND  
0
0.5 1.0 1.42 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 5.68 6.0 6.5 7.0  
Tims(ns)  
undershoot  
DQ/DM/DQS AC overshoot/Undershoot Definition  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
19.0 AC Timming Parameters & Specifications  
CC  
B3  
A2  
B0  
(DDR400@CL=3.0) (DDR333@CL=2.5) (DDR266@CL=2.0) (DDR266@CL=2.5)  
Parameter  
Symbol  
Unit Note  
Min  
55  
Max  
Min  
60  
Max  
Min  
65  
75  
45  
20  
Max  
Min  
65  
75  
45  
20  
Max  
Row cycle time  
tRC  
tRFC  
tRAS  
tRCD  
tRP  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCK  
ns  
ns  
Refresh row cycle time  
Row active time  
RAS to CAS delay  
70  
72  
40  
70K  
42  
70K  
70K  
70K  
15  
18  
Row precharge time  
15  
18  
20  
20  
Row active to Row active delay  
Write recovery time  
Last data in to Read command  
tRRD  
tWR  
tWTR  
10  
15  
2
-
6
5
12  
15  
1
7.5  
6
15  
15  
1
7.5  
7.5  
-
15  
15  
1
10  
7.5  
-
CL=2.0  
CL=2.5  
CL=3.0  
-
12  
10  
12  
12  
-
12  
12  
-
12  
12  
-
Clock cycle time  
tCK  
-
Clock high level width  
Clock low level width  
DQS-out access time from CK/CK  
Output data access time from CK/CK  
Data strobe edge to ouput data edge  
Read Preamble  
Read Postamble  
CK to valid DQS-in  
DQS-in setup time  
DQS-in hold time  
DQS falling edge to CK rising-setup time  
DQS falling edge from CK rising-hold time  
DQS-in high level width  
tCH  
tCL  
tDQSCK  
tAC  
tDQSQ  
tRPRE  
tRPST  
tDQSS  
tWPRES  
tWPRE  
tDSS  
0.45  
0.45  
-0.55  
-0.65  
-
0.9  
0.4  
0.72  
0
0.25  
0.2  
0.2  
0.35  
0.35  
0.6  
0.6  
0.55  
0.55  
+0.55  
+0.65  
0.4  
1.1  
0.6  
1.28  
0.45  
0.45  
-0.6  
-0.7  
-
0.9  
0.4  
0.75  
0
0.25  
0.2  
0.2  
0.35  
0.35  
0.75  
0.75  
0.55  
0.55  
+0.6  
+0.7  
0.45  
1.1  
0.45  
0.45  
-0.75  
-0.75  
-
0.9  
0.4  
0.75  
0
0.25  
0.2  
0.2  
0.35  
0.35  
0.9  
0.9  
0.55  
0.55  
+0.75  
+0.75  
0.5  
1.1  
0.6  
1.25  
0.45  
0.45  
-0.75  
-0.75  
-
0.9  
0.4  
0.75  
0
0.25  
0.2  
0.2  
0.35  
0.35  
0.9  
0.9  
0.55  
0.55  
+0.75  
+0.75  
0.5  
1.1  
0.6  
1.25  
tCK  
tCK  
ns  
ns  
ns  
tCK  
tCK  
tCK  
ns  
tCK  
tCK  
tCK  
tCK  
tCK  
ns  
22  
13  
0.6  
1.25  
tDSH  
tDQSH  
tDQSL  
tIS  
DQS-in low level width  
15, 17~19  
15, 17~19  
Address and Control Input setup time(fast)  
Address and Control Input hold time(fast)  
Address and Control Input setup  
tIH  
ns  
tIS  
0.7  
0.8  
1.0  
1.0  
ns  
16~19  
Address and Control Input hold time(slow)  
Data-out high impedence time from CK/CK  
Data-out low impedence time from CK/CK  
Mode register set cycle time  
tIH  
tHZ  
tLZ  
tMRD  
tDS  
0.7  
-0.65  
-0.65  
10  
0.8  
-0.7  
-0.7  
12  
1.0  
-0.75  
-0.75  
15  
1.0  
-0.75  
-0.75  
15  
ns  
ns  
ns  
ns  
ns  
ns  
16~19  
11  
11  
+0.65  
+0.65  
+0.7  
+0.7  
+0.75  
+0.75  
+0.75  
+0.75  
DQ & DM setup time to DQS  
0.4  
0.45  
0.5  
0.5  
j, k  
j, k  
DQ & DM hold time to DQS  
tDH  
0.4  
0.45  
0.5  
0.5  
Control & Address input pulse width  
DQ & DM input pulse width  
Exit self refresh to non-Read command  
Exit self refresh to read command  
Refresh interval time  
tIPW  
tDIPW  
tXSNR  
tXSRD  
tREFI  
2.2  
1.75  
75  
2.2  
1.75  
75  
2.2  
1.75  
75  
2.2  
1.75  
75  
ns  
ns  
ns  
tCK  
us  
18  
18  
200  
200  
200  
200  
7.8  
7.8  
7.8  
7.8  
-
14  
21  
tHP  
-tQHS  
tHP  
-tQHS  
tHP  
-tQHS  
tHP  
-tQHS  
Output DQS valid window  
Clock half period  
tQH  
tHP  
-
-
-
ns  
ns  
tCLmin  
or tCHmin  
tCLmin  
or tCHmin  
tCLmin  
or tCHmin  
tCLmin  
or tCHmin  
-
-
-
-
20, 21  
Data hold skew factor  
DQS write postamble time  
Active to Read with Auto precharge  
command  
tQHS  
tWPST  
0.5  
0.6  
0.55  
0.6  
0.75  
0.6  
0.75  
0.6  
ns  
tCK  
21  
12  
0.4  
15  
0.4  
18  
0.4  
20  
0.4  
20  
tRAP  
(tWR/tCK)  
+
(tRP/tCK)  
(tWR/tCK)  
+
(tRP/tCK)  
(tWR/tCK)  
+
(tRP/tCK)  
(tWR/tCK)  
+
(tRP/tCK)  
Autoprecharge write recovery +  
Precharge time  
tDAL  
tCK  
23  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
20.0 System Characteristics for DDR SDRAM  
The following specification parameters are required in systems using DDR333, DDR266 & DDR200 devices to ensure proper system  
performance. these characteristics are for system simulation purposes and are guaranteed by design.  
Table 1 : Input Slew Rate for DQ, DQS, and DM  
AC CHARACTERISTICS  
DDR333  
DDR266  
DDR200  
PARAMETER  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Units  
Notes  
DQ/DM/DQS input slew rate measured between  
VIH(DC), VIL(DC) and VIL(DC), VIH(DC)  
DCSLEW  
TBD  
TBD  
TBD  
TBD  
0.5  
4.0  
V/ns  
a, m  
Table 2 : Input Setup & Hold Time Derating for Slew Rate  
Input Slew Rate  
tIS  
tIH  
Units  
Notes  
0.5 V/ns  
0
0
0
0
ps  
i
i
i
0.4 V/ns  
+50  
+100  
ps  
0.3 V/ns  
ps  
Table 3 : Input/Output Setup & Hold Time Derating for Slew Rate  
Input Slew Rate  
tDS  
tDH  
Units  
Notes  
0.5 V/ns  
0
0
ps  
k
k
k
0.4 V/ns  
+75  
+150  
+75  
+150  
ps  
0.3 V/ns  
ps  
Table 4 : Input/Output Setup & Hold Derating for Rise/Fall Delta Slew Rate  
Delta Slew Rate  
tDS  
tDH  
Units  
Notes  
+/- 0.0 V/ns  
0
0
ps  
j
j
j
+/- 0.25 V/ns  
+/- 0.5 V/ns  
+50  
+100  
+50  
+100  
ps  
ps  
Table 5 : Output Slew Rate Characteristice (X4, X8 Devices only)  
Typical Range  
Minimum  
Maximum  
Slew Rate Characteristic  
Notes  
(V/ns)  
(V/ns)  
(V/ns)  
Pullup Slew Rate  
Pulldown slew  
1.2 ~ 2.5  
1.2 ~ 2.5  
1.0  
1.0  
4.5  
4.5  
a,c,d,f,g,h  
b,c,d,f,g,h  
Table 6 : Output Slew Rate Characteristice (X16 Devices only)  
Typical Range  
Minimum  
Maximum  
Slew Rate Characteristic  
Notes  
(V/ns)  
(V/ns)  
(V/ns)  
Pullup Slew Rate  
Pulldown slew  
1.2 ~ 2.5  
1.2 ~ 2.5  
0.7  
0.7  
5.0  
5.0  
a,c,d,f,g,h  
b,c,d,f,g,h  
Table 7 : Output Slew Rate Matching Ratio Characteristics  
AC CHARACTERISTICS  
DDR266B  
DDR200  
PARAMETER  
Output Slew Rate Matching Ratio (Pullup to Pulldown)  
MIN  
TBD  
MAX  
TBD  
MIN  
0.67  
MAX  
1.5  
Notes  
e,m  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
21.0 Component Notes  
1. All voltages referenced to Vss.  
2. Tests for ac timing, IDD, and electrical, ac and dc characteristics, may be conducted at nominal reference/supply voltage levels,  
but the related specifications and device operation are guaranteed for the full voltage range specified.  
3. Figure 1 represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to be  
either a precise representation of the typical system environment nor a depiction of the actual load presented by a production  
tester. System designers will use IBIS or other simulation tools to correlate the timing reference load to a system environment.  
Manufacturers will correlate to their production test conditions (generally a coaxial transmission line terminated at the tester elec-  
tronics).  
VDDQ  
50Ω  
Output  
(Vout)  
30pF  
Figure 1 : Timing Reference Load  
4. AC timing and IDD tests may use a VIL to VIH swing of up to 1.5 V in the test environment, but input timing is still referenced to  
VREF (or to the crossing point for CK/CK), and parameter specifications are guaranteed for the specified ac input levels under nor-  
mal use conditions. The minimum slew rate for the input signals is 1 V/ns in the range between VIL(ac) and VIH(ac).  
5. The ac and dc input level specifications are as defined in the SSTL_2 Standard (i.e., the receiver will effectively switch as a result  
of the signal crossing the ac input level and will remain in that state as long as the signal does not ring back above (below) the dc  
input LOW (HIGH) level.  
6. Inputs are not recognized as valid until VREF stabilizes. Exception: during the period before VREF stabilizes, CKE 0.2VDDQ is  
recognized as LOW.  
7. Enables on.chip refresh and address counters.  
8. IDD specifications are tested after the device is properly initialized.  
9. The CK/CK input reference level (for timing referenced to CK/CK) is the point at which CK and CK cross; the input reference level  
for signals other than CK/CK, is VREF.  
10. The output timing reference voltage level is VTT.  
11. tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referenced to  
a specific voltage level but specify when the device output is no longer driving (HZ), or begins driving (LZ).  
12. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this parameter, but sys  
tem performance (bus turnaround) will degrade accordingly.  
13. The specific requirement is that DQS be valid (HIGH, LOW, or at some point on a valid transition) on or before this CK edge. A  
valid transition is defined as monotonic and meeting the input slew rate specifications of the device. when no writes were previ  
ously in progress on the bus, DQS will be tran sitioning from High- Z to logic LOW. If a previous write was in progress, DQS could  
be HIGH, LOW, or transitioning from HIGH to LOW at this time, depending on tDQSS.  
14. A maximum of eight AUTO REFRESH commands can be posted to any given DDR SDRAM device.  
15. For command/address input slew rate 1.0 V/ns  
16. For command/address input slew rate 0.5 V/ns and < 1.0 V/ns  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
Component Notes  
17. For CK & CK slew rate 1.0 V/ns  
18. These parameters guarantee device timing, but they are not necessarily tested on each device. They may be guaranteed by  
device design or tester correlation.  
19. Slew Rate is measured between VOH(ac) and VOL(ac).  
20. Min (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this  
value can be greater than the minimum specification limits for tCL and tCH).....For example, tCL and tCH are = 50% of the  
period, less the half period jitter (tJIT(HP)) of the clock source, and less the half period jitter due to crosstalk (tJIT(crosstalk)) into  
the clock traces.  
21. tQH = tHP - tQHS, where:  
tHP = minimum half clock period for any given cycle and is defined by clock high or clock low (tCH, tCL). tQHS accounts for 1) The  
pulse duration distortion of on-chip clock circuits; and 2) The worst case push-out of DQS on one tansition followed by the worst  
case pull-in of DQ on the next transition, both of which are, separately, due to data pin skew and output pattern effects, and p-  
channel to n-channel variation of the output drivers.  
22. tDQSQ  
Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers for any given cycle.  
23. tDAL = (tWR/tCK) + (tRP/tCK)  
For each of the terms above, if not already an integer, round to the next highest integer. Example: For DDR266B at CL=2.5 and  
tCK=7.5ns tDAL = (15 ns / 7.5 ns) + (20 ns/ 7.5ns) = (2) + (3)  
tDAL = 5 clocks  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
22.0 System Notes  
a. Pullup slew rate is characteristized under the test conditions as shown in Figure 2.  
Test point  
Output  
50Ω  
VSSQ  
Figure 2 : Pullup slew rate test load  
b. Pulldown slew rate is measured under the test conditions shown in Figure 3.  
VDDQ  
50Ω  
Output  
Test point  
Figure 3 : Pulldown slew rate test load  
c. Pullup slew rate is measured between (VDDQ/2 - 320 mV +/- 250 mV)  
Pulldown slew rate is measured between (VDDQ/2 + 320 mV +/- 250 mV)  
Pullup and Pulldown slew rate conditions are to be met for any pattern of data, including all outputs switching and only one output  
switching.  
Example : For typical slew rate, DQ0 is switching  
For minmum slew rate, all DQ bits are switching from either high to low, or low to high.  
The remaining DQ bits remain the same as for previous state.  
d. Evaluation conditions  
Typical : 25 °C (T Ambient), VDDQ = 2.5V(for DDR266/333) and 2.6V(for DDR400), typical process  
Minimum : 70 °C (T Ambient), VDDQ = 2.3V(for DDR266/333) and 2.5V(for DDR400), slow - slow process  
Maximum : 0 °C (T Ambient), VDDQ = 2.7V(for DDR266/333) and 2.7V(for DDR400), fast - fast process  
e. The ratio of pullup slew rate to pulldown slew rate is specified for the same temperature and voltage, over the entire temperature and  
voltage range. For a given output, it represents the maximum difference between pullup and pulldown drivers due to process variation.  
f. Verified under typical conditions for qualification purposes.  
g. TSOPII package divices only.  
h. Only intended for operation up to 266 Mbps per pin.  
i. A derating factor will be used to increase tIS and tIH in the case where the input slew rate is below 0.5V/ns  
as shown in Table 2. The Input slew rate is based on the lesser of the slew rates detemined by either VIH(AC) to VIL(AC) or  
VIH(DC) to VIL(DC), similarly for rising transitions.  
j. A derating factor will be used to increase tDS and tDH in the case where DQ, DM, and DQS slew rates differ, as shown in Tables 3 & 4.  
Input slew rate is based on the larger of AC-AC delta rise, fall rate and DC-DC delta rise, Input slew rate is based on the lesser of the  
slew rates determined by either VIH(AC) to VIL(AC) or VIH(DC) to VIL(DC), similarly for rising transitions.  
The delta rise/fall rate is calculated as:  
{1/(Slew Rate1)} - {1/(Slew Rate2)}  
For example : If Slew Rate 1 is 0.5 V/ns and slew Rate 2 is 0.4 V/ns, then the delta rise, fall rate is - 0.5ns/V . Using the table given, this  
would result in the need for an increase in tDS and tDH of 100 ps.  
k. Table 3 is used to increase tDS and tDH in the case where the I/O slew rate is below 0.5 V/ns. The I/O slew rate is based on the lesser  
on the lesser of the AC - AC slew rate and the DC- DC slew rate. The inut slew rate is based on the lesser of the slew rates deter  
mined by either VIH(ac) to VIL(ac) or VIH(DC) to VIL(DC), and similarly for rising transitions.  
m. DQS, DM, and DQ input slew rate is specified to prevent double clocking of data and preserve setup and hold times. Signal transi  
tions through the DC region must be monotonic.  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
23.0 IBIS : I/V Characteristics for Input and Output Buffers  
DDR SDRAM Output Driver V-I Characteristics  
DDR SDRAM Output driver characteristics are defined for full and half strength operation as selected by the EMRS bit A1.  
Figures 3 and 4 show the driver characteristics graphically, and tables 8 and 9 show the same data in tabular format suitable for input  
into simulation tools. The driver characteristcs evaluation conditions are:  
Typical  
Minimum  
Maximum  
25×C  
70×C  
0×C  
Vdd/Vddq = 2.5V, typical process  
Vdd/Vddq = 2.3V, slow-slow process  
Vdd/Vddq = 2.7V, fast-fast process  
Output Driver Characteristic Curves Notes:  
1. The full variation in driver current from minimum to maximum process, temperature and voltage will lie within the outer bounding lines  
the of the V-I curve of Figure 3 and 4.  
2. It is recommended that the "typical" IBIS V-I curve lie within the inner bounding lines of the V-I curves of Figure 3 and 4.  
3. The full variation in the ratio of the "typical" IBIS pullup to "typical" IBIS pulldown current should be unity +/- 10%, for device drain to  
source voltages from 0.1 to1.0. This specification is a design objective only. It is not guaranteed.  
160  
Maximum  
140  
120  
Typical High  
100  
80  
Typical Low  
Minimum  
60  
40  
20  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Vout(V)  
Pullup Characteristics for Full Strength Output Driver  
0.0  
1.0  
2.0  
0
-20  
Minumum  
Typical Low  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-220  
Typical High  
Maximum  
Vout(V)  
Pulldown Characteristics for Full Strength Output Driver  
Figure 3. I/V characteristics for input/output buffers:Pull up(above) and pull down(below)  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
Pulldown Current (mA)  
pullup Current (mA)  
Voltage  
(V)  
Typical  
Low  
Typical  
High  
Typical  
Low  
Typical  
High  
Minimum  
Maximum  
Minimum  
Maximum  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
6.0  
6.8  
13.5  
20.1  
26.6  
33.0  
39.1  
44.2  
49.8  
55.2  
60.3  
65.2  
69.9  
74.2  
78.4  
82.3  
85.9  
89.1  
92.2  
95.3  
97.2  
99.1  
100.9  
101.9  
102.8  
103.8  
104.6  
105.4  
4.6  
9.2  
9.6  
18.2  
26.0  
33.9  
41.8  
49.4  
56.8  
63.2  
69.9  
76.3  
82.5  
88.3  
93.8  
99.1  
103.8  
108.4  
112.1  
115.9  
119.6  
123.3  
126.5  
129.5  
132.4  
135.0  
137.3  
139.2  
140.8  
-6.1  
-7.6  
-14.5  
-21.2  
-27.7  
-34.1  
-40.5  
-46.9  
-53.1  
-59.4  
-65.5  
-71.6  
-77.6  
-83.6  
-89.7  
-95.5  
-101.3  
-107.1  
-112.4  
-118.7  
-124.0  
-129.3  
-134.6  
-139.9  
-145.2  
-150.5  
-155.3  
-160.1  
-4.6  
-9.2  
-10.0  
-20.0  
-29.8  
-38.8  
-46.8  
-54.4  
-61.8  
-69.5  
-77.3  
12.2  
18.1  
24.1  
29.8  
34.6  
39.4  
43.7  
47.5  
51.3  
54.1  
56.2  
57.9  
59.3  
60.1  
60.5  
61.0  
61.5  
62.0  
62.5  
62.9  
63.3  
63.8  
64.1  
64.6  
64.8  
65.0  
-12.2  
-18.1  
-24.0  
-29.8  
-34.3  
-38.1  
-41.1  
-41.8  
-46.0  
-47.8  
-49.2  
-50.0  
-50.5  
-50.7  
-51.0  
-51.1  
-51.3  
-51.5  
-51.6  
-51.8  
-52.0  
-52.2  
-52.3  
-52.5  
-52.7  
-52.8  
13.8  
18.4  
23.0  
27.7  
32.2  
36.8  
39.6  
42.6  
44.8  
46.2  
47.1  
47.4  
47.7  
48.0  
48.4  
48.9  
49.1  
49.4  
49.6  
49.8  
49.9  
50.0  
50.2  
50.4  
50.5  
-13.8  
-18.4  
-23.0  
-27.7  
-32.2  
-36.0  
-38.2  
-38.7  
-39.0  
-39.2  
-39.4  
-39.6  
-39.9  
-40.1  
-40.2  
-40.3  
-40.4  
-40.5  
-40.6  
-40.7  
-40.8  
-40.9  
-41.0  
-41.1  
-41.2  
-85.2  
-93.0  
-100.6  
-108.1  
-115.5  
-123.0  
-130.4  
-136.7  
-144.2  
-150.5  
-156.9  
-163.2  
-169.6  
-176.0  
-181.3  
-187.6  
-192.9  
-198.2  
Table 8. Full Strength Driver Characteristics  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Maximum  
Typical High  
Typical Low  
Minimum  
0.0  
1.0  
2.0  
Vout(V)  
Pullup Characteristics for Weak Output Driver  
0.0  
1.0  
2.0  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
Minumum  
Typical Low  
Typical High  
Maximum  
Vout(V)  
Pulldown Characteristics for Weak Output Driver  
Figure 4. I/V characteristics for input/output buffers:Pull up(above) and pull down(below)  
Rev. 0.3 June. 2005  
Preliminary  
DDR SDRAM 512Mb D-die (x8, x16)  
DDR SDRAM  
Pulldown Current (mA)  
pullup Current (mA)  
Voltage  
(V)  
Typical  
Low  
Typical  
High  
Typical  
Low  
Typical  
High  
Minimum  
Maximum  
Minimum  
Maximum  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
3.4  
6.9  
3.8  
7.6  
2.6  
5.2  
7.8  
5.0  
9.9  
-3.5  
-6.9  
-4.3  
-8.2  
-2.6  
-5.2  
-7.8  
-5.0  
-9.9  
10.3  
13.6  
16.9  
19.6  
22.3  
24.7  
26.9  
29.0  
30.6  
31.8  
32.8  
33.5  
34.0  
34.3  
34.5  
34.8  
35.1  
35.4  
35.6  
35.8  
36.1  
36.3  
36.5  
36.7  
36.8  
11.4  
15.1  
18.7  
22.1  
25.0  
28.2  
31.3  
34.1  
36.9  
39.5  
42.0  
44.4  
46.6  
48.6  
50.5  
52.2  
53.9  
55.0  
56.1  
57.1  
57.7  
58.2  
58.7  
59.2  
59.6  
14.6  
19.2  
23.6  
28.0  
32.2  
35.8  
39.5  
43.2  
46.7  
50.0  
53.1  
56.1  
58.7  
61.4  
63.5  
65.6  
67.7  
69.8  
71.6  
73.3  
74.9  
76.4  
77.7  
78.8  
79.7  
-10.3  
-13.6  
-16.9  
-19.4  
-21.5  
-23.3  
-24.8  
-26.0  
-27.1  
-27.8  
-28.3  
-28.6  
-28.7  
-28.9  
-28.9  
-29.0  
-29.2  
-29.2  
-29.3  
-29.5  
-29.5  
-29.6  
-29.7  
-29.8  
-29.9  
-12.0  
-15.7  
-19.3  
-22.9  
-26.5  
-30.1  
-33.6  
-37.1  
-40.3  
-43.1  
-45.8  
-48.4  
-50.7  
-52.9  
-55.0  
-56.8  
-58.7  
-60.0  
-61.2  
-62.4  
-63.1  
-63.8  
-64.4  
-65.1  
-65.8  
-14.6  
-19.2  
-23.6  
-28.0  
-32.2  
-35.8  
-39.5  
-43.2  
-46.7  
-50.0  
-53.1  
-56.1  
-58.7  
-61.4  
-63.5  
-65.6  
-67.7  
-69.8  
-71.6  
-73.3  
-74.9  
-76.4  
-77.7  
-78.8  
-79.7  
10.4  
13.0  
15.7  
18.2  
20.8  
22.4  
24.1  
25.4  
26.2  
26.6  
26.8  
27.0  
27.2  
27.4  
27.7  
27.8  
28.0  
28.1  
28.2  
28.3  
28.3  
28.4  
28.5  
28.6  
-10.4  
-13.0  
-15.7  
-18.2  
-20.4  
-21.6  
-21.9  
-22.1  
-22.2  
-22.3  
-22.4  
-22.6  
-22.7  
-22.7  
-22.8  
-22.9  
-22.9  
-23.0  
-23.0  
-23.1  
-23.2  
-23.2  
-23.3  
-23.3  
Table 9. Weak Driver Characteristics  
Rev. 0.3 June. 2005  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY