K4R571669E-GCN1 [SAMSUNG]

Rambus DRAM, 16MX16, 32ns, CMOS, PBGA84;
K4R571669E-GCN1
型号: K4R571669E-GCN1
厂家: SAMSUNG    SAMSUNG
描述:

Rambus DRAM, 16MX16, 32ns, CMOS, PBGA84

时钟 动态存储器 内存集成电路
文件: 总20页 (文件大小:308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
K4R571669E  
Direct RDRAM  
256Mbit RDRAM(E-die)  
512K x 16bit x 32s banks  
Direct RDRAMTM  
Version 1.4  
January 2004  
Version 1.4 Jan. 2004  
K4R571669E  
Direct RDRAM  
Change History  
Version 1.4( Jan. 2004)  
- First Copy ( Version 1.4x is named to unify the version of component and device operation datasheets)  
- Based on the 256/288Mb D-die Version 1.4  
Version 1.4 Jan. 2004  
K4R571669E  
Direct RDRAM  
Overview  
The RDRAMdevice is a general purpose high-perfor-  
mance memory device suitable for use in a broad range of  
applications including computer memory, graphics, video  
and any other application where high bandwidth and low  
latency are required.  
SAMSUNG 350  
K4R571669E- GC  
The 256Mbit RDRAM devices are extremely high-speed  
CMOS DRAMs organized as 16M words by 16 bits. The use  
of Rambus Signaling Level (RSL) technology permits up to  
1200 MHz transfer rates while using conventional system  
and board design technologies. RDRAM devices are capable  
of sustained data transfers up to 0.883ns per two bytes (6.7ns  
per sixteen bytes).  
xx  
The architecture of RDRAM devices allows the highest  
sustained bandwidth for multiple, simultaneous randomly  
addressed memory transactions. The separate control and  
data buses with independent row and column control yield  
over 95% bus efficiency. The RDRAM device's 32 banks  
support up to four simultaneous transactions.  
Figure 1: Direct RDRAM CSP Package  
The 256Mbit RDRAM devices are offered in a CSP hori-  
zontal package suitable for desktop as well as low-profile  
add-in card and mobile applications.  
System oriented features for mobile, graphics and large  
memory systems include power management and byte  
masking. .  
Key Timing Parameters/Part Numbers  
Features  
Speed  
tRAC  
Highest sustained bandwidth per DRAM device  
- 2.4GB/s sustained data transfer rate  
- Separate control and data buses for maximized  
efficiency  
Organization  
512Kx16x32sa  
Part Number  
I/O  
(Row  
Access  
Time) ns  
Bin  
Freq.  
MHz  
- Separate row and column control buses for  
easy scheduling and highest performance  
- 32 banks: four transactions can take place simul-  
taneously at full bandwidth data rates  
-CN1 1200  
-CT9 1066  
-CM8 800  
32  
32P  
40  
K4R571669E-GbCcN1  
K4R571669E-GCT9  
K4R571669E-GCM8  
K4R571669E-GCK8  
-CK8  
800  
45  
Low latency features  
- Write buffer to reduce read latency  
- 3 precharge mechanisms for controller flexibility  
- Interleaved transactions  
a.32s- 32 banks which use a splitbank architecture.  
b.G- WBGA lead-free package.  
Advanced power management:  
c.C- RDRAM core uses normal power self refresh.  
- Multiple low power states allows flexibility in power  
consumption versus time to transition to active state  
- Power-down self-refresh  
Organization: 2kbyte pages and 32 banks, x 16  
- x16 organization for low cost applications  
Uses Rambus Signaling Level (RSL) for up to 1200MHz  
operation  
Version 1.4 Jan. 2004  
Page 1  
K4R571669E  
Direct RDRAM  
Pinouts and Definitions  
Center-Bonded Devices  
package are shown in a later section. Refer to Section  
Center-Bonded WBGA Packageon page 18. Note - pin #1  
is at the A1 position.  
These tables shows the pin assignments of the center-bonded  
RDRAM package. The mechanical dimensions of this  
Table 1: Center-Bonded Device (top view)  
VDD  
GND  
VDD  
GND  
VDD  
VDD  
VDD  
VDD  
GND  
VDD  
10  
9
8
7
6
5
4
3
2
1
VDD  
CMD  
VDD  
GND  
GNDa  
GNDa  
VDD  
VDD  
GND  
RQ5  
GND  
RQ3  
VDD  
VDD  
GND  
GND  
VCMOS  
DQB7  
VDD  
DQA8  
DQA7  
DQA5  
DQA3  
DQA1  
CTMN  
CTM  
RQ7  
RQ1  
DQB1  
DQB3  
DQB5  
DQB8  
GND  
GND  
DQA6  
SCK  
DQA4  
DQA2  
GND  
DQA0  
VDD  
CFM  
GND  
CFMN  
VDDa  
RQ6  
RQ4  
GND  
RQ2  
VDD  
RQ0  
GND  
DQB0  
GND  
DQB2  
VDD  
DQB4  
SIO0  
DQB6  
SIO1  
GND  
GND  
VCMOS  
VREF  
VDD  
GND  
GND  
VDD  
GND  
GND  
GND  
GND  
GND  
VDD  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
S
ROW  
COL  
SAMSUNG 350  
K4R571669E- GC  
xx  
Top View  
Chip  
The pin #1(ROW 1, COL A) is located at the  
A1 position on the top side and the A1 position  
is marked by the marker “ ”.  
Version 1.4 Jan. 2004  
Page 2  
K4R571669E  
Direct RDRAM  
Table 2: Pin Description  
Description  
# Pins  
center  
Signal  
I/O  
Type  
SIO1,SIO0  
I/O  
CMOSa  
2
1
Serial input/output. Pins for reading from and writing to the control regis-  
ters using a serial access protocol. Also used for power management.  
CMD  
SCK  
I
I
CMOSa  
CMOSa  
Command input. Pins used in conjunction with SIO0 and SIO1 for reading  
from and writing to the control registers. Also used for power manage-  
ment.  
1
Serial clock input. Clock source used for reading from and writing to the  
control registers  
VDD  
20  
1
Supply voltage for the RDRAM core and interface logic.  
Supply voltage for the RDRAM analog circuitry.  
Supply voltage for CMOS input/output pins.  
VDDa  
VCMOS  
GND  
2
24  
2
Ground reference for RDRAM core and interface.  
Ground reference for RDRAM analog circuitry.  
GNDa  
DQA8..DQA0  
I/O  
RSLb  
9
Data byte A. Nine pins which carry a byte of read or write data between  
the Channel and the RDRAM device. DQA8 is not used (no connection)  
by RDRAM device with a x16 organization.  
CFM  
I
I
RSLb  
RSLb  
1
1
Clock from master. Interface clock used for receiving RSL signals from  
the Channel. Positive polarity.  
CFMN  
Clock from master. Interface clock used for receiving RSL signals from  
the Channel. Negative polarity  
VREF  
1
1
Logic threshold reference voltage for RSL signals  
CTMN  
I
RSLb  
RSLb  
RSLb  
RSLb  
RSLb  
Clock to master. Interface clock used for transmitting RSL signals to the  
Channel. Negative polarity.  
CTM  
I
I
1
3
5
9
Clock to master. Interface clock used for transmitting RSL signals to the  
Channel. Positive polarity.  
RQ7..RQ5 or  
ROW2..ROW0  
Row access control. Three pins containing control and address informa-  
tion for row accesses.  
RQ4..RQ0 or  
COL4..COL0  
I
Column access control. Five pins containing control and address informa-  
tion for column accesses.  
DQB8..  
DQB0  
I/O  
Data byte B. Nine pins which carry a byte of read or write data between  
the Channel and the RDRAM device. DQB8 is not used (no connection)  
by RDRAM device with a x16 organization.  
Total pin count per package  
84  
a. All CMOS signals are high-true; a high voltage is a logic one and a low voltage is logic zero.  
b. All RSL signals are low-true; a low voltage is a logic one and a high voltage is logic zero.  
Version 1.4 Jan. 2004  
Page 3  
K4R571669E  
Direct RDRAM  
RQ7..RQ5 or  
ROW2..ROW0  
3
RQ4..RQ0 or  
DQB8..DQB0  
9
CTM CTMN SCK,CMD SIO0,SIO1 CFM CFMN  
COL4..COL0  
5
DQA8..DQA0  
9
2
2
RCLK  
RCLK  
1:8 Demux  
1:8 Demux  
TCLK  
RCLK  
6
Control Registers  
Packet Decode  
Packet Decode  
COLC  
ROWR  
11  
ROWA  
9
COLX  
5
COLM  
5
5
5
5
5
5
7
8
8
ROP DR BR  
AV  
R
REFR  
DEVID  
XOP DX BX COP DC BC  
C
MB MA  
Power Modes  
M
S
Match  
Mux  
Match  
Match  
Write  
Buffer  
DM  
Row Decode  
XOP Decode  
PRER  
ACT  
PREX  
Mux  
Mux  
Column Decode & Mask  
PREC  
RD, WR  
DRAM Core  
Sense Amp  
64x64  
512x128x128  
64x64  
64x64  
64  
Internal DQB Data Path  
Internal DQA Data Path  
64  
64  
Bank 0  
Bank 1  
Bank 2  
64  
9
9
9
9
Bank 13  
Bank 14  
Bank 15  
9
9
Bank 16  
Bank 17  
Bank 18  
9
9
9
9
Bank 29  
Bank 30  
Bank 31  
Figure 2: 256Mbit (512Kx16x32s) RDRAM Device Block Diagram  
Version 1.4 Jan. 2004  
Page 4  
K4R571669E  
Direct RDRAM  
amps of the RDRAM device. These pins are de-multiplexed  
into a 24-bit ROWA (row-activate) or ROWR (row-opera-  
tion) packet.  
General Description  
Figure 2 is a block diagram of the 256Mbit RDRAM device.  
It consists of two major blocks: a coreblock built from  
banks and sense amps similar to those found in other types  
of DRAM and a Direct RambusTM interface block which  
permits an external controller to access this core at up to  
2.4GB/s.  
COL Pins: The principle use of these five pins is to  
manage the transfer of data between the DQA/DQB pins and  
the sense amps of the RDRAM device. These pins are de-  
multiplexed into a 23-bit COLC (column-operation) packet  
and either a 17-bit COLM (mask) packet or a 17-bit COLX  
(extended-operation) packet.  
Control Registers: The CMD, SCK, SIO0, and SIO1  
pins appear in the upper center of Figure 2. They are used to  
write and read a block of control registers. These registers  
supply the RDRAM configuration information to a  
controller and they select the operating modes of the device.  
The REFR value is used for tracking the last refreshed row.  
Most importantly, the five bit DEVID specifies the device  
address of the RDRAM device on the Channel.  
ACT Command: An ACT (activate) command from an  
ROWA packet causes one of the 512 rows of the selected  
bank to be loaded to its associated sense amps (two 512  
bytes sense amps for DQA and two for DQB).  
PRER Command: A PRER (precharge) command from  
an ROWR packet causes the selected bank to release its two  
associated sense amps, permitting a different row in that  
bank to be activated, or permitting adjacent banks to be acti-  
vated.  
Clocking: The CTM and CTMN pins (Clock-To-Master)  
generate TCLK (Transmit Clock), the internal clock used to  
transmit read data. The CFM and CFMN pins (Clock-From-  
Master) generate RCLK (Receive Clock), the internal clock  
signal used to receive write data and to receive the ROW and  
COL pins.  
RD Command: The RD (read) command causes one of  
the 128 dualocts of one of the sense amps to be transmitted  
on the DQA/DQB pins of the Channel.  
DQA,DQB Pins: These 16 pins carry read (Q) and write  
(D) data across the Channel. They are multiplexed/de-multi-  
plexed from/to two 64bit data paths (running at one-eighth  
the data frequency) inside the RDRAM device.  
WR Command: The WR (write) command causes a  
dualoct received from the DQA/DQB data pins of the  
Channel to be loaded into the write buffer. There is also  
space in the write buffer for the BC bank address and C  
column address information. The data in the write buffer is  
automatically retired (written with optional bytemask) to one  
of the 128 dualocts of one of the sense amps during a subse-  
quent COP command. A retire can take place during a RD,  
WR, or NOCOP to another device, or during a WR or  
NOCOP to the same device. The write buffer will not retire  
during a RD to the same device. The write buffer reduces the  
delay needed for the internal DQA/DQB data path turn-  
around.  
Banks: The 32Mbyte core of the RDRAM device is  
divided into thirty two 1Mbyte banks, each organized as 512  
rows, with each row containing 128 dualocts, and each  
dualoct containing 16 bytes. A dualoct is the smallest unit of  
data that can be addressed.  
Sense Amps: The RDRAM device contains 34 sense  
amps. Each sense amp consists of 1kbyte of fast storage (512  
bytes for DQA and 512 bytes for DQB) and can hold one-  
half of one row of one bank of the RDRAM device. The  
sense amp may hold any of the 1024 half-rows of an associ-  
ated bank. However, each sense amp is shared between two  
adjacent banks of the RDRAM device (except for sense  
amps 0, 15, 16, and 31). This introduces the restriction that  
adjacent banks may not be simultaneously accessed.  
PREC Precharge: The PREC, RDA and WRA  
commands are similar to NOCOP, RD and WR, except that a  
precharge operation is performed at the end of the column  
operation. These commands provide a second mechanism  
for performing precharge.  
PREX Precharge: After a RD command, or after a WR  
command with no byte masking (M=0), a COLX packet may  
be used to specify an extended operation (XOP). The most  
important XOP command is PREX. This command provides  
a third mechanism for performing precharge.  
RQ Pins: These pins carry control and address informa-  
tion. They are broken into two groups. RQ7..RQ5 are also  
called ROW2..ROW0, and are used primarily for controlling  
row accesses. RQ4..RQ0 are also called COL4..COL0, and  
are used primarily for controlling column accesses.  
ROW Pins: The principle use of these three pins is to  
manage the transfer of data between the banks and the sense  
Version 1.4 Jan. 2004  
Page 5  
K4R571669E  
Direct RDRAM  
The AV (ROWA/ROWR packet selection) bit distinguishes  
between the two packet types. Both the ROWA and ROWR  
packet provide a five bit device address and a five bit bank  
address. An ROWA packet uses the remaining bits to specify  
a nine bit row address, and the ROWR packet uses the  
remaining bits for an eleven bit opcode field. Note the use of  
the RsvXnotation to reserve bits for future address field  
extension.  
Packet Format  
Figure 3 shows the formats of the ROWA and ROWR  
packets on the ROW pins. Table 3 describes the fields which  
comprise these packets. DR4T and DR4F bits are encoded to  
contain both the DR4 device address bit and a framing bit  
which allows the ROWA or ROWR packet to be recognized  
by the RDRAM device.  
Table 3: Field Description for ROWA Packet and ROWR Packet  
Description  
Field  
DR4T,DR4F  
DR3..DR0  
BR4..BR0  
AV  
Bits for framing (recognizing) a ROWA or ROWR packet. Also encodes highest device address bit.  
Device address for ROWA or ROWR packet.  
Bank address for ROWA or ROWR packet. RsvB denotes bits ignored by the RDRAM device.  
Selects between ROWA packet (AV=1) and ROWR packet (AV=0).  
R8..R0  
Row address for ROWA packet. RsvR denotes bits ignored by the RDRAM device.  
Opcode field for ROWR packet. Specifies precharge, refresh, and power management functions.  
ROP10..ROP0  
Figure 3 also shows the formats of the COLC, COLM, and  
COLX packets on the COL pins. Table 4 describes the fields  
which comprise these packets.  
The remaining 17 bits are interpreted as a COLM (M=1) or  
COLX (M=0) packet. A COLM packet is used for a COLC  
write command which needs bytemask control. The COLM  
packet is associated with the COLC packet from at least tRTR  
earlier. A COLX packet may be used to specify an indepen-  
dent precharge command. It contains a five bit device  
address, a five bit bank address, and a five bit opcode. The  
COLX packet may also be used to specify some house-  
keeping and power management commands. The COLX  
packet is framed within a COLC packet but is not otherwise  
associated with any other packet.  
The COLC packet uses the S (Start) bit for framing. A  
COLM or COLX packet is aligned with this COLC packet,  
and is also framed by the S bit.  
The 23 bit COLC packet has a five bit device address, a five  
bit bank address, a seven bit column address, and a four bit  
opcode. The COLC packet specifies a read or write  
command, as well as some power management commands.  
Table 4: Field Description for COLC Packet, COLM Packet, and COLX Packet  
Description  
Field  
S
Bit for framing (recognizing) a COLC packet, and indirectly for framing COLM and COLX packets.  
Device address for COLC packet.  
DC4..DC0  
BC4..BC0  
C6..C0  
Bank address for COLC packet. RsvB denotes bits reserved for future extension (controller drives 0 ’ s).  
Column address for COLC packet. RsvC denotes bits ignored by the RDRAM device.  
Opcode field for COLC packet. Specifies read, write, precharge, and power management functions.  
Selects between COLM packet (M=1) and COLX packet (M=0).  
COP3..COP0  
M
MA7..MA0  
MB7..MB0  
DX4..DX0  
BX4..BX0  
XOP4..XOP0  
Bytemask write control bits. 1=write, 0=no-write. MA0 controls the earliest byte on DQA8..0.  
Bytemask write control bits. 1=write, 0=no-write. MB0 controls the earliest byte on DQB8..0.  
Device address for COLX packet.  
Bank address for COLX packet. RsvB denotes bits reserved for future extension (controller drives 0’ s).  
Opcode field for COLX packet. Specifies precharge, IOL control, and power management functions.  
Version 1.4 Jan. 2004  
Page 6  
K4R571669E  
Direct RDRAM  
T
T
T
T
T
T
T
T
11  
0
1
2
3
8
9
10  
CTM/CFM  
CTM/CFM  
DR2 BR0 BR3 RsvR R8  
DR1 BR1 BR4 RsvR R7  
R5  
R4  
R3  
R2  
R1  
R0  
DR2 BR0 BR3 ROP10 ROP8 ROP5 ROP2  
DR1 BR1 BR4 ROP9 ROP7 ROP4 ROP1  
DR4F  
ROW2 DR4T  
ROW1  
ROW2 DR4T  
ROW1  
DR4F  
ROW0 DR3 DR0 BR2 RsvB AV=1 R6  
ROW0 DR3 DR0 BR2 RsvB AV=0 ROP6 ROP3 ROP0  
ROWA Packet  
ROWR Packet  
T
T
T
T
3
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15  
0
1
2
CTM/CFM  
CTM/CFM  
ROW2  
..ROW0  
DC4 S=1  
DC3  
C6  
C5  
C4  
C3  
ACT a0  
WR b1  
PRER c0  
COL4  
COL3  
COL2  
COL1  
COL0  
tPACKET  
COL4  
..COL0  
MSK (b1) PREX d0  
COP1  
RsvB BC2 C2  
BC4 BC1 C1  
DC2  
DQA8..0  
DQB8..0  
DC1 COP0  
COP2  
COP3 BC3 BC0 C0  
DC0  
COLC Packet  
T
T
T
T
T
T
T
T
15  
8
9
10  
11  
12  
13  
14  
CTM/CFM  
CTM/CFM  
a
b
COL4  
COL3  
COL2  
COL1  
S=1 MA7 MA5 MA3 MA1  
M=1 MA6 MA4 MA2 MA0  
MB7 MB4 MB1  
COL4  
COL3  
COL2  
COL1  
COL0  
S=1 DX4 XOP4 RsvB BX1  
M=0 DX3 XOP3 BX4 BX0  
DX2 XOP2 BX3  
MB6 MB3 MB0  
DX1 XOP1 BX2  
COL0  
MB5 MB2  
DX0 XOP0  
a
b
The COLM is associated with a  
previous COLC, and is aligned  
with the present COLC, indicated  
by the Start bit (S=1) position.  
The COLX is aligned  
with the present COLC,  
indicated by the Start  
bit (S=1) position.  
COLM Packet  
COLX Packet  
Figure 3: Packet Formats  
Version 1.4 Jan. 2004  
Page 7  
K4R571669E  
Direct RDRAM  
broadcast operation is indicated when both bits are set.  
Field Encoding Summary  
Broadcast operation would typically be used for refresh and  
power management commands. If the device is selected, the  
DM (DeviceMatch) signal is asserted and an ACT or ROP  
command is performed.  
Table 5 shows how the six device address bits are decoded  
for the ROWA and ROWR packets. The DR4T and DR4F  
encoding merges a fifth device bit with a framing bit. When  
neither bit is asserted, the device is not selected. Note that a  
Table 5: Device Field Encodings for ROWA Packet and ROWR Packet  
DR4T  
DR4F  
Device Selection  
Device Match signal (DM)  
1
0
1
0
1
1
0
0
All devices (broadcast)  
One device selected  
One device selected  
No packet present  
DM is set to 1  
DM is set to 1 if {DEVID4..DEVID0} == {0,DR3..DR0} else DM is set to 0  
DM is set to 1 if {DEVID4..DEVID0} == {1,DR3..DR0} else DM is set to 0  
DM is set to 0  
Table 6 shows the encodings of the remaining fields of the  
ROWA and ROWR packets. An ROWA packet is specified  
by asserting the AV bit. This causes the specified row of the  
specified bank of this device to be loaded into the associated  
sense amps.  
row address comes from an internal register REFR, and  
REFR is incremented at the largest bank address. The REFP  
(refresh-precharge) command is identical to a PRER  
command.  
The NAPR, NAPRC, PDNR, ATTN, and RLXR commands  
are used for managing the power dissipation of the RDRAM  
device and are described in more detail in Power State  
Managementon page 50. The TCEN and TCAL commands  
are used to adjust the output driver slew rate and they are  
described in more detail in Current and Temperature  
Controlon page 56.  
An ROWR packet is specified when AV is not asserted. An  
11 bit opcode field encodes a command for one of the banks  
of this device. The PRER command causes a bank and its  
two associated sense amps to precharge, so another row or  
an adjacent bank may be activated. The REFA (refresh-acti-  
vate) command is similar to the ACT command, except the  
Table 6: ROWA Packet and ROWR Packet Field Encodings  
ROP10..ROP0 Field  
a
DM  
AV  
Name  
Command Description  
10  
9
8
7
6
5
4
3
2:0  
---  
0
-
-
-
-
-
-
-
-
-
-
No operation.  
b
1
1
1
1
0
0
Row address  
ACT  
Activate row R8..R0 of bank BR4..BR0 of device and move device to ATTN .  
c
1
0
1
0
0
0
0
1
0
1
x
0
x
0
x
x
000 PRER  
000 REFA  
Precharge bank BR4..BR0 of this device.  
Refresh (activate) row REFR8..REFR0 of bank BR4..BR0 of device.  
Increment REFR if BR4..BR0 = 11111 (see Figure 52).  
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
x
x
x
x
x
0
0
0
0
x
x
x
x
x
0
0
0
1
0
0
0
x
x
0
0
0
0
0
0
0
x
x
0
0
0
1
0
0
0
x
x
0
0
0
0
0
1
1
x
x
0
0
0
0
1
0
1
x
x
0
0
0
x
x
x
x
0
1
x
x
0
000 REFP  
000 PDNR  
000 NAPR  
Precharge bank BR4..BR0 of this device after REFA (see Figure 52).  
Move this device into the powerdown (PDN) power state (see Figure 49).  
Move this device into the nap (NAP) power state (see Figure 49).  
000 NAPRC Move this device into the nap (NAP) power state conditionally  
b
000 ATTN  
000 RLXR  
001 TCAL  
010 TCEN  
Move this device into the attention (ATTN) power state (see Figure 47).  
Move this device into the standby (STBY) power state (see Figure 48).  
Temperature calibrate this device (see Figure 55).  
Temperature calibrate/enable this device (see Figure 55).  
000 NOROP No operation.  
a. The DM (Device Match signal) value is determined by the DR4T,DR4F, DR3..DR0 field of the ROWA and ROWR packets. See Table 5.  
b. The ATTN command does not cause a RLX-to-ATTN transition for a broadcast operation (DR4T/DR4F=1/1).  
c. An xentry indicates which commands may be combined. For instance, the three commands PRER/NAPRC/RLXR may be specified in one ROP value (011000111000).  
Version 1.4 Jan. 2004  
Page 8  
K4R571669E  
Direct RDRAM  
Table 7 shows the COP field encoding. The device must be  
in the ATTN power state in order to receive COLC packets.  
The COLC packet is used primarily to specify RD (read) and  
WR (write) commands. Retire operations (moving data from  
the write buffer to a sense amp) happen automatically. See  
Figure 18 for a more detailed description.  
The COLC packet can also specify a PREC command,  
which precharges a bank and its associated sense amps. The  
RDA/WRA commands are equivalent to combining RD/WR  
with a PREC. RLXC (relax) performs a power mode transi-  
tion. See Power State Managementon page 50.  
Table 7: COLC Packet Field Encodings  
DC4.. DC0  
(select device)  
S
COP3..0 Name  
Command Description  
a
0
----  
-----  
-
-
No operation.  
Retire write buffer of this device.  
1
1
1
1
1
1
1
1
1
1
/= (DEVID4 ..0)  
== (DEVID4 ..0)  
== (DEVID4 ..0)  
== (DEVID4 ..0)  
== (DEVID4 ..0)  
== (DEVID4 ..0)  
== (DEVID4 ..0)  
== (DEVID4 ..0)  
== (DEVID4 ..0)  
== (DEVID4 ..0)  
-----  
b
x000  
x001  
x010  
x011  
x100  
x101  
x110  
x111  
1xxx  
NOCOP Retire write buffer of this device.  
WR  
Retire write buffer of this device, then write column C6..C0 of bank BC4..BC0 to write buffer.  
RSRV  
RD  
Reserved, no operation.  
Read column C6..C0 of bank BC4..BC0 of this device.  
Retire write buffer of this device, then precharge bank BC4..BC0 (see Figure 15).  
Same as WR, but precharge bank BC4..BC0 after write buffer (with new data) is retired.  
Reserved, no operation.  
PREC  
WRA  
RSRV  
RDA  
RLXC  
Same as RD, but precharge bank BC4..BC0 afterward.  
Move this device into the standby (STBY) power state (see Figure 48).  
a. /=means not equal, ==means equal.  
b. An xentry indicates which commands may be combined. For instance, the two commands WR/RLXC may be specified in one COP value (1001).  
Table 8 shows the COLM and COLX field encodings. The  
M bit is asserted to specify a COLM packet with two 8 bit  
bytemask fields MA and MB. If the M bit is not asserted, an  
COLX is specified. It has device and bank address fields,  
and an opcode field. The primary use of the COLX packet is  
to permit an independent PREX (precharge) command to be  
specified without consuming control bandwidth on the ROW  
pins. It is also used for the CAL(calibrate) and SAM (sam-  
ple) current control commands (see Current and Tempera-  
ture Controlon page 56), and for the RLXX power mode  
command (see Power State Managementon page 50).  
Table 8: COLM Packet and COLX Packet Field Encodings  
DX4 .. DX0  
(selects device)  
M
XOP4..0  
Name  
Command Description  
1
----  
-
-
MSK  
MB/MA bytemasks used by WR/WRA.  
0
0
0
0
0
0
0
/= (DEVID4 ..0)  
== (DEVID4 ..0)  
== (DEVID4 ..0)  
== (DEVID4 ..0)  
== (DEVID4 ..0)  
== (DEVID4 ..0)  
== (DEVID4 ..0)  
-
No operation.  
00000  
1xxx0  
x10x0  
x11x0  
xxx10  
xxxx1  
NOXOP  
PREX  
CAL  
No operation.  
a
Precharge bank BX3..BX0 of this device (see Figure 15).  
Calibrate (drive) I current for this device (see Figure 54).  
OL  
CAL/SAM  
RLXX  
RSRV  
Calibrate (drive) and Sample ( update) I current for this device (see Figure 54).  
OL  
Move this device into the standby (STBY) power state (see Figure 48).  
Reserved, no operation.  
a. An xentry indicates which commands may be combined. For instance, the two commands PREX/RLXX may be specified in one XOP value (10010).  
Version 1.4 Jan. 2004  
Page 9  
K4R571669E  
Direct RDRAM  
Electrical Conditions  
Table 9: Electrical Conditions  
Parameter and Conditions  
Junction temperature under bias  
Supply voltage  
Symbol  
Min  
Max  
Unit  
T
-
100  
2.50 + 0.13  
2.0  
°C  
V
J
V
V
V
2.50 - 0.13  
DD, DDA  
V
Supply voltage droop (DC) during NAP interval (t  
)
-
%
%
DD,N, DDA,N  
NLIMIT  
NLIMIT  
v
v
Supply voltage ripple (AC) during NAP interval (t  
)
-2.0  
2.0  
DD,N, DDA,N  
Supply voltage for CMOS pins (2.5V controllers)  
Supply voltage for CMOS pins (1.8V controllers)  
V
V
V
V
a
DD  
DD  
V
V
CMOS  
REF  
1.80 - 0.1  
1.80 + 0.2  
Reference voltage  
1.40 - 0.2  
1.40 + 0.2  
V
RSL data input - low voltage @ t  
=1.667ns  
=1.875ns  
=2.50ns  
V
V
V
- 0.5  
- 0.5  
- 0.5  
V
V
- 0.15  
- 0.15  
- 0.2  
CYCLE  
CYCLE  
CYCLE  
REF  
REF  
REF  
REF  
V
RSL data input - low voltage @ t  
V
DIL  
REF  
RSL data input - low voltage @ t  
b
V
REF  
REF  
REF  
REF  
RSL data input - high voltage @ t  
=1.667ns  
=1.875ns  
=2.50ns  
V
+ 0.15  
+ 0.15  
+ 0.2  
V
V
V
+ 0.5  
+ 0.5  
+ 0.5  
CYCLE  
CYCLE  
CYCLE  
REF  
REF  
b
V
RSL data input - high voltage @ t  
V
DIH  
DA  
V
b
RSL data input - high voltage @ t  
V
REF  
R
RSL data asymmetry : R = (V  
- V ) / (V  
- V  
)
0.67  
1.00  
-
DA  
DIH  
REF  
REF  
DIL  
V
V
V
V
V
RSL clock input - common mode V = (V +V /2  
CIL)  
1.3  
0.35  
0.225  
1.8  
V
V
V
V
V
CM  
CM  
CIH  
RSL clock input swing: V = V  
- V  
(CTM,CTMN pins).  
(CFM,CFMN pins).  
1.00  
1.00  
CIS,CTM  
CIS,CFM  
IL,CMOS  
IH,CMOS  
CIS  
CIH  
CIH  
CIL  
CIL  
RSL clock input swing: V = V  
CIS  
- V  
c
CMOS input low voltage  
CMOS input high voltage  
- 0.3  
V
/2 - 0.25  
d
CMOS  
V
/2 + 0.25  
V
+0.3  
CMOS  
CMOS  
a. V  
b. V  
must remain on as long as V is applied and cannot be turned off.  
DD  
CMOS  
is typically equal to V  
(1.8V±0.1V) under DC conditions in a system.  
TERM  
DIH  
c. Voltage undershoot is limited to -0.7V for a duration of less than 5ns.  
d. Voltage overshoot is limited toV +0.7V for a duration of less than 5ns  
CMOS  
Version 1.4 Jan. 2004  
Page 10  
K4R571669E  
Direct RDRAM  
Electrical Characteristics  
Table 10: Electrical Characteristics  
Symbol  
Parameter and Conditions  
Junction-to-Case thermal resistance  
current @ V  
Min  
Max  
Unit  
Θ
-
0.5  
10  
°C/Watt  
µA  
JC  
REF  
OH  
I
I
V
-10  
-10  
32.0  
32.0  
30.0  
-
REF  
REF,MAX  
RSL output high current @ (0V  
V  
)
10  
µA  
OUT  
DD  
a
a
RSL I current @ t  
= 1.667ns V = 0.9V, V  
, T  
, T  
90.0  
90.0  
90.0  
1.5  
-
OL  
CYCLE  
CYCLE  
CYCLE  
OL  
DD,MIN  
J,MAX  
I
RSL I current @ t  
= 1.875ns V = 0.9V, V  
mA  
ALL  
OL  
OL  
DD,MIN  
J,MAX  
a
RSL I current @ t  
=2.50ns V = 0.9V, V  
, T  
OL  
OL  
DD,MIN J,MAX  
I  
RSL I current resolution step  
mA  
OL  
OL  
r
I
I
Dynamic output impedance @ V = 0.9V  
OL  
150  
27.1  
27.1  
26.6  
-10.0  
-
OUT  
b,c  
RSL I current @ V = 1.0V @ t  
=1.667ns  
30.1  
30.1  
30.6  
10.0  
0.3  
-
OL  
OL  
CYCLE  
CYCLE  
CYCLE  
b,c  
RSL I current @ V = 1.0V @ t  
=1.875ns  
=2.5ns  
mA  
OL,NOM  
I,CMOS  
OL  
OL  
b,c  
RSL I current @ V = 1.0V @ t  
OL  
OL  
CMOS input leakage current @ (0V  
V  
)
CMOS  
µA  
V
I,CMOS  
V
V
CMOS output voltage @ I  
= 1.0mA  
OL,CMOS  
OH,CMOS  
OL,CMOS  
CMOS output high voltage @ I  
= -0.25mA  
V
-0.3  
V
OH,CMOS  
CMOS  
a. This measurement is made in manual current control mode; i.e. with all output device legs sinking current.  
b. This measurement is made in automatic current control mode after at least 64 current control calibration operations to a device and after CCA and  
CCB are initialized to a value of 64. This value applies to all DQA and DQB pins.  
c. This measurement is made in automatic current control mode in a 25test system with V  
= 1.714V and V = 1.357V and with the ASYMA  
REF  
TERM  
and ASYMB register fields set to 0.  
Version 1.4 Jan. 2004  
Page 11  
K4R571669E  
Direct RDRAM  
Timing Conditions  
Table 11: Timing Conditions  
Parameter  
CTM and CFM cycle times (-1200)  
CTM and CFM cycle times (-1066)  
CTM and CFM cycle times (-800)  
Symbol  
Min  
Max  
Unit  
Figure(s)  
1.667  
1.875  
2.50  
2.5  
2.5  
t
t
ns  
Figure 56  
CYCLE  
3.33  
CTM and CFM input rise and fall times. Use the minimum value of  
these parameters during testing. (-1200)  
0.2  
0.45  
, t  
ns  
Figure 56  
Figure 56  
CR CF  
CTM and CFM input rise and fall times. Use the minimum value of  
these parameters during testing. (-1066,-800)  
0.2  
0.5  
t
t
t
, t  
CTM and CFM high and low times  
40%  
60%  
t
t
CH CL  
CYCLE  
CTM-CFM differential (MSE/MS=0/0)  
CTM-CFM differential (MSE/MS=1/1)  
0.0  
0.9  
1.0  
1.0  
a
CYCLE  
Figure 43  
Figure 56  
TR  
CTM-CFM differential for 1.875ns and 1.667ns (MSE/MS=1/0)  
Domain crossing window  
-0.1  
-0.1  
0.1  
0.1  
t
Figure 62  
Figure 57  
DCW  
CYCLE  
DQA/DQB/ROW/COL input rise/fall times (20% to 80%). Use the  
minimum value of these parameters during testing.@ t  
0.2  
0.2  
0.2  
0.45  
0.45  
0.65  
=1.667ns  
CYCLE  
DQA/DQB/ROW/COL input rise/fall times (20% to 80%). Use the  
minimum value of these parameters during testing.@ t  
t
, t  
ns  
DR DF  
=1.875ns  
CYCLE  
DQA/DQB/ROW/COL input rise/fall times (20% to 80%). Use the  
minimum value of these parameters during testing.@ t  
=2.50ns  
CYCLE  
b
DQA/DQB/ROW/COL-to-CFM set/hold @ t  
DQA/DQB/ROW/COL-to-CFM set/hold @ t  
DQA/DQB/ROW/COL-to-CFM set/hold @ t  
SIO0, SIO1 input rise and fall times  
=1.667ns  
=1.875ns  
=2.50ns  
0.140  
CYCLE  
CYCLE  
CYCLE  
b,c  
t , t  
0.160  
-
ns  
Figure 57  
S
H
b.d  
0.200  
-
-
t
t
t
5.0  
ns  
ns  
Figure 59  
Figure 59  
DR1, DF1  
t
CMD, SCK input rise and fall times  
-
2.0  
-
DR2, DF2  
SCK cycle time - Serial control register transactions  
1000  
7.5  
7.5  
10  
SCK cycle time - Power transitions @ t  
SCK cycle time - Power transitions @ t  
SCK cycle time - Power transitions @ t  
=1.667ns  
-
CYCLE  
CYCLE  
CYCLE  
t
t
ns  
ns  
Figure 59  
Figure 59  
CYCLE1  
=1.875ns  
=2.50ns  
-
-
SCK high and low times @ t  
SCK high and low times @ t  
SCK high and low times @ t  
=1.667ns  
=1.875ns  
=2.50ns  
3.5  
3.5  
4.25  
1.0  
1.0  
1.25  
1
-
CYCLE  
CYCLE  
CYCLE  
, t  
-
CH1 CL1  
-
e
CMD setup time to SCK rising or falling edge @ t  
=1.667ns  
=1.875ns  
=2.50ns  
-
CYCLE  
CYCLE  
CYCLE  
e
t
t
CMD setup time to SCK rising or falling edge @ t  
-
ns  
ns  
Figure 59  
Figure 59  
S1  
e
CMD setup time to SCK rising or falling edge @ t  
-
e
CMD hold time to SCK rising or falling edge  
-
H1  
Version 1.4 Jan. 2004  
Page 12  
K4R571669E  
Direct RDRAM  
Table 11: Timing Conditions  
Parameter  
SIO0 setup time to SCK falling edge  
Symbol  
Min  
Max  
Unit  
Figure(s)  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
40  
40  
0
-
ns  
ns  
ns  
ns  
Figure 59  
Figure 59  
Figure 50  
Figure 60  
Figure 50  
Figure 50  
Figure 49  
Figure 54  
Figure 54  
Figure 50  
Figure 49  
Figure 48  
Figure 47  
Figure 52  
S2  
SIO0 hold time to SCK falling edge  
-
H2  
PDEV setup time on DQA5..0 to SCK rising edge.  
PDEV hold time on DQA5..0 to SCK rising edge.  
ROW2..0, COL4..0 setup time for quiet window  
-
S3  
5.5  
-1  
5
-
H3  
-
t
t
t
t
t
t
t
t
S4  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
f
ROW2..0, COL4..0 hold time for quiet window  
-
H4  
Quiet on ROW/COL bits during NAP/PDN entry  
Offset between read data and CC packets (same device)  
Offset between CC packet and read data (same device)  
CTM/CFM stable before NAP/PDN exit  
CTM/CFM stable after NAP/PDN entry  
ROW packet to COL packet ATTN framing delay  
Maximum time in NAP mode  
4
-
NPQ  
12  
8
-
READTOCC  
-
CCSAMTOREAD  
2
-
-
CE  
100  
7
CD  
-
FRM  
NLIMIT  
REF  
CYCLE  
ms  
10.0  
32  
Refresh interval  
ms  
ms  
Interval after PDN or NAP (with self-refresh) exit in which all  
banks of the RDRAM device must be refreshed at least once.  
t
200  
Figure 53  
BURST  
t
t
t
t
t
Current control interval  
34 t  
100ms  
ms/t  
CYCLE  
Figure 54  
Figure 55  
Figure 55  
Figure 55  
Figure 55  
CCTRL  
CYCLE  
Temperature control interval  
TCE command to TCAL command  
TCAL command to quiet window  
Quiet window (no read data)  
100  
ms  
TEMP  
150  
2
-
2
-
t
t
t
TCEN  
CYCLE  
CYCLE  
CYCLE  
ms  
TCAL  
140  
TCQUIET  
t
RDRAM device delay (no RSL operations allowed)  
200.0  
page 38  
PAUSE  
a. MSE/MS are fields of the SKIP register. For this combination (skip override) the tDCW parameter range is effectively 0.0 to 0.0.  
b. t and t for other t values can be interpolated between or extrapolated from the timings at the 2 specified t values.  
CYCLE  
S,MIN  
H,MIN  
CYCLE  
c. This parameter also applies to a-1200 part when operated with t  
= 1.875ns  
CYCLE  
d. This parameter also applies to a-1200 or -1066 part when operated with t  
= 2.50ns  
CYCLE  
e. With V  
=0.5V  
-0.4V and V  
=0.5V  
+0.4V  
IL,CMOS  
CMOS  
IH,CMOS  
CMOS  
f. Effective hold becomes t ’=t +[PDNXA•64•t  
+t  
]-[PDNX•256•t  
] if [PDNX•256•t  
] < [PDNXA•64•t  
H4 H4  
SCYCLE PDNXB,MAX  
SCYCLE  
SCYCLE SCY-  
+t  
]. See Figure 50  
CLE PDNXB,MAX  
Version 1.4 Jan. 2004  
Page 13  
K4R571669E  
Timing Characteristics  
Symbol  
Direct RDRAM  
Table 12: Timing Characteristics  
Parameter  
Min  
Max  
Unit  
Figure(s)  
a
a
CTM-to-DQA/DQB output time @ t  
=1.667ns  
=1.875ns  
=2.5ns  
-0.170  
+0.170  
CYCLE  
CYCLE  
CYCLE  
a,b  
a,b  
t
CTM-to-DQA/DQB output time @ t  
CTM-to-DQA/DQB output time @ t  
-0.195  
+0.195  
+0.260  
0.32  
0.32  
0.45  
10  
ns  
Figure 58  
Figure 58  
Q
a,c  
a,c  
-0.260  
DQA/DQB output rise and fall times @ t  
DQA/DQB output rise and fall times @ t  
DQA/DQB output rise and fall times @ t  
=1.667ns  
0.2  
CYCLE  
CYCLE  
CYCLE  
t
, t  
=1.875ns  
=2.5ns  
0.2  
ns  
QR QF  
0.2  
-
t
t
t
t
t
t
t
t
t
t
t
t
SCK(neg)-to-SIO0 delay @ C  
SCK(pos)-to-SIO0 delay @ C  
= 20pF (SD read data valid).  
= 20pF (SD read data hold).  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
Figure 61  
Figure 61  
Figure 61  
Figure 61  
Figure 50  
Figure 50  
Figure 50  
Figure 50  
Figure 48  
Figure 48  
Figure 49  
Figure 49  
Q1  
LOAD,MAX  
LOAD,MAX  
2
-
-
HR  
, t  
SIO  
rise/fall @ C = 20pF  
LOAD,MAX  
12  
QR1 QF1  
OUT  
SIO0-to-SIO1 or SIO1-to-SIO0 delay @ C  
= 20pF  
LOAD,MAX  
-
20  
PROP1  
NAPXA  
NAPXB  
PDNXA  
PDNXB  
AS  
NAP exit delay - phase A  
-
50  
NAP exit delay - phase B  
-
40  
PDN exit delay - phase A  
-
4
PDN exit delay - phase B  
-
9000  
t
t
t
t
t
CYCLE  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
ATTN-to-STBY power state delay  
STBY-to-ATTN power state delay  
ATTN/STBY-to-NAP power state delay  
ATTN/STBY-to-PDN power state delay  
-
1
0
8
8
-
SA  
-
ASN  
-
ASP  
a. t  
and t  
for other t  
values can be interpolated between or extrapolated from the timings at the 3 specified t  
values.  
Q,MIN  
Q,MAX  
CYCLE  
CYCLE  
b. This parameter also applies to a-1200 part when operated with t  
= 1.875ns  
CYCLE  
c. This parameter also applies to a-1200 or -1066 part when operated with t  
= 2.50ns  
CYCLE  
Version 1.4 Jan. 2004  
Page 14  
K4R571669E  
Direct RDRAM  
Timing Parameters  
Table 13: Timing Parameter Summary  
Min Min Min Min  
Parameter  
Description  
-32 -32P -40 -45  
-1200 -1066 -800 -800  
Max Units Figure(s)  
Row Cycle time of RDRAM banks -the interval between ROWA packets with  
ACT commands to the same bank.  
Figure 16  
t
32  
22  
28  
20  
28  
20  
28  
20  
-
t
RC  
CYCLE  
CYCLE  
Figure 17  
RAS-asserted time of RDRAM bank - the interval between ROWA packet with  
Figure 16  
Figure 17  
a
b
t
ACT command and next ROWR packet with PRER command to the same  
64µs  
t
RAS  
bank.  
Row Precharge time of RDRAM banks - the interval between ROWR packet  
Figure 16  
Figure 17  
a
t
with PRER command and next ROWA packet with ACT command to the  
10  
8
8
8
-
t
RP  
CYCLE  
same bank.  
Precharge-to-precharge time of RDRAM device - the interval between succes-  
t
t
8
8
8
8
8
8
8
8
-
-
t
t
Figure 13  
Figure 14  
PP  
CYCLE  
a
sive ROWR packets with PRER commands to any banks of the same device.  
RAS-to-RAS time of RDRAM device - the interval between successive  
ROWA packets with ACT commands to any banks of the same device.  
RR  
CYCLE  
RAS-to-CAS Delay - the interval from ROWA packet with ACT command to  
COLC packet with RD or WR command). Note - the RAS-to-CAS delay seen  
Figure 16  
Figure 17  
t
9
9
7
9
-
t
RCD  
CYCLE  
by the RDRAM core (t  
) is equal to t  
= 1 + t  
because of differ-  
RCD  
RCD-C  
RCD-C  
ences in the row and column paths through the RDRAM interface.  
CAS Access delay - the interval from RD command to Q read data. The equa-  
Figure 5  
t
t
t
t
t
9
6
4
4
8
8
6
4
4
8
8
6
4
4
8
8
6
4
4
8
12  
6
-
t
t
t
t
t
CAC  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
CYCLE  
tion for t  
is given in the TPARM register in Figure 40.  
Figure 40  
CAC  
CAS Write Delay (interval from WR command to D write data.  
Figure 5  
CWD  
CC  
CAS-to-CAS time of RDRAM bank - the interval between successive COLC  
commands).  
Figure 16  
Figure 17  
Length of ROWA, ROWR, COLC, COLM or COLX packet.  
4
-
Figure 3  
PACKET  
RTR  
Interval from COLC packet with WR command to COLC packet which causes  
retire, and to COLM packet with bytemask.  
Figure 18  
The interval (offset) from COLC packet with RDA command, or from COLC  
packet with retire command (after WRA automatic precharge), or from COLC  
packet with PREC command, or from COLX packet with PREX command to  
Figure 15  
Figure 40  
t
4
4
4
4
4
t
OFFP  
CYCLE  
the equivalent ROWR packet with PRER. The equation for t  
the TPARM register in Figure 40.  
is given in  
OFFP  
Interval from last COLC packet with RD command to ROWR packet with  
PRER.  
t
t
4
4
4
4
4
4
4
4
-
-
t
t
Figure 16  
Figure 17  
RDP  
CYCLE  
Interval from last COLC packet with automatic retire command to ROWR  
packet with PRER.  
RTP  
CYCLE  
a. Or equivalent PREC or PREX command. See Figure 15.  
b. This is a constraint imposed by the core, and is therefore in units of µs rather than t  
.
CYCLE  
Version 1.4 Jan. 2004  
Page 15  
K4R571669E  
Direct RDRAM  
Absolute Maximum Ratings  
Table 14: Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Unit  
V
V
Voltage applied to any RSL or CMOS pin with respect to Gnd  
Voltage on VDD and VDDA with respect to Gnd  
Storage temperature  
- 0.3  
- 0.5  
- 50  
0
V
V
+0.3  
V
V
I,ABS  
DD,ABS  
STORE  
MIN  
DD  
DD  
, V  
+1.0  
DDA,ABS  
T
T
100  
Note*  
°C  
°C  
Minimum operation temperature  
Note*) Component : refer to T Θ  
Module: refre to T  
PLATE, MAX  
J, JC  
IDD - Supply Current Profile  
Table 15: Supply Current Profile  
Max  
Max  
Max  
IDD value  
RDRAM Power State and Steady-State Transaction Ratesa Min (1200MHz (1066MHz (800MHz Unit  
, -32)  
, -32P)  
, -40/-45)  
I
I
Device in PDN, self-refresh enabled and INIT.LSR=0.  
Device in NAP.  
-
-
6000  
4
6000  
4
6000  
4
uA  
DD,PDN  
DD,NAP  
mA  
Device in STBY. This is the average for a device in STBY with (1) no  
packets on the Channel, and (2) with packets sent to other devices.  
I
I
I
-
-
-
115  
115  
170  
105  
105  
160  
95  
95  
mA  
mA  
mA  
DD,STBY  
Device in STBY and refreshing rows at the t  
period.  
DD,REFRESH  
DD,ATTN  
REF,MAX  
Device in ATTN. This is the average for a device in ATTN with (1) no  
packets on the Channel, and (2) with packets sent to other devices.  
135  
Device in ATTN. ACT command every 8•t  
, PRE command  
, and data is 1100..1100  
b
CYCLE  
I
I
-
-
775(x16)  
690(x16)  
700(x16)  
545(x16)  
560(x16)  
mA  
mA  
DD,ATTN-W  
DD,ATTN-R  
every 8•t  
, WR command every 4t  
CYCLE  
CYCLE  
Device in ATTN. ACT command every 8•t  
, PRE command  
CYCLE  
780(x16)  
c
every 8t  
, RD command every 4t  
, and data is 1111..1111  
CYCLE  
CYCLE  
a. CMOS interface consumes power in all power states.  
b. x16 RDRAM device data width.  
c. This does not include the I sink current. The RDRAM device dissipates I V in each output driver when a logic one is driven.  
OL  
OL OL  
Table 16: Supply Current at Initialization  
Symbol  
Parameter  
Allowed Range of tCYCLE  
VDD  
Min  
Max  
Unit  
a
I
I
I
I
from power -on to SETR  
from SETR to CLRR  
1.667ns to 2.5ns  
1.667ns to 2.5ns  
V
V
-
-
200  
mA  
mA  
DD,PWRUP,D  
DD,SETR,D  
DD  
DD  
DD,MIN  
DD,MIN  
332  
a. The supply current will be 150mA when t  
is in the range 15ns to 1000ns.  
CYCLE  
Version 1.4 Jan. 2004  
Page 16  
K4R571669E  
Direct RDRAM  
Capacitance and Inductance  
Table 17: RSL Pin Parasitics  
Parameter and Conditions - RSL pins  
Symbol  
Min  
Max  
3.5  
3.5  
4.0  
0.2  
0.6  
1.8  
2.3  
2.3  
2.4  
0.1  
Unit  
Figure  
RSL effective input inductance @ t  
=1.667ns  
=1.875ns  
=2.5ns  
-
-
CYCLE  
CYCLE  
CYCLE  
RSL effective input inductance @ t  
RSL effective input inductance @ t  
LI  
nH  
Figure 63  
-
Mutual inductance between any DQA or DQB RSL signals.  
Mutual inductance between any ROW or COL RSL signals.  
Difference in LI value between any RSL pins of a single device.  
-
nH  
nH  
nH  
L12  
Figure 63  
Figure 63  
-
LI  
-
RSL effective input capacitancea @ t  
RSL effective input capacitancea @ t  
RSL effective input capacitancea @ t  
=1.667ns  
=1.875ns  
=2.5ns  
2.0  
2.0  
2.0  
-
CYCLE  
CYCLE  
CYCLE  
CI  
pF  
Figure 63  
C12  
Mutual capacitance between any RSL signals.  
pF  
pF  
Figure 63  
Figure 63  
Difference in CI value between average of {CTM, CTMN,  
CFM, CFMN} and any RSL pins of a single device.  
CI  
-
0.06  
RSL effective input resistance @ t  
RSL effective input resistance @ t  
RSL effective input resistance @ t  
=1.667ns  
=1.875ns  
=2.5ns  
4
4
4
10  
10  
15  
CYCLE  
CYCLE  
CYCLE  
RI  
Figure 63  
a. This value is a combination of the device IO circuitry and package capacitances measured at VDD=2.5V and f=400MHz with pin biased at 1.4V.  
Table 18: CMOS Pin Parasitics  
Symbol  
LI ,CMOS  
Parameter and Conditions - CMOS pins  
CMOS effective input inductance  
Min  
Max  
8.0  
Unit  
nH  
Figure  
CI ,CMOS  
CMOS effective input capacitance (SCK,CMD)a  
CMOS effective input capacitance (SIO1, SIO0)a  
1.7  
2.1  
7.0  
pF  
pF  
Figure 63  
CI ,CMOS,SIO  
-
a. This value is a combination of the device IO circuitry and package capacitances.  
Version 1.4 Jan. 2004  
Page 17  
K4R571669E  
Direct RDRAM  
Center-Bonded WBGA Package  
(84balls)  
Figure 4 shows the form and dimensions of the recom-  
mended package for the 84balls center-bonded WBGA  
device class.  
D
Bottom  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
S
Bottom  
Top  
1
2
3
4
A
5
6
7
8
e2  
9
10  
d
e1  
Bottom  
E
E1  
Figure 4: Center-Bonded WBGA Package  
Table lists the numerical values corresponding to dimen-  
sions shown in Figure 4.  
Table 19 : Center-Bonded WBGA Package Dimensions  
Symbol  
Parameter  
Ball pitch (x-axis)  
Min.  
Max.  
Unit  
e1  
e2  
A
0.80  
0.80  
9.20  
13.40  
0.90  
0.30  
0.40  
0.80  
0.80  
9.40  
13.60  
1.00  
0.40  
0.50  
mm  
mm  
mm  
mm  
mm  
mm  
mm  
Ball pitch (y-axis)  
Package body length  
Package body width  
Package total thickness  
Ball height  
D
E
E1  
d
Ball diameter  
Version 1.4 Jan. 2004  
Page 18  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY