K4T51083QI-HLE70 [SAMSUNG]

DDR DRAM, 64MX8, 0.4ns, CMOS, PBGA60;
K4T51083QI-HLE70
型号: K4T51083QI-HLE70
厂家: SAMSUNG    SAMSUNG
描述:

DDR DRAM, 64MX8, 0.4ns, CMOS, PBGA60

动态存储器 双倍数据速率
文件: 总46页 (文件大小:1043K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Rev. 1.1, Jul. 2011  
K4T51043QI  
K4T51083QI  
K4T51163QI  
512Mb I-die DDR2 SDRAM  
60 & 84FBGA with Lead-Free & Halogen-Free  
(RoHS compliant)  
datasheet  
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND  
SPECIFICATIONS WITHOUT NOTICE.  
Products and specifications discussed herein are for reference purposes only. All information discussed  
herein is provided on an "AS IS" basis, without warranties of any kind.  
This document and all information discussed herein remain the sole and exclusive property of Samsung  
Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property  
right is granted by one party to the other party under this document, by implication, estoppel or other-  
wise.  
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or  
similar applications where product failure could result in loss of life or personal or physical harm, or any  
military or defense application, or any governmental procurement to which special terms or provisions  
may apply.  
For updates or additional information about Samsung products, contact your nearest Samsung office.  
All brand names, trademarks and registered trademarks belong to their respective owners.  
2011 Samsung Electronics Co., Ltd. All rights reserved.  
- 1 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
Revision History  
Revision No.  
History  
Draft Date  
Mar. 2010  
Jul. 2011  
Remark  
Editor  
S.H.Kim  
J.Y.Lee  
1.0  
1.1  
- First Spec. Release  
- Corrected Typo.  
-
-
- 2 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
Table Of Contents  
512Mb I-die DDR2 SDRAM  
1. Ordering Information.....................................................................................................................................................4  
2. Key Features.................................................................................................................................................................4  
3. Package pinout/Mechanical Dimension & Addressing..................................................................................................5  
3.1 x4 Package Pinout (Top view) : 60ball FBGA Package .......................................................................................... 5  
3.2 x8 Package Pinout (Top view) : 60ball FBGA Package .......................................................................................... 6  
3.3 x16 Package Pinout (Top view) : 84ball FBGA Package ........................................................................................ 7  
3.4 FBGA Package Dimension (x4/x8).......................................................................................................................... 8  
3.5 FBGA Package Dimension (x16)............................................................................................................................. 9  
4. Input/Output Functional Description..............................................................................................................................10  
5. DDR2 SDRAM Addressing ...........................................................................................................................................11  
6. Absolute Maximum Ratings ..........................................................................................................................................12  
7. AC & DC Operating Conditions.....................................................................................................................................12  
7.1 Recommended DC operating Conditions (SSTL_1.8)............................................................................................. 12  
7.2 Operating Temperature Condition........................................................................................................................... 13  
7.3 Input DC Logic Level ............................................................................................................................................... 13  
7.4 Input AC Logic Level ............................................................................................................................................... 13  
7.5 AC Input Test Conditions......................................................................................................................................... 13  
7.6 Differential input AC logic Level............................................................................................................................... 14  
7.7 Differential AC output parameters ........................................................................................................................... 14  
8. ODT DC electrical characteristics.................................................................................................................................14  
9. OCD default characteristics ..........................................................................................................................................15  
10. IDD Specification Parameters and Test Conditions....................................................................................................16  
11. DDR2 SDRAM IDD Spec Table..................................................................................................................................18  
12. Input/Output capacitance............................................................................................................................................20  
13. Electrical Characteristics & AC Timing for DDR2-1066/800/667 ................................................................................20  
13.1 Refresh Parameters by Device Density................................................................................................................. 20  
13.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin ................................................................ 20  
13.3 Timing Parameters by Speed Grade..................................................................................................................... 21  
14. General notes, which may apply for all AC parameters..............................................................................................23  
15. Specific Notes for dedicated AC parameters..............................................................................................................25  
- 3 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
1. Ordering Information  
Org.  
DDR2-1066 7-7-7  
DDR2-800 5-5-5  
DDR2-800 6-6-6  
DDR2-667 5-5-5  
Package  
60 FBGA  
60 FBGA  
84 FBGA  
128Mx4  
64Mx8  
32Mx16  
-
K4T51043QI-HC(L)E7  
K4T51083QI-HC(L)E7  
K4T51163QI-HC(L)E7  
K4T51043QI-HC(L)F7  
K4T51083QI-HC(L)F7  
K4T51163QI-HC(L)F7  
K4T51043QI-HC(L)E6  
K4T51083QI-HC(L)E6  
K4T51163QI-HC(L)E6  
-
K4T51163QI-HC(L)F8  
NOTE :  
1. Speed bin is in order of CL-tRCD-tRP  
2. “H” of Part number(12th digit) stands for Lead-Free, Halogen-Free, and RoHS compliant products.  
2. Key Features  
Speed  
CAS Latency  
tRCD(min)  
tRP(min)  
DDR2-1066 7-7-7  
DDR2-800 5-5-5  
DDR2-800 6-6-6  
DDR2-667 5-5-5  
Units  
tCK  
ns  
7
5
6
5
13.125  
13.125  
58.125  
12.5  
12.5  
57.5  
15  
15  
60  
15  
15  
60  
ns  
tRC(min)  
ns  
The 512Mb DDR2 SDRAM is organized as a 8Mbit x16 I/Os,16Mbit x8 I/Os,  
32Mbit x4 I/Os 4banks device. This synchronous device achieves high  
speed double-data-rate transfer rates of up to 1066Mb/sec/pin (DDR2-  
1066) for general applications.  
JEDEC standard VDD = 1.8V ± 0.1V Power Supply  
DDQ = 1.8V ± 0.1V  
V
333MHz fCK for 667Mb/sec/pin, 400MHz fCK for 800Mb/sec/pin and  
533MHz fCK for 1066Mb/sec/pin  
The chip is designed to comply with the following key DDR2 SDRAM fea-  
tures such as posted CAS with additive latency, write latency = read latency  
-1, Off-Chip Driver(OCD) impedance adjustment and On Die Termination.  
All of the control and address inputs are synchronized with a pair of exter-  
nally supplied differential clocks. Inputs are latched at the crosspoint of dif-  
ferential clocks (CK rising and CK falling). All I/Os are synchronized with a  
pair of bidirectional strobes (DQS and DQS) in a source synchronous fash-  
ion. The address bus is used to convey row, column, and bank address  
information in a RAS/CAS multiplexing style. For example, 512Mb(x8)  
device receive 14/10/2 addressing.  
4 Banks  
Posted CAS  
Programmable CAS Latency: 3, 4, 5, 6  
Programmable Additive Latency: 0, 1 , 2 , 3, 4 , 5  
Write Latency(WL) = Read Latency(RL) -1  
Burst Length: 4 , 8(Interleave/Nibble sequential)  
Programmable Sequential / Interleave Burst Mode  
Bi-directional Differential Data-Strobe (Single-ended data-strobe is an  
optional feature)  
The 512Mb DDR2 device operates with a single 1.8V ± 0.1V power supply  
Off-Chip Driver(OCD) Impedance Adjustment  
On Die Termination  
and 1.8V ± 0.1V VDDQ  
.
The 512Mb DDR2 device is available in 60ball FBGAs(x4/x8) and in 84ball  
FBGAs(x16)  
Special Function Support  
-50ohm ODT  
-High Temperature Self-Refresh rate enable  
Average Refresh Period 7.8us at lower than TCASE 85°C, 3.9us at  
85°C < TCASE < 95 °C  
All of products are Lead-Free, Halogen-Free, and RoHS compliant  
NOTE :  
1. This data sheet is an abstract of full DDR2 specification and does not cover the common features which are described in “DDR2 SDRAM Device Operation & Timing Dia-  
gram”.  
2. The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation.  
- 4 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
3. Package pinout/Mechanical Dimension & Addressing  
3.1 x4 Package Pinout (Top view) : 60ball FBGA Package  
1
2
3
7
8
9
V
V
NC  
V
DQS  
A
V
DDQ  
DD  
SS  
SSQ  
NC  
DQS  
V
V
DM  
NC  
B
C
SSQ  
SSQ  
V
V
DQ0  
V
V
DQ1  
DDQ  
DDQ  
DDQ  
DDQ  
V
NC  
DQ3  
DQ2  
SSQ  
D
E
F
V
SSQ  
NC  
V
V
V
V
CK  
CK  
CS  
A0  
DDL  
NC  
V
DD  
REF  
SSDL  
SS  
ODT  
CKE  
BA0  
WE  
RAS  
CAS  
BA1  
G
H
J
A10/AP  
A3  
A1  
A5  
A2  
A6  
V
DD  
V
A4  
SS  
A7  
A9  
K
A11  
NC  
A8  
V
SS  
V
A12  
NC  
A13  
L
DD  
NOTE :  
1. Pin B3 has identical capacitance as pin B7.  
2. V and V are power and ground for the DLL.  
DDL  
SSDL  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
Ball Locations (x4)  
: Populated Ball  
: Depopulated Ball  
+
+
+
G
H
J
+
+
+
Top View  
(See the als through the package)  
K
L
+
+
- 5 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
3.2 x8 Package Pinout (Top view) : 60ball FBGA Package  
1
2
3
7
8
9
NU/  
RDQS  
V
V
A
V
DQS  
V
DDQ  
DD  
SS  
SSQ  
DM/  
DQ6  
V
DQS  
V
DQ7  
B
C
SSQ  
SSQ  
RDQS  
V
DQ1  
V
V
DQ0  
V
DDQ  
DDQ  
DDQ  
DDQ  
DQ3  
DQ4  
DQ2  
V
V
DQ5  
D
E
SSQ  
SSQ  
V
V
V
V
CK  
CK  
V
DD  
DDL  
REF  
SS  
SSDL  
ODT  
CKE  
WE  
RAS  
F
NC  
BA0  
A10/AP  
A3  
BA1  
A1  
CAS  
A2  
CS  
A0  
A4  
A8  
G
H
J
V
DD  
V
A5  
A6  
SS  
A9  
A11  
V
A7  
K
SS  
V
A12  
NC  
NC  
A13  
L
DD  
NOTE :  
1. Pins B3 and A2 have identical capacitance as pins B7 and A8.  
2. For a read, when enabled, strobe pair RDQS & RDQS are identical in function and timing to strobe pair DQS & DQS and input masking function is disabled.  
3. The function of DM or RDQS/RDQS are enabled by EMRS command.  
4. V  
and V  
are power and ground for the DLL.  
DDL  
SSDL  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
Ball Locations (x8)  
: Populated Ball  
: Depopulated Ball  
+
+
+
G
H
J
+
+
+
Top View  
(See the als through the package)  
K
L
+
+
- 6 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
3.3 x16 Package Pinout (Top view) : 84ball FBGA Package  
1
2
3
7
8
9
V
V
DDQ  
A
UDQS  
SSQ  
V
NC  
V
SS  
DD  
V
DQ14  
V
UDQS  
B
C
UDM  
DQ15  
SSQ  
SSQ  
V
DQ9  
V
V
V
DQ8  
DDQ  
DDQ  
DDQ  
DDQ  
V
DQ12  
V
DQ11  
DQ10  
D
E
F
DQ13  
SSQ  
SSQ  
V
NC  
V
V
V
LDQS  
DD  
SS  
SSQ  
DDQ  
V
DQ6  
LDQS  
V
DQ7  
LDM  
SSQ  
SSQ  
V
V
V
V
DQ1  
DQ0  
DDQ  
DDQ  
DDQ  
DDQ  
G
H
J
V
DQ2  
V
DQ4  
DQ3  
SSQ  
DQ5  
SSQ  
V
V
V
V
CK  
CK  
V
DD  
DDL  
REF  
SS  
SSDL  
CKE  
BA0  
A10/AP  
A3  
ODT  
K
WE  
RAS  
BA1  
NC  
L
CAS  
A2  
CS  
A0  
A4  
A8  
M
N
P
A1  
A5  
A9  
NC  
V
DD  
V
A6  
SS  
A7  
A11  
V
SS  
R
V
DD  
A12  
NC  
NC  
NOTE :  
1. VDDL and VSSDL are power and ground for the DLL.  
2. In case of only 8 DQs out of 16 DQs are used, LDQS, LDQSB and DQ0~7 must be used.  
3. A12 ball is only for MRS and EMRS mode setting.  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
Ball Locations (x16)  
: Populated Ball  
: Depopulated Ball  
+
G
H
J
Top View  
(See the balls through the Package)  
K
L
+
+
+
+
+
+
M
N
P
R
- 7 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
3.4 FBGA Package Dimension (x4/x8)  
Units : Millimeters  
7.50 ± 0.10  
A
0.80 x 8 = 6.40  
# A1 INDEX MARK  
1.60  
4
0.80  
MOLDING AREA  
B
9
8
7
6
5
3
2
1
(Datum A)  
(Datum B)  
A
B
C
D
E
F
G
H
J
K
L
(0.95)  
(1.90)  
60-0.45 Solder ball  
(Post reflow 0.50 ± 0.05)  
0.2 M  
A B  
Bottom  
7.50 ± 0.10  
#A1  
0.35±0.05  
1.10±0.10  
Top  
- 8 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
3.5 FBGA Package Dimension (x16)  
Units : Millimeters  
7.50 ± 0.10  
A
0.80 x 8 = 6.40  
3.20  
# A1 INDEX MARK  
MOLDING AREA  
0.80  
7
1.60  
4
B
9
8
6
5
3
2
1
(Datum A)  
A
B
C
(Datum B)  
D
E
F
G
H
J
K
L
M
N
P
R
(0.95)  
(1.90)  
84-0.45 Solder ball  
(Post reflow 0.50 ± 0.05)  
0.2 M  
A B  
Bottom  
7.50 ± 0.10  
#A1  
0.35±0.05  
1.10±0.10  
Top  
- 9 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
4. Input/Output Functional Description  
Symbol  
Type  
Function  
Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of the  
positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK (both  
directions of crossing).  
CK, CK  
Input  
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and out-  
put drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or Active  
Power-Down (row Active in any bank). CKE is synchronous for power down entry and exit, and for self refresh entry.  
CKE is asynchronous for self refresh exit. After VREF has become stable during the power on and initialization  
CKE  
CS  
Input  
Input  
swquence, it must be maintained for proper operation of the CKE receiver. For proper self-refresh entry and exit, VREF  
must be maintained to this input. CKE must be maintained high throughout read and write accesses. Input buffers,  
excluding CK, CK, ODT and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during  
self refresh.  
Chip Select: All commands are masked when CS is registered HIGH. CS provides for external Rank selection on sys-  
tems with multiple Ranks. CS is considered part of the command code.  
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR2 SDRAM. When  
enabled, ODT is only applied to each DQ, DQS, DQS, RDQS, RDQS, and DM signal for x4/x8 configurations. For x16  
configuration, ODT is applied to each DQ, UDQS/UDQS, LDQS/LDQS, UDM, and LDM signal. The ODT pin will be  
ignored if the Extended Mode Register Set(EMRS) is programmed to disable ODT.  
ODT  
Input  
Input  
Input  
RAS, CAS, WE  
Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.  
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coinci-  
dent with that input data during a Write access. DM is sampled on both edges of DQS. Although DM pins are input only,  
the DM loading matches the DQ and DQS loading. For x8 device, the function of DM or RDQS/RDQS is enabled by  
EMRS command.  
DM  
(UDM), (LDM)  
Bank Address Inputs: BA0, BA1 and BA2 define to which bank an Active, Read, Write or Precharge command is  
being applied. Bank address also determines if the mode register or extended mode register is to be accessed during a  
MRS or EMRS cycle.  
BA0 - BA1  
Input  
Input  
Address Inputs: Provided the row address for Active commands and the column address and Auto Precharge bit for  
Read/Write commands to select one location out of the memory array in the respective bank. A10 is sampled during a  
Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If  
only one bank is to be precharged, the bank is selected by BA0, BA1 and BA2. The address inputs also provide the op-  
code during Mode Register Set commands.  
A0 - A13  
DQ  
Input/Output Data Input/ Output: Bi-directional data bus.  
Data Strobe: Output with read data, input with write data. Edge-aligned with read data, centered in write data. For the  
x16, LDQS corresponds to the data on DQ0-DQ7; UDQS corresponds to the data on DQ8-DQ15. For the x8, an RDQS  
option using DM pin can be enabled via the EMRS(1) to simplify read timing. The data strobes DQS, LDQS, UDQS,  
and RDQS may be used in single ended mode or paired with optional complementary signals DQS, LDQS, UDQS, and  
RDQS to provide differential pair signaling to the system during both reads and writes. A control bit at EMRS(1)[A10]  
enables or disables all complementary data strobe signals.  
DQS, (DQS)  
In this data sheet, "differential DQS signals" refers to any of the following with A10 = 0 of EMRS(1)  
Input/Output x4 DQS/DQS  
(LDQS), (LDQS)  
(UDQS), (UDQS)  
(RDQS), (RDQS)  
x8 DQS/DQS  
if EMRS(1)[A11] = 0  
x8 DQS/DQS, RDQS/RDQS,  
if EMRS(1)[A11] = 1  
x16 LDQS/LDQS and UDQS/UDQS  
"single-ended DQS signals" refers to any of the following with A10 = 1 of EMRS(1)  
x4 DQS  
x8 DQS if EMRS(1) [A11] = 0  
x8 DQS, RDQS, if EMRS(1) [A11] = 1  
x16 LDQS and UDQS  
NC  
No Connect : No internal electrical connection is present.  
Power Supply : 1.8V +/- 0.1V, DQ Power Supply : 1.8V +/- 0.1V  
Ground, DQ Ground  
V
DD/VDDQ  
SS/VSSQ  
VDDL  
VSSDL  
VREF  
Supply  
Supply  
Supply  
Supply  
Supply  
V
DLL Power Supply : 1.8V +/- 0.1V  
DLL Ground  
Reference voltage  
- 10 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
5. DDR2 SDRAM Addressing  
512Mb  
Configuration  
# of Bank  
128Mb x4  
4
64Mb x 8  
4
32Mb x16  
4
Bank Address  
Auto precharge  
Row Address  
Column Address  
BA0,BA1  
A10/AP  
BA0,BA1  
A10/AP  
A0 ~ A13  
A0 ~ A9  
BA0,BA1  
A10/AP  
A0 ~ A12  
A0 ~ A9  
A0 ~ A13  
A0 ~ A9,A11  
* Reference information: The following tables are address mapping information for other densities.  
256Mb  
Configuration  
# of Bank  
64Mb x4  
4
32Mb x 8  
4
16Mb x16  
4
Bank Address  
Auto precharge  
Row Address  
Column Address  
BA0,BA1  
A10/AP  
BA0,BA1  
A10/AP  
A0 ~ A12  
A0 ~ A9  
BA0,BA1  
A10/AP  
A0 ~ A12  
A0 ~ A8  
A0 ~ A12  
A0 ~ A9,A11  
1Gb  
Configuration  
# of Bank  
256Mb x4  
8
128Mb x 8  
8
64Mb x16  
8
Bank Address  
Auto precharge  
Row Address  
Column Address  
BA0 ~ BA2  
A10/AP  
BA0 ~ BA2  
A10/AP  
A0 ~ A13  
A0 ~ A9  
BA0 ~ BA2  
A10/AP  
A0 ~ A12  
A0 ~ A9  
A0 ~ A13  
A0 ~ A9,A11  
2Gb  
Configuration  
# of Bank  
512Mb x4  
8
256Mb x 8  
8
128Mb x16  
8
Bank Address  
Auto precharge  
Row Address  
Column Address  
BA0 ~ BA2  
A10/AP  
BA0 ~ BA2  
A10/AP  
A0 ~ A14  
A0 ~ A9  
BA0 ~ BA2  
A10/AP  
A0 ~ A13  
A0 ~ A9  
A0 ~ A14  
A0 ~ A9,A11  
4Gb  
Configuration  
# of Bank  
1 Gb x4  
8
512Mb x 8  
8
256Mb x16  
8
Bank Address  
Auto precharge  
Row Address  
Column Address  
BA0 ~ BA2  
A10/AP  
BA0 ~ BA2  
A10/AP  
A0 - A15  
A0 - A9  
BA0 ~ BA2  
A10/AP  
A0 - A14  
A0 - A9  
A0 - A15  
A0 - A9,A11  
- 11 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
6. Absolute Maximum Ratings  
Symbol  
Parameter  
Rating  
Units  
V
NOTE  
Voltage on VDD pin relative to VSS  
VDD  
- 1.0 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
-55 to +100  
1
1
Voltage on VDDQ pin relative to VSS  
Voltage on VDDL pin relative to VSS  
Voltage on any pin relative to VSS  
Storage Temperature  
VDDQ  
VDDL  
IN, VOUT  
TSTG  
V
V
1
V
V
1
°C  
1, 2  
NOTE :  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.  
3. V and V  
must be within 300mV of each other at all times; and V  
must be not greater than 0.6 x V  
. When V and V  
and V  
are less than 500mV, V  
DD  
DDQ  
REF  
DDQ  
DD  
DDQ  
DDL REF  
may be equal to or less than 300mV.  
4. Voltage on any input or I/O may not exceed voltage on V  
.
DDQ  
7. AC & DC Operating Conditions  
7.1 Recommended DC operating Conditions (SSTL_1.8)  
Rating  
Typ.  
1.8  
Symbol  
Parameter  
Units  
NOTE  
Min.  
1.7  
Max.  
1.9  
VDD  
VDDL  
VDDQ  
VREF  
VTT  
Supply Voltage  
V
V
Supply Voltage for DLL  
Supply Voltage for Output  
Input Reference Voltage  
Termination Voltage  
1.7  
1.8  
1.8  
1.9  
4
4
1.7  
1.9  
V
0.49*VDDQ  
VREF-0.04  
0.50*VDDQ  
VREF  
0.51*VDDQ  
VREF+0.04  
mV  
V
1,2  
3
NOTE : There is no specific device V supply voltage requirement for SSTL-1.8 compliance. However under all conditions V  
must be less than or equal to V  
.
DD  
DDQ  
DD  
1. The value of V  
may be selected by the user to provide optimum noise margin in the system. Typically the value of V  
is expected to be about 0.5 x V  
of the transmitting  
REF  
REF  
DDQ  
device and V  
is expected to track variations in V  
.
REF  
DDQ  
2. Peak to peak AC noise on V  
may not exceed +/-2% V  
(DC).  
REF  
REF  
3. V of transmitting device must track V  
of receiving device.  
TT  
REF  
4. AC parameters are measured with V , V  
and V  
tied together.  
DDL  
DD  
DDQ  
- 12 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
7.2 Operating Temperature Condition  
Symbol  
Parameter  
Rating  
Units  
NOTE  
TOPER  
Operating Temperature  
0 to 95  
°C  
1, 2  
NOTE :  
1. Operating Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51.2 standard.  
2. At 85 - 95 °C operation temperature range, doubling refresh commands in frequency to a 32ms period ( tREFI=3.9 us ) is required, and to enter to self refresh mode at this  
temperature range, an EMRS command is required to change internal refresh rate.  
7.3 Input DC Logic Level  
Symbol  
Parameter  
Min.  
Max.  
Units  
NOTE  
VIH(DC)  
VREF + 0.125  
VDDQ + 0.3  
V
DC input logic high  
DC input logic low  
VIL(DC)  
- 0.3  
VREF - 0.125  
V
7.4 Input AC Logic Level  
DDR2-667, DDR2-800  
DDR2-1066  
Symbol  
Parameter  
Units  
Min.  
Max.  
Min.  
Max.  
VIH (AC)  
VIL (AC)  
VREF + 0.200  
VSSQ - VPEAK  
VDDQ + VPEAK  
VREF - 0.200  
VREF + 0.200  
-
-
V
V
AC input logic high  
AC input logic low  
VREF - 0.200  
NOTE :  
1. For information related to VPEAK value, Refer to overshoot/undershoot specification in device operation and timing datasheet; maximum peak ampli-  
tude allowed for overshoot and undershoot.  
7.5 AC Input Test Conditions  
Symbol  
Condition  
Value  
Units  
NOTE  
VREF  
Input reference voltage  
0.5 * VDDQ  
V
1
VSWING(MAX)  
SLEW  
Input signal maximum peak to peak swing  
Input signal minimum slew rate  
1.0  
1.0  
V
1
V/ns  
2, 3  
NOTE :  
1. Input waveform timing is referenced to the input signal crossing through the V  
(AC) level applied to the device under test.  
IH/IL  
2. The input signal minimum slew rate is to be maintained over the range from V  
shown in the below figure.  
to V (AC) min for rising edges and the range from V  
to V (AC) max for falling edges as  
REF IL  
REF  
IH  
3. AC timings are referenced with input waveforms switching from V (AC) to V (AC) on the positive transitions and V (AC) to V (AC) on the negative transitions.  
IL  
IH  
IH  
IL  
V
(AC) min  
IH  
V
V
V
V
V
(DC) min  
IH  
REF  
(DC) max  
IL  
(AC) max  
IL  
SS  
delta TF  
delta TR  
V
- V (AC) max  
IL  
V
(AC) min - V  
delta TR  
REF  
IH  
REF  
Falling Slew =  
Rising Slew =  
delta TF  
Figure 1. AC Input Test Signal Waveform  
- 13 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
7.6 Differential input AC logic Level  
Symbol  
Parameter  
Min.  
Max.  
Units  
NOTE  
VID(AC)  
0.5  
VDDQ  
V
1
AC differential input voltage  
AC differential cross point voltage  
VIX(AC)  
0.5 * VDDQ - 0.175  
0.5 * VDDQ + 0.175  
V
2
NOTE :  
1. V (AC) specifies the input differential voltage |V -V | required for switching, where V is the true input signal (such as CK, DQS, LDQS or UDQS) and V is the com-  
ID  
TR  
CP  
TR  
CP  
plementary input signal (such as CK, DQS, LDQS or UDQS). The minimum value is equal to V (AC) - V (AC).  
IH  
IL  
2. The typical value of V (AC) is expected to be about 0.5 * V  
IX  
of the transmitting device and V (AC) is expected to track variations in V  
. V (AC) indicates the voltage  
DDQ IX  
DDQ  
IX  
at which differential input signals must cross.  
3. For information related to V  
value, Refer to overshoot/undershoot specification in device operation and timing datasheet; maximum peak ampli-  
PEAK  
tude allowed for overshoot and undershoot.  
V
DDQ  
V
TR  
Crossing point  
V
ID  
V
V
IX or OX  
V
CP  
V
SSQ  
Figure 2. Differential signal levels  
7.7 Differential AC output parameters  
Symbol  
Parameter  
Min.  
Max.  
0.5 * VDDQ + 0.125  
Units  
NOTE  
VOX(AC)  
0.5 * VDDQ - 0.125  
V
1
AC differential cross point voltage  
NOTE :  
1. The typical value of V (AC) is expected to be about 0.5 * V  
OX  
of the transmitting device and V (AC) is expected to track variations in V  
. V (AC) indicates the volt-  
DDQ OX  
DDQ  
OX  
age at which differential output signals must cross.  
8. ODT DC electrical characteristics  
PARAMETER/CONDITION  
Rtt effective impedance value for EMRS(A6,A2)=0,1; 75 ohm  
Rtt effective impedance value for EMRS(A6,A2)=1,0; 150 ohm  
Rtt effective impedance value for EMRS(A6,A2)=1,1; 50 ohm  
Deviation of VM with respect to VDDQ/2  
SYMBOL  
Rtt1(eff)  
Rtt2(eff)  
Rtt3(eff)  
delta VM  
MIN  
60  
NOM  
75  
MAX  
90  
UNITS  
ohm  
ohm  
ohm  
%
NOTE  
1
1
1
1
120  
40  
150  
50  
180  
60  
- 6  
+ 6  
NOTE : Test condition for Rtt measurements  
Measurement Definition for Rtt(eff): Apply V (AC) and V (AC) to test pin separately, then measure current I(V (AC)) and I( V (AC)) respectively. V (AC), V  
IH  
IL  
IH  
IL  
IH  
IL  
(AC)(DC), and V  
values defined in SSTL_18  
DDQ  
VIH (AC) - VIL (AC)  
I(VIH (AC)) - I(VIL (AC))  
Rtt(eff) =  
2 x VM  
VDDQ  
- 1  
x 100%  
delta VM =  
Measurement Definition for VM: Measure voltage (VM) at test pin (midpoint) with no load.  
- 14 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
9. OCD default characteristics  
Description  
Parameter  
Min  
Nom  
18ohm at norminal condition  
Max  
Unit  
NOTE  
Output impedance  
See full strength default driver characteristics  
on device operation specification  
ohm  
1,2  
Output impedance step size for OCD calibration  
Pull-up and pull-down mismatch  
Output slew rate  
0
0
1.5  
4
ohm  
ohm  
V/ns  
6
1,2,3  
Sout  
1.5  
5
1,4,5,6,7,8  
NOTE :  
1. Absolute Specifications (0°C T  
+95°C; V = +1.8V ±0.1V, V = +1.8V ±0.1V)  
DDQ  
CASE  
DD  
2. Impedance measurement condition for output source DC current: V  
= 1.7V; V  
= 1420mV; (V  
-V  
)/Ioh must be less than 23.4 ohms for values of V  
DDQ  
OUT  
OUT DDQ OUT  
between V  
and V  
- 280mV. Impedance measurement condition for output sink dc current: V  
= 1.7V; V  
= 280mV;  
V
/Iol must be less than 23.4 ohms for  
OUT  
DDQ  
DDQ  
DDQ  
OUT  
values of V  
between 0V and 280mV.  
OUT  
3. Mismatch is absolute value between pull-up and pull-down, both are measured at same temperature and voltage.  
4. Slew rate measured from V (AC) to V (AC).  
IL  
IH  
5. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate as measured from AC to AC. This is  
guaranteed by design and characterization.  
6. This represents the step size when the OCD is near 18 ohms at nominal conditions across all process and represents only the DRAM uncertainty.  
Output slew rate load :  
VTT  
25 ohm  
Output  
Reference  
Point  
(VOUT  
)
7. DRAM output slew rate specification applies to 667Mb/sec/pin and 800Mb/sec/pin speed bins.  
8. Timing skew due to DRAM output slew rate mismatch between DQS / DQS and associated DQ is included in tDQSQ and tQHS specification.  
- 15 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
10. IDD Specification Parameters and Test Conditions  
(IDD values are for full operating range of Voltage and Temperature, Notes 1 - 5)  
Symbol  
Proposed Conditions  
Units  
NOTE  
Operating one bank active-precharge current;  
IDD0  
tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRASmin(IDD); CKE is HIGH, CS is HIGH between valid commands;  
Address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
mA  
Operating one bank active-read-precharge current;  
IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRC = tRC (IDD), tRAS = tRASmin(IDD), tRCD =  
tRCD(IDD); CKE is HIGH, CS is HIGH between valid commands; Address businputs are SWITCHING; Data pattern  
is same as IDD4W  
IDD1  
mA  
Precharge power-down current;  
IDD2P  
IDD2Q  
IDD2N  
IDD3P  
IDD3N  
All banks idle; tCK = tCK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data bus inputs are  
FLOATING  
mA  
mA  
mA  
Precharge quiet standby current;  
t
All banks idle; tCK = CK(IDD); CKE is HIGH, CS is HIGH; Other control and address bus inputsare STABLE; Data  
bus inputs are FLOATING  
Precharge standby current;  
All banks idle; tCK = tCK(IDD); CKE is HIGH, CS is HIGH; Other control and address bus inputs are SWITCHING;  
Data bus inputs are SWITCHING  
Active power-down current;  
All banks open; tCK = tCK(IDD); CKE is LOW; Other control and address bus  
mA  
mA  
Fast PDN Exit MRS(12) = 0  
Slow PDN Exit MRS(12) = 1  
inputs are STABLE; Data bus inputs are FLOATING  
Active standby current;  
All banks open; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid  
commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
mA  
mA  
Operating burst write current;  
All banks open, Continuous burst writes; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP  
= tRP(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are SWITCHING; Data bus  
inputs are SWITCHING  
IDD4W  
IDD4R  
Operating burst read current;  
All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRAS-  
max(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are SWITCH-  
ING; Data pattern is same as IDD4W  
mA  
mA  
Burst auto refresh current;  
tCK = tCK(IDD); Refresh command at every tRFC(IDD) interval; CKE is HIGH, CS is HIGH between valid com-  
mands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
IDD5B  
IDD6  
Self refresh current;  
Normal  
mA  
mA  
CK and CK at 0V; CKE 0.2V; Other control and address bus inputs are  
FLOATING; Data bus inputs are FLOATING  
Low Power  
Operating bank interleave read current;  
All bank interleaving reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = tRCD(IDD)-1*tCK(IDD); tCK = tCK(IDD), tRC  
= tRC(IDD), tRRD = tRRD(IDD), tFAW = tFAW(IDD), tRCD = 1*tCK(IDD); CKE is HIGH, CS is HIGH between valid  
commands; Address bus inputs are STABLE during DESELECTs; Data pattern is same as IDD4R; Refer to the fol-  
lowing page for detailed timing conditions  
IDD7  
mA  
- 16 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
NOTE :  
1. IDD specifications are tested after the device is properly initialized  
2. Input slew rate is specified by AC Parametric Test Condition  
3. IDD parameters are specified with ODT disabled.  
4. Data bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS, and UDQS. IDD values must be met with all combinations of EMRS bits 10 and 11.  
5. Definitions for IDD  
LOW is defined as V V (AC)max  
IN  
IL  
HIGH is defined as V V (AC)min  
IN  
IH  
STABLE is defined as inputs stable at a HIGH or LOW level  
FLOATING is defined as inputs at V  
= V  
/2  
REF  
DDQ  
SWITCHING is defined as:  
inputs changing between HIGH and LOW every other clock cycle (once per two clocks) for address and control  
signals, and  
inputs changing between HIGH and LOW every other data transfer (once per clock) for DQ signals not including  
masks or strobes.  
For purposes of IDD testing, the following parameters are utilized  
DDR2-1066  
DDR2-800  
DDR2-800  
DDR2-667  
Units  
Parameter  
CL(IDD)  
7-7-7  
5-5-5  
6-6-6  
5-5-5  
7
5
6
5
tCK  
tRCD(IDD)  
13.125  
58.125  
12.5  
57.5  
15  
60  
15  
60  
ns  
ns  
tRC(IDD)  
tRRD(IDD)-x4/x8  
tRRD(IDD)-x16  
ns  
ns  
7.5  
7.5  
7.5  
7.5  
10  
1.875  
45  
10  
2.5  
45  
10  
2.5  
45  
10  
3
tCK(IDD)  
tRASmin(IDD)  
tRP(IDD)  
ns  
ns  
ns  
ns  
45  
15  
105  
13.125  
105  
12.5  
105  
15  
tRFC(IDD)  
105  
Detailed IDD7  
The detailed timings are shown below for IDD7.  
Legend: A = Active; RA = Read with Autoprecharge; D = Deselect  
IDD7: Operating Current: All Bank Interleave Read operation  
All banks are being interleaved at minimum tRC(IDD) without violating tRRD(IDD) and tFAW(IDD) using a burst length of 4. Control and address bus inputs are STABLE during  
DESELECTs. IOUT = 0mA  
Timing Patterns for 4 bank devices x4/ x8/ x16  
-DDR2-667 5/5/5  
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D  
-DDR2-800 6/6/6  
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D D D  
-DDR2-800 5/5/5  
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D D  
-DDR2-1066 7/7/7  
A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D D D D A3 RA3 D D D D D D D D D D D  
- 17 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
11. DDR2 SDRAM IDD Spec Table  
128Mx4 (K4T51043QI)  
Symbol  
800@CL=5  
800@CL=6  
667@CL=5  
Unit  
NOTE  
CE7  
54  
61  
8
CF7  
53  
61  
8
CE6  
50  
58  
8
IDD0  
IDD1  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD2P  
IDD2Q  
IDD2N  
IDD3P-F  
IDD3P-S  
IDD3N  
IDD4W  
IDD4R  
IDD5  
23  
27  
25  
10  
37  
73  
90  
81  
8
23  
27  
25  
10  
37  
73  
92  
80  
8
23  
27  
25  
10  
34  
65  
80  
80  
8
IDD6  
IDD7  
124  
124  
115  
64Mx8 (K4T51083QI)  
Symbol  
800@CL=5  
800@CL=6  
667@CL=5  
Unit  
Notes  
CE7  
54  
62  
8
CF7  
53  
62  
8
CE6  
50  
60  
8
IDD0  
IDD1  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD2P  
IDD2Q  
IDD2N  
IDD3P-F  
IDD3P-S  
IDD3N  
IDD4W  
IDD4R  
IDD5  
23  
27  
25  
10  
36  
74  
96  
81  
8
23  
27  
25  
10  
37  
74  
97  
80  
8
23  
27  
25  
10  
34  
66  
86  
80  
8
IDD6  
IDD7  
128  
128  
118  
- 18 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
32Mx16 (K4T51163QI)  
Symbol  
1066@CL=7  
800@CL=5  
800@CL=6  
667@CL=5  
Unit  
NOTE  
CF8  
75  
85  
8
CE7  
67  
80  
8
CF7  
67  
80  
8
CE6  
65  
75  
8
IDD0  
IDD1  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD2P  
IDD2Q  
IDD2N  
IDD3P-F  
IDD3P-S  
IDD3N  
IDD4W  
IDD4R  
IDD5  
27  
35  
31  
10  
45  
110  
160  
90  
8
25  
30  
28  
10  
40  
95  
130  
90  
8
25  
30  
28  
10  
40  
95  
130  
90  
8
25  
30  
28  
10  
38  
85  
115  
90  
8
IDD6  
IDD7  
205  
200  
200  
185  
- 19 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
12. Input/Output capacitance  
DDR2-667  
Symbol  
DDR2-800  
DDR2-1066  
Units  
Parameter  
Min  
1.0  
x
Max  
Min  
Max  
2.0  
Min  
Max  
Input capacitance, CK and CK  
CCK  
CDCK  
CI  
2.0  
1.0  
x
1.0  
x
2.0  
pF  
pF  
pF  
pF  
pF  
pF  
Input capacitance delta, CK and CK  
0.25  
2.0  
0.25  
1.75  
0.25  
3.5  
0.25  
1.75  
0.25  
3.5  
Input capacitance, all other input-only pins  
Input capacitance delta, all other input-only pins  
Input/output capacitance, DQ, DM, DQS, DQS  
Input/output capacitance delta, DQ, DM, DQS, DQS  
1.0  
x
1.0  
x
1.0  
x
CDI  
0.25  
3.5  
CIO  
2.5  
x
2.5  
x
2.5  
x
CDIO  
0.5  
0.5  
0.5  
13. Electrical Characteristics & AC Timing for DDR2-1066/800/667  
(0 °C < TOPER < 95 °C; VDDQ = 1.8V + 0.1V; VDD = 1.8V + 0.1V)  
13.1 Refresh Parameters by Device Density  
Parameter  
Symbol  
256Mb  
75  
512Mb  
105  
1Gb  
127.5  
7.8  
2Gb  
195  
7.8  
4Gb  
Units  
ns  
Refresh to active/Refresh command time  
tRFC  
tREFI  
327.5  
7.8  
0 °C TCASE 85°C  
85 °C < TCASE 95°C  
7.8  
7.8  
μs  
Average periodic refresh interval  
3.9  
3.9  
3.9  
3.9  
3.9  
μs  
13.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin  
Speed  
Bin (CL - tRCD - tRP)  
Parameter  
tCK, CL=3  
tCK, CL=4  
tCK, CL=5  
tCK, CL=6  
tCK, CL=7  
tRCD  
DDR2-1066(F8)  
DDR2-800(E7)  
DDR2-800(F7)  
DDR2-667(E6)  
5-5-5  
7-7-7  
5-5-5  
6-6-6  
Units  
min  
-
max  
min  
max  
min  
max  
min  
max  
-
7.5  
7.5  
7.5  
7.5  
-
5
8
-
-
5
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3.75  
3
3.75  
2.5  
-
8
3.75  
3
8
3.75  
3
8
8
8
8
2.5  
-
2.5  
-
8
-
-
1.875  
13.125  
13.125  
58.125  
45  
-
-
-
-
-
12.5  
12.5  
57.5  
45  
-
15  
15  
60  
45  
-
15  
15  
60  
45  
-
tRP  
-
-
-
-
-
-
-
tRC  
-
tRAS  
70000  
70000  
70000  
70000  
- 20 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
13.3 Timing Parameters by Speed Grade  
(For information related to the entries in this table, refer to both the general notes and the specific notes following this table.)  
DDR2-1066  
DDR2-800  
DDR2-667  
Parameter  
Symbol  
Units  
NOTE  
min  
max  
350  
min  
max  
400  
min  
max  
450  
DQ output access time from CK/CK  
DQS output access time from CK/CK  
Average clock HIGH pulse width  
Average clock LOW pulse width  
tAC  
- 350  
- 300  
0.48  
0.48  
-400  
-350  
0.48  
0.48  
-450  
-400  
0.48  
0.48  
ps  
ps  
40  
40  
tDQSCK  
tCH(avg)  
tCL(avg)  
300  
350  
400  
0.52  
0.52  
0.52  
0.52  
0.52  
0.52  
tCK(avg) 35,36  
tCK(avg) 35,36  
Min(tCL(ab  
s),  
tCH(abs))  
Min(tCL(ab  
s),  
tCH(abs))  
min(tCL,tC  
H)  
CK half pulse period  
tHP  
x
x
x
ps  
37  
Average clock period  
tCK(avg)  
1875  
75  
7500  
x
2500  
125  
8000  
x
3000  
175  
8000  
x
ps  
ps  
35,36  
6,7,8,21  
,28,31  
DQ and DM input hold time  
tDH(base)  
6,7,8,20  
,28,31  
DQ and DM input setup time  
tDS(base)  
0
x
50  
x
100  
x
ps  
Control & Address input pulse width for each input  
DQ and DM input pulse width for each input  
Data-out high-impedance time from CK/CK  
DQS/DQS low-impedance time from CK/CK  
DQ low-impedance time from CK/CK  
DQS-DQ skew for DQS and associated DQ signals  
DQ hold skew factor  
tIPW  
0.6  
x
0.6  
0.35  
x
0.6  
0.35  
x
tCK(avg)  
tCK(avg)  
ps  
tDIPW  
tHZ  
0.35  
x
x
x
x
tAC max  
tAC max  
x
tAC(max)  
tAC(max)  
x
tAC(max)  
tAC(max)  
18,40  
18,40  
18,40  
13  
tLZ(DQS)  
tLZ(DQ)  
tDQSQ  
tQHS  
tAC min  
tAC(min)  
tAC(min)  
ps  
2* tAC min  
tAC max 2* tAC(min) tAC(max) 2* tAC(min) tAC(max)  
ps  
x
175  
250  
x
x
200  
300  
x
x
240  
340  
x
ps  
x
tHP - tQHS  
- 0.25  
0.35  
0.35  
0.2  
x
tHP - tQHS  
- 0.25  
0.35  
0.35  
0.2  
x
tHP - tQHS  
-0.25  
0.35  
0.35  
0.2  
ps  
38  
DQ/DQS output hold time from DQS  
DQS latching rising transitions to associated clock edges  
DQS input HIGH pulse width  
tQH  
ps  
39  
tDQSS  
tDQSH  
tDQSL  
tDSS  
0.25  
x
0.25  
x
0.25  
x
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
tCK(avg)  
nCK  
30  
DQS input LOW pulse width  
x
x
x
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
Mode register set command cycle time  
MRS command to ODT update delay  
Write postamble  
x
x
x
30  
30  
tDSH  
0.2  
x
0.2  
x
0.2  
x
tMRD  
tMOD  
tWPST  
tWPRE  
2
x
2
x
2
x
0
12  
0.6  
x
0
12  
0.6  
x
0
12  
0.6  
x
ns  
32  
10  
0.4  
0.4  
0.4  
tCK(avg)  
tCK(avg)  
Write preamble  
0.35  
0.35  
0.35  
5,7,9,23  
,29  
Address and control input hold time  
Address and control input setup time  
tIH(base)  
tIS(base)  
200  
125  
x
x
250  
175  
x
x
275  
200  
x
x
ps  
ps  
5,7,9,22  
,29  
Read preamble  
Read postamble  
tRPRE  
tRPST  
0.9  
0.4  
7.5  
10  
1.1  
0.6  
x
0.9  
0.4  
7.5  
10  
1.1  
0.6  
x
0.9  
0.4  
7.5  
10  
1.1  
0.6  
x
tCK(avg) 19,41  
tCK(avg) 19,42  
Activate to activate command period for 1KB page size products tRRD  
Activate to activate command period for 2KB page size products tRRD  
ns  
ns  
4,32  
4,32  
x
x
x
- 21 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
DDR2-1066  
Symbol  
DDR2-800  
DDR2-667  
NOTE  
Parameter  
Units  
min  
max  
min  
max  
min  
max  
Four Activate Window for 1KB page size products  
Four Activate Window for 2KB page size products  
CAS to CAS command delay  
tFAW  
tFAW  
tCCD  
tWR  
35  
x
x
x
x
x
x
x
x
x
x
x
35  
x
x
x
x
x
x
x
x
x
x
x
37.5  
x
x
x
x
x
x
x
x
x
x
x
ns  
ns  
32  
32  
45  
45  
50  
2
2
2
nCK  
ns  
Write recovery time  
15  
15  
15  
32  
33  
Auto precharge write recovery + precharge time  
Internal write to read command delay  
Internal read to precharge command delay  
Exit self refresh to a non-read command  
Exit self refresh to a read command  
tDAL  
WR+tRP  
WR + tnRP  
WR + tnRP  
nCK  
ns  
tWTR  
tRTP  
tXSNR  
tXSRD  
tXP  
7.5  
7.5  
7.5  
24,32  
3,32  
32  
7.5  
7.5  
7.5  
ns  
tRFC + 10  
tRFC + 10  
tRFC + 10  
ns  
200  
3
200  
2
200  
2
nCK  
nCK  
nCK  
Exit precharge power down to any command  
Exit active power down to read command  
tXARD  
3
2
2
1
Exit active power down to read command  
(slow exit, lower power)  
tXARDS  
10 - AL  
x
8 - AL  
x
7 - AL  
x
nCK  
1,2  
CKE minimum pulse width (HIGH and LOW pulse width)  
ODT turn-on delay  
tCKE  
3
2
x
3
2
x
3
2
x
nCK  
nCK  
27  
16  
tAOND  
2
2
2
tAC(max) +  
2.575  
tAC(max)+  
0.7  
tAC(max)+  
0.7  
ODT turn-on  
tAON  
tAC(min)  
tAC(min)  
tAC(min)  
ns  
ns  
6,16,40  
3*tCK +  
2*tCK(avg)  
2*tCK(avg)  
ODT turn-on (Power-Down mode)  
tAONPD  
tAC(min)+2 tAC(max)+ tAC(min)+2 +tAC(max) tAC(min)+2 +tAC(max)  
1
+1  
+1  
ODT turn-off delay  
ODT turn-off  
tAOFD  
tAOF  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
nCK  
ns  
17,45  
tAC(max)+  
0.6  
tAC(max)+  
0.6  
tAC(max)+  
0.6  
17,43,4  
5
tAC(min)  
tAC(min)  
tAC(min)  
2.5*tCK +  
2.5*tCK(av  
2.5*tCK(av  
ODT turn-off (Power-Down mode)  
tAOFPD  
tAC(min)+2 tAC(max)+ tAC(min)+2 g)+tAC(ma tAC(min)+2 g)+tAC(ma  
ns  
1
x)+1  
x)+1  
ODT to power down entry latency  
ODT power down exit latency  
OCD drive mode output delay  
tANPD  
tAXPD  
tOIT  
4
11  
0
x
3
8
0
x
3
8
0
x
nCK  
nCK  
ns  
x
x
x
12  
12  
12  
32  
15  
tIS+tCK(av  
tIS+tCK(av  
Minimum time clocks remains ON after CKE asynchronously  
drops LOW  
tIS+tCK  
+tIH  
tDelay  
x
g)  
+tIH  
x
g)  
+tIH  
x
ns  
- 22 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
14. General notes, which may apply for all AC parameters  
1. DDR2 SDRAM AC timing reference load  
Figure 3 represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to be either a precise repre  
sentation of the typical system environment or a depiction of the actual load presented by a production tester. System designers will use IBIS or other sim-  
ulation tools to correlate the timing reference load to a system environment. Manufacturers will correlate to their production test conditions (generally a  
coaxial transmission line terminated at the tester electronics).  
VDDQ  
DQ  
DQS  
DQS Output  
RDQS  
DUT  
VTT = VDDQ/2  
RDQS  
25Ω  
Timing  
reference  
point  
Figure 3. AC Timing Reference Load  
The output timing reference voltage level for single ended signals is the crosspoint with VTT. The output timing reference voltage level for differential  
signals is the crosspoint of the true (e.g. DQS) and the complement (e.g. DQS) signal.  
2. Slew Rate Measurement Levels  
a) Output slew rate for falling and rising edges is measured between VTT - 250 mV and VTT + 250 mV for single ended signals. For differential signals  
(e.g. DQS - DQS) output slew rate is measured between DQS - DQS = - 500 mV and DQS - DQS = + 500 mV. Output slew rate is guaranteed by  
design, but is not necessarily tested on each device.  
b) Input slew rate for single ended signals is measured from VREF(DC) to VIH(AC),min for rising edges and from VREF(DC) to VIL(AC),max for falling  
edges. For differential signals (e.g. CK - CK) slew rate for rising edges is measured from CK - CK = - 250 mV to CK - CK = + 500 mV (+ 250 mV to -  
500 mV for falling edges).  
c) VID is the magnitude of the difference between the input voltage on CK and the input voltage on CK, or between DQS and DQS for differential strobe.  
3. DDR2 SDRAM output slew rate test load  
Output slew rate is characterized under the test conditions as shown in Figure 4.  
VDDQ  
DUT  
DQ  
Output  
DQS, DQS  
VTT = VDDQ/2  
RDQS, RDQS  
25Ω  
Test point  
Figure 4. Slew Rate Test Load  
- 23 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
4. Differential data strobe  
DDR2 SDRAM pin timings are specified for either single ended mode or differential mode depending on the setting of the EMRS "Enable DQS" mode bit;  
timing advantages of differential mode are realized in system design. The method by which the DDR2 SDRAM pin timings are measured is mode depen-  
dent. In single ended mode, timing relationships are measured relative to the rising or falling edges of DQS crossing at VREF. In differential mode, these  
timing relationships are measured relative to the crosspoint of DQS and its complement, DQS. This distinction in timing methods is guaranteed by design  
and characterization. Note that when differential data strobe mode is disabled via the EMRS, the complementary pin, DQS, must be tied externally to VSS  
through a 20 Ω to 10 kΩ resistor to insure proper operation.  
tDQSH  
tDQSL  
DQS  
DQS  
DQS  
DQS  
tWPRE  
tWPST  
VIH(DC)  
VIH(AC)  
DQ  
DM  
D
D
D
D
VIL(AC)  
VIL(DC)  
tDH  
VIH(DC)  
tDS  
tDH  
tDS  
VIH(AC)  
DMin  
DMin  
DMin  
DMin  
VIL(AC)  
VIL(DC)  
Figure 5. Data Input (Write) Timing  
tCH  
tCL  
CK  
CK  
CK/CK  
DQS  
DQS  
DQS/DQS  
DQ  
tRPRE  
tRPST  
Q
Q
Q
Q
tDQSQ(max)  
tDQSQ(max)  
tQH  
tQH  
Figure 6. Data Output (Read) Timing  
5. AC timings are for linear signal transitions. See Specific Notes on derating for other signal transitions.  
6. All voltages are referenced to VSS  
.
7. These parameters guarantee device behavior, but they are not necessarily tested on each device.  
They may be guaranteed by device design or tester correlation.  
8. Tests for AC timing, IDD, and electrical (AC and DC) characteristics, may be conducted at nominal reference/supply voltage levels, but the related  
specifications and device operation are guaranteed for the full voltage range specified.  
- 24 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
15. Specific Notes for dedicated AC parameters  
1. User can choose which active power down exit timing to use via MRS (bit 12). tXARD is expected to be used for fast active power down exit timing.  
tXARDS is expected to be used for slow active power down exit timing.  
2. AL = Additive Latency.  
3. This is a minimum requirement. Minimum read to precharge timing is AL + BL / 2 provided that the tRTP and tRAS(min) have been satisfied.  
4. A minimum of two clocks (2 x tCK or 2 x nCK) is required irrespective of operating frequency.  
5. Timings are specified with command/address input slew rate of 1.0 V/ns.  
6. Timings are specified with DQs, DM, and DQS’s (DQS/RDQS in single ended mode) input slew rate of 1.0V/ns.  
7. Timings are specified with CK/CK differential slew rate of 2.0 V/ns. Timings are guaranteed for DQS signals with a differential slew rate of 2.0 V/ns in  
differential strobe mode and a slew rate of 1.0 V/ns in single ended mode.  
8. Data setup and hold time derating.  
[ Table 1 ] DDR2-400/533 tDS/tDH derating with differential data strobe  
ΔtDS, ΔtDH Derating Values of DDR2-400, DDR2-533 (ALL units in ‘ps’, the note applies to entire Table)  
DQS,DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
0.8V/ns  
ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
125  
45  
21  
0
-
125  
45  
125  
83  
0
45  
21  
0
-
95  
12  
1
-
33  
12  
-2  
-19  
-42  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
83  
0
-
83  
21  
-
-
-
-
0
0
24  
13  
-1  
-19  
-43  
-
24  
10  
-7  
-30  
-59  
-
-
-
-
-
-
-
-
-
-
DQ  
Siew  
rate  
-11  
-14  
-11  
-25  
-
-14  
-31  
-
25  
11  
-7  
-31  
-74  
-
22  
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-13  
-31  
-
23  
5
17  
-6  
-35  
-77  
-
-
-
-
-
-
-18  
-47  
-89  
-
17  
-7  
-50  
6
-
-
V/ns  
-
-
-
-
-19  
-62  
-23  
-65  
5
-11  
-53  
-
-
-
-
-
-
-38  
-
-
-
-
-
-
-
-
-127 -140 -115 -128 -103 -116  
[ Table 2 ] DDR2-667/800/1066 tDS/tDH derating with differential data strobe  
ΔtDS, ΔtDH Derating Values for DDR2-667, DDR2-800, DDR2-1066 (ALL units in ‘ps’, the note applies to entire Table)  
DQS,DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
0.8V/ns  
ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
100  
45  
21  
0
-
100  
45  
100  
67  
0
45  
21  
0
-
79  
12  
7
-
33  
12  
-2  
-19  
-42  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
67  
0
-
67  
0
-5  
-
21  
-
-
-
0
24  
19  
11  
2
24  
10  
-7  
-30  
-59  
-
-
-
-
-
-
-
-
-
DQ  
Slew  
rate  
-14  
-5  
-13  
-
-14  
-31  
-
31  
23  
14  
2
22  
5
-
-
-
-
-
-
-
-
-
-
-
-
-1  
-10  
-
35  
26  
14  
-12  
-52  
17  
-6  
-
-
-
-
-
-
-
-18  
-47  
-89  
-
38  
26  
0
6
-
-
V/ns  
-
-
-
-
-
-10  
-
-35  
-77  
-140  
-23  
-65  
-128  
38  
12  
-28  
-11  
-53  
-116  
-
-
-
-
-
-
-
-24  
-
-
-
-
-
-
-
-
-
-
-40  
- 25 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
[ Table 3 ] DDR2-400/533 tDS1/tDH1 derating with single-ended data strobe  
ΔtDS1, ΔtDH1 Derating Values for DDR2-400, DDR2-533(All units in ‘ps’; the note applies to the entire table)  
DQS Single-ended Slew Rate  
2.0 V/ns  
1.5 V/ns  
1.0 V/ns  
0.9 V/ns  
0.8 V/ns  
0.7 V/ns  
0.6 V/ns  
0.5 V/ns  
0.4 V/ns  
ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH  
1
1
1
167  
125  
42  
31  
-
1
146  
125  
83  
69  
-
1
125  
83  
0
1
63  
42  
0
1
1
1
1
1
1
1
1
1
1
1
-
-
-
-
-
-
1
-
-
-
-
-
-
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
188  
188  
-
-
-
-
-
-
-
-
-
-
-
146  
167  
81  
-2  
-13  
-27  
-45  
-
43  
1
-
-
-
-
-
-
-
-
63  
-
125  
-7  
-18  
-32  
-50  
-74  
-
-13  
-27  
-44  
-67  
-96  
-
-
-
-
-
-
DQ  
Slew  
rate  
-
-
-
-
-
-
-11  
-25  
-
-14  
-31  
-
-13  
-30  
-53  
-
-29  
-43  
-61  
-85  
-45  
-62  
-85  
-
-
-
-
-
-60  
-78  
-86  
-
-
-
-
-
-109 -108 -152  
V/ns  
-
-
-
-
-
-114 -102 -138 -138 -181 -183 -246  
-
-
-
-
-
-
-
-128 -156 -145 -180 -175 -223 -226 -288  
-210 -243 -240 -286 -291 -351  
-
-
-
-
-
-
-
-
-
-
-
For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value to the  
ΔtDS and ΔtDH derating value respectively. Example: tDS (total setup time) =tDS(base) +ΔtDS.  
Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIH(AC)min.  
Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIL(AC)max. If  
the actual signal is always earlier than the nominal slew rate line between shaded ’VREF(DC) to ac region’, use nominal slew rate for derating value (See  
Figure 7 for differential data strobe and Figure 8 for single-ended data strobe.) If the actual signal is later than the nominal slew rate line anywhere  
between shaded ’VREF(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see Fig-  
ure 9 for differential data strobe and Figure 10 for single-ended data strobe)  
Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VREF(DC).  
Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC). If  
the actual signal is always later than the nominal slew rate line between shaded ’dc level to VREF(DC) region’, use nominal slew rate for derating value  
(see Figure 11 for differential data strobe and Figure 12 for single-ended data strobe) If the actual signal is earlier than the nominal slew rate line any-  
where between shaded ’dc to VREF(DC) region’, the slew rate of a tangent line to the actual signal from the dc level to VREF(DC) level is used for derating  
value (see Figure 13 for differential data strobe and Figure 14 for single-ended data strobe)  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(AC) at the time of the rising clock  
transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC).  
For slew rates in between the values listed in Table 1, Table 2 and Table 3 the derating values may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
- 26 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(AC)min  
VREF to ac  
region  
V
IH(DC)min  
nominal  
slew rate  
VREF(DC)  
nominal slew  
rate  
VIL(DC)max  
VREF to ac  
region  
VIL(AC)max  
tVAC  
VSS  
ΔTF  
ΔTR  
V
REF(DC) - VIL(AC)max  
V
IH(AC)min - VREF(DC)  
Setup Slew Rate  
Rising Signal  
Setup Slew Rate  
Falling Signal  
=
=
ΔTF  
ΔTR  
Figure 7. IIIustration of nominal slew rate for tDS (differential DQS,DQS)  
- 27 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
VDDQ  
VIH(AC)min  
DQS  
Note1  
V
IH(DC)min  
VREF(DC)  
VIL(DC)max  
VIL(AC)max  
VSS  
tDH  
tDS  
tDS  
tDH  
VDDQ  
VIH(AC)min  
VREF to ac  
region  
V
IH(DC)min  
nominal  
slew rate  
VREF(DC)  
nominal slew  
rate  
VIL(DC)max  
VREF to ac  
region  
VIL(AC)max  
VSS  
ΔTF  
ΔTR  
V
REF(DC) - V (AC)max  
IL  
VIH(AC)min - VREF(DC)  
Setup Slew Rate  
Rising Signal  
Setup Slew Rate  
Falling Signal  
=
=
ΔTF  
ΔTR  
NOTE : DQS signal must be monotonic between V (AC)max and V (AC)min.  
IL  
IH  
Figure 8. IIIustration of nominal slew rate for tDS (single-ended DQS)  
- 28 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
nominal  
line  
VIH(AC)min  
V
REF to ac  
region  
VIH(DC)min  
tangent  
line  
VREF(DC)  
tangent  
line  
VIL(DC)max  
VIL(AC)max  
VREF to ac  
region  
nominal  
line  
ΔTR  
VSS  
tangent line[VIH(AC)min - VREF(DC)]  
Setup Slew Rate  
Rising Signal  
=
ΔTF  
ΔTR  
tangent line[VREF(DC) - VIL(AC)max]  
Setup Slew Rate  
Falling Signal  
=
ΔTF  
Figure 9. IIIustration of tangent line for tDS (differential DQS, DQS)  
- 29 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
VDDQ  
VIH(AC)min  
DQS  
Note1  
V
IH(DC)min  
VREF(DC)  
VIL(DC)max  
VIL(AC)max  
VSS  
tDH  
tDS  
tDS  
tDH  
VDDQ  
nominal  
line  
VIH(AC)min  
V
REF to ac  
region  
VIH(DC)min  
tangent  
line  
VREF(DC)  
tangent  
line  
VIL(DC)max  
VIL(AC)max  
VREF to ac  
region  
nominal  
line  
ΔTR  
VSS  
tangent line[VIH(AC)min - VREF(DC)]  
Setup Slew Rate  
Rising Signal  
=
ΔTR  
ΔTF  
tangent line[VREF(DC) - VIL(AC)max]  
Setup Slew Rate  
Falling Signal  
=
ΔTF  
NOTE : DQS signal must be monotonic between V (DC)max and V (DC)min.  
IL  
IH  
Figure 10. IIIustration of tangent line for tDS (single-ended DQS)  
- 30 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(AC)min  
V
IH(DC)min  
dc to VREF  
region  
nominal  
slew rate  
VREF(DC)  
nominal  
slew rate  
dc to VREF  
region  
VIL(DC)max  
VIL(AC)max  
VSS  
ΔTF  
ΔTR  
Hold Slew Rate  
VREF(DC) - VIL(DC)max  
Hold Slew Rate  
Rising Signal  
VIH(DC)min - VREF(DC)  
=
=
ΔTR  
Falling Signal  
ΔTF  
Figure 11. IIIustration of nominal slew rate for tDH (differential DQS, DQS)  
- 31 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
VDDQ  
VIH(AC)min  
DQS  
Note1  
V
IH(DC)min  
VREF(DC)  
VIL(DC)max  
VIL(AC)max  
VSS  
tDH  
tDS  
tDS  
tDH  
VDDQ  
VIH(AC)min  
V
IH(DC)min  
dc to VREF  
region  
nominal  
slew rate  
VREF(DC)  
nominal  
slew rate  
dc to VREF  
region  
VIL(DC)max  
VIL(AC)max  
VSS  
ΔTF  
ΔTR  
Hold Slew Rate  
VREF(DC) - VIL(DC)max  
Hold Slew Rate  
Rising Signal  
VIH(DC)min - VREF(DC)  
=
=
ΔTR  
Falling Signal  
ΔTF  
NOTE : DQS signal must be monotonic between V (DC)max and V (DC)min.  
IL  
IH  
Figure 12. IIIustration of nominal slew rate for tDH (single-ended DQS)  
- 32 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(AC)min  
nominal  
line  
VIH(DC)min  
dc to VREF  
region  
tangent  
line  
VREF(DC)  
tangent  
line  
dc to VREF  
region  
nominal  
line  
VIL(DC)max  
VIL(AC)max  
VSS  
ΔTF  
ΔTR  
tangent line [ VREF(DC) - VIL(DC)max ]  
Hold Slew Rate  
Rising Signal  
=
ΔTR  
tangent line [ VIH(DC)min - VREF(DC) ]  
Hold Slew Rate  
=
Falling Signal  
ΔTF  
Figure 13. IIIustration of tangent line for tDH (differential DQS, DQS)  
- 33 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
VDDQ  
VIH(AC)min  
DQS  
Note1  
V
IH(DC)min  
VREF(DC)  
VIL(DC)max  
VIL(AC)max  
VSS  
tDH  
tDS  
tDS  
tDH  
VDDQ  
VIH(AC)min  
nominal  
line  
V
IH(DC)min  
dc to VREF  
region  
tangent  
line  
VREF(DC)  
tangent  
line  
dc to VREF  
region  
nominal  
line  
VIL(DC)max  
VIL(AC)max  
VSS  
ΔTF  
ΔTR  
tangent line [ VREF(DC) - VIL(DC)max ]  
Hold Slew Rate  
Rising Signal  
=
ΔTR  
tangent line [ VIH(DC)min - VREF(DC) ]  
Hold Slew Rate  
Falling Signal  
=
ΔTF  
NOTE : DQS signal must be monotonic between V (DC)max and V (DC)min.  
IL  
IH  
Figure 14. IIIustration of tangent line for tDH (single-ended DQS)  
- 34 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
9. tIS and tIH (input setup and hold) derating  
[ Table 4 ] Derating values for DDR2-400, DDR2-533  
ΔtIS, ΔtIH Derating Values for DDR2-400, DDR2-533  
CK, CK Differential Slew Rate  
2.0 V/ns  
1.5 V/ns  
1.0 V/ns  
Units  
NOTE  
ΔtIS  
+187  
+179  
+167  
+150  
+125  
+83  
ΔtIH  
+94  
+89  
+83  
+75  
+45  
+21  
0
ΔtIS  
+217  
+209  
+197  
+180  
+155  
+113  
+30  
ΔtIH  
+124  
+119  
+113  
+105  
+75  
ΔtIS  
+247  
+239  
+227  
+210  
+185  
+143  
+60  
ΔtIH  
+154  
+149  
+143  
+135  
+105  
+81  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+51  
0
+30  
+60  
-11  
-14  
+19  
+16  
+49  
+46  
Command/  
Address Slew  
rate(V/ns)  
-25  
-31  
+5  
-1  
+35  
+29  
-43  
-54  
-13  
-24  
+17  
+6  
-67  
-83  
-37  
-53  
-7  
-23  
-110  
-175  
-285  
-350  
-525  
-800  
-1450  
-125  
-188  
-292  
-375  
-500  
-708  
-1125  
-80  
-95  
-50  
-65  
-145  
-255  
-320  
-495  
-770  
-1420  
-158  
-262  
-345  
-470  
-678  
-1095  
-115  
-225  
-290  
-465  
-740  
-1390  
-128  
-232  
-315  
-440  
-648  
-1065  
- 35 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
[ Table 5 ] Derating values for DDR2-667, DDR2-800, DDR2-1066  
ΔtIS and ΔtIH Derating Values for DDR2-667, DDR2-800, DDR2-1066  
CK, CK Differential Slew Rate  
1.5 V/ns 1.0 V/ns  
2.0 V/ns  
Units  
NOTE  
ΔtIS  
+150  
+143  
+133  
+120  
+100  
+67  
0
ΔtIH  
+94  
+89  
+83  
+75  
+45  
+21  
0
ΔtIS  
+180  
+173  
+163  
+150  
+130  
+97  
+30  
+25  
+17  
+8  
ΔtIH  
+124  
+119  
+113  
+105  
+75  
ΔtIS  
+210  
+203  
+193  
+180  
+160  
+127  
+60  
ΔtIH  
+154  
+149  
+143  
+135  
+105  
+81  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+51  
+30  
+60  
-5  
-14  
+16  
+55  
+46  
Command/  
Address Slew  
rate(V/ns)  
-13  
-31  
-1  
+47  
+29  
-22  
-54  
-24  
+38  
+6  
-34  
-83  
-4  
-53  
+26  
-23  
-60  
-125  
-188  
-292  
-375  
-500  
-708  
-1125  
-30  
-95  
0
-65  
-100  
-168  
-200  
-325  
-517  
-1000  
-70  
-158  
-262  
-345  
-470  
-678  
-1095  
-40  
-128  
-232  
-315  
-440  
-648  
-1065  
-138  
-170  
-295  
-487  
-970  
-108  
-140  
-265  
-457  
-940  
For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value to the ΔtIS  
and ΔtIH derating value respectively. Example: tIS (total setup time) = tIS(base) + ΔtIS  
Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIH(AC)min.  
Setup (tIS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIL(AC)max. If  
the actual signal is always earlier than the nominal slew rate line between shaded ’VREF(DC) to ac region’, use nominal slew rate for derating value (see  
Figure 15). If the actual signal is later than the nominal slew rate line anywhere between shaded ’VREF(DC) to ac region’, the slew rate of a tangent line to  
the actual signal from the ac level to dc level is used for derating value (see Figure 16).  
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VREF(DC).  
Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC). If  
the actual signal is always later than the nominal slewrate line between shaded ’dc to VREF(DC) region’, use nominal slew rate for derating value (see Fig-  
ure 17). If the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to VREF(DC) region’, the slew rate of a tangent line to  
the actual signal from the dc level to VREF(DC) level is used for derating value (see Figure 18).  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(AC) at the time of the rising clock  
transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC).  
For slew rates in between the values listed in Table 4 and Table 5 the derating values may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
- 36 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
CK  
CK  
tIH  
tIH  
tIS  
tIS  
VDDQ  
VIH(AC)min  
V
REF to ac  
region  
V
IH(DC)min  
nominal  
slew rate  
VREF(DC)  
nominal slew  
rate  
VIL(DC)max  
VREF to ac  
region  
VIL(AC)max  
VSS  
ΔTF  
ΔTR  
V
REF(DC) - VIL(AC)max  
VIH(AC)min - VREF(DC)  
Setup Slew Rate  
Rising Signal  
Setup Slew Rate  
Falling Signal  
=
=
ΔTF  
ΔTR  
Figure 15. IIIustration of nominal slew rate for tIS  
- 37 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
CK  
CK  
tIH  
tIH  
tIS  
tIS  
VDDQ  
nominal  
line  
VIH(AC)min  
V
REF to ac  
region  
V
IH(DC)min  
tangent  
line  
VREF(DC)  
tangent  
line  
VIL(DC)max  
VREF to ac  
region  
VIL(AC)max  
nominal  
line  
ΔTR  
VSS  
tangent line[VIH(AC)min - VREF(DC)]  
Setup Slew Rate  
Rising Signal  
=
ΔTR  
ΔTF  
tangent line[VREF(DC) - VIL(AC)max]  
Setup Slew Rate  
Falling Signal  
=
ΔTF  
Figure 16. IIIustration of tangent line for tIS  
- 38 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
CK  
CK  
tIH  
tIH  
tIS  
tIS  
VDDQ  
VIH(AC)min  
V
IH(DC)min  
dc to VREF  
region  
nominal  
slew rate  
VREF(DC)  
nominal  
slew rate  
dc to VREF  
region  
VIL(DC)max  
VIL(AC)max  
VSS  
ΔTF  
ΔTR  
Hold Slew Rate  
VREF(DC) - VIL(DC)max  
Hold Slew Rate  
Rising Signal  
VIH(DC)min - VREF(DC)  
=
=
ΔTR  
Falling Signal  
ΔTF  
Figure 17. IIIustration of nominal slew rate for tIH  
- 39 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
CK  
CK  
tIH  
tIH  
tIS  
tIS  
VDDQ  
VIH(AC)min  
nominal  
line  
V
IH(DC)min  
dc to VREF  
region  
tangent  
line  
VREF(DC)  
tangent  
line  
dc to VREF  
region  
nominal  
line  
VIL(DC)max  
VIL(AC)max  
VSS  
ΔTF  
ΔTR  
tangent line [ VREF(DC) - VIL(DC)max ]  
Hold Slew Rate  
Rising Signal  
=
ΔTR  
tangent line [ VIH(DC)min - VREF(DC)]  
ΔTF  
Hold Slew Rate  
=
Falling Signal  
Figure 18. IIIustration of tangent line for tIH  
- 40 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
10. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this parameter, but system performance  
(bus turnaround) will degrade accordingly.  
11. MIN ( tCL, tCH) refers to the smaller of the actual clock LOW time and the actual clock HIGH time as provided to the device (i.e. this value can be  
greater than the minimum specification limits for tCL and tCH). For example, tCL and tCH are = 50% of the period, less the half period jitter ( tJIT(HP))  
of the clock source, and less the half period jitter due to crosstalk ( tJIT(crosstalk)) into the clock traces.  
12. tQH = tHP - tQHS, where :  
tHP = minimum half clock period for any given cycle and is defined by clock HIGH or clock LOW (tCH, tCL).  
tQHS accounts for:  
1) The pulse duration distortion of on-chip clock circuits; and  
2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are, separately, due  
to data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers.  
13. tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate  
mismatch between DQS/ DQS and associated DQ in any given cycle.  
14. tDAL = WR + RU{ tRP[ns] / tCK[ns] }, where RU stands for round up.  
WR refers to the tWR parameter stored in the MRS. For tRP, if the result of the division is not already an integer, round up to the next highest integer.  
tCK refers to the application clock period.  
Example: For DDR533 at tCK = 3.75ns with WR programmed to 4 clocks.  
tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.  
15. The clock frequency is allowed to change during self refresh mode or precharge power-down mode.  
16. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resis-  
tance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-400/533, tAOND is 10 ns (= 2 x 5 ns) after  
the clock edge that registered a first ODT HIGH if tCK = 5 ns. For DDR2-667/800, tAOND is 2 clock cycles after the clock edge that registered a first  
ODT HIGH counting the actual input clock edges.  
17. ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance. Both are mea-  
sured from tAOFD, which is interpreted differently per speed bin. For DDR2-400/533, tAOFD is 12.5 ns (= 2.5 x 5 ns) after the clock edge that regis-  
tered a first ODT LOW if tCK = 5 ns. For DDR2-667/800, if tCK(avg) = 3 ns is assumed, tAOFD is 1.5 ns (= 0.5 x 3 ns) after the second trailing clock  
edge counting from the clock edge that registered a first ODT LOW and by counting the actual input clock edges.  
18. tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which  
specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) . Figure 19 shows a method to calculate the point when device is no  
longer driving (tHZ), or beginsdriving (tLZ) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as  
long as the calculation is consistent. tLZ(DQ) refers to tLZ of the DQS and tLZ(DQS) refers to tLZ of the (U/L/R)DQS and (U/L/R)DQS each treated as  
single-ended signal.  
19. tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST),  
or begins driving (tRPRE). Figure 19 shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving  
(tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consis-  
tent.  
VOH + x mV  
VTT + 2x mV  
VTT + x mV  
VOH + 2x mV  
tLZ  
tHZ  
tRPST end point  
V
OL + 2x mV  
OL + x mV  
V
TT - x mV  
T2  
T1  
T1  
T2  
V
VTT - 2x mV  
tHZ,tRPST end point = 2*T1-T2  
tLZ,tRPRE begin point = 2*T1-T2  
Figure 19. Method for calculating transitions and endpoints  
- 41 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
20. Input waveform timing tDS with differential data strobe enabled MR[bit10]=0, is referenced from the input signal crossing at the VIH(AC) level to the  
differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL(AC) level to the differential data strobe crosspoint for  
a falling signal applied to the device under test. DQS, DQS signals must be monotonic between VIL(DC)max and VIH(DC)min. See Figure 20.  
21. Input waveform timing tDH with differential data strobe enabled MR[bit10]=0, is referenced from the differential data strobe crosspoint to the input sig-  
nal crossing at the VIH(DC) level for a falling signal and from the differential data strobe crosspoint to the input signal crossing at the VIL(DC) level for  
a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL(DC)max and VIH(DC)min. See Figure 20.  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(AC)min  
VIH(DC)min  
VREF(DC)  
VIL(DC)max  
VIL(AC)max  
VSS  
Figure 20. Differential input waveform timing - tDS and tDH  
22. Input waveform timing is referenced from the input signal crossing at the VIH(AC) level for a rising signal and VIL(AC) for a falling signal applied to the  
device under test. See Figure 21.  
23. Input waveform timing is referenced from the input signal crossing at the VIL(DC) level for a rising signal and VIH(DC) for a falling signal applied to the  
device under test. See Figure 21.  
CK  
CK  
tIH  
tIH  
tIS  
tIS  
VDDQ  
VIH(AC)min  
VIH(DC)min  
VREF(DC)  
VIL(DC)max  
VIL(AC)max  
VSS  
Figure 21. Differential input waveform timing - tIS and tIH  
- 42 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
24. tWTR is at lease two clocks (2 x tCK or 2 x nCK) independent of operation frequency.  
25. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the input signal crossing at the VIH(AC) level to the sin-  
gle-ended data strobe crossing VIH/L(DC) at the start of its transition for a rising signal, and from the input signal crossing at the VIL(AC) level to the  
single-ended data strobe crossing VIH/L(DC) at the start of its transition for a falling signal applied to the device under test. The DQS signal must be  
monotonic between VIL(DC)max and VIH(DC)min.  
26. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the input signal crossing at the VIH(DC) level to the  
single-ended data strobe crossing VIH/L(AC) at the end of its transition for a rising signal, and from the input signal crossing at the VIL(DC) level to the  
single-ended data strobe crossing VIH/L(AC) at the end of its transition for a falling signal applied to the device under test. The DQS signal must be  
monotonic between VIL(DC)max and VIH(DC)min.  
27. tCKEmin of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire  
time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during the time period of  
tIS + 2 x tCK + tIH.  
28. If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.  
29. These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective  
clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as the setup and  
hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is pres-  
ent or not.  
30. These parameters are measured from a data strobe signal ((L/U/R)DQS/DQS) crossing to its respective clock signal (CK/CK) crossing. The spec val-  
ues are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the clock signal crossing. That is, these  
parameters should be met whether clock jitter is present or not.  
31. These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal ((L/U/  
R)DQS/DQS) crossing.  
32. For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK(avg)}, which is in clock  
cycles, assuming all input clock jitter specifications are satisfied.  
For example, the device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For  
DDR2-667 5-5-5, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 5, i.e. as long as the input clock jitter specifications are  
met, Precharge command at Tm and Active command at Tm+5 is valid even if (Tm+5 - Tm) is less than 15ns due to input clock jitter.  
33. tDAL [nCK] = WR [nCK] + tnRP [nCK] = WR + RU {tRP [ps] / tCK(avg) [ps] }, where WR is the value programmed in the mode register set.  
34. New units, ’tCK(avg)’ and ’nCK’, are introduced in DDR2-667 and DDR2-800. Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under  
operation. Unit ’nCK’ represents one clock cycle of the input clock, counting the actual clock edges.  
Note that in DDR2-400 and DDR2-533, ’tCK’ is used for both concepts.  
ex) tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may be registered at Tm+2, even if (Tm+2 - Tm) is 2 x tCK(avg)  
+ tERR(2per),min.  
35. Input clock jitter spec parameter. These parameters and the ones in the table below are referred to as 'input clock jitter spec parameters' . The jitter  
specified is a random jitter meeting a Gaussian distribution.  
DDR2-667  
Min  
DDR2-800  
DDR2-1066  
Parameter  
Symbol  
units NOTE  
Max  
125  
100  
250  
200  
175  
225  
250  
250  
350  
450  
125  
Min  
Max  
100  
80  
Min  
-90  
Max  
90  
Clock period jitter  
tJIT(per)  
tJIT(per,lck)  
tJIT(cc)  
-125  
-100  
-250  
-200  
-175  
-225  
-250  
-250  
-350  
-450  
-125  
-100  
-80  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
Clock period jitter during DLL locking period  
Cycle to cycle clock period jitter  
-80  
80  
-200  
-160  
-150  
-175  
-200  
-200  
-300  
-450  
-100  
200  
160  
150  
175  
200  
200  
300  
450  
100  
-180  
-160  
-132  
-157  
-175  
-188  
-250  
-425  
-75  
180  
160  
132  
157  
175  
188  
250  
425  
75  
Cycle to cycle clock period jitter during DLL locking period  
Cumulative error across 2 cycles  
tJIT(cc,lck)  
tERR(2per)  
tERR(3per)  
tERR(4per)  
tERR(5per)  
tERR(6-10per)  
tERR(11-50per)  
tJIT(duty)  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
Cumulative error across n cycles, n = 6 ... 10, inclusive  
Cumulative error across n cycles, n = 11 ... 50, inclusive  
Duty cycle jitter  
- 43 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
Definitions :  
- tCK(avg)  
tCK(avg) is calculated as the average clock period across any consecutive 200 cycle window.  
N
/N  
tCK(avg) =  
where  
tCKj  
j = 1  
N = 200  
- tCH(avg) and tCL(avg)  
tCH(avg) is defined as the average HIGH pulse width, as calculated across any consecutive 200 HIGH pulses.  
N
/(N x tCK(avg))  
tCH(avg) =  
where  
tCHj  
j = 1  
N = 200  
tCL(avg) is defined as the average LOW pulse width, as calculated across any consecutive 200 LOW pulses.  
N
/(N x tCK(avg))  
tCL(avg) =  
tCLj  
j = 1  
N = 200  
where  
- tJIT(duty)  
tJIT(duty) is defined as the cumulative set of tCH jitter and tCL jitter. tCH jitter is the largest deviation of any single tCH from tCH(avg). tCL jitter is the  
largest deviation of any single tCL from tCL(avg).  
tJIT(duty) = Min/max of {tJIT(CH), tJIT(CL)}  
where,  
tJIT(CH) = {tCHi- tCH(avg) where i=1 to 200}  
tJIT(CL) = {tCLi- tCL(avg) where i=1 to 200}  
- tJIT(per), tJIT(per,lck)  
tJIT(per) is defined as the largest deviation of any single tCK from tCK(avg).  
tJIT(per) = Min/max of {tCKi- tCK(avg) where i=1 to 200}  
tJIT(per) defines the single period jitter when the DLL is already locked.  
tJIT(per,lck) uses the same definition for single period jitter, during the DLL locking period only.  
tJIT(per) and tJIT(per,lck) are not guaranteed through final production testing.  
- tJIT(cc), tJIT(cc,lck)  
tJIT(cc) is defined as the difference in clock period between two consecutive clock cycles : tJIT(cc) = Max of |tCKi+1 - tCKi|  
tJIT(cc) defines the cycle to cycle jitter when the DLL is already locked.  
tJIT(cc,lck) uses the same definition for cycle to cycle jitter, during the DLL locking period only.  
tJIT(cc) and tJIT(cc,lck) are not guaranteed through final production testing.  
- tERR(2per), tERR (3per), tERR (4per), tERR (5per), tERR (6-10per) and tERR (11-50per)  
tERR is defined as the cumulative error across multiple consecutive cycles from tCK(avg).  
i + n - 1  
- n x tCK(avg)  
tERR(nper) =  
tCKj  
j = 1  
n = 2  
for tERR(2per)  
n = 3  
n = 4  
n = 5  
for tERR(3per)  
for tERR(4per)  
for tERR(5per)  
for tERR(6-10per)  
where  
6 n 10  
11 n 50 for tERR(11-50per)  
- 44 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
36. These parameters are specified per their average values, however it is understood that the following relationship between the average timing and the  
absolute instantaneous timing holds at all times. (Min and max of SPEC values are to be used for calculations in the table below.)  
Parameter  
Symbol  
Min  
Max  
Units  
Absolute clock Period  
tCK(abs)  
tCK(avg)min + tJIT(per)min  
tCK(avg)max + tJIT(per)max  
ps  
tCH(avg)min x tCK(avg)min +  
tJIT(duty)min  
tCH(avg)max x tCK(avg)max +  
tJIT(duty)max  
Absolute clock HIGH pulse width  
Absolute clock LOW pulse width  
tCH(abs)  
tCL(abs)  
ps  
ps  
tCL(avg)min x tCK(avg)min +  
tJIT(duty)min  
tCL(avg)max x tCK(avg)max +  
tJIT(duty)max  
Example: For DDR2-667, tCH(abs),min = ( 0.48 x 3000 ps ) - 125 ps = 1315 ps  
37. tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter. It is used  
in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the following equation;  
tHP = Min ( tCH(abs), tCL(abs) ),  
where,  
tCH(abs) is the minimum of the actual instantaneous clock HIGH time;  
tCL(abs) is the minimum of the actual instantaneous clock LOW time;  
38. tQHS accounts for:  
1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is transferred to the output; and  
2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are independent of  
each other, due to data pin skew, output pattern effects, and p-channel to n-channel variation of the output drivers  
39. tQH = tHP - tQHS, where:  
tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under the max column.  
{The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.}  
Examples:  
1) If the system provides tHP of 1315 ps into a DDR2-667 SDRAM, the DRAM provides tQH of 975 ps minimum.  
2) If the system provides tHP of 1420 ps into a DDR2-667 SDRAM, the DRAM provides tQH of 1080 ps minimum.  
40. When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output derat-  
ings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10per)min = - 272 ps and tERR(6-10per)max = + 293 ps, then tDQSCK-  
min(derated) = tDQSCKmin - tERR(6-10per)max = - 400 ps - 293 ps = - 693 ps and tDQSCKmax(derated) = tDQSCKmax - tERR(6-10per)min = 400  
ps + 272 ps = + 672 ps. Similarly, tLZ(DQ) for DDR2-667 derates to tLZ(DQ)min(derated) = - 900 ps - 293 ps = - 1193 ps and tLZ(DQ)max(derated) =  
450 ps + 272 ps = + 722 ps.  
41. When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per) of the input clock. (output deratings are  
relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tJIT(per)min = - 72 ps and tJIT(per)max = + 93 ps, then tRPREmin(derated) =  
tRPREmin + tJIT(per)min = 0.9 x tCK(avg) - 72 ps = + 2178 ps and tRPREmax(derated) = tRPREmax + tJIT(per)max = 1.1 x tCK(avg) + 93 ps = +  
2843 ps.  
42. When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(duty) of the input clock. (output deratings are  
relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tJIT(duty),min = - 72 ps and tJIT(duty)max = + 93 ps, then tRPSTmin(derated) =  
tRPSTmin + tJIT(duty)min = 0.4 x tCK(avg) - 72 ps = + 928 ps and tRPSTmax(derated) = tRPSTmax + tJIT(duty)max = 0.6 x tCK(avg) + 93 ps = +  
1592 ps.  
43. When the device is operated with input clock jitter, this parameter needs to be derated by { - tJIT(duty)max - tERR(6-10per)max } and { - tJIT(duty)min  
- tERR(6-10per)min } of the actual input clock. (output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR2-667 SDRAM has tERR(6-10per)min = - 272 ps, tERR(6- 10per)max = + 293 ps, tJIT(duty)min = - 106  
ps and tJIT(duty)max = + 94 ps, then tAOFmin(derated) = tAOFmin + { - tJIT(duty)max - tERR(6-10per)max } = - 450 ps + { - 94 ps - 293 ps} = - 837  
ps and tAOFmax(derated) = tAOFmax + { - tJIT(duty)min - tERR(6-10per)min } = 1050 ps + { 106 ps + 272 ps } = + 1428 ps.  
- 45 -  
Rev. 1.1  
K4T51043QI  
K4T51083QI  
K4T51163QI  
datasheet  
DDR2 SDRAM  
44. For tAOFD of DDR2-400/533, the 1/2 clock of tCK in the 2.5 x tCK assumes a tCH, input clock HIGH pulse width of 0.5 relative to tCK. tAOF,min and  
tAOF,max should each be derated by the same amount as the actual amount of tCH offset present at the DRAM input with respect to 0.5.  
For example, if an input clock has a worst case tCH of 0.45, the tAOFmin should be derated by subtracting 0.05 x tCK from it, whereas if an input clock  
has a worst case tCH of 0.55, the tAOFmax should be derated by adding 0.05 x tCK to it. Therefore, we have;  
tAOFmin(derated) = tAC,min - [0.5 - Min(0.5, tCHmin)] x tCK  
tAOFmax(derated) = tAC,max + 0.6 + [Max(0.5, tCHmax) - 0.5] x tCK  
or  
tAOFmin(derated) = Min(tACmin, tACmin - [0.5 - tCHmin] x tCK)  
tAOFmax(derated) = 0.6 + Max(tACmax, tACmax + [tCHmax - 0.5] x tCK)  
where tCHmin and tCHmax are the minimum and maximum of tCH actually measured at the DRAM input balls.  
45. For tAOFD of DDR2-667/800, the 1/2 clock of nCK in the 2.5 x nCK assumes a tCH(avg), average input clock HIGH pulse width of 0.5 relative to  
tCK(avg). tAOFmin and tAOFmax should each be derated by the same amount as the actual amount of tCH(avg) offset present at the DRAM input  
with respect to 0.5.  
For example, if an input clock has a worst case tCH(avg) of 0.48, the tAOFmin should be derated by subtracting 0.02 x tCK(avg) from it, whereas if an  
input clock has a worst case tCH(avg) of 0.52, the tAOFmax should be derated by adding 0.02 x tCK(avg) to it. Therefore, we have;  
tAOFmin(derated) = tACmin - [0.5 - Min(0.5, tCH(avg)min)] x tCK(avg)  
tAOFmax(derated) = tACmax + 0.6 + [Max(0.5, tCH(avg)max) - 0.5] x tCK(avg)  
tAOFmin(derated) = Min(tACmin, tACmin - [0.5 - tCH(avg)min] x tCK(avg))  
tAOFmax(derated) = 0.6 + Max(tACmax, tACmax + [tCH(avg)max - 0.5] x tCK(avg))  
where tCH(avg),min and tCH(avg),max are the minimum and maximum of tCH(avg) actually measured at the DRAM input balls.  
NOTE : Tthat these deratings are in addition to the tAOF derating per input clock jitter, i.e. tJIT(duty) and tERR(6-10per). However tAC values used in the equations shown  
above are from the timing parameter table and are not derated. Thus the final derated values for tAOF are;  
tAOFmin(derated_final) = tAOFmin(derated) + { - tJIT(duty)max - tERR(6-10per)max }  
tAOFmax(derated_final) = tAOFmax(derated) + { - tJIT(duty)min - tERR(6-10per)min }  
- 46 -  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY