K4T51163QB-GCD5 [SAMSUNG]

512Mb B-die DDR2 SDRAM; 512MB B-死DDR2 SDRAM
K4T51163QB-GCD5
型号: K4T51163QB-GCD5
厂家: SAMSUNG    SAMSUNG
描述:

512Mb B-die DDR2 SDRAM
512MB B-死DDR2 SDRAM

动态存储器 双倍数据速率
文件: 总28页 (文件大小:591K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
512Mb B-die DDR2 SDRAM Specification  
Version 1.5  
July 2005  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.  
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,  
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,  
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL  
INFORMATION IN THIS DOCUMENT IS PROVIDED  
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar  
applications where Product failure could result in loss of life or personal or physical harm, or any military or  
defense application, or any governmental procurement to which special terms or provisions may apply.  
* Samsung Electronics reserves the right to change products or specification without notice.  
Page 1 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Contents  
0. Ordering Information  
1. Key Feature  
2. Package Pinout/Mechanical Dimension & Addressing  
2.1 Package Pinout & Mechanical Dimension  
2.2 Input/Output Function Description  
2.3 Addressing  
3. Absolute Maximum Rating  
4. AC & DC Operating Conditions & Specifications  
Page 2 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
0. Ordering Information  
Organization  
DDR2-533 4-4-4  
K4T51043QB-GCD5  
K4T51043QB-ZCD5  
K4T51083QB-GCD5  
K4T51083QB-ZCD5  
K4T51163QB-GCD5  
K4T51163QB-ZCD5  
DDR2-400 3-3-3  
K4T51043QB-GCCC  
K4T51043QB-ZCCC  
K4T51083QB-GCCC  
K4T51083QB-ZCCC  
K4T51163QB-GCCC  
K4T51163QB-ZCCC  
Package  
60 FBGA  
60 FBGA  
60 FBGA  
60 FBGA  
84 FBGA  
84 FBGA  
128Mx4  
64Mx8  
32Mx16  
Note : Speed bin is in order of CL-tRCD-tRP.  
1.Key Features  
Speed  
CAS Latency  
tRCD(min)  
DDR2-533 4-4-4  
DDR2-400 3-3-3  
Units  
tCK  
ns  
4
3
15  
15  
55  
15  
15  
55  
tRP(min)  
ns  
tRC(min)  
ns  
• JEDEC standard 1.8V ± 0.1V Power Supply  
• VDDQ = 1.8V ± 0.1V  
The 512Mb DDR2 SDRAM is organized as a 32Mbit x 4 I/Os x 4  
banks, 16Mbit x 8 I/Os x 4banks or 8Mbit x 16 I/Os x 4 banks  
device. This synchronous device achieves high speed double-  
data-rate transfer rates of up to 533Mb/sec/pin (DDR2-533) for  
general applications.  
The chip is designed to comply with the following key DDR2  
SDRAM features such as posted CAS with additive latency, write  
latency = read latency -1, Off-Chip Driver(OCD) impedance  
adjustment and On Die Termination.  
All of the control and address inputs are synchronized with a pair  
of externally supplied differential clocks. Inputs are latched at the  
crosspoint of differential clocks (CK rising and CK falling). All I/Os  
are synchronized with a pair of bidirectional strobes (DQS and  
DQS) in a source synchronous fashion. The address bus is used  
to convey row, column, and bank address information in a RAS/  
CAS multiplexing style. For example, 512Mb(x4) device receive  
14/11/2 addressing.  
• 200 MHz f for 400Mb/sec/pin, 267MHz f for 533Mb/sec/  
CK  
CK  
pin  
• 4 Banks  
• Posted CAS  
• Programmable CAS Latency: 3, 4, 5  
• Programmable Additive Latency: 0, 1 , 2 , 3 and 4  
• Write Latency(WL) = Read Latency(RL) -1  
• Burst Length: 4 , 8(Interleave/nibble sequential)  
• Programmable Sequential / Interleave Burst Mode  
• Bi-directional Differential Data-Strobe (Single-ended data-  
strobe is an optional feature)  
• Off-Chip Driver(OCD) Impedance Adjustment  
• On Die Termination  
• Special Function Support  
The 512Mb DDR2 device operates with a single 1.8V ± 0.1V  
power supply and 1.8V ± 0.1V VDDQ.  
The 512Mb DDR2 device is available in 60ball FBGAs(x4/x8) and  
in 84ball FBGAs(x16).  
-High Temperature Self-Refresh rate enable  
• Average Refresh Period 7.8us at lower than T  
85°C,  
CASE  
3.9us at 85°C < T  
< 95 °C  
Note: The functionality described and the timing specifications  
included in this data sheet are for the DLL Enabled mode of oper-  
ation.  
CASE  
• Package: 60ball FBGA - 128Mx4/64Mx8 , 84ball FBGA -  
32Mx16  
• All of Lead-free products are compliant for RoHS  
Note : This data sheet is an abstract of full DDR2 specification and does not cover the common features which are described in “Samsung’s DDR2  
SDRAM Device Operation & Timing Diagram”  
Page 3 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
2. Package Pinout/Mechanical Dimension & Addressing  
2.1 Package Pinout  
x4 package pinout (Top View) : 60ball FBGA Package  
1
2
3
7
8
9
VDDQ  
VDD  
NC  
NC  
VSS  
DM  
DQS  
VSSQ  
DQ0  
A
VSSQ  
DQS  
VSSQ  
NC  
B
C
VDDQ  
DQ3  
VDDQ  
DQ2  
VDDQ  
VDDQ  
NC  
DQ1  
VSSQ  
VSSQ  
CK  
NC  
D
E
F
VDDL  
VREF  
VSSDL  
VSS  
VDD  
ODT  
CK  
CKE  
BA0  
WE  
RAS  
CAS  
NC  
BA1  
CS  
G
H
J
A10  
A3  
A1  
A5  
A2  
A6  
A0  
VDD  
VSS  
VSS  
A4  
A7  
A9  
K
A11  
NC  
A8  
VDD  
A12  
NC  
A13  
L
Notes:  
1. Pin B3 has identical capacitance as pin B7.  
2. VDDL and VSSDL are power and ground for the DLL.  
Ball Locations (x4)  
: Populated Ball  
: Depopulated Ball  
+
Top View (See the balls through the Package)  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+
+
G
H
J
+
+
+
K
L
+
+
Page 4 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
x8 package pinout (Top View) : 60ball FBGA Package  
1
2
3
7
8
9
NU/  
VSSQ  
VDD  
DQ6  
VSS  
DQS  
VSSQ  
DQ0  
VSSQ  
CK  
VDDQ  
A
RDQS  
DM/  
VSSQ  
DQ1  
DQS  
VDDQ  
DQ2  
DQ7  
B
C
RDQS  
VDDQ  
DQ4  
VDDQ  
DQ3  
VDDQ  
VSSQ  
VREF  
CKE  
DQ5  
D
E
F
VDDL  
VSS  
WE  
VSSDL  
RAS  
VDD  
ODT  
CK  
NC  
BA0  
A10  
A3  
BA1  
A1  
CAS  
A2  
CS  
A0  
A4  
A8  
G
H
J
VDD  
VSS  
VSS  
A5  
A6  
A7  
A9  
K
A11  
VDD  
A12  
NC  
NC  
A13  
L
Notes:  
1. Pins B3 and A2 have identical capacitance as pins B7 and A8.  
2. For a read, when enabled, strobe pair RDQS & RDQS are identical in function and timing to strobe pair DQS  
& DQS and input masking function is disabled.  
3. The function of DM or RDQS/RDQS are enabled by EMRS command.  
4. VDDL and VSSDL are power and ground for the DLL.  
Ball Locations (x8)  
: Populated Ball  
: Depopulated Ball  
+
Top View (See the balls through the Package)  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+
+
+
G
H
J
+
+
+
K
L
Page 5 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
x16 package pinout (Top View) : 84ball FBGA Package  
1
2
3
7
8
9
A
VSSQ  
UDQS  
VDDQ  
UDQ2  
VSSQ  
UDQS  
VSSQ  
VDDQ  
VDD  
NC  
VSS  
UDM  
UDQ6  
VSSQ  
B
C
UDQ7  
VDDQ  
VDDQ  
UDQ3  
VSS  
VDDQ  
UDQ4  
VDD  
UDQ1  
UDQ0  
D
E
F
VSSQ  
LDQS  
VSSQ  
UDQ5  
VDDQ  
VSSQ  
NC  
LDQ6  
VSSQ  
LDQ1  
LDM  
LDQS  
VDDQ  
LDQ2  
LDQ7  
VDDQ  
LDQ4  
VDDQ  
LDQ3  
LDQ0  
VSSQ  
CK  
VDDQ  
G
H
J
VSSQ  
VREF  
CKE  
LDQ5  
VDDL  
VSS  
WE  
VSSDL  
RAS  
VDD  
ODT  
K
CK  
NC  
L
BA0  
A10  
A3  
BA1  
A1  
CAS  
A2  
CS  
A0  
A4  
A8  
M
N
P
VDD  
VSS  
VSS  
A5  
A6  
A7  
A9  
A11  
R
VDD  
A12  
NC  
NC  
NC  
Note :  
1. VDDL and VSSDL are power and ground for the DLL.  
2. In case of only 8 DQs out of 16 DQs are used, LDQS, LDQSB and DQ0~7 must be used.  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
Ball Locations (x16)  
: Populated Ball  
: Depopulated Ball  
+
G
H
J
Top View  
(See the balls through the Package)  
K
L
+
+
+
+
+
+
M
N
P
R
Page 6 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
FBGA Package Dimension(x4/x8)  
11.00 ± 0.10  
# A1 INDEX MARK  
6.40  
0.80  
1.60  
4
9
8
7
6
5
3
2
1
A
B
C
D
E
F
G
H
J
K
L
3.20  
(5.50)  
(0.90)  
(1.80)  
60-0.45±0.05  
0.2 M  
A B  
11.00 ± 0.10  
#A1  
0.35±0.05  
MAX.1.20  
Page 7 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
FBGA Package Dimension(x16)  
11.00 ± 0.10  
# A1 INDEX MARK  
6.40  
0.80  
1.60  
4
9
8
7
6
5
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
3.20  
(5.50)  
(0.90)  
(1.80)  
84-0.45±0.05  
0.2 M  
A B  
11.00 ± 0.10  
#A1  
0.35±0.05  
MAX.1.20  
Page 8 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
2.2 Input/Output Functional Description  
Symbol  
Type  
Function  
Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of  
the positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK  
(both directions of crossing).  
CK, CK  
Input  
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and  
output drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or  
Active Power-Down (row Active in any bank). CKE is synchronous for power down entry and exit, and for self  
refresh entry. CKE is asynchronous for self refresh exit. After V  
has become stable during the power on and ini-  
REF  
CKE  
CS  
Input  
Input  
tialization swquence, it must be maintained for proper operation of the CKE receiver. For proper self-refresh entry  
and exit, V  
must be maintained to this input. CKE must be maintained high throughout read and write accesses.  
REF  
Input buffers, excluding CK, CK, ODT and CKE are disabled during power-down. Input buffers, excluding CKE, are  
disabled during self refresh.  
Chip Select: All commands are masked when CS is registered HIGH. CS provides for external Rank selection on  
systems with multiple Ranks. CS is considered part of the command code.  
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR2 SDRAM. When  
enabled, ODT is only applied to each DQ, DQS, DQS, RDQS, RDQS, and DM signal for x4/x8 configurations. For  
x16 configuration, ODT is applied to each DQ, UDQS/UDQS, LDQS/LDQS, UDM, and LDM signal. The ODT pin  
will be ignored if the Extended Mode Register Set(EMRS) is programmed to disable ODT.  
ODT  
RAS, CAS, WE  
DM  
Input  
Input  
Input  
Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.  
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coin-  
cident with that input data during a Write access. DM is sampled on both edges of DQS. Although DM pins are input  
only, the DM loading matches the DQ and DQS loading. For x8 device, the function of DM or RDQS/RDQS is  
enabled by EMRS command.  
Bank Address Inputs: BA0 and BA1 define to which bank an Active, Read, Write or Precharge command is being  
applied. Bank address also determines if the mode register or extended mode register is to be accessed during a  
MRS or EMRS cycle.  
BA0 - BA1  
Input  
Input  
Address Inputs: Provided the row address for Active commands and the column address and Auto Precharge bit  
for Read/Write commands to select one location out of the memory array in the respective bank. A10 is sampled  
during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks  
(A10 HIGH). If only one bank is to be precharged, the bank is selected by BA0, BA1. The address inputs also pro-  
vide the op-code during Mode Register Set commands.  
A0 - A13  
DQ  
Input/Output Data Input/ Output: Bi-directional data bus.  
Data Strobe: Output with read data, input with write data. Edge-aligned with read data, centered in write data. For  
the x16, LDQS corresponds to the data on DQ0-DQ7; UDQS corresponds to the data on DQ8-DQ15. For the x8, an  
RDQS option using DM pin can be enabled via the EMRS(1) to simplify read timing. The data strobes DQS, LDQS,  
UDQS, and RDQS may be used in single ended mode or paired with optional complementary signals DQS, LDQS,  
UDQS, and RDQS to provide differential pair signaling to the system during both reads and writes. An EMRS(1)  
control bit enables or disables all complementary data strobe signals.  
DQS, (DQS)  
(LDQS), (LDQS)  
(UDQS), (UDQS)  
(RDQS), (RDQS)  
Input/Output  
NC  
No Connect: No internal electrical connection is present.  
Power Supply: 1.8V +/- 0.1V, DQ Power Supply: 1.8V +/- 0.1V  
Ground, DQ Ground  
V
/V  
Supply  
Supply  
Supply  
Supply  
Supply  
DD DDQ  
V
/V  
SS SSQ  
V
DLL Power Supply: 1.8V +/- 0.1V  
DLL Ground  
Reference voltage  
DDL  
V
SSDL  
V
REF  
In this data sheet, "differential DQS signals" refers to any of the following with A10 = 0 of EMRS(1)  
x4 DQS/DQS  
x8 DQS/DQS  
if EMRS(1)[A11] = 0  
if EMRS(1)[A11] = 1  
x8 DQS/DQS, RDQS/RDQS,  
x16 LDQS/LDQS and UDQS/UDQS  
"single-ended DQS signals" refers to any of the following with A10 = 1 of EMRS(1)  
x4 DQS  
x8 DQS  
if EMRS(1) [A11] = 0  
x8 DQS, RDQS, if EMRS(1) [A11] = 1  
x16 LDQS and UDQS  
Page 9 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
2.3 512Mb Addressing  
Configuration  
128Mb x4  
64Mb x 8  
32Mb x16  
# of Bank  
4
4
4
Bank Address  
Auto precharge  
Row Address  
BA0,BA1  
A10/AP  
A0 ~ A13  
A0 ~ A9,A11  
BA0,BA1  
A10/AP  
A0 ~ A13  
A0 ~ A9  
BA0,BA1  
A10/AP  
A0 ~ A12  
A0 ~ A9  
Column Address  
* Reference information: The following tables are address mapping information for other densities.  
256Mb  
Configuration  
64Mb x4  
32Mb x 8  
16Mb x16  
# of Bank  
4
4
4
Bank Address  
Auto precharge  
Row Address  
BA0,BA1  
A10/AP  
A0 ~ A12  
A0 ~ A9,A11  
BA0,BA1  
A10/AP  
A0 ~ A12  
A0 ~ A9  
BA0,BA1  
A10/AP  
A0 ~ A12  
A0 ~ A8  
Column Address  
1Gb  
Configuration  
256Mb x4  
128Mb x 8  
64Mb x16  
# of Bank  
8
8
8
Bank Address  
Auto precharge  
Row Address  
Column Address  
BA0 ~ BA2  
A10/AP  
A0 ~ A13  
A0 ~ A9,A11  
BA0 ~ BA2  
A10/AP  
A0 ~ A13  
A0 ~ A9  
BA0 ~ BA2  
A10/AP  
A0 ~ A12  
A0 ~ A9  
2Gb  
Configuration  
512Mb x4  
256Mb x 8  
128Mb x16  
# of Bank  
8
8
8
Bank Address  
Auto precharge  
Row Address  
Column Address  
BA0 ~ BA2  
A10/AP  
A0 ~ A14  
A0 ~ A9,A11  
BA0 ~ BA2  
A10/AP  
A0 ~ A14  
A0 ~ A9  
BA0 ~ BA2  
A10/AP  
A0 ~ A13  
A0 ~ A9  
4Gb  
Configuration  
1 Gb x4  
512Mb x 8  
256Mb x16  
# of Bank  
8
8
8
Bank Address  
Auto precharge  
Row Address  
BA0 ~ BA2  
A10/AP  
A0 - A15  
BA0 ~ BA2  
A10/AP  
A0 - A15  
A0 - A9  
BA0 ~ BA2  
A10/AP  
A0 - A14  
A0 - A9  
Column Address/page size  
A0 - A9,A11  
Page 10 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
3. Absolute Maximum DC Ratings  
Symbol  
VDD  
Parameter  
Voltage on VDD pin relative to Vss  
Voltage on VDDQ pin relative to Vss  
Voltage on VDDL pin relative to Vss  
Voltage on any pin relative to Vss  
Storage Temperature  
Rating  
- 1.0 V ~ 2.3 V  
Units  
V
Notes  
1
VDDQ  
VDDL  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
-55 to +100  
V
V
1
1
VIN VOUT  
,
V
1
TSTG  
°C  
1, 2  
Note :  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2  
standard.  
4. AC & DC Operating Conditions  
Recommended DC Operating Conditions (SSTL - 1.8)  
Rating  
Symbol  
Parameter  
Units  
Notes  
Min.  
Typ.  
Max.  
VDD  
VDDL  
VDDQ  
VREF  
VTT  
1.7  
1.8  
1.9  
V
V
Supply Voltage  
1.7  
1.8  
1.8  
1.9  
4
4
Supply Voltage for DLL  
Supply Voltage for Output  
Input Reference Voltage  
Termination Voltage  
1.7  
1.9  
V
0.49*VDDQ  
VREF-0.04  
0.50*VDDQ  
VREF  
0.51*VDDQ  
VREF+0.04  
mV  
V
1,2  
3
Note :  
There is no specific device V supply voltage requirement for SSTL-1.8 compliance. However under all conditions V  
must be less than or equal to  
DDQ  
DD  
V
.
DD  
1. The value of V  
may be selected by the user to provide optimum noise margin in the system. Typically the value of V  
is expected to be about 0.5  
REF  
REF  
x V  
of the transmitting device and V  
is expected to track variations in V  
.
DDQ  
REF  
DDQ  
2. Peak to peak AC noise on V  
may not exceed +/-2% V  
(DC).  
REF  
REF  
3. V of transmitting device must track V  
of receiving device.  
TT  
REF  
4. AC parameters are measured with V , V  
and V  
tied together  
DD  
DDQ  
DDL  
Page 11 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Operating Temperature Condition  
Symbol  
Parameter  
Rating  
Units  
Notes  
TOPER  
Operating Temperature  
0 to 95  
°C  
1, 2  
1. Operating Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to  
JESD51.2 standard.  
2. At 85 - 95 °C operation temperature range, doubling refresh commands in frequency to a 32ms period ( tREFI=3.9 us ) is required, and to enter to  
self refresh mode at this temperature range, an EMRS command is required to change internal refresh rate.  
Input DC Logic Level  
Symbol  
Parameter  
Min.  
+ 0.125  
Max.  
V + 0.3  
DDQ  
Units  
V
Notes  
Notes  
V
(DC)  
V
DC input logic high  
DC input logic low  
IH  
REF  
V (DC)  
- 0.3  
V
- 0.125  
REF  
V
IL  
Input AC Logic Level  
Symbol  
Parameter  
Min.  
Max.  
Units  
VIH(AC)  
V
+ 0.250  
-
V
AC input logic high  
AC input logic low  
REF  
VIL(AC)  
-
V
- 0.250  
V
REF  
AC Input Test Conditions  
Symbol  
Condition  
Value  
0.5 * V  
Units  
Notes  
V
Input reference voltage  
V
1
REF  
DDQ  
V
Input signal maximum peak to peak swing  
Input signal minimum slew rate  
1.0  
1.0  
V
1
SWING(MAX)  
SLEW  
V/ns  
2, 3  
Notes:  
1. Input waveform timing is referenced to the input signal crossing through the V  
2. The input signal minimum slew rate is to be maintained over the range from V  
(AC) level applied to the device under test.  
IH/IL  
REF  
to V (AC) min for rising edges and the range from V  
to  
IH  
REF  
V (AC) max for falling edges as shown in the below figure.  
IL  
3. AC timings are referenced with input waveforms switching from V (AC) to V (AC) on the positive transitions and V (AC) to V (AC) on the  
IL  
IH  
IH  
IL  
negative transitions.  
V
V
V
V
V
V
V
DDQ  
(AC) min  
IH  
IH  
(DC) min  
V
SWING(MAX)  
REF  
(DC) max  
IL  
IL  
(AC) max  
SS  
delta TF  
V
delta TR  
- V (AC) max  
IL  
V
(AC) min - V  
delta TR  
REF  
IH  
REF  
Falling Slew =  
Rising Slew =  
delta TF  
< AC Input Test Signal Waveform >  
Page 12 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Differential input AC logic Level  
Symbol  
Parameter  
Min.  
Max.  
Units  
Notes  
VID(AC)  
0.5  
VDDQ + 0.6  
V
1
AC differential input voltage  
AC differential cross point voltage  
VIX(AC)  
0.5 * VDDQ - 0.175  
0.5 * VDDQ + 0.175  
V
2
Notes:  
1. VID(AC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input signal (such as CK, DQS, LDQS or UDQS)  
and VCP is the complementary input signal (such as CK, DQS, LDQS or UDQS). The minimum value is equal to V IH (AC) - V IL(AC).  
2. The typical value of VIX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VIX(AC) is expected to track variations in VDDQ .  
VIX(AC) indicates the voltage at which differential input signals must cross.  
V
DDQ  
V
TR  
Crossing point  
V
ID  
V
V
IX or OX  
V
CP  
V
SSQ  
< Differential signal levels >  
Differential AC output parameters  
Symbol  
Parameter  
Min.  
0.5 * VDDQ - 0.125  
Max.  
0.5 * VDDQ + 0.125  
Units  
V
Note  
1
VOX(AC)  
AC differential cross point voltage  
Note :  
1. The typical value of VOX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VOX(AC) is expected to track variations in VDDQ .  
VOX(AC) indicates the voltage at which differential output signals must cross.  
Page 13 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
OCD default characteristics  
Description  
Output impedance  
Output impedance step size for OCD calibration  
Pull-up and pull-down mismatch  
Output slew rate  
Parameter  
Min  
12.6  
0
0
1.5  
Nom  
18  
Max  
23.4  
1.5  
4
Unit  
ohms  
ohms  
ohms  
V/ns  
Notes  
1,2  
6
1,2,3  
1,4,5,6,7,8  
Sout  
5
Notes:  
1. Absolute Specifications (0°C TCASE +95°C; VDD = +1.8V ±0.1V, VDDQ = +1.8V ±0.1V)  
2. Impedance measurement condition for output source dc current: VDDQ = 1.7V; VOUT = 1420mV; (VOUT-VDDQ)/Ioh must be less than 23.4 ohms for  
values of VOUT between VDDQ and VDDQ-280mV. Impedance measurement condition for output sink dc current: VDDQ = 1.7V; VOUT = 280mV;  
VOUT/Iol must be less than 23.4 ohms for values of VOUT between 0V and 280mV.  
3. Mismatch is absolute value between pull-up and pull-dn, both are measured at same temperature and voltage.  
4. Slew rate measured from V (AC) to V (AC).  
IL  
IH  
5. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate as measured from AC to AC. This is guaran-  
teed by design and characterization.  
6. This represents the step size when the OCD is near 18 ohms at nominal conditions across all process and represents only the DRAM uncertainty.  
Output slew rate load :  
VTT  
25 ohms  
Output  
Reference  
Point  
(VOUT)  
7. DRAM output slew rate specification applies to 400Mb/sec/pin and 533Mb/sec/pin speed bins.  
8. Timing skew due to DRAM output slew rate mis-match between DQS / DQS and associated DQs is included in tDQSQ and tQHS specification.  
Page 14 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
IDD Specification Parameters and Test Conditions  
(IDD values are for full operating range of Voltage and Temperature, Notes 1 - 5)  
Symbol  
IDD0  
Proposed Conditions  
Operating one bank active-precharge current;  
CK = CK(IDD), RC = RC(IDD), RAS = RASmin(IDD); CKE is HIGH, CS\ is HIGH between valid commands;  
Address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
Units  
Notes  
t
t
t
t
t
t
mA  
Operating one bank active-read-precharge current;  
t
t
t
t
t
t
t
IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; CK = CK(IDD), RC = RC (IDD), RAS = RASmin(IDD), RCD =  
IDD1  
mA  
t
RCD(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address businputs are SWITCHING; Data pattern  
is same as IDD4W  
Precharge power-down current;  
All banks idle; CK = CK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data bus inputs are  
FLOATING  
t
IDD2P  
IDD2Q  
IDD2N  
IDD3P  
IDD3N  
t
mA  
mA  
mA  
Precharge quiet standby current;  
t
t
All banks idle; CK = CK(IDD); CKE is HIGH, CS\ is HIGH; Other control and address bus inputs are STABLE; Data  
bus inputs are FLOATING  
Precharge standby current;  
t
t
All banks idle; CK = CK(IDD); CKE is HIGH, CS\ is HIGH; Other control and address bus inputs are SWITCHING;  
Data bus inputs are SWITCHING  
Active power-down current;  
mA  
mA  
Fast PDN Exit MRS(12) = 0mA  
t
t
All banks open; CK = CK(IDD); CKE is LOW; Other control and address bus  
Slow PDN Exit MRS(12) = 1mA  
inputs are STABLE; Data bus inputs are FLOATING  
Active standby current;  
t
t
t
t
t
t
mA  
mA  
All banks open; CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD); CKE is HIGH, CS\ is HIGH between valid  
commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
Operating burst write current;  
t
t
t
t
t
All banks open, Continuous burst writes; BL = 4, CL = CL(IDD), AL = 0; CK = CK(IDD), RAS = RASmax(IDD), RP  
IDD4W  
IDD4R  
t
= RP(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address bus inputs are SWITCHING; Data bus  
inputs are SWITCHING  
Operating burst read current;  
t
t
t
t
All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; CK = CK(IDD), RAS = RAS-  
mA  
mA  
t
t
max(IDD), RP = RP(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address bus inputs are SWITCH-  
ING; Data pattern is same as IDD4W  
Burst auto refresh current;  
t
t
t
IDD5B  
IDD6  
CK = CK(IDD); Refresh command at every RFC(IDD) interval; CKE is HIGH, CS\ is HIGH between valid com-  
mands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
Self refresh current;  
Normal  
mA  
mA  
CK and CK\ at 0V; CKE 0.2V; Other control and address bus inputs are  
FLOATING; Data bus inputs are FLOATING  
Low Power  
Operating bank interleave read current;  
All bank interleaving reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = RCD(IDD)-1* CK(IDD); CK = CK(IDD), RC  
t
t
t
t
t
IDD7  
t
t
t
t
t
t
t
mA  
= RC(IDD), RRD = RRD(IDD), FAW = FAW(IDD), RCD = 1* CK(IDD); CKE is HIGH, CS\ is HIGH between valid  
commands; Address bus inputs are STABLE during DESELECTs; Data pattern is same as IDD4R; Refer to the fol-  
lowing page for detailed timing conditions  
Notes :  
1. IDD specifications are tested after the device is properly initialized  
2. Input slew rate is specified by AC Parametric Test Condition  
3. IDD parameters are specified with ODT disabled.  
4. Data bus consists of DQ, DM, DQS, DQS\, RDQS, RDQS\, LDQS, LDQS\, UDQS, and UDQS\. IDD values must be met with all combinations of EMRS  
bits 10 and 11.  
5. Definitions for IDD  
LOW is defined as Vin VILAC(max)  
HIGH is defined as Vin VIHAC(min)  
STABLE is defined as inputs stable at a HIGH or LOW level  
FLOATING is defined as inputs at VREF = VDDQ/2  
SWITCHING is defined as:  
inputs changing between HIGH and LOW every other clock cycle (once per two clocks) for address and control  
signals, and  
inputs changing between HIGH and LOW every other data transfer (once per clock) for DQ signals not including  
masks or strobes.  
Page 15 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
For purposes of IDD testing, the following parameters are utilized  
DDR2-533  
DDR2-400  
Units  
Parameter  
4-4-4  
3-3-3  
CL(IDD)  
4
3
tCK  
t
15  
60  
15  
55  
7.5  
10  
5
RCD(IDD)  
ns  
ns  
t
RC(IDD)  
t
ns  
ns  
RRD(IDD)-x4/x8  
7.5  
t
RRD(IDD)-x16  
10  
t
3.75  
CK(IDD)  
ns  
ns  
t
45  
15  
40  
15  
105  
RASmin(IDD)  
t
ns  
ns  
RP(IDD)  
t
105  
RFC(IDD)  
Detailed IDD7  
The detailed timings are shown below for IDD7.  
Legend: A = Active; RA = Read with Autoprecharge; D = Deselect  
IDD7: Operating Current: All Bank Interleave Read operation  
All banks are being interleaved at minimum RC(IDD) without violating RRD(IDD) and FAW(IDD) using a burst length of 4. Control and address bus  
inputs are STABLE during DESELECTs. IOUT = 0mA  
t
t
t
Timing Patterns for 4 bank devices x4/ x8/ x16  
-DDR2-400 3/3/3  
A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D  
-DDR2-533 4/4/4  
A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D  
Page 16 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
DDR2 SDRAM IDD Spec Table  
128Mx4(K4T51043QB)  
D5(DDR2-533@CL=4) CC(DDR2-400@CL=3)  
100  
Symbol  
Unit  
Notes  
Notes  
Notes  
IDD0  
IDD1  
95  
100  
8
25  
30  
30  
15  
65  
130  
140  
185  
5.5  
265  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
110  
8
25  
30  
30  
IDD2P  
IDD2Q  
IDD2N  
IDD3P-F  
IDD3P-S  
IDD3N  
IDD4W  
IDD4R  
IDD5B  
15  
70  
175  
170  
195  
5.5  
270  
IDD6  
IDD6  
IDD6  
Normal  
IDD7  
64Mx8(K4T51083QB)  
Symbol  
Unit  
D5(DDR2-533@CL=4)  
CC(DDR2-400@CL=3)  
IDD0  
IDD1  
100  
110  
8
25  
30  
30  
15  
70  
200  
180  
195  
5.5  
275  
95  
100  
8
25  
30  
30  
15  
65  
145  
145  
185  
5.5  
270  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD2P  
IDD2Q  
IDD2N  
IDD3P-F  
IDD3P-S  
IDD3N  
IDD4W  
IDD4R  
IDD5B  
Normal  
IDD7  
32Mx16(K4T51163QB)  
Symbol  
Unit  
D5(DDR2-533@CL=4)  
CC(DDR2-400@CL=3)  
IDD0  
IDD1  
120  
145  
8
25  
30  
30  
15  
70  
230  
205  
195  
5.5  
390  
115  
125  
8
25  
30  
30  
15  
65  
185  
170  
185  
5.5  
375  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD2P  
IDD2Q  
IDD2N  
IDD3P-F  
IDD3P-S  
IDD3N  
IDD4W  
IDD4R  
IDD5B  
Normal  
IDD7  
Page 17 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Input/Output capacitance  
Parameter  
DDR2-400 / DDR2-533  
Min Max  
Symbol  
Units  
Input capacitance, CK and CK  
CCK  
CDCK  
CI  
1.0  
x
2.0  
0.25  
2.0  
pF  
pF  
pF  
pF  
pF  
pF  
Input capacitance delta, CK and CK  
Input capacitance, all other input-only pins  
Input capacitance delta, all other input-only pins  
Input/output capacitance, DQ, DM, DQS, DQS  
Input/output capacitance delta, DQ, DM, DQS, DQS  
1.0  
x
CDI  
0.25  
4.0  
CIO  
2.5  
x
CDIO  
0.5  
Electrical Characteristics & AC Timing for DDR2-533/400  
(0 °C < T  
< 95 °C; V  
= 1.8V + 0.1V; V = 1.8V + 0.1V)  
DDQ DD  
CASE  
Refresh Parameters by Device Density  
Parameter  
Symbol  
256Mb  
512Mb  
105  
1Gb  
2Gb  
195  
7.8  
4Gb  
327.5  
7.8  
Units  
Refresh to active/Refresh command time  
tRFC  
tREFI  
75  
127.5  
7.8  
ns  
0 °C T  
85°C  
95°C  
7.8  
7.8  
µs  
µs  
CASE  
Average periodic refresh interval  
85 °C < T  
3.9  
3.9  
3.9  
3.9  
3.9  
CASE  
Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin  
Speed  
DDR2-533(D5)  
DDR2-400(CC)  
3 - 3 - 3  
Units  
Bin (CL - tRCD - tRP)  
4 - 4 - 4  
Parameter  
tCK, CL=3  
tCK, CL=4  
tCK, CL=5  
tRCD  
min  
5
max  
min  
5
max  
8
8
-
8
8
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3.75  
-
5
-
15  
15  
55  
40  
15  
15  
55  
40  
tRP  
tRC  
70000  
70000  
tRAS  
Page 18 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Timing Parameters by Speed Grade  
(Refer to notes for informations related to this table at the bottom)  
DDR2-533  
DDR2-400  
Symbol  
Units  
Notes  
Parameter  
min  
max  
min  
max  
DQ output access time from CK/CK  
DQS output access time from CK/CK  
CK high-level width  
tAC  
-500  
+500  
-600  
+600  
ps  
ps  
tDQSCK  
tCH  
-450  
+450  
-500  
+500  
0.45  
0.55  
0.45  
0.55  
tCK  
tCK  
ps  
CK low-level width  
tCL  
0.45  
0.55  
0.45  
0.55  
CK half period  
tHP  
min(tCL, tCH)  
x
min(tCL, tCH)  
x
20,21  
24  
Clock cycle time, CL=x  
tCK  
3750  
8000  
5000  
8000  
ps  
DQ and DM input hold time  
tDH(base)  
tDS(base)  
tIPW  
225  
x
275  
x
ps  
15,16,17,20  
15,16,17,21  
DQ and DM input setup time  
100  
x
150  
x
ps  
Control & Address input pulse width for each input  
DQ and DM input pulse width for each input  
Data-out high-impedance time from CK/CK  
DQS low-impedance time from CK/CK  
DQ low-impedance time from CK/CK  
DQS-DQ skew for DQS and associated DQ signals  
DQ hold skew factor  
0.6  
x
0.6  
x
tCK  
tCK  
ps  
tDIPW  
tHZ  
0.35  
x
0.35  
x
x
tAC max  
x
tAC max  
tLZ(DQS)  
tLZ(DQ)  
tDQSQ  
tQHS  
tAC min  
tAC max  
tAC min  
tAC max  
ps  
27  
27  
22  
21  
2* tACmin  
tAC max  
2* tACmin  
tAC max  
ps  
x
x
300  
400  
x
x
x
350  
450  
x
ps  
ps  
DQ/DQS output hold time from DQS  
First DQS latching transition to associated clock edge  
DQS input high pulse width  
tQH  
tHP - tQHS  
-0.25  
0.35  
0.35  
0.2  
tHP - tQHS  
-0.25  
0.35  
0.35  
0.2  
ps  
tDQSS  
tDQSH  
tDQSL  
tDSS  
0.25  
x
0.25  
x
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
ps  
DQS input low pulse width  
x
x
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
Mode register set command cycle time  
Write postamble  
x
x
tDSH  
0.2  
x
0.2  
x
tMRD  
2
x
2
x
tWPST  
tWPRE  
tIH(base)  
tIS(base)  
tRPRE  
tRPST  
tRRD  
0.4  
0.6  
x
0.4  
0.6  
x
19  
Write preamble  
0.35  
375  
250  
0.9  
0.35  
475  
350  
0.9  
Address and control input hold time  
Address and control input setup time  
Read preamble  
x
x
14,16,18,23  
x
x
ps  
14,16,18,22  
1.1  
0.6  
x
1.1  
0.6  
x
tCK  
tCK  
ns  
28  
28  
12  
12  
Read postamble  
0.4  
0.4  
Active to active command period for 1KB page size products  
Active to active command period for 2KB page size products  
Four Activate Window for 1KB page size products  
Four Activate Window for 2KB page size products  
CAS to CAS command delay  
7.5  
7.5  
tRRD  
tFAW  
10  
x
10  
x
ns  
37.5  
50  
37.5  
50  
ns  
tFAW  
ns  
tCCD  
tWR  
2
2
tCK  
ns  
Write recovery time  
15  
x
x
x
15  
x
x
x
Auto precharge write recovery + precharge time  
Internal write to read command delay  
Internal read to precharge command delay  
Exit self refresh to a non-read command  
Exit self refresh to a read command  
Exit precharge power down to any non-read command  
Exit active power down to read command  
tDAL  
WR+tRP  
7.5  
WR+tRP  
10  
tCK  
ns  
23  
33  
11  
tWTR  
tRTP  
tXSNR  
tXSRD  
tXP  
7.5  
7.5  
ns  
tRFC + 10  
200  
2
tRFC + 10  
200  
2
ns  
tCK  
tCK  
tCK  
x
x
x
x
tXARD  
2
2
9
Exit active power down to read command  
(slow exit, lower power)  
tXARDS  
6 - AL  
6 - AL  
tCK  
9, 10  
Page 19 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
DDR2-533  
DDR2-400  
Symbol  
Units  
Notes  
Parameter  
min  
max  
min  
max  
t
CKE minimum pulse width (high and low pulse width)  
tCK  
tCK  
ns  
36  
3
3
CKE  
t
t
ODT turn-on delay  
ODT turn-on  
2
2
2
2
AOND  
tAC(min)  
tAC(max)+1  
tAC(min)  
tAC(max)+1  
13, 25  
26  
AON  
2tCK+tAC  
(max)+1  
2tCK+tAC  
(max)+1  
t
ODT turn-on(Power-Down mode)  
tAC(min)+2  
tAC(min)+2  
ns  
AONPD  
t
t
ODT turn-off delay  
ODT turn-off  
2.5  
2.5  
2.5  
2.5  
tCK  
ns  
AOFD  
AOF  
tAC(min)  
tAC(max)+ 0.6  
tAC(max)+ 0.6  
tAC(min)  
2.5tCK+  
2.5tCK+  
t
ODT turn-off (Power-Down mode)  
tAC(min)+2  
tAC(min)+2  
ns  
AOFPD  
tAC(max)+1  
tAC(max)+1  
ODT to power down entry latency  
ODT power down exit latency  
OCD drive mode output delay  
tANPD  
tAXPD  
tOIT  
3
8
0
3
8
0
tCK  
tCK  
ns  
12  
12  
Minimum time clocks remains ON after CKE asynchronously  
drops LOW  
tDelay  
tIS+tCK +tIH  
tIS+tCK +tIH  
ns  
24  
Page 20 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
General notes, which may apply for all AC parameters  
1. Slew Rate Measurement Levels  
a. Output slew rate for falling and rising edges is measured between VTT - 250 mV and VTT + 250 mV for  
single ended signals. For differential signals (e.g. DQS - DQS) output slew rate is measured between DQS - DQS = -500 mV and DQS - DQS =  
+500mV. Output slew rate is guaranteed by design, but is not necessarily tested on each device.  
b. Input slew rate for single ended signals is measured from dc-level to ac-level: from VIL(dc) to VIH(ac) for rising edges and from VIH(dc) and VIL(ac)  
for falling edges.  
For differential signals (e.g. CK - CK) slew rate for rising edges is measured from CK - CK = -250 mV to CK - CK = +500 mV (250mV to -500 mV for  
falling edges).  
c. VID is the magnitude of the difference between the input voltage on CK and the input voltage on CK, or between DQS and DQS for differential  
strobe.  
2. DDR2 SDRAM AC timing reference load  
Following figure represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to be either a precise  
representation of the typical system environment or a depiction of the actual load presented by a production tester. System designers will use IBIS or  
other simulation tools to correlate the timing reference load to a system environment. Manufacturers will correlate to their production test conditions (gen-  
erally a coaxial transmission line terminated at the tester electronics).  
VDDQ  
DQ  
DQS  
Output  
DQS  
RDQS  
RDQS  
DUT  
V
= V  
/2  
DDQ  
TT  
Timing  
reference  
point  
25Ω  
<AC Timing Reference Load>  
The output timing reference voltage level for single ended signals is the crosspoint with VTT. The output timing reference voltage level for differential sig-  
nals is the crosspoint of the true (e.g. DQS) and the complement (e.g. DQS) signal.  
3. DDR2 SDRAM output slew rate test load  
Output slew rate is characterized under the test conditions as shown in the following figure.  
VDDQ  
DUT  
DQ  
Output  
Test point  
DQS, DQS  
RDQS, RDQS  
V
= V  
/2  
DDQ  
TT  
25Ω  
<Slew Rate Test Load>  
Page 21 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
4. Differential data strobe  
DDR2 SDRAM pin timings are specified for either single ended mode or differential mode depending on the setting of the EMRS “Enable DQS” mode  
bit; timing advantages of differential mode are realized in system design. The method by which the DDR2 SDRAM pin timings are measured is mode  
dependent. In single ended mode, timing relationships are measured relative to the rising or falling edges of DQS crossing at VREF. In differential mode,  
these timing relationships are measured relative to the crosspoint of DQS and its complement, DQS. This distinction in timing methods is guaranteed by  
design and characterization. Note that when differential data strobe mode is disabled via the EMRS, the complementary pin, DQS, must be tied externally  
to VSS through a 20 ohm to 10 K ohm resisor to insure proper operation.  
t
t
DQSL  
DQSH  
DQS  
DQS  
DQS/  
DQS  
t
t
WPST  
WPRE  
V
IH(dc)  
V
IH(ac)  
DQ  
DM  
D
D
D
D
t
V
IL(ac)  
VIL(dc)  
t
t
DH  
DH  
DS  
t
DS  
V
IH(ac)  
VIH(dc)  
DMin  
DMin  
DMin  
DMin  
V
IL(ac)  
V
IL(dc)  
<Data input (write) timing>  
t
t
CL  
CH  
CK  
CK  
CK/CK  
DQS  
DQS  
DQS/DQS  
DQ  
t
t
RPRE  
RPST  
Q
Q
Q
Q
t
DQSQmax  
t
DQSQmax  
t
t
QH  
QH  
<Data output (read) timing>  
5. AC timings are for linear signal transitions.  
6. These parameters guarantee device behavior, but they are not necessarily tested on each device. They  
tester correlation.  
may be guaranteed by device design or  
7. All voltages are referenced to VSS.  
8. Tests for AC timing, IDD, and electrical (AC and DC) characteristics, may be conducted at nominal reference/supply voltage levels, but the related  
specifications and device operation are guaranteed for the full voltage range specified.  
Page 22 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Specific Notes for dedicated AC parameters  
9. User can choose which active power down exit timing to use via MRS(bit 12). tXARD is expected to be used for fast active power down exit timing.  
tXARDS is expected to be used for slow active power down exit timing.  
10. AL = Additive Latency  
11. This is a minimum requirement. Minimum read to precharge timing is AL + BL/2 providing the tRTP and tRAS(min) have been satisfied.  
12. A minimum of two clocks (2 * tCK) is required irrespective of operating frequency  
13. Timings are guaranteed with command/address input slew rate of 1.0 V/ns.  
14. These parameters guarantee device behavior, but they are not necessarily tested on each device. They may be guaranteed by device design or tester  
correlation.  
15. Timings are guaranteed with data, mask, and (DQS/RDQS in singled ended mode) input slew rate of 1.0 V/ns.  
16. Timings are guaranteed with CK/CK differential slew rate of 2.0 V/ns. Timings are guaranteed for DQS signals with a differential slew rate of 2.0 V/ns  
in differential strobe mode and a slew rate of 1V/ns in single ended mode.  
17. tDS and tDH derating Values  
tDS, tDH Derating Values of DDR2-400, DDR2-533 (ALL units in ‘ps’, Note 1 applies to entire Table)  
DQS,DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
0.8V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
125  
45  
21  
0
-
125  
45  
125  
83  
0
45  
21  
0
-
95  
12  
1
-
33  
12  
-2  
-19  
-42  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
83  
0
-
83  
0
21  
0
-
-
-
-
-
-
-
-
24  
13  
-1  
-19  
-43  
-
24  
10  
-7  
-30  
-59  
-
DQ  
Siew  
rate  
-11  
-14  
-11  
-25  
-
-14  
-31  
-
25  
11  
-7  
-31  
-74  
-
22  
5
-18  
-47  
-89  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-13  
-31  
-
23  
5
17  
-6  
-35  
-77  
-
-
6
-
-
-
-
17  
-7  
-50  
V/ns  
-
-
-
-
-19  
-62  
-23  
-65  
5
-11  
-53  
-
-
-
-
-
-
-
-
-
-
-
-
-38  
-
-
-127 -140 -115 -128 -103 -116  
tDS, tDH Derating Values for DDR2-667, DDR2-800 (ALL units in ‘ps’, Note 1 applies to entire Table)  
DQS,DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
0.8V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
100  
45  
21  
0
-
100  
45  
21  
100  
67  
0
45  
21  
0
-
79  
12  
7
-1  
-10  
-
-
33  
12  
-2  
-19  
-42  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
67  
0
-
67  
0
-5  
-
0
24  
19  
11  
2
24  
10  
-7  
-30  
-59  
-
-
-
-
-
-
-
-
-
-
DQ  
Slew  
rate  
-14  
-5  
-13  
-
-14  
-31  
-
31  
23  
14  
2
-24  
-
22  
5
-
-
17  
-6  
-
-
-
-
-
-
-
-
-
-
-
-
-
35  
26  
14  
-12  
-52  
-
-
-
-18  
-47  
-89  
-
38  
26  
0
6
-
-
V/ns  
-
-
-
-
-
-
-
-
-
-
-10  
-
-35  
-77  
-140  
-23  
-65  
-128  
38  
12  
-28  
-11  
-53  
-116  
-
-
-
-
-
-
-
-
-
-
-
-40  
For all input signals the total tDS (setup time) and tDH(hold time) required is calculated by adding the datasheet tDS(base) and tDH(base) value to the  
delta tDS and delta tDH derating value respectively. Example: tDS(total setup time)= tDS(base) + delta tDS.  
Page 23 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
18. tIS and tIH (input setup and hold) derating.  
tIS, tIH Derating Values for DDR2-400, DDR2-533  
CK, CK Differential Slew Rate  
1.5 V/ns 1.0 V/ns  
2.0 V/ns  
Units  
Notes  
tIS  
+187  
+179  
+167  
+150  
+125  
+83  
0
tIH  
+94  
+89  
+83  
+75  
+45  
+21  
0
tIS  
+217  
+209  
+197  
+180  
+155  
+113  
+30  
tIH  
+124  
+119  
+113  
+105  
+75  
+51  
+30  
+16  
-1  
tIS  
+247  
+239  
+227  
+210  
+185  
+143  
+60  
tIH  
+154  
+149  
+143  
+135  
+105  
+81  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+60  
-11  
-14  
+19  
+49  
+46  
Command/  
Address Slew  
rate(V/ns)  
-25  
-31  
+5  
+35  
+29  
-43  
-54  
-13  
-24  
+17  
+6  
-67  
-83  
-37  
-53  
-7  
-23  
-110  
-175  
-285  
-350  
-525  
-800  
-125  
-188  
-292  
-375  
-500  
-708  
-80  
-95  
-50  
-65  
-145  
-255  
-320  
-495  
-770  
-158  
-262  
-345  
-470  
-678  
-115  
-225  
-290  
-465  
-740  
-128  
-232  
-315  
-440  
-648  
tIS and tIH Derating Values for DDR2-667, DDR2-800  
CK, CK Differential Slew Rate  
2.0 V/ns  
1.5 V/ns  
1.0 V/ns  
Units  
Notes  
tIS  
+150  
+143  
+133  
+120  
+100  
+67  
0
tIH  
+94  
+89  
+83  
+75  
+45  
+21  
0
tIS  
+180  
+173  
+163  
+150  
+130  
+97  
+30  
+25  
+17  
+8  
tIH  
+124  
+119  
+113  
+105  
+75  
tIS  
+210  
+203  
+193  
+180  
+160  
+127  
+60  
tIH  
+154  
+149  
+143  
+135  
+105  
+81  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+51  
+30  
+60  
-5  
-14  
+16  
+55  
+46  
Command/  
Address Slew  
rate(V/ns)  
-13  
-31  
-1  
+47  
+29  
-22  
-54  
-24  
+38  
+6  
-34  
-83  
-4  
-53  
+26  
-23  
-60  
-125  
-188  
-292  
-375  
-500  
-708  
-1125  
-30  
-95  
0
-65  
-100  
-168  
-200  
-325  
-517  
-1000  
-70  
-158  
-262  
-345  
-470  
-678  
-1095  
-40  
-128  
-232  
-315  
-440  
-648  
-1065  
-138  
-170  
-295  
-487  
-970  
-108  
-140  
-265  
-457  
-940  
For all input signals the total tIS (setup time) and tIH(hold time) required is calculated by adding the datasheet tIS(base) and tIH(base) value to the delta  
tIS and delta tIH derating value respectively. Example: tIS(total setup time)= tIS(base) + delta tIS.  
Page 24 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
19. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this parameter, but system performance  
(bus turnaround) will degrade accordingly.  
20. MIN ( tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater  
than the minimum specification limits for tCL and tCH). For example, tCL and tCH are = 50% of the period, less the half period jitter ( tJIT(HP)) of the clock  
source, and less the half period jitter due to crosstalk ( tJIT(crosstalk)) into the clock traces.  
21. tQH = tHP – tQHS, where:  
tHP = minimum half clock period for any given cycle and is defined by clock high or clock low ( tCH, tCL).  
tQHS accounts for:  
1) The pulse duration distortion of on-chip clock circuits; and  
2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are, separately,  
due to data pin skew and output pattern effects, and pchannel to n-channel variation of the output drivers.  
22. tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate  
mismatch between DQS / DQS and associated DQ in any given cycle.  
23. tDAL = WR + RU{tRP(ns)/tCK(ns)}, where RU stands for round up.  
tWR refers to the tWR parameter stored in the MRS. For tRP, if the result of the division is not already an integer, round up to the next highest integer. tCK  
refers to the application clock period.  
Example: For DDR533 at tCK = 3.75ns with tWR programmed to 4 clocks.  
tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.  
24. The clock frequency is allowed to change during self–refresh mode or precharge power-down mode. In case of clock frequency change during pre-  
charge power-down, a specific procedure is required as described in DDR2 device operation  
25. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on.  
ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND.  
26. ODT turn off time min is when the device starts to turn off ODT resistance.  
ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD.  
27. tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which  
specifies when the device output is no longer driving (tHZ), or begins driving (tLZ). Following figure shows a method to calculate the point when device is  
no longer driving (tHZ), or begins driving (tLZ) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as  
long as the calculation is consistent.  
28. tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST),  
or begins driving (tRPRE). Following figure shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving  
(tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consistent.  
These notes are referenced in the “Timing parameters by speed grade” tables for DDR2-400 and DDR2-533.  
Page 25 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
VTT + 2x mV  
VTT + x mV  
VOH + x mV  
VOH + 2x mV  
tLZ  
tRPRE begin point  
tHZ  
tRPST end point  
VTT - x mV  
VTT - 2x mV  
VOL + 2x mV  
VOL + x mV  
T1  
T2  
T2  
T1  
tHZ,tRPST end point = 2*T1-T2  
tLZ,tRPRE begin point = 2*T1-T2  
<Test method for tLZ, tHZ, tRPRE and tRPST>  
29. Input waveform timing with differential data strobe enabled MR[bit10]=0, is referenced from the input signal crossing at the V  
level to the differen-  
IH(ac)  
tial data strobe crosspoint for a rising signal, and from the input signal crossing at the V  
nal applied to the device under test.  
level to the differential data strobe crosspoint for a falling sig-  
IL(ac)  
30. Input waveform timing with differential data strobe enabled MR[bit10]=0, is referenced from the input signal crossing at the V  
level to the differen-  
IH(dc)  
tial data strobe crosspoint for a rising signal and V  
to the differential data strobe crosspoint for a falling signal applied to the device under test.  
IL(dc)  
Differential Input waveform timing  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
V
V
V
V
V
V
V
DDQ  
min  
min  
IH(ac)  
IH(dc)  
REF(dc)  
max  
max  
IL(dc)  
IL(ac)  
SS  
Page 26 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
31. Input waveform timing is referenced from the input signal crossing at the V  
device under test.  
level for a rising signal and V  
level for a rising signal and V  
for a falling signal applied to the  
IH(ac)  
IL(ac)  
IL(dc)  
32. Input waveform timing is referenced from the input signal crossing at the V  
device under test.  
for a falling signal applied to the  
IH(dc)  
CK  
CK  
tIH  
tIH  
tIS  
tIS  
V
V
V
V
V
V
V
DDQ  
min  
min  
IH(ac)  
IH(dc)  
REF(dc)  
max  
max  
IL(dc)  
IL(ac)  
SS  
33. tWTR is at lease two clocks (2 * tCK) independent of operation frequency.  
34. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the input signal crossing at the VIH(ac) level to the sin-  
gle-ended data strobe crossing VIH/L(dc) at the start of its transition for a rising signal, and from the input signal crossing at the VIL(ac) level to the single-  
ended data strobe crossing VIH/L(dc) at the start of its transition for a falling signal applied to the device under test. The DQS signal must be monotonic  
between Vil(dc)max and Vih(dc)min.  
35. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the input signal crossing at the VIH(dc) level to the sin-  
gle-ended data strobe crossing VIH/L(ac) at the end of its transition for a rising signal, and from the input signal crossing at the VIL(dc) level to the single-  
ended data strobe crossing VIH/L(ac) at the end of its transition for a falling signal applied to the device under test. The DQS signal must be monotonic  
between Vil(dc)max and Vih(dc)min.  
36. tCKEmin of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire  
time it takes to achieve the 3 clocks of registeration. Thus, after any CKE transition, CKE may not change from its valid level during the time period of tIS  
+ 2*tCK + tIH.  
Page 27 of 28  
Rev. 1.5 July 2005  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Revision History  
Version 1.0 (Jan. 2004)  
- Initial Release  
Version 1.1 (Jun. 2004)  
- Added Lead-Free part number in ordering information.  
- Changed IDD2P  
- Corrected Typo  
Version 1.2 (Jan. 2005)  
- Removed DDR2-667 SDRAM at this datasheet  
- Revised current test AC spec condition  
- Added derating table  
Version 1.3 (Jan. 2005)  
- Corrected typo  
Version 1.4 (Feb. 2005)  
- Corrected from 6.15mm to 5.5mm in dimension of x16 PKG  
Version 1.5 (Jul. 2005)  
- Corrected typo  
Page 28 of 28  
Rev. 1.5 July 2005  

相关型号:

K4T51163QB-GLD50

DDR DRAM, 32MX16, 0.5ns, CMOS, PBGA84, FBGA-84
SAMSUNG

K4T51163QB-ZCCC

512Mb B-die DDR2 SDRAM
SAMSUNG

K4T51163QB-ZCD5

512Mb B-die DDR2 SDRAM
SAMSUNG

K4T51163QB-ZCD50

DDR DRAM, 32MX16, 0.5ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
SAMSUNG

K4T51163QC-ZCCC

512Mb C-die DDR2 SDRAM
SAMSUNG

K4T51163QC-ZCCC0

DDR DRAM, 32MX16, 0.6ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
SAMSUNG

K4T51163QC-ZCCCT

DDR DRAM, 32MX16, 0.6ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
SAMSUNG

K4T51163QC-ZCD5

512Mb C-die DDR2 SDRAM
SAMSUNG

K4T51163QC-ZCD5T

DDR DRAM, 32MX16, 0.5ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
SAMSUNG

K4T51163QC-ZCD6

512Mb C-die DDR2 SDRAM
SAMSUNG

K4T51163QC-ZCD60

DDR DRAM, 32MX16, 0.45ns, CMOS, PBGA84, ROHS COMPLIANT, FBGA-84
SAMSUNG

K4T51163QC-ZCE6

512Mb C-die DDR2 SDRAM
SAMSUNG