K4T51163QB-GLD50 [SAMSUNG]

DDR DRAM, 32MX16, 0.5ns, CMOS, PBGA84, FBGA-84;
K4T51163QB-GLD50
型号: K4T51163QB-GLD50
厂家: SAMSUNG    SAMSUNG
描述:

DDR DRAM, 32MX16, 0.5ns, CMOS, PBGA84, FBGA-84

动态存储器 双倍数据速率
文件: 总38页 (文件大小:600K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
512Mb B-die DDR2 SDRAM Specification  
Version 0.91  
September 2003  
Rev. 0.91 (Sep. 2003)  
Page 1 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Contents  
1. Key Feature  
2. Package Pinout/Mechnical Dimension & Addressing  
2.1 Package Pintout & Mechnical Dimension  
2.2 Input/Output Function Description  
2.3 Addressing  
3. Command Truth Table  
3.1 Command truth table  
3.2 Clock Enable (CKE) Truth Table for Synchronous Transitions  
3.3 DM Truth Table  
4. Absolute Maximum Rating  
5. AC & DC Operating Conditions & Specifications  
Rev. 0.91 (Sep. 2003)  
Page 2 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Revision History  
Version 0.9 (Aug. 2003)  
- Initial Release  
Version 0.91 (Sep. 2003)  
- Corrected from M to B in Part No Information(K4T51##3Q”M”-### -> K4T51##3Q”B”-###)  
- Removed D4 speed bin(400 4-4-4)  
- Added operation temperature condition  
- Changed setup/hold time values(tlS/tDS, tIH/tDH)  
- Added notes for setup/hold time(tIS/tDS, tIH/tDH)  
- Changed in/output capacitance values  
- Added tREFI values by TCASE (85°C/95°C)  
Rev. 0.91 (Sep. 2003)  
Page 3 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Part Number Information  
Organization  
DDR2-667 5-5-5  
K4T51043QB-GCE6  
K4T51043QB-GLE6  
K4T51083QB-GCE6  
K4T51083QB-GLE6  
K4T51163QB-GCE6  
K4T51163QB-GLE6  
DDR2-533 4-4-4  
K4T51043QB-GCD5  
K4T51043QB-GLD5  
K4T51083QB-GCD5  
K4T51083QB-GLD5  
K4T51163QB-GCD5  
K4T51163QB-GLD5  
DDR2-400 3-3-3  
K4T51043QB-GCCC  
K4T51043QB-GLCC  
K4T51083QB-GCCC  
K4T51083QB-GLCC  
K4T51163QB-GCCC  
K4T51163QB-GLCC  
128Mx4  
64Mx8  
32Mx16  
Note:  
1. Speed bin is in order of CL-tRCD-tRP  
1
2
3
4
5
6
7
8
9
10  
11  
K 4 T XX XX X X X - X X XX  
Memory  
DRAM  
Speed  
Temperature & Power  
Small Classification  
Density and Refresh  
Package  
Version  
Organization  
Bank  
Interface (VDD & VDDQ)  
1. SAMSUNG Memory : K  
2. DRAM : 4  
3. Small Classification  
T : DDR2 SDRAM  
8. Version  
M : 1st Generation  
A : 2nd Generation  
B : 3rd Generation  
C : 4th Generation  
D : 5th Generation  
E : 6th Generation  
4. Density & Refresh  
51 : 512M 8K/64ms  
9. Package  
G : BGA  
10. Temperature & Power  
C : (Commercial, Normal)  
L : (Commercial, Low)  
5. Organization  
04 : x4  
08 : x8  
16 : x16  
11. Speed  
CC : DDR2-400 3-3-3  
D5 : DDR2-533 4-4-4  
E6 : DDR2-667 5-5-5  
6. Bank  
3 : 4 Bank  
7. Interface (VDD & VDDQ)  
Q: SSTL-18(1.8V, 1.8V)  
Rev. 0.91 (Sep. 2003)  
Page 4 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
1.Key Features  
Speed  
DDR2-667  
DDR2-533  
DDR2-400  
Units  
5 - 5- 5  
4 - 4 - 4  
3- 3- 3  
CAS Latency  
tRCD(min)  
tRP(min)  
5
4
3
tCK  
ns  
15  
15  
55  
15  
15  
55  
15  
15  
55  
ns  
tRC(min)  
ns  
• JEDEC standard 1.8V ± 0.1V Power Supply  
• VDDQ = 1.8V ± 0.1V  
• 200 MHz fCK for 400Mb/sec/pin, 267MHz fCK for 533Mb/sec/pin, 333MHz fCK for 667Mb/sec/pin  
• 4 Bank  
• Posted CAS  
• Programmable CAS Latency: 3, 4, 5  
• Programmable Additive Latency: 0, 1 , 2 , 3 and 4  
• Write Latency(WL) = Read Latency(RL) -1  
• Burst Length: 4 , 8(Interleave/nibble sequential)  
• Programmable Sequential / Interleave Burst Mode  
• Bi-directional Differential Data-Strobe (Single-ended data-strobe is an optional feature)  
• Off-Chip Driver(OCD) Impedance Adjustment  
• On Die Termination  
• Average Refesh Period 7.8us at lower then TCASE 85°C, 3.9us at 85°C < TCASE < 95 °C  
• Package: 60ball FBGA - 128Mx4/64Mx8 , 84ball FBGA - 32Mx16  
Rev. 0.91 (Sep. 2003)  
Page 5 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Description  
The 512Mb DDR2 SDRAM chip is organized as either 32Mbit x 4 I/O x 4 banks or 16Mbit x 8 I/O x 4banks or  
8Mbit x 16I/O x 4 banks device. This synchronous device achieve high speed double-data-rate transfer rates  
of up to 667Mb/sec/pin (DDR2-667) for general applications.  
The chip is designed to comply with the following key DDR2 SDRAM features: (1) posted CAS with additive  
latency, (2) write latency = read latency -1, (3) Off-Chip Driver(OCD) impedance adjustment, (4) On Die Ter-  
mination.  
All of the control and address inputs are synchronized with a pair of externally supplied differential clocks.  
Inputs are latched at the cross point of differential clocks (CK rising and CK falling). All I/Os are synchronized  
with a pair of bidirectional strobes (DQS and DQS) in a source synchronous fashion. A fourteen bit address  
bus is used to convey row, column, and bank address information in a RAS/CAS multiplexing style. For  
example, 512Mb(x4) device receive 14/11/2 addressing.  
The 512Mb DDR2 devices operate with a single 1.8V ± 0.1V power supply and 1.8V ± 0.1V VDDQ.  
The 512Mb DDR2 devices are available in 60ball FBGAs(x4/8) and in 84ball FBGAs(x16).  
Note: The functionality described and the timing specifications included in this data sheet are for the DLL  
Enabled mode of operation.  
Rev. 0.91 (Sep. 2003)  
Page 6 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
2. Package Pinout/Mechnical Dimension & Addressing  
2.1 Package Pinout  
x4 package pinout (Top View) : 60ball FBGA Package  
1
2
3
7
8
9
VDDQ  
NC  
VDD  
NC  
NC  
VSSQ  
VSS  
DM  
A
B
C
DQS  
VSSQ  
VSSQ  
DQS  
VDDQ  
DQ3  
VDDQ DQ0  
VDDQ  
VDDQ DQ1  
VSSQ  
NC  
DQ2  
VSSQ  
CK  
NC  
D
E
F
VDDL  
VREF  
VSSDL  
VSS  
VDD  
ODT  
CK  
CKE  
BA0  
WE  
RAS  
CAS  
NC  
BA1  
CS  
G
H
J
A10  
A3  
A1  
A5  
A2  
A6  
A0  
VDD  
VSS  
VSS  
A4  
A7  
A9  
K
L
A11  
NC  
A8  
VDD  
A12  
NC  
A13  
Notes:  
B1, B9, D1, D9 = NC for x4 organization.  
Pins B3 has identical capacitance as pins B7.  
VDDL and VSSDL are power and ground for the DLL. It is recommended that they are isolated on the device from  
VDD, VDDQ, VSS, and VSSQ.  
Ball Locations (x4)  
: Populated Ball  
: Depopulated Ball  
+
Top View (See the balls through the Package)  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+
+
G
H
J
+
+
+
K
L
+
+
Rev. 0.91 (Sep. 2003)  
Page 7 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
x8 package pinout (Top View) : 60ball FBGA Package  
1
2
3
7
8
9
NU/  
VSSQ  
VDD  
DQ6  
VSS  
DQS  
VSSQ  
DQ0  
VSSQ  
CK  
VDDQ  
A
RDQS  
DM/  
VSSQ  
DQS  
VDDQ  
DQ2  
DQ7  
B
C
RDQS  
VDDQ  
DQ4  
DQ1  
VSSQ  
VREF  
CKE  
VDDQ  
DQ3  
VDDQ  
DQ5  
D
E
F
VDDL  
VSS  
WE  
VSSDL  
RAS  
VDD  
ODT  
CK  
NC  
BA0  
A10  
A3  
BA1  
A1  
CAS  
A2  
CS  
A0  
A4  
A8  
G
H
J
VDD  
VSS  
VSS  
A5  
A6  
A7  
A9  
K
A11  
VDD  
A12  
NC  
NC  
A13  
L
Notes:  
1. Pins B3 and A2 have identical capacitance as pins B7 and A8.  
2. For a read, when enabled, strobe pair RDQS & RDQS are identical in function and timing to strobe pair DQS  
& DQS and input masking function is disabled.  
3. The function of DM or RDQS/RDQS are enabled by EMRS command.  
4. VDDL and VSSDL are power and ground for the DLL. It is recommended that they are isolated on the device  
from VDD, VDDQ, VSS, and VSSQ.  
Ball Locations (x8)  
: Populated Ball  
: Depopulated Ball  
+
Top View (See the balls through the Package)  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+
+
+
G
H
J
+
+
+
K
L
Rev. 0.91 (Sep. 2003)  
Page 8 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
x16 package pinout (Top View) : 84ball FBGA Package  
1
2
3
7
8
9
A
VSSQ  
UDQS  
VDDQ  
UDQ2  
VSSQ  
LDQS  
VDDQ  
LDQ2  
UDQS  
VSSQ  
VDDQ  
VDD  
UDQ6  
VDDQ  
UDQ4  
VDD  
NC  
VSS  
UDM  
VDDQ  
UDQ3  
VSS  
VSSQ  
UDQ1  
B
C
UDQ7  
VDDQ  
UDQ0  
VSSQ  
LDQS  
VSSQ  
D
UDQ5  
VDDQ  
VSSQ  
NC  
E
F
LDQ6  
VDDQ  
LDQ4  
VDDL  
VSSQ  
LDQ1  
LDM  
LDQ7  
VDDQ  
LDQ5  
VDDQ  
LDQ3  
VSS  
LDQ0  
VSSQ  
CK  
G
H
J
VSSQ  
VREF  
VSSDL  
VDD  
ODT  
K
CK  
CKE  
BA0  
A10  
A3  
WE  
BA1  
A1  
RAS  
CAS  
A2  
NC  
L
CS  
A0  
A4  
A8  
M
N
P
VDD  
VSS  
VSS  
A5  
A6  
A7  
A9  
A11  
R
VDD  
A12  
NC  
NC  
NC  
Notes:  
VDDL and VSSDL are power and ground for the DLL. lt is recommended that they are isolated on the device  
from VDD, VDDQ, VSS, and VSSQ.  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
Ball Locations (x16)  
: Populated Ball  
: Depopulated Ball  
+
G
H
J
Top View  
(See the balls through the Package)  
K
L
+
+
+
+
+
+
M
N
P
R
Rev. 0.91 (Sep. 2003)  
Page 9 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
FBGA Package Dimension(x4/x8)  
11.00 ± 0.10  
6.40  
# A1 INDEX MARK (OPTIONAL)  
0.80  
1.60  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
3.20  
(5.50)  
(0.90)  
(1.80)  
60-0.45±0.05  
0.2 M  
A B  
11.00 ± 0.10  
#A1  
0.35±0.05  
MAX.1.20  
Rev. 0.91 (Sep. 2003)  
Page 10 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
FBGA Package Dimension(x16)  
11.00 ± 0.10  
# A1 INDEX MARK (OPTIONAL)  
6.40  
0.80  
1.60  
4
9
8
7
6
5
3
2
1
A
B
C
D
E
F
G
H
M
J
K
N
L
P
R
3.20  
(6.15)  
(0.90)  
(1.80)  
84-0.45±0.05  
0.2 M  
A B  
11.00 ± 0.10  
#A1  
0.35±0.05  
MAX.1.20  
Rev. 0.91 (Sep. 2003)  
Page 11 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
2.2 Input/Output Functional Description  
Symbol  
Type  
Function  
Clock: CK and CK are differential clock inputs. All address and control input signals are sampled  
on the crossing of the positive edge of CK and negative edge of CK. Output (read) data is refer-  
enced to the crossings of CK and CK (both directions of crossing).  
CK, CK  
Input  
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device  
input buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self  
Refresh operation (all banks idle), or Active Power-Down (row Active in any bank). CKE is syn-  
chronous for power down entry and exit, and for self refresh entry. CKE is asynchronous for self  
refresh exit. CKE must be maintained high throughout read and write accesses. Input buffers,  
excluding CK, CK, ODT and CKE are disabled during power-down. Input buffers, excluding CKE,  
are disabled during self refresh.  
CKE  
Input  
Chip Select: All commands are masked when CS is registered HIGH. CS provides for external  
Rank selection on systems with multiple Ranks. CS is considered part of the command code.  
CS  
Input  
Input  
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR2  
SDRAM. When enabled, ODT is only applied to each DQ, DQS, DQS, RDQS, RDQS, and DM  
signal for x4x8 configurations. For x16 configuration ODT is applied to each DQ, UDQS/UDQS,  
LDQS/LDQS, UDM, and LDM signal. The ODT pin will be ignored if the Extended Mode Register  
(EMRS) is programmed to disable ODT.  
ODT  
RAS, CAS, WE  
DM  
Input  
Input  
Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.  
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is  
sampled HIGH coincident with that input data during a Write access. DM is sampled on both  
edges of DQS. Although DM pins are input only, the DM loading matches the DQ and DQS load-  
ing. For x8 device, the function of DM or RDQS/RDQS is enabled by EMRS command.  
Bank Address Inputs: BA0 and BA1 for 256 and 512Mb, BA0 - BA2 define to which bank an  
Active, Read, Write or Precharge command is being applied. Bank address also determines if the  
mode register or extended mode register is to be accessed during a MRS or EMRS cycle.  
BA0 - BA1  
Input  
Input  
Address Inputs: Provided the row address for Active commands and the column address and  
Auto Precharge bit for Read/Write commands to select one location out of the memory array in the  
respective bank. A10 is sampled during a Precharge command to determine whether the Pre-  
charge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be pre-  
charged, the bank is selected by BA0, BA1. The address inputs also provide the op-code during  
Mode Register Set commands.  
A0 - A13  
DQ  
Input/Output Data Input/ Output: Bi-directional data bus.  
Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in  
write data. For the x16, LDQS corresponds to the data on DQ0-DQ7; UDQS corresponds to the  
data on DQ8-DQ15. For the x8, an RDQS option using DM pin can be enabled via the EMRS(1) to  
simplify read timing. The data strobes DQS, LDQS, UDQS, and RDQS may be used in single  
ended mode or paired with optional complementary signals DQS, LDQS, UDQS, and RDQS to  
provide differential pair signaling to the system during both reads and writes. An EMRS(1) control  
bit enables or disables all complementary data strobe signals.  
DQS, (DQS)  
(LDQS), (LDQS)  
(UDQS), (UDQS)  
(RDQS), (RDQS)  
Input/Output  
NC  
No Connect: No internal electrical connection is present.  
DQ Power Supply: 1.8V +/- 0.1V  
DQ Ground  
V
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
DDQ  
V
SSQ  
V
DLL Power Supply: 1.8V +/- 0.1V  
DLL Ground  
DDL  
V
SSDL  
V
Power Supply: 1.8V +/- 0.1V  
Ground  
DD  
V
SS  
V
Reference voltage  
REF  
In this data sheet, "differential DQS signals" refers to any of the following with A10 = 0 of EMRS(1)  
x4 DQS/DQS  
x8 DQS/DQS  
if EMRS(1)[A11] = 0  
if EMRS(1)[A11] = 1  
x8 DQS/DQS, RDQS/RDQS,  
x16 LDQS/LDQS and UDQS/UDQS  
"single-ended DQS signals" refers to any of the following with A10 = 1 of EMRS(1)  
x4 DQS  
x8 DQS  
if EMRS(1) [A11] = 0  
if EMRS(1) [A11] = 1  
x8 DQS, RDQS,  
x16 LDQS and UDQS  
Rev. 0.91 (Sep. 2003)  
Page 12 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
2.3 512Mb Addressing  
Configuration  
# of Bank  
128Mb x4  
64Mb x 8  
32Mb x16  
4
4
4
Bank Address  
Auto precharge  
Row Address  
BA0,BA1  
A10/AP  
BA0,BA1  
A10/AP  
A0 ~ A13  
A0 ~ A9  
BA0,BA1  
A10/AP  
A0 ~ A12  
A0 ~ A9  
A0 ~ A13  
A0 ~ A9,A11  
Column Address  
* Reference information: The following tables are address mapping information for other densities.  
256Mb  
Configuration  
# of Bank  
64Mb x4  
32Mb x 8  
16Mb x16  
4
4
4
Bank Address  
Auto precharge  
Row Address  
BA0,BA1  
A10/AP  
BA0,BA1  
A10/AP  
A0 ~ A12  
A0 ~ A9  
BA0,BA1  
A10/AP  
A0 ~ A12  
A0 ~ A8  
A0 ~ A12  
A0 ~ A9,A11  
Column Address  
1Gb  
Configuration  
# of Bank  
256Mb x4  
128Mb x 8  
64Mb x16  
8
8
8
Bank Address  
Auto precharge  
Row Address  
BA0 ~ BA2  
A10/AP  
BA0 ~ BA2  
A10/AP  
BA0 ~ BA2  
A10/AP  
A0 ~ A13  
A0 ~ A9,A11  
A0 ~ A13  
A0 ~ A9  
A0 ~ A12  
A0 ~ A9  
Column Address  
2Gb  
Configuration  
# of Bank  
512Mb x4  
256Mb x 8  
128Mb x16  
8
8
8
Bank Address  
Auto precharge  
Row Address  
BA0 ~ BA2  
A10/AP  
BA0 ~ BA2  
A10/AP  
BA0 ~ BA2  
A10/AP  
A0 ~ A14  
A0 ~ A9,A11  
A0 ~ A14  
A0 ~ A9  
A0 ~ A13  
A0 ~ A9  
Column Address  
4Gb  
Configuration  
1 Gb x4  
512Mb x 8  
256Mb x16  
# of Bank  
8
BA0 ~ BA2  
A10/AP  
tbd  
8
BA0 ~ BA2  
A10/AP  
tbd  
8
BA0 ~ BA2  
A10/AP  
tbd  
Bank Address  
Auto precharge  
Row Address  
Column Address/page size  
tbd  
tbd  
tbd  
Rev. 0.91 (Sep. 2003)  
Page 13 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
3. Command Truth Table.  
3.1 Command truth table.  
CKE  
BA0  
Function  
CS  
RAS  
CAS  
WE BA1 A15-A11 A10 A9 - A0 Notes  
BA2  
Previous  
Cycle  
Current  
Cycle  
(Extended) Mode Register Set  
Refresh (REF)  
H
H
H
H
H
L
L
L
L
H
L
L
L
L
L
L
L
L
L
H
H
L
H
L
L
L
L
L
L
H
H
X
H
L
BA  
X
OP Code  
1,2  
1
X
X
X
X
X
X
Self Refresh Entry  
L
L
X
1
X
H
L
X
H
H
H
H
L
Self Refresh Exit  
L
H
X
X
X
X
1,7  
Single Bank Precharge  
Precharge all Banks  
Bank Activate  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
X
BA  
X
X
X
L
H
X
X
1,2  
1
L
L
L
H
L
BA  
Row Address  
1,2  
Write  
H
H
H
H
H
X
X
H
X
H
BA Column  
BA Column  
BA Column  
BA Column  
L
H
L
Column 1,2,3,  
Column 1,2,3,  
Column 1,2,3  
Column 1,2,3  
Write with Auto Precharge  
Read  
L
L
L
H
H
H
X
X
H
X
H
Read with Auto-Precharge  
No Operation  
L
H
X
X
H
X
X
H
X
H
X
X
X
X
X
X
1
1
Device Deselect  
Power Down Entry  
Power Down Exit  
H
L
L
X
X
X
X
X
X
X
X
1,4  
1,4  
H
1. All DDR2 SDRAM commands are defined by states of CS, RAS, CAS , WE and CKE at the rising edge of the clock.  
2. Bank addresses BA0, BA1, BA2 (BA) determine which bank is to be operated upon. For (E)MRS BA selects an (Extended) Mode  
Register.  
3. Burst reads or writes at BL=4 cannot be terminated or interrupted. See sections "Reads interrupted by a Read" and "Writes inter-  
rupted by a Write" in section 2.2.4 for details.  
4. The Power Down Mode does not perform any refresh operations. The duration of Power Down is therefore limited by the refresh  
requirements outlined in section 2.2.7.  
5. The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. See  
section 2.2.2.4.  
6. “X” means “H or L (but a defined logic level)”.  
7. Self refresh exit is asynchronous.  
Rev. 0.91 (Sep. 2003)  
Page 14 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
3.2 Clock Enable (CKE) Truth Table for Synchronous Transitions  
CKE  
1
3
Command (N)  
2
3
Notes  
Current State  
Power Down  
Action (N)  
1
Previous Cycle  
(N-1)  
Current Cycle  
RAS, CAS, WE, CS  
X
(N)  
L
L
L
Maintain Power-Down  
Power Down Exit  
11, 13, 15  
4, 8, 11,13  
11, 15  
H
L
DESELECT or NOP  
X
L
Maintain Self Refresh  
Self Refresh Exit  
Self Refresh  
L
H
L
DESELECT or NOP  
DESELECT or NOP  
DESELECT or NOP  
REFRESH  
4, 5,9  
Bank(s) Active  
All Banks Idle  
H
H
H
H
Active Power Down Entry  
Precharge Power Down Entry  
Self Refresh Entry  
4,8,10,11,13  
4, 8, 10,11,13  
6, 9, 11,13  
7
L
L
H
Refer to the Command Truth Table  
Notes:  
1. CKE (N) is the logic state of CKE at clock edge N; CKE (N–1) was the state of CKE at the previous clock edge.  
2. Current state is the state of the DDR SDRAM immediately prior to clock edge N.  
3. COMMAND (N) is the command registered at clock edge N, and ACTION (N) is a result of COMMAND (N).  
4. All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.  
5. On Self Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the t  
period.  
XSNR  
Read commands may be issued only after t  
(200 clocks) is satisfied.  
XSRD  
6. Self Refresh mode can only be entered from the All Banks Idle state.  
7. Must be a legal command as defined in the Command Truth Table.  
8. Valid commands for Power Down Entry and Exit are NOP and DESELECT only.  
9. Valid commands for Self Refresh Exit are NOP and DESELECT only.  
10. Power Down and Self Refresh can not be entered while Read or Write operations, (Extended) Mode Register Set operations or  
Precharge operations are in progress. See section 2.2.9 "Power Down" and 3.2.8 "Self Refresh Command" for a detailed list of  
restrictions.  
11. Minimum CKE high time is three clocks.; minimum CKE low time is three clocks.  
12. The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. See  
section 2.2.2.4.  
13. The Power Down does not perform any refresh operations. The duration of Power Down Mode is therefore limited by the refresh  
requirements outlined in section 2.2.7.  
14. CKE must be maintained high while the SDRAM is in OCD calibration mode .  
15. “X” means “don’t care (including floating around VREF)” in Self Refresh and Power Down. However ODT must be driven high or  
low in Power Down if the ODT function is enabled (Bit A2 or A6 set to “1” in EMRS(1) ).  
3.3 DM Truth Table  
Name (Functional)  
Write enable  
Write inhibit  
DM  
-
DQs  
Note  
1
Valid  
H
X
1
1. Used to mask write data, provided coincident with the corresponding data  
Rev. 0.91 (Sep. 2003)  
Page 15 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
4. Absolute Maximum DC Ratings  
Symbol  
VDD  
Parameter  
Voltage on VDD pin relative to Vss  
Voltage on VDDQ pin relative to Vss  
Voltage on VDDL pin relative to Vss  
Voltage on any pin relative to Vss  
Storage Temperature  
Rating  
Units  
V
Notes  
1
- 1.0 V ~ 2.3 V  
VDDQ  
VDDL  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
-55 to +100  
V
V
1
1
1
1
VIN VOUT  
,
V
TSTG  
°C  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reli-  
ability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM.  
5. AC & DC Operating Conditions  
Recommended DC Operating Conditions (SSTL - 1.8)  
Rating  
Symbol  
Parameter  
Units  
Notes  
Min.  
1.7  
Typ.  
1.8  
Max.  
1.9  
VDD  
VDDL  
VDDQ  
VREF  
VTT  
V
V
Supply Voltage  
1.7  
1.8  
1.8  
1.9  
4
4
Supply Voltage for DLL  
Supply Voltage for Output  
Input Reference Voltage  
Termination Voltage  
1.7  
1.9  
V
0.49*VDDQ  
VREF-0.04  
0.50*VDDQ  
VREF  
0.51*VDDQ  
VREF+0.04  
mV  
V
1.2  
3
There is no specific device VDD supply voltage requirement for SSTL-1.8 compliance. However under all conditions VDDQ must  
be less than or equal to VDD.  
1. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is  
expected to be about 0.5 x VDDQ of the transmitting device and VREF is expected to track variations in VDDQ.  
2. Peak to peak ac noise on VREF may not exceed +/-2% VREF (dc).  
3. VTT of transmitting device must track VREF of receiving device.  
4. VDDQ tracks with VDD, VDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDDL tied together.  
Rev. 0.91 (Sep. 2003)  
Page 16 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Operating Temperature Condition  
SYMBOL  
TOPER  
PARAMETER  
RATING  
0 to 95  
UNITS  
NOTES  
1, 2  
Operating Temperature  
°C  
Note :  
1. Operating Temperature is the case surface temperature on the center/top side of the DRAM.  
2. The operation temperature range are the temperature where all DRAM specification will be supported.  
Input DC Logic Level  
Symbol  
VIH(dc)  
Parameter  
dc input logic high  
dc input logic low  
Min.  
Max.  
Units  
V
Notes  
VREF + 0.125  
VDDQ + 0.3  
VIL(dc)  
- 0.3  
VREF - 0.125  
V
Input AC Logic Level  
Symbol  
IH (ac)  
Parameter  
Min.  
Max.  
-
Units  
V
Notes  
V
VREF + 0.250  
ac input logic high  
ac input logic low  
VIL (ac)  
-
VREF - 0.250  
V
AC Input Test Conditions  
Symbol  
Condition  
Input reference voltage  
Value  
Units  
Notes  
V
V
0.5 * V  
1.0  
V
V
1
1
REF  
DDQ  
Input signal maximum peak to peak swing  
Input signal minimum slew rate  
SWING(MAX)  
SLEW  
1.0  
V/ns  
2, 3  
Note :  
1. Setup (tIS & tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of Vih(dc)min and the  
first crossing of Vih(ac)min. Setup (tIS & tDS) nominal slew rate for a falling signal is defined as the slew rate between the last  
crossing of Vil(dc)max and the first crossing of Vil(ac)max. If the actual signal is always earlier than the nominal slew rate line  
between shaded ‘dc to ac region’, use nominal slew rate for derating value (see Fig a.) If the actual signal is later than the nominal  
slew rate line anywhere between shaded ‘dc to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc  
level is used for derating value (see Fig b.)  
2. Hold (tIH & tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of Vil(dc)max and the first  
crossing of Vref. Hold (tIH & tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of  
Vih(dc)min and the first crossing of Vref. If the actual signal is always later than the nominal slew rate line between shaded ‘dc to  
Vref region’, use nominal slew rate for derating value (see Fig a.) If the actual signal is earlier than the nominal slew rate line any-  
where between shaded ‘dc to Vref region’, the slew rate of a tangent line to the actual signal from the dc level to Vref level is used  
for derating value (see Fig b.)Input waveform timing is referenced to the input signal crossing through the V  
level applied to the  
REF  
device under test.  
Rev. 0.91 (Sep. 2003)  
Page 17 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
DQS  
DQS  
CK  
CK  
Hold  
Time  
Setup Hold  
Time  
Setup  
Time  
Hold  
Time  
Hold  
Time  
Setup  
Time  
Setup  
Time  
Time  
VDDQ  
V
DDQ  
VIH(ac) min  
VIH(dc) min  
V
V
min  
IH(ac)  
IH(dc)  
dc to ac  
region  
dc to ac  
region  
min  
VREF  
V
REF  
V
max  
max  
VIL(dc) max  
IL(dc)  
IL(ac)  
dc to ac  
region  
dc to ac  
region  
V
VIL(ac) max  
Setup  
Delta TR  
V
VSS  
SS  
Hold  
Delta TR  
Hold  
Delta TF  
Hold  
Delta TF  
Setup  
Delta TF  
Hold  
Delta TR  
Setup  
Delta TR  
Setup  
Delta TF  
tangent line[Vih(ac)min - Vih(dc)min]  
Setup Delta TR  
Setup Slew Rate  
Rising Signal  
Vil(dc)max - Vil(ac)max  
Setup Delta TF  
Setup Slew Rate  
Falling Signal  
=
=
Setup Slew Rate  
Rising Signal  
Vih(ac)min - Vih(dc)min  
Setup Delta TR  
tangent line[Vil(dc)max - Vil(ac)max]  
Setup Delta TF  
Setup Slew Rate  
Falling Signal  
=
=
=
=
Vref - Vil(dc)max  
Hold Delta TR  
Hold Slew Rate  
Rising Signal  
tangent line [ Vref - Vil(dc)max ]  
Hold Delta TR  
Hold Slew Rate  
Rising Signal  
Vih(dc)min - Vref  
Hold Delta TF  
tangent line [ Vih(dc)min - Vref ]  
Hold Delta TF  
Hold Slew Rate  
Falling Signal  
Hold Slew Rate  
Falling Signal  
=
=
<Figure. a>  
<Figure. b>  
Rev. 0.91 (Sep. 2003)  
Page 18 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Differential input AC logic Level  
Symbol  
VID (ac)  
Parameter  
Min.  
0.5  
Max.  
Units  
V
Notes  
1
VDDQ + 0.6  
ac differential input voltage  
ac differential cross point voltage  
VIX (ac)  
0.5 * VDDQ - 0.175 0.5 * VDDQ + 0.175  
V
2
1. VIN(DC) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS, LDQS, LDQS, UDQS and  
UDQS.  
2. VID(DC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input (such as CK, DQS, LDQS  
or UDQS) level and VCP is the complementary input (such as CK, DQS, LDQS or UDQS) level. The minimum value is equal to VIH(DC) - V  
IL(DC).  
V
DDQ  
V
TR  
Crossing point  
V
ID  
V
V
IX or OX  
V
CP  
V
SSQ  
< Differential signal levels >  
Notes:  
1. VID(AC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input signal (such as CK, DQS,  
LDQS or UDQS) and VCP is the complementary input signal (such as CK, DQS, LDQS or UDQS). The minimum value is equal to V IH(AC)  
- V IL(AC).  
2. The typical value of VIX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VIX(AC) is expected to track variations in  
VDDQ . VIX(AC) indicates the voltage at which differential input signals must cross.  
Differential AC output parameters  
Symbol  
VOX (ac)  
Parameter  
Min.  
Max.  
Units  
V
Notes  
1
0.5 * VDDQ - 0.125 0.5 * VDDQ + 0.125  
ac differential cross point voltage  
Notes:  
1. The typical value of VOX(AC) is expected to be about 0.5 * V DDQ of the transmitting device and VOX(AC) is expected to track variations  
in VDDQ . VOX(AC) indicates the voltage at whitch differential output signals must cross.  
Rev. 0.91 (Sep. 2003)  
Page 19 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Input Signal Overshoot/Undershoot Specification  
AC Overshoot/Undershoot Specification for Address and Control Pins A0-A15, BA0-BA2, CS, RAS,  
CAS, WE, CKE, ODT  
Parameter  
Specification  
DDR2-400  
0.9V  
DDR2-533 DDR2-667  
Maximum peak amplitude allowed for overshoot area (See Figure 1):  
Maximum peak amplitude allowed for undershoot area (See Figure 1):  
Maximum overshoot area above VDD (See Figure1).  
0.9V  
0.9V  
0.9V  
0.9V  
0.9V  
0.75 V-ns  
0.75 V-ns  
0.56 V-ns  
0.56 V-ns  
0.45 V-ns  
0.45 V-ns  
Maximum undershoot area below VSS (See Figure 1).  
Maximum Amplitude  
Overshoot Area  
VDD  
Volts  
(V)  
VSS  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
AC Overshoot and Undershoot Definition for Address and Control Pins  
AC Overshoot/Undershoot Specification for Clock, Data, Strobe, and Mask Pins DQ, DQS, DM, CK,  
CK  
Parameter  
Specification  
DDR2-533  
0.9V  
DDR2-400  
0.9V  
DDR2-667  
0.9V  
Maximum peak amplitude allowed for overshoot area (See Figure 2):  
Maximum peak amplitude allowed for undershoot area (See Figure 2):  
Maximum overshoot area above VDDQ (See Figure 2).  
0.9V  
0.9V  
0.9V  
0.38 V-ns  
0.38 V-ns  
0.28 V-ns  
0.28 V-ns  
0.23 V-ns  
0.23 V-ns  
Maximum undershoot area below VSSQ (See Figure 2).  
Maximum Amplitude  
Overshoot Area  
VDDQ  
Volts  
(V)  
VSSQ  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
AC Overshoot and Undershoot Definition for Clock, Data, Strobe, and Mask Pins  
Rev. 0.91 (Sep. 2003)  
Page 20 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Power and ground clamps are implemented on the following input only pins:  
1. BA0-BA2  
2. A0-A15  
3. RAS  
4. CAS  
5. WE  
6. CS  
7. ODT  
8. CKE  
V-I Characteristics for input only pins with clamps  
Minimum Ground  
Clamp Current (mA)  
0
Voltage across  
clamp(V)  
Minimum Power  
Clamp Current (mA)  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.1  
1.0  
2.5  
4.7  
6.8  
9.1  
11.0  
13.5  
16.0  
18.2  
21.0  
0.1  
1.0  
2.5  
4.7  
6.8  
9.1  
11.0  
13.5  
16.0  
18.2  
21.0  
Rev. 0.91 (Sep. 2003)  
Page 21 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Output Buffer Levels  
Output AC Test Conditions  
Symbol  
VOH  
Parameter  
SSTL_18 Class II  
Units  
V
Notes  
Minimum Required Output Pull-up under AC Test Load  
Maximum Required Output Pull-down under AC Test Load  
Output Timing Measurement Reference Level  
V
+ 0.603  
- 0.603  
TT  
VOL  
V
V
TT  
VOTR  
0.5 * V  
V
1
DDQ  
1. The VDDQ of the device under test is referenced.  
Output DC Current Drive  
Symbol  
IOH(dc)  
IOL(dc)  
Parameter  
Output Minimum Source DC Current  
Output Minimum Sink DC Current  
SSTl_18 Class II  
- 13.4  
Units  
mA  
Notes  
1, 3, 4  
2, 3, 4  
13.4  
mA  
1.  
2.  
V
= 1.7 V; V  
= 1420 mV. (V  
- V  
)/I must be less than 21 ohm for values of V  
between V  
and V  
- 280  
DDQ  
DDQ  
OUT  
OUT  
DDQ OH  
OUT  
DDQ  
mV.  
V
= 1.7 V; V  
= 280 mV. V  
/I must be less than 21 ohm for values of V  
between 0 V and 280 mV.  
DDQ  
OUT  
OUT OL  
OUT  
3. The dc value of V  
applied to the receiving device is set to V  
TT  
REF  
4. The values of I  
and I  
are based on the conditions given in Notes 1 and 2. They are used to test device drive current  
OH(dc)  
OL(dc)  
capability to ensure V min plus a noise margin and V max minus a noise margin are delivered to an SSTL_18 receiver. The  
IH  
IL  
actual current values are derived by shifting the desired driver operating point (see Section 3.3) along a 21 ohm load line to define  
a convenient driver current for measurement.  
OCD default characteristics  
Description  
Parameter  
Min  
12.6  
Nom  
18  
Max  
23.4  
Unit  
Notes  
Output impedance  
ohms 1,2  
Output impedance step  
size for OCD calibration  
0
1.5  
ohms  
6
Pull-up and pull-down  
mismatch  
0
4
ohms 1,2,3  
V/ns 1,4,5  
Output slew rate  
tbd  
tbd  
Note 1: Absolute Specifications (0°C TCASE +tbd°C; VDD = +1.8V ±0.1V, VDDQ = +1.8V ±0.1V)  
Note 2: Impedance measurement condition for output source dc current: VDDQ = 1.7V; VOUT = 1420mV;  
(VOUT-VDDQ)/Ioh must be less than 23.4 ohms for values of VOUT between VDDQ and VDDQ-280mV.  
Impedance measurement condition for output sink dc current: VDDQ = 1.7V; VOUT = 280mV; VOUT/Iol  
must be less than 23.4 ohms for values of VOUT between 0V and 280mV.  
Note 3: Mismatch is absolute value between pull-up and pull-dn, both are measured at same temperature and  
voltage.  
Note 4: Slew rate measured from vil(ac) to vih(ac).  
Note 5: The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew  
rate as measured from AC to AC. This is guaranteed by design and characterization.  
Rev. 0.91 (Sep. 2003)  
Page 22 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Note 6 : This represents the step size when the OCD is near 18 ohms at nominal conditions across all  
process and represents only the DRAM uncertainty. A 0 ohm value (no calibration) can only be achieved if the  
OCD impedance is 18 ohms +/- 0.75 ohms under nominal conditions.  
Output slew rate load :  
VTT  
25 ohms  
Output  
(VOUT)  
Reference  
Point  
Rev. 0.91 (Sep. 2003)  
Page 23 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Table 1. Full Strength Default Pulldown Driver Characteristics  
Pulldow n Current (mA)  
Nominal Default  
Low (18 ohms)  
Nominal Default  
High (18 ohms)  
Voltage (V) Minimum (23.4 Ohms)  
Maximum (12.6 Ohms)  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
8.5  
11.3  
16.5  
21.2  
25.0  
28.3  
30.9  
33.0  
34.5  
35.5  
36.1  
36.6  
36.9  
37.1  
37.4  
37.6  
37.7  
37.9  
11.8  
16.8  
22.1  
27.6  
32.4  
36.9  
40.9  
44.6  
47.7  
50.4  
52.6  
54.2  
55.9  
57.1  
58.4  
59.6  
60.9  
15.9  
23.8  
31.8  
39.7  
47.7  
55.0  
62.3  
69.4  
75.3  
80.5  
84.6  
87.7  
90.8  
92.9  
94.9  
97.0  
99.1  
101.1  
12.1  
14.7  
16.4  
17.8  
18.6  
19.0  
19.3  
19.7  
19.9  
20.0  
20.1  
20.2  
20.3  
20.4  
20.6  
Figure 1. DDR2 Default Pulldown Characteristics for Full Strength Driver  
120  
100  
80  
60  
40  
20  
0
Maximum  
Nominal  
Default  
High  
Nominal  
Default  
Low  
Minimum  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9  
VOUT to VSSQ (V)  
Rev. 0.91 (Sep. 2003)  
Page 24 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Table 2. Full Strength Default Pullup Driver Characteristics  
Pullup Current (mA)  
Nominal Default  
Low (18 ohms)  
Nominal Default  
High (18 ohms)  
Voltage (V) Minimum (23.4 Ohms)  
Maximum (12.6 Ohms)  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
-8.5  
-11.1  
-16.0  
-20.3  
-24.0  
-27.2  
-29.8  
-31.9  
-33.4  
-34.6  
-35.5  
-36.2  
-36.8  
-37.2  
-37.7  
-38.0  
-38.4  
-38.6  
-11.8  
-17.0  
-22.2  
-27.5  
-32.4  
-36.9  
-40.8  
-44.5  
-47.7  
-50.4  
-52.5  
-54.2  
-55.9  
-57.1  
-58.4  
-59.6  
-60.8  
-15.9  
-23.8  
-31.8  
-39.7  
-47.7  
-55.0  
-62.3  
-69.4  
-75.3  
-80.5  
-84.6  
-87.7  
-90.8  
-92.9  
-94.9  
-97.0  
-99.1  
-101.1  
-12.1  
-14.7  
-16.4  
-17.8  
-18.6  
-19.0  
-19.3  
-19.7  
-19.9  
-20.0  
-20.1  
-20.2  
-20.3  
-20.4  
-20.6  
Figure 2. DDR2 Default Pullup Characteristics for Full Strength Output Driver  
0
-20  
-40  
Minimum  
Nominal  
Default  
Low  
-60  
Nominal  
Default  
High  
-80  
-100  
-120  
Maximum  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
0.3  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
VDDQ to VOUT (V)  
Rev. 0.91 (Sep. 2003)  
Page 25 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
DDR2 SDRAM Default Output Driver V–I Characteristics  
DDR2 SDRAM output driver characteristics are defined for full strength default operation as selected by  
the EMRS1 bits A7-A9 = ‘111’. Figures 1 and 2 show the driver characteristics graphically, and tables 1 and  
2 show the same data in tabular format suitable for input into simulation tools. The driver characteristics  
evaluation conditions are:  
Nominal Default 25 oC (T case), VDDQ = 1.8 V, typical process  
Minimum TBD oC (T case), VDDQ = 1.7 V, slow–slow process  
Maximum 0 oC (T case), VDDQ = 1.9 V, fast–fast process  
Default Output Driver Characteristic Curves Notes:  
1) The full variation in driver current from minimum to maximum process, temperature, and voltage will  
lie within the outer bounding lines of the V–I curve of figures 1 and 2.  
2) It is recommended that the ”typical” IBIS V–I curve lie within the inner bounding lines of the V–I curves  
of figures 1 and 2.  
Table 3. Full Strength Calibrated Pulldown Driver Characteristics  
Calibrated Pulldow n Current (mA)  
Nominal Minimum Nominal Low (18.75  
Nominal High (17.25 Nominal Maximum (15  
Voltage (V)  
Nominal (18 ohms)  
(21 ohms)  
ohms)  
ohms)  
ohms)  
0.2  
0.3  
0.4  
9.5  
10.7  
16.0  
21.0  
11.5  
16.6  
21.6  
11.8  
17.4  
23.0  
13.3  
20.0  
27.0  
14.3  
18.7  
Table 4. Full Strength Calibrated Pullup Driver Characteristics  
Calibrated Pullup Current (mA)  
Nominal Minimum Nominal Low (18.75  
Nominal High (17.25Nominal Maximum (15  
Voltage (V)  
Nominal (18 ohms)  
(21 ohms)  
ohms)  
ohms)  
ohms)  
0.2  
0.3  
0.4  
-9.5  
-14.3  
-18.7  
-10.7  
-16.0  
-21.0  
-11.4  
-16.5  
-21.2  
-11.8  
-17.4  
-23.0  
-13.3  
-20.0  
-27.0  
DDR2 SDRAM Calibrated Output Driver V–I Characteristics  
DDR2 SDRAM output driver characteristics are defined for full strength calibrated operation as selected by  
the procedure outlined in section 2.2.2.3, Off-Chip Driver (OCD) Impedance Adjustment. Tables 3 and 4  
show the data in tabular format suitable for input into simulation tools. The nominal points represent a  
device at exactly 18 ohms. The nominal low and nominal high values represent the range that can be  
achieved with a maximum 1.5 ohm step size with no calibration error at the exact nominal conditions only  
(i.e. perfect calibration procedure, 1.5 ohm maximum step size guaranteed by specification). Real system  
calibration error needs to be added to these values. It must be understood that these V-I curves as repre-  
sented here or in supplier IBIS models need to be adjusted to a wider range as a result of any system cali-  
bration error. Since this is a system specific phenomena, it cannot be quantified here. The values in the  
calibrated tables represent just the DRAM portion of uncertainty while looking at one DQ only. If the cali  
Rev. 0.91 (Sep. 2003)  
Page 26 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
bration procedure is used, it is possible to cause the device to operate outside the bounds of the default  
device characteristics tables and figures. In such a situation, the timing parameters in the specification can-  
not be guaranteed. It is solely up to the system application to ensure that the device is calibrated between the  
minimum and maximum default values at all times. If this can’t be guaranteed by the system calibration pro-  
cedure, re-calibration policy, and uncertainty with DQ to DQ variation, then it is recommended that only the  
default values be used. The nominal maximum and minimum values represent the change in impedance  
from nominal low and high as a result of voltage and temperature change from the nominal condition to the  
maximum and minimum conditions. If calibrated at an extreme condition, the amount of variation could be as  
much as from the nominal minimum to the nominal maximum or vice versa. The driver characteristics evalu-  
ation conditions are:  
Nominal 25 oC (T case), VDDQ = 1.8 V, typical process  
Nominal Low and Nominal High 25 oC (T case), VDDQ = 1.8 V, any process  
Nominal Minimum TBD oC (T case), VDDQ = 1.7 V, any process  
Nominal Maximum 0 oC (T case), VDDQ = 1.9 V, any process  
Rev. 0.91 (Sep. 2003)  
Page 27 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
IDD Specification Parameters and Test Conditions  
(IDD values are for full operating range of Voltage and Temperature, Notes 1 - 5)  
Sym-  
bol  
Proposed Conditions  
DDR2-  
667  
DDR2-  
533  
DDR2-  
400  
Units  
Notes  
(CL=5)  
(CL=4)  
(CL=3)  
IDD0  
Operating one bank active-precharge current;  
TBD  
TBD  
TBD  
mA  
mA  
t
t
t
t
t
t
CK = CK(IDD), RC = RC(IDD), RAS = RASmin(IDD);  
CKE is HIGH, CS\ is HIGH between valid commands;  
Address bus inputs are SWITCHING;  
Data bus inputs are SWITCHING  
IDD1  
Operating one bank active-read-precharge current;  
IOUT = 0mA;  
TBD  
TBD  
TBD  
BL = 4, CL = CL(IDD), AL = 0;  
t
t
t
t
t
t
CK = CK(IDD), RC = RC (IDD), RAS = RASmin(IDD),  
t
t
RCD = RCD(IDD);  
CKE is HIGH, CS\ is HIGH between valid commands;  
Address bus inputs are SWITCHING;  
Data pattern is same as IDD4W  
IDD2P  
IDD2Q  
IDD2N  
IDD3P  
Precharge power-down current;  
All banks idle;  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
mA  
mA  
mA  
mA  
t
t
CK = CK(IDD);  
CKE is LOW;  
Other control and address bus inputs are STABLE;  
Data bus inputs are FLOATING  
Precharge quiet standby current;  
All banks idle;  
t
t
CK = CK(IDD);  
CKE is HIGH, CS\ is HIGH;  
Other control and address bus inputs are STABLE;  
Data bus inputs are FLOATING  
Precharge standby current;  
All banks idle;  
t
t
CK = CK(IDD);  
CKE is HIGH, CS\ is HIGH;  
Other control and address bus inputs are SWITCHING;  
Data bus inputs are SWITCHING  
Active power-down current;  
All banks open;  
Fast PDN  
Exit MRS(12)  
= 0mA  
t
t
CK = CK(IDD);  
CKE is LOW;  
Other control and address bus inputs are  
STABLE;  
Data bus inputs are FLOATING  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
mA  
mA  
Slow PDN  
Exit MRS(12)  
= 1mA  
IDD3N  
Active standby current;  
All banks open;  
t
t
t
t
t
t
CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD);  
CKE is HIGH, CS\ is HIGH between valid commands;  
Other control and address bus inputs are SWITCHING;  
Data bus inputs are SWITCHING  
Rev. 0.91 (Sep. 2003)  
Page 28 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
IDD4W  
Operating burst write current;  
All banks open, Continuous burst writes;  
BL = 4, CL = CL(IDD), AL = 0;  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
mA  
t
t
t
t
t
t
CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD);  
CKE is HIGH, CS\ is HIGH between valid commands;  
Address bus inputs are SWITCHING;  
Data bus inputs are SWITCHING  
IDD4R  
Operating burst read current;  
All banks open, Continuous burst reads, IOUT = 0mA;  
BL = 4, CL = CL(IDD), AL = 0;  
mA  
t
t
t
t
t
t
CK = CK(IDD), RAS = RASmax(IDD), RP = RP(IDD);  
CKE is HIGH, CS\ is HIGH between valid commands;  
Address bus inputs are SWITCHING;  
Data pattern is same as IDD4W  
IDD5B  
Burst auto refresh current;  
mA  
t
t
CK = CK(IDD);  
t
Refresh command at every RFC(IDD) interval;  
CKE is HIGH, CS\ is HIGH between valid commands;  
Other control and address bus inputs are SWITCHING;  
Data bus inputs are SWITCHING  
IDD6  
Self refresh current;  
CK and CK\ at 0V;  
CKE 0.2V;  
Other control and address bus inputs are  
FLOATING;  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
mA  
mA  
Normal  
Low Power  
Data bus inputs are FLOATING  
IDD7  
Operating bank interleave read current;  
mA  
All bank interleaving reads, IOUT = 0mA;  
t
t
BL = 4, CL = CL(IDD), AL = RCD(IDD)-1* CK(IDD);  
t
t
t
t
t
t
CK = CK(IDD), RC = RC(IDD), RRD = RRD(IDD),  
t
t
RCD = 1* CK(IDD);  
CKE is HIGH, CS\ is HIGH between valid commands;  
Address bus inputs are STABLE during DESELECTs;  
Data pattern is same as IDD4R;  
- Refer to the following page for detailed timing conditions  
Note:  
1. IDD specifications are tested after the device is properly initialized  
2. Input slew rate is specified by AC Parametric Test Condition  
3. IDD parameters are specified with ODT disabled.  
4. Data bus consists of DQ, DM, DQS, DQS\, RDQS, RDQS\, LDQS, LDQS\, UDQS, and UDQS\. IDD values must be met with all combi-  
nations of EMRS bits 10 and 11.  
5. Definitions for IDD  
LOW is defined as Vin VILAC(max)  
HIGH is defined as Vin VIHAC(min)  
STABLE is defined as inputs stable at a HIGH or LOW level  
FLOATING is defined as inputs at VREF = VDDQ/2  
SWITCHING is defined as:  
inputs changing between HIGH and LOW every other clock cycle (once per two clocks) for address and control  
signals, and  
inputs changing between HIGH and LOW every other data transfer (once per clock) for DQ signals not including  
masks or strobes.  
Rev. 0.91 (Sep. 2003)  
Page 29 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
For purposes of IDD testing, the following parameters are to be utilized  
DDR2-667  
DDR2-533  
DDR2-400  
Parameter  
5-5-5  
5
4-4-4  
4
3-3-3  
3
Units  
CL(IDD)  
tCK  
t
15  
15  
15  
RCD(IDD)  
ns  
ns  
t
55  
55  
55  
7.5  
10  
5
RC(IDD)  
t
ns  
ns  
RRD(IDD)-x4/x8  
7.5  
7.5  
t
RRD(IDD)-x16  
10  
3
10  
t
3.75  
CK(IDD)  
RASmin(IDD)  
ns  
ns  
t
40  
15  
40  
15  
40  
15  
105  
t
ns  
ns  
RP(IDD)  
RFC(IDD)-512Mb  
t
105  
105  
Detailed IDD7  
The detailed timings are shown below for IDD7. Changes will be required if timing parameter changes are made to the specification.  
Legend: A = Active; RA = Read with Autoprecharge; D = Deselect  
IDD7: Operating Current: All Bank Interleave Read operation  
t
t
All banks are being interleaved at minimum RC(IDD) without violating RRD(IDD) using a burst length of 4. Control and address bus  
inputs are STABLE during DESELECTs. IOUT = 0mA  
Timing Patterns for 4 bank devices x4/ x8/ x16  
-DDR2-400 3/3/3  
A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D D D  
-DDR2-533 4/4/4  
A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D D  
-DDR2-667 5/5/5  
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D  
Rev. 0.91 (Sep. 2003)  
Page 30 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Input/Output capacitance  
DDR2-400  
DDR2-533  
DDR2-667  
Min Max  
Parameter  
Symbol  
Min  
Max  
2.0  
Units  
pF  
Input capacitance, CK and CK  
CCK  
CDCK  
CI  
1.0  
x
1.0  
x
2.0  
0.25  
2.0  
Input capacitance delta, CK and CK  
0.25  
2.0  
pF  
Input capacitance, all other input-only pins  
Input capacitance delta, all other input-only pins  
Input/output capacitance, DQ, DM, DQS, DQS  
Input/output capacitance delta, DQ, DM, DQS, DQS  
1.0  
x
1.0  
x
pF  
CDI  
0.25  
4.0  
0.25  
3.5  
pF  
CIO  
2.5  
x
2.5  
x
pF  
CDIO  
0.5  
0.5  
pF  
Electrical Characteristics & AC Timing for DDR2-667/533/400  
(0 °C < TCASE < 95 °C; VDDQ = 1.8V + 0.1V; VDD = 1.8V + 0.1V)  
Refresh Parameters by Device Density  
Parameter  
Symbol  
256Mb  
512Mb  
1Gb  
2Gb  
4Gb  
Units  
Refresh to active/Refresh command time  
tRFC  
tREFI  
75  
105  
127.5  
7.8  
195  
7.8  
tbd  
ns  
0 °C T  
85°C  
95°C  
7.8  
3.9  
7.8  
3.9  
7.8  
3.9  
µs  
µs  
CASE  
Average periodic refresh interval  
85 °C < T  
3.9  
3.9  
CASE  
Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin  
Speed  
Bin (CL - tRCD - tRP)  
Parameter  
tCK, CL=3  
tCK, CL=4  
tCK, CL=5  
tRCD  
DDR2-667(E6)  
DDR2-533(D5)  
DDR2-400(CC)  
Units  
5 - 5- 5  
4 - 4 - 4  
3 - 3 - 3  
min  
5
max  
8
min  
5
max  
min  
5
max  
8
8
-
8
8
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3.75  
3
8
3.75  
-
5
8
-
15  
15  
55  
40  
15  
15  
55  
40  
15  
15  
55  
40  
tRP  
tRC  
70000  
70000  
70000  
tRAS  
Timing Parameters by Speed Grade  
(Refer to notes for informations related to this table at the bottom)  
Symbol  
Units  
Notes  
Parameter  
DDR2-667  
min max  
DDR2-533  
min max  
DDR2-400  
min  
max  
Rev. 0.91 (Sep. 2003)  
Page 31 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
DQ output access time from  
CK/CK  
tAC  
-450  
-400  
+450  
+400  
-500  
-450  
+500  
+450  
-600  
-500  
+600  
+500  
ps  
ps  
DQS output access time from  
CK/CK  
tDQSCK  
CK high-level width  
CK low-level width  
CK half period  
tCH  
tCL  
tHP  
0.45  
0.45  
0.55  
0.55  
x
0.45  
0.45  
0.55  
0.55  
x
0.45  
0.45  
0.55  
0.55  
x
tCK  
tCK  
ps  
min(tCL,  
tCH)  
min(tCL,  
tCH)  
min(tCL,  
tCH)  
19,20  
23  
Clock cycle time, CL=x  
tCK  
tDH  
3000  
tbd  
8000  
x
3750  
225  
8000  
x
5000  
275  
8000  
x
ps  
ps  
DQ and DM input hold time  
14,15,  
16  
DQ and DM input setup time  
tDS  
tbd  
x
100  
0.6  
x
150  
x
ps  
tCK  
tCK  
ps  
14,15,  
16  
Control & Address input  
pulse width for each input  
tIPW  
tDIPW  
tHZ  
0.6  
x
x
x
0.6  
x
DQ and DM input pulse width  
for each input  
0.35  
0.35  
x
x
0.35  
x
Data-out high-impedance  
time from CK/CK  
x
tAC max  
tAC max  
tbd  
tAC max  
tAC max  
300  
x
tAC max  
tAC max  
350  
Data-out low-impedance time  
from CK/CK  
tLZ  
tAC min  
tAC min  
x
tAC min  
ps  
DQS-DQ skew for DQS and  
associated DQ signals  
tDQSQ  
x
x
x
x
ps  
21  
20  
DQ hold skew factor  
tQHS  
tQH  
tbd  
x
x
400  
x
450  
x
ps  
ps  
DQ/DQS output hold time  
from DQS  
tHP -  
tQHS  
tHP - tQHS  
tHP -  
tQHS  
Write command to first DQS  
latching transition  
tDQSS  
WL - 0.25  
WL +  
0.25  
WL - 0.25  
WL +  
0.25  
WL - 0.25  
WL +  
0.25  
tCK  
DQS input high pulse width  
DQS input low pulse width  
tDQSH  
tDQSL  
tDSS  
0.35  
0.35  
0.2  
x
x
x
0.35  
0.35  
0.2  
x
x
x
0.35  
0.35  
0.2  
x
x
x
tCK  
tCK  
tCK  
DQS falling edge to CK setup  
time  
DQS falling edge hold time from  
CK  
tDSH  
tMRD  
0.2  
2
x
x
0.2  
2
x
x
0.2  
2
x
x
tCK  
tCK  
Mode register set command  
cycle time  
Write preamble setup time  
Write postamble  
tWPRES  
tWPST  
tWPRE  
tIH  
0
x
0.6  
x
0
x
0.6  
x
0
x
0.6  
x
ps  
tCK  
tCK  
ps  
0.4  
tbd  
tbd  
0.4  
0.4  
375  
0.4  
0.4  
475  
18  
Write preamble  
Address and control input  
hold time  
x
x
x
13,15,  
17  
Address and control input  
setup time  
tIS  
tbd  
0.9  
x
250  
0.9  
x
350  
0.9  
x
ps  
13,15,  
17  
Read preamble  
tRPRE  
1.1  
1.1  
1.1  
tCK  
Rev. 0.91 (Sep. 2003)  
Page 32 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
Read postamble  
tRPST  
tRRD  
0.4  
7.5  
0.6  
x
0.4  
7.5  
0.6  
x
0.4  
7.5  
0.6  
x
tCK  
ns  
Active to active command  
period for 1KB page size  
products  
12  
12  
Active to active command  
period for 2KB page size  
products  
tRRD  
10  
x
10  
x
10  
x
ns  
CAS to CAS command delay  
Write recovery time  
tCCD  
tWR  
2
15  
2
15  
2
tCK  
ns  
x
x
x
x
15  
x
x
Auto precharge write  
recovery + precharge time  
tDAL  
tWR+tRP*  
tWR+tRP*  
tWR+tRP  
*
tCK  
22  
11  
Internal write to read  
command delay  
tWTR  
tRTP  
7.5  
x
7.5  
x
10  
x
ns  
ns  
Internal read to precharge  
command delay  
7.5  
7.5  
7.5  
Exit self refresh to a non-  
read command  
tXSNR  
tXSRD  
tXP  
tRFC + 10  
tRFC + 10  
tRFC +  
10  
ns  
Exit self refresh to a read  
command  
200  
2
200  
2
200  
2
tCK  
tCK  
tCK  
tCK  
Exit precharge power down  
to any non-read command  
x
x
x
x
x
x
Exit active power down to  
read command  
tXARD  
tXARDS  
2
2
2
9
Exit active power down to read  
command  
6 - AL  
6 - AL  
6 - AL  
9, 10  
(Slow exit, Lower power)  
tCKE  
CKE minimum pulse width  
(high and low pulse width)  
3
3
tCK  
3
tAOND  
tAON  
ODT turn-on delay  
ODT turn-on  
2
2
2
2
2
2
tCK  
ns  
tAC(min)  
tAC(max)  
+0.7  
tAC(min)  
tAC(max)  
+1  
tAC(min)  
tAC(max)  
+1  
13, 24  
tAONPD  
ODT turn-on(Power-Down  
mode)  
tAC(min)+  
2
2tCK+tAC  
(max)+1  
tAC(min)+  
2
2tCK+tAC  
(max)+1  
tAC(min)  
+2  
2tCK+tA  
C(max)+1  
ns  
tAOFD  
tAOF  
ODT turn-off delay  
ODT turn-off  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
tCK  
ns  
tAC(min)  
tAC(max)+  
0.6  
tAC(max)+  
0.6  
tAC(min)  
tAC(max)  
+ 0.6  
tAC(min)  
25  
tAOFPD  
ODT turn-off (Power-Down  
mode)  
tAC(min)+  
2
2.5tCK+tA  
C(max)+1  
tAC(min)+  
2
2.5tCK+  
tAC(max)  
+1  
tAC(min)  
+2  
2.5tCK+  
tAC(max)  
+1  
ns  
ODT to power down entry latency  
ODT power down exit latency  
tANPD  
tAXPD  
tOIT  
3
8
0
3
8
0
3
8
0
tCK  
tCK  
ns  
OCD drive mode output  
delay  
12  
12  
12  
Minimum time clocks  
remains ON after CKE  
asynchronously drops LOW  
tDelay  
tIS+tCK+tI  
H
tIS+tCK+tI  
H
tIS+tCK+t  
IH  
ns  
23  
General notes, which may apply for all AC parameters  
1. Slew Rate Measurement Levels  
Rev. 0.91 (Sep. 2003)  
Page 33 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
a. Output slew rate for falling and rising edges is measured between VTT - 250 mV and VTT + 250 mV for  
single ended signals. For differential signals (e.g. DQS - DQS) output slew rate is measured between  
DQS - DQS = -500 mV and DQS - DQS = +500mV. Output slew rate is guaranteed by design, but is not  
necessarily tested on each device.  
b. Input slew rate for single ended signals is measured from dc-level to ac-level: from VREF - 125 mV to  
VREF + 250 mV for rising edges and from VREF + 125 mV and VREF - 250 mV for falling edges.  
For differential signals (e.g. CK - CK) slew rate for rising edges is measured from CK - CK = -250 mV to  
CK - CK = +500 mV  
(250mV to -500 mV for falling egdes).  
c. VID is the magnitude of the difference between the input voltage on CK and the input voltage on CK, or  
between DQS and DQS for differential strobe.  
2. DDR2 SDRAM AC timing reference load  
Figure AA represents the timing reference load used in defining the relevant timing parameters of the part.  
It is not intended to be either a precise representation of the typical system environment nor a depiction of the  
actual load presented by a production tester. System designers will use IBIS or other simulation tools to cor-  
relate the timing reference load to a system environment. Manufacturers will correlate to their production test  
conditions (generally a coaxial transmission line terminated at the tester electronics).  
VDDQ  
DQ  
DQS  
DQS  
Output  
DUT  
V
= V  
/2  
TT  
DDQ  
RDQS  
RDQS  
Timing  
reference  
point  
25Ω  
Figure AA : AC Timing Reference Load  
The output timing reference voltage level for single ended signals is the crosspoint with VTT. The output tim-  
ing reference voltage level for differential signals is the crosspoint of the true (e.g. DQS) and the complement  
(e.g. DQS) signal.  
3. DDR2 SDRAM output slew rate test load  
Output slew rate is characterized under the test conditions as shown in Figure.  
VDDQ  
DUT  
DQ  
Output  
DQS, DQS  
V
= V  
/2  
TT  
DDQ  
RDQS, RDQS  
25Ω  
Test point  
Slew Rate Test Load  
4. Differential data strobe  
DDR2 SDRAM pin timings are specified for either single ended mode or differential mode depending on the setting of the EMRS  
“Enable DQS” mode bit; timing advantages of differential mode are realized in system design. The method by which the DDR2 SDRAM  
pin timings are measured is mode dependent. In single ended mode, timing relationships are measured relative to the rising or falling  
edges of DQS crossing at VREF. In differential mode, these timing relationships are measured relative to the crosspoint of DQS and its  
complement, DQS. This distinction in timing methods is guaranteed by design and characterization. Note that when differential data  
strobe mode is disabled via the EMRS, the complementary pin, DQS, must be tied externally to VSS through a 20 ohm to 10 K ohm  
Rev. 0.91 (Sep. 2003)  
Page 34 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
resisor to insure proper operation.  
t
t
DQSL  
DQSH  
DQS  
DQS/  
DQS  
DQS  
t
t
WPST  
WPRE  
VIH(dc)  
VIL(dc)  
VIH(ac)  
DQ  
DM  
D
D
D
D
t
VIL(ac)  
t
t
DH  
DH  
VIH(dc)  
DS  
t
DS  
VIH(ac)  
DMin  
DMin  
DMin  
DMin  
VIL(ac)  
VIL(dc)  
Figure -- Data input (write) timing  
t
t
CL  
CH  
CK  
CK  
CK/CK  
DQS  
DQS  
DQS/DQS  
DQ  
t
t
RPRE  
RPST  
Q
Q
Q
Q
t
DQSQmax  
t
DQSQmax  
t
QH  
t
QH  
Figure YY-- Data output (read) timing  
5. AC timings are for linear signal transitions. See System Derating for other signal transitions.  
6. These parameters guarantee device behavior, but they are not necessarily tested on each device. They  
may be guaranteed by device design or tester correlation.  
7. All voltages referenced to VSS.  
8. Tests for AC timing, IDD, and electrical (AC and DC) characteristics, may be conducted at nominal refer-  
ence/supply voltage levels, but the related specifications and device operation are guaranteed for the full volt-  
age range specified.  
Specific Notes for dedicated AC parameters  
9. User can choose which active power down exit timing to use via MRS(bit 12). tXARD is expected to be  
used for fast active power down exit timing. tXARDS is expected to be used for slow active power down exit  
timing where a lower power value is defined by each vendor data sheet.  
10. AL = Additive Latency  
11. This is a minimum requirement. Minimum read to precharge timing is AL + BL/2 providing the tRTP and  
tRAS(min) have been satisfied.  
Rev. 0.91 (Sep. 2003)  
Page 35 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
12. A minimum of two clocks (2 * tCK) is required irrespective of operating frequency  
13. Timings are guaranteed with command/address input slew rate of 1.0 V/ns. See System Derating for  
other slew rate values.  
14. Timings are guaranteed with data, mask, and (DQS/RDQS in singled ended mode) input slew rate of 1.0  
V/ns. See System Derating for other slew rate values.  
15. Timings are guaranteed with CK/CK differential slew rate of 2.0 V/ns. Timings are guaranteed for DQS  
signals with a differential slew rate of 2.0 V/ns in differential strobe mode and a slew rate of 1V/ns in single  
ended mode. See System Derating for other slew rate values.  
16. tDS and tDH (data setup and hold) derating  
1) Input waveform timing is referenced from the input signal crossing at the VIH(ac) level for a rising  
signal and VIL(ac) for a falling signal applied to the device under test.  
2) Input waveform timing is referenced from the input signal crossing at the VIH(dc) level for a rising  
signal and VIL(dc) for a falling signal applied to the device under test.  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
V
V
V
V
V
V
V
DDQ  
IH(ac)  
IH(dc)  
REF  
min  
min  
max  
max  
IL(dc)  
IL(ac)  
SS  
17. tIS and tIH (input setup and hold) derating  
1) Input waveform timing is referenced from the input signal crossing at the VIH(ac) level for a rising  
signal and VIL(ac) for a falling signal applied to the device under test.  
2) Input waveform timing is referenced from the input signal crossing at the VIH(dc) level for a rising  
signal and VIL(dc) for a falling signal applied to the device under test  
Rev. 0.91 (Sep. 2003)  
Page 36 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
CK  
CK  
tIH  
tIH  
tIS  
tIS  
V
V
V
V
V
V
V
DDQ  
IH(ac)  
IH(dc)  
REF  
min  
min  
max  
max  
IL(dc)  
IL(ac)  
SS  
18. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for  
this parameter, but system performance (bus turnaround) will degrade accordingly.  
19. MIN ( t CL, t CH) refers to the smaller of the actual clock low time and the actual clock high time as pro-  
vided to the device (i.e. this value can be greater than the minimum specification limits for t CL and t CH). For  
example, t CL and t CH are = 50% of the period, less the half period jitter ( t JIT(HP)) of the clock source, and  
less the half period jitter due to crosstalk ( t JIT(crosstalk)) into the clock traces.  
20. t QH = t HP – t QHS, where:  
tHP = minimum half clock period for any given cycle and is defined by clock high or clock low ( tCH, tCL).  
tQHS accounts for:  
1) The pulse duration distortion of on-chip clock circuits; and  
2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the  
next transition, both of which are, separately, due to data pin skew and output pattern effects, and p-  
channel to n-channel variation of the output drivers.  
21. tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the  
output drivers for any given cycle.  
22. t DAL = (nWR) + ( tRP/tCK):  
For each of the terms above, if not already an integer, round to the next highest integer. tCK refers to the  
application clock period. nWR refers to the t WR parameter stored in the MRS.  
Example: For DDR533 at t CK = 3.75 ns with t WR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns)  
clocks =4 +(4)clocks=8clocks.  
23. The clock frequency is allowed to change during self–refresh mode or precharge power-down mode. In  
case of clock frequency change during precharge power-down, a specific procedure is required as described  
in section 3.2.9.  
Rev. 0.91 (Sep. 2003)  
Page 37 of 38  
Preliminary  
DDR2 SDRAM  
512Mb B-die DDR2 SDRAM  
24. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on.  
ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND.  
25. ODT turn off time min is when the device starts to turn off ODT resistance.  
ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD  
Rev. 0.91 (Sep. 2003)  
Page 38 of 38  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY