K5L5628JTM-DH180 [SAMSUNG]

Memory Circuit, 16MX16, CMOS, PBGA115, 8 X 12 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, FBGA-115;
K5L5628JTM-DH180
型号: K5L5628JTM-DH180
厂家: SAMSUNG    SAMSUNG
描述:

Memory Circuit, 16MX16, CMOS, PBGA115, 8 X 12 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, FBGA-115

内存集成电路
文件: 总98页 (文件大小:1567K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Document Title  
Multi-Chip Package MEMORY  
256M Bit (16M x16) Synchronous Burst , Multi Bank NOR Flash / 128M Bit(8M x16) Synchronous Burst UtRAM  
Revision History  
Revision No. History  
Draft Date  
Remark  
0.0  
Initial Draft  
August 12, 2004  
Preliminary  
(256M NOR Flash A-die_rev0.3)  
(128M UtRAM M-die_rev0.1)  
1.0  
Finalize  
November 10, 2004 Final  
<UtRAM> ....... rev 1.0  
- Deleted Synchronous Burst Read and Asynchronous Write Mode  
Note : For more detailed features and specifications including FAQ, please refer to Samsung’s web site.  
http://samsungelectronics.com/semiconductors/products/products_index.html  
The attached datasheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right  
to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions about device. If you have  
any questions, please contact the SAMSUNG branch office near you.  
1
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Multi-Chip Package MEMORY  
256M Bit (16M x16) Synchronous Burst , Multi Bank NOR Flash / 128M Bit(8M x16) Synchronous Burst UtRAM  
FEATURES  
<Common>  
Handshaking Feature  
Operating Temperature : -30°C ~ 85°C  
Package : 115Ball FBGA Type - 8.0mm x 12.0mm  
0.8mm ball pitch  
- Provides host system with minimum latency by monitoring  
RDY  
Erase Suspend/Resume  
1.4mm (Max.) Thickness  
Program Suspend/Resume  
Unlock Bypass Program/Erase  
Hardware Reset (RESET)  
Data Polling and Toggle Bits  
- Provides a software method of detecting the status of program  
or erase completion  
<NOR Flash>  
Single Voltage, 1.7V to 1.95V for Read and Write operations  
Organization  
- 16,772,216 x 16 bit ( Word Mode Only)  
Read While Program/Erase Operation  
Multiple Bank Architecture  
Endurance  
- 16 Banks (16Mb Partition)  
100K Program/Erase Cycles Minimum  
OTP Block : Extra 256Byte block  
Read Access Time (@ CL=30pF)  
- Asynchronous Random Access Time :  
90ns (54MHz) / 80ns (66MHz)  
- Synchronous Random Access Time :  
88.5ns (54MHz) / 70ns (66MHz)  
- Burst Access Time :  
14.5ns (54MHz) / 11ns (66MHz)  
Burst Length :  
- Continuous Linear Burst  
- Linear Burst : 8-word & 16-word with No-wrap & Wrap  
Block Architecture  
Data Retention : 10 years  
Support Common Flash Memory Interface  
Low Vcc Write Inhibit  
<UtRAM>  
Process Technology: CMOS  
Organization: 8M x16 bit  
Power Supply Voltage: VCC 2.5~2.7V, VCCQ 1.7~2.0V  
Three State Outputs  
Supports MRS (Mode Register Set)  
MRS control - MRS Pin Control  
Supports Power Saving modes - Partial Array Refresh mode  
Internal TCSR  
- Eight 4Kword blocks and five hundreds eleven 32Kword  
blocks  
Supports Driver Strength Optimization for system environment  
power saving.  
- Bank 0 contains eight 4 Kword blocks and thirty-one 32Kword  
blocks  
Supports Asynchronous 4-Page Read and Asynchronous Write  
Operation  
Supports Synchronous Burst Read and Synchronous Burst  
Write Operation  
Synchronous Burst(Read/Write) Operation  
- Supports 4 word / 8 word / 16 word and Full Page(256 word)  
burst  
- Supports Linear Burst type & Interleave Burst type  
- Latency support : Latency 3 @ 52.9MHz(tCD 12ns)  
- Supports Burst Read Suspend in No Clock toggling  
- Supports Burst Write Data Masking by /UB & /LB pin control  
- Supports WAIT pin function for indicating data availability.  
Max. Burst Clock Frequency : 52.9MHz  
- Bank 1 ~ Bank 15 contain four hundred eighty 32Kword blocks  
Reduce program time using the VPP  
Support Single & Quad word accelerate program  
Power Consumption (Typical value, CL=30pF)  
- Burst Access Current : 30mA  
- Program/Erase Current : 15mA  
- Read While Program/Erase Current : 40mA  
- Standby Mode/Auto Sleep Mode : 25uA  
Block Protection/Unprotection  
- Using the software command sequence  
- Last two boot blocks are protected by WP=VIL  
- All blocks are protected by VPP=VIL  
SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.  
2
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
GENERAL DESCRIPTION  
The K5L5628JT(B)M is a Multi Chip Package Memory which combines 256Mbit Synchronous Burst Multi Bank NOR Flash Memory  
and 128Mbit Synchronous Burst UtRAM.  
256Mbit Synchronous Burst Multi Bank NOR Flash Memory is organized as 16M x16 bits and 128Mbit Synchronous Burst UtRAM is  
organized as 8M x16 bits.  
In 256Mbit Synchronous Burst Multi Bank NOR Flash Memory, the memory architecture of the device is designed to divide its memory  
arrays into 519 blocks with independent hardware protection. This block architecture provides highly flexible erase and program capa-  
bility. The NOR Flash consists of sixteen banks. This device is capable of reading data from one bank while programming or erasing  
in the other bank.  
Regarding read access time, the device provides an 14.5ns burst access time and an 88.5ns initial access time at 54MHz. At 66MHz,  
the device provides an 11ns burst access time and 70ns initial access time. The device performs a program operation in units of 16  
bits (Word) and an erase operation in units of a block. Single or multiple blocks can be erased. The block erase operation is com-  
pleted within typically 0.7 sec. The device requires 15mA as program/erase current.  
In 128Mbit Synchronous Burst UtRAM, the device is fabricated by SAMSUNGs advanced CMOS technology using one transistor  
memory cell. The device supports the traditional SRAM like asynchronous bus operation(asynchronous page read and asynchronous  
write), and the fully synchronous bus operation(synchronous burst read and synchronous burst write). These two bus operation  
modes are defined through the mode register setting. The device also supports the special features for the standby power saving.  
Those are the Partial Array Refresh(PAR) mode and internal Temperature Compensated Self Refresh(TCSR) mode.  
The optimization of output driver strength is possible through the mode register setting to adjust for the different data loadings.  
Through this driver strength optimization, the device can minimize the noise generated on the data bus during read operation.  
The K5L5628JT(B)M is suitable for use in data memory of mobile communication system to reduce not only mount area but also  
power consumption. This device is available in 115-ball FBGA Type.  
3
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
PIN CONFIGURATION  
1
2
3
4
5
6
7
8
9
10  
DNU  
DNU  
DNU  
DNU  
ADVf  
WP  
A3  
DNU  
DNU  
DNU  
DNU  
A
B
C
D
E
F
NC  
A7  
CLKf  
LB  
NC  
Vpp  
Vccu  
WE  
ADVu  
A8  
CLKu  
A11  
NC  
NC  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
A6  
UB  
RESET  
MRS  
A20  
NC  
A19  
A9  
A12  
A15  
A21  
A22  
A16  
NC  
RDYf/  
WAITu  
A2  
A5  
A18  
A17  
DQ1  
DQ9  
DQ10  
DQ2  
Vss  
A13  
A1  
A4  
NC  
Vccu  
DQ3  
Vccf  
DQ11  
Vccf  
A10  
DQ6  
DQ13  
DQ12  
DQ5  
NC  
A14  
G
H
J
A0  
Vss  
OE  
DQ0  
DQ8  
NC  
NC  
A23  
CEf  
CSu  
NC  
DQ4  
Vccqu  
NC  
DQ15  
DQ7  
DQ14  
NC  
Vss  
NC  
K
L
NC  
NC  
NC  
M
N
P
DNU  
DNU  
DNU  
DNU  
115-FBGA: Top View (Ball Down)  
4
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
PIN DESCRIPTION  
Ball Name  
Description  
Ball Name  
RDYf/WAITu  
ADVf  
ADVu  
MRS  
Description  
Ready Output (Flash Memory)/Wait(UtRAM)  
Address Input Valid (Flash Memory)  
Address Input Valid (UtRAM)  
Mode Register Set (UtRAM)  
Lower Byte Enable (UtRAM)  
Upper Byte Enable (UtRAM)  
Power Supply (Flash Memory)  
Power Supply (UtRAM)  
A0 to A22  
A23  
Address Input Balls (Common)  
Address Input Balls (Flash Memory)  
Data Input/Output Balls (Common)  
Chip Enable (Flash Memory)  
Chip Select (UtRAM)  
DQ0 to DQ15  
CEf  
CSu  
LB  
OE  
Output Enable (Common)  
UB  
RESET  
VPP  
Hardware Reset (Flash Memory)  
Accelerates Programming (Flash Memory)  
Write Enable (Common)  
Vccf  
Vccu  
WE  
Vccqu  
Vss  
Data Out Power (UtRAM)  
Ground (Common)  
WP  
Write Protection (Flash Memory)  
Clock (Flash Memory)  
CLKf  
NC  
No Connection  
CLKu  
Clock (UtRAM)  
DNU  
Do Not Use  
ORDERING INFORMATION  
K 5 L 56 28 J T(B) M - D H 18  
Samsung MCP Memory  
2Chip MCP  
UtRAM Access Time  
18.9ns  
Device Type  
Demuxed NOR Flash + Demuxed UtRAM  
Flash Access Time  
14.5ns(CF 54MHz)  
NOR Flash Density  
56 : 256Mbit, x16  
Package  
D : FBGA(Lead Free)  
Version  
1st Generation  
UtRAM Density, (Organization)  
28 : 128Mbit, x16, Burst  
Block Architecture  
T = Top Boot Block  
B = Bottom Boot Block  
Operating Voltage  
J : 1.8V/1.8V(NOR), 2.6V/1.8V(UtRAM)  
5
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Figure 1. FUNCTIONAL BLOCK DIAGRAM  
Vccf  
Vss  
Address(A0 to A22)  
Address(A23)  
OE  
WE  
CEf  
DQ0 to DQ15  
256M bit  
Flash Memory  
RESET  
Vpp  
WP  
CLKf  
RDYf  
ADVf  
Vccu Vccqu  
Vss  
DQ0 to DQ15  
CSu  
UB  
DQ0 to DQ15  
128M bit  
UtRAM  
LB  
CLKu  
ADVu  
MRS  
WAITu  
6
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
256M Bit (16M x16)  
Synchronous Burst , Multi Bank NOR Flash A-die  
7
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 1. PRODUCT LINE-UP  
Synchronous/Burst  
7B  
(54MHz) (66MHz)  
Asynchronous  
7C  
7B  
7C  
Speed Option  
Speed Option  
(54MHz) (66MHz)  
Max. Initial Access Time (tIAA, ns)  
Max. Burst Access Time (tBA, ns)  
Max. OE Access Time (tOE, ns)  
88.5  
14.5  
20  
70  
11  
20  
Max Access Time (tAA, ns)  
90  
90  
20  
80  
80  
20  
VCC=1.7V-1.95V  
Max CE Access Time (tCE, ns)  
Max OE Access Time (tOE, ns)  
Table 2. DEVICE BANK DIVISIONS  
Bank 0  
Bank 1 ~ Bank 15  
Mbit  
Block Sizes  
Mbit  
Block Sizes  
Eight 4Kwords,  
Thirty-one 32Kwords  
Four hundred  
eighty 32Kwords  
16 Mbit  
240 Mbit  
8
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Top Boot Block Address Table  
Bank  
Block  
BA518  
BA517  
Block Size  
4 Kwords  
4 Kwords  
(x16) Address Range  
FFF000h-FFFFFFh  
FFE000h-FFEFFFh  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
BA516  
BA515  
BA514  
FFD000h-FFDFFFh  
FFC000h-FFCFFFh  
FFB000h-FFBFFFh  
BA513  
BA512  
BA511  
BA510  
BA509  
BA508  
BA507  
BA506  
BA505  
BA504  
BA503  
BA502  
BA501  
BA500  
BA499  
BA498  
BA497  
BA496  
BA495  
BA494  
BA493  
BA492  
BA491  
BA490  
BA489  
BA488  
BA487  
BA486  
BA485  
BA484  
BA483  
BA482  
BA481  
BA480  
BA479  
BA478  
BA477  
BA476  
BA475  
FFA000h-FFAFFFh  
FF9000h-FF9FFFh  
FF8000h-FF8FFFh  
FF0000h-FF7FFFh  
FE8000h-FEFFFFh  
FE0000h-FE7FFFh  
FD8000h-FDFFFFh  
FD0000h-FD7FFFh  
FC8000h-FCFFFFh  
FC0000h-FC7FFFh  
FB8000h-FBFFFFh  
FB0000h-FB7FFFh  
FA8000h-FAFFFFh  
FA0000h-FA7FFFh  
F98000h-F9FFFFh  
F90000h-F97FFFh  
F88000h-F8FFFFh  
F80000h-F87FFFh  
F78000h-F7FFFFh  
F70000h-F77FFFh  
F68000h-F6FFFFh  
F60000h-F67FFFh  
F58000h-F5FFFFh  
F50000h-F57FFFh  
F48000h-F4FFFFh  
F40000h-F47FFFh  
F38000h-F3FFFFh  
F30000h-F37FFFh  
F28000h-F2FFFFh  
F20000h-F27FFFh  
F18000h-F1FFFFh  
F10000h-F17FFFh  
F08000h-F0FFFFh  
F00000h-F07FFFh  
EF8000h-EFFFFFh  
EF0000h-EF7FFFh  
EE8000h-EEFFFFh  
EE0000h-EE7FFFh  
ED8000h-EDFFFFh  
4 Kwords  
4 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Bank 0  
Bank 1  
9
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Top Boot Block Address Table  
Bank  
Block  
BA474  
BA473  
BA472  
BA471  
BA470  
BA469  
BA468  
BA467  
BA466  
BA465  
BA464  
BA463  
BA462  
BA461  
BA460  
BA459  
BA458  
BA457  
BA456  
BA455  
BA454  
BA453  
BA452  
BA451  
BA450  
BA449  
BA448  
BA447  
BA446  
BA445  
BA444  
BA443  
BA442  
BA441  
BA440  
BA439  
BA438  
BA437  
BA436  
BA435  
BA434  
BA433  
BA432  
BA431  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
ED0000h-ED7FFFh  
EC8000h-ECFFFFh  
EC0000h-EC7FFFh  
EB8000h-EBFFFFh  
EB0000h-EB7FFFh  
EA8000h-EAFFFFh  
EA0000h-EA7FFFh  
E98000h-E9FFFFh  
E90000h-E97FFFh  
E88000h-E8FFFFh  
E80000h-E87FFFh  
E78000h-E7FFFFh  
E70000h-E77FFFh  
E68000h-E6FFFFh  
E60000h-E67FFFh  
E58000h-E5FFFFh  
E50000h-E57FFFh  
E48000h-E4FFFFh  
E40000h-E47FFFh  
E38000h-E3FFFFh  
E30000h-E37FFFh  
E28000h-E2FFFFh  
E20000h-E27FFFh  
E18000h-E1FFFFh  
E10000h-E17FFFh  
E08000h-E0FFFFh  
E00000h-E07FFFh  
DF8000h-DFFFFFh  
DF0000h-DF7FFFh  
DE8000h-DEFFFFh  
DE0000h-DE7FFFh  
DD8000h-DDFFFFh  
DD0000h-DD7FFFh  
DC8000h-DCFFFFh  
DC0000h-DC7FFFh  
DB8000h-DBFFFFh  
DB0000h-DB7FFFh  
DA8000h-DAFFFFh  
DA0000h-DA7FFFh  
D98000h-D9FFFFh  
D90000h-D97FFFh  
D88000h-D8FFFFh  
D80000h-D87FFFh  
D78000h-D7FFFFh  
Bank 1  
Bank 2  
10  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Top Boot Block Address Table  
Bank  
Block  
BA430  
BA429  
BA428  
BA427  
BA426  
BA425  
BA424  
BA423  
BA422  
BA421  
BA420  
BA419  
BA418  
BA417  
BA416  
BA415  
BA414  
BA413  
BA412  
BA411  
BA410  
BA409  
BA408  
BA407  
BA406  
BA405  
BA404  
BA403  
BA402  
BA401  
BA400  
BA399  
BA398  
BA397  
BA396  
BA395  
BA394  
BA393  
BA392  
BA391  
BA390  
BA389  
BA388  
BA387  
BA386  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
D70000h-D77FFFh  
D68000h-D6FFFFh  
D60000h-D67FFFh  
D58000h-D5FFFFh  
D50000h-D57FFFh  
D48000h-D4FFFFh  
D40000h-D47FFFh  
D38000h-D3FFFFh  
D30000h-D37FFFh  
D28000h-D2FFFFh  
D20000h-D27FFFh  
D18000h-D1FFFFh  
D10000h-D17FFFh  
D08000h-D0FFFFh  
D00000h-D07FFFh  
CF8000h-CFFFFFh  
CF0000h-CF7FFFh  
CE8000h-CEFFFFh  
CE0000h-CE7FFFh  
CD8000h-CDFFFFh  
CD0000h-CD7FFFh  
CC8000h-CCFFFFh  
CC0000h-CC7FFFh  
CB8000h-CBFFFFh  
CB0000h-CB7FFFh  
CA8000h-CAFFFFh  
CA0000h-CA7FFFh  
C98000h-C9FFFFh  
C90000h-C97FFFh  
C88000h-C8FFFFh  
C80000h-C87FFFh  
C78000h-C7FFFFh  
C70000h-C77FFFh  
C68000h-C6FFFFh  
C60000h-C67FFFh  
C58000h-C5FFFFh  
C50000h-C57FFFh  
C48000h-C4FFFFh  
C40000h-C47FFFh  
C38000h-C3FFFFh  
C30000h-C37FFFh  
C28000h-C2FFFFh  
C20000h-C27FFFh  
C18000h-C1FFFFh  
C10000h-C17FFFh  
Bank 2  
Bank 3  
11  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Top Boot Block Address Table  
Bank  
Block  
BA385  
BA384  
BA383  
BA382  
BA381  
BA380  
BA379  
BA378  
BA377  
BA376  
BA375  
BA374  
BA373  
BA372  
BA371  
BA370  
BA369  
BA368  
BA367  
BA366  
BA365  
BA364  
BA363  
BA362  
BA361  
BA360  
BA359  
BA358  
BA357  
BA356  
BA355  
BA354  
BA353  
BA352  
BA351  
BA350  
BA349  
BA348  
BA347  
BA346  
BA345  
BA344  
BA343  
BA342  
BA341  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
C08000h-C0FFFFh  
C00000h-C07FFFh  
BF8000h-BFFFFFh  
BF0000h-BF7FFFh  
BE8000h-BEFFFFh  
BE0000h-BE7FFFh  
BD8000h-BDFFFFh  
BD0000h-BD7FFFh  
BC8000h-BCFFFFh  
BC0000h-BC7FFFh  
BB8000h-BBFFFFh  
BB0000h-BB7FFFh  
BA8000h-BAFFFFh  
BA0000h-BA7FFFh  
B98000h-B9FFFFh  
B90000h-B97FFFh  
B88000h-B8FFFFh  
B80000h-B87FFFh  
B78000h-B7FFFFh  
B70000h-B77FFFh  
B68000h-B6FFFFh  
B60000h-B67FFFh  
B58000h-B5FFFFh  
B50000h-B57FFFh  
B48000h-B4FFFFh  
B40000h-B47FFFh  
B38000h-B3FFFFh  
B30000h-B37FFFh  
B28000h-B2FFFFh  
B20000h-B27FFFh  
B18000h-B1FFFFh  
B10000h-B17FFFh  
B08000h-B0FFFFh  
B00000h-B07FFFh  
AF8000h-AFFFFFh  
AF0000h-AF7FFFh  
AE8000h-AEFFFFh  
AE0000h-AE7FFFh  
AD8000h-ADFFFFh  
AD0000h-AD7FFFh  
AC8000h-ACFFFFh  
AC0000h-AC7FFFh  
AB8000h-ABFFFFh  
AB0000h-AB7FFFh  
AA8000h-AAFFFFh  
Bank 3  
Bank 4  
Bank 5  
12  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Top Boot Block Address Table  
Bank  
Block  
BA340  
BA339  
BA338  
BA337  
BA336  
BA335  
BA334  
BA333  
BA332  
BA331  
BA330  
BA329  
BA328  
BA327  
BA326  
BA325  
BA324  
BA323  
BA322  
BA321  
BA320  
BA319  
BA318  
BA317  
BA316  
BA315  
BA314  
BA313  
BA312  
BA311  
BA310  
BA309  
BA308  
BA307  
BA306  
BA305  
BA304  
BA303  
BA302  
BA301  
BA300  
BA299  
BA298  
BA297  
BA296  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
AA0000h-AA7FFFh  
A98000h-A9FFFFh  
A90000h-A97FFFh  
A88000h-A8FFFFh  
A80000h-A87FFFh  
A78000h-A7FFFFh  
A70000h-A77FFFh  
A68000h-A6FFFFh  
A60000h-A67FFFh  
A58000h-A5FFFFh  
A50000h-A57FFFh  
A48000h-A4FFFFh  
A40000h-A47FFFh  
A38000h-A3FFFFh  
A30000h-A37FFFh  
A28000h-A2FFFFh  
A20000h-A27FFFh  
A18000h-A1FFFFh  
A10000h-A17FFFh  
A08000h-A0FFFFh  
A00000h-A07FFFh  
9F8000h-9FFFFFh  
9F0000h-9F7FFFh  
9E8000h-9EFFFFh  
9E0000h-9E7FFFh  
9D8000h-9DFFFFh  
9D0000h-9D7FFFh  
9C8000h-9CFFFFh  
9C0000h-9C7FFFh  
9B8000h-9BFFFFh  
9B0000h-9B7FFFh  
9A8000h-9AFFFFh  
9A0000h-9A7FFFh  
998000h-99FFFFh  
990000h-997FFFh  
988000h-98FFFFh  
980000h-987FFFh  
978000h-97FFFFh  
970000h-977FFFh  
968000h-96FFFFh  
960000h-967FFFh  
958000h-95FFFFh  
950000h-957FFFh  
948000h-94FFFFh  
940000h-947FFFh  
Bank 5  
Bank 6  
13  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Top Boot Block Address Table  
Bank  
Block  
BA295  
BA294  
BA293  
BA292  
BA291  
BA290  
BA289  
BA288  
BA287  
BA286  
BA285  
BA284  
BA283  
BA282  
BA281  
BA280  
BA279  
BA278  
BA277  
BA276  
BA275  
BA274  
BA273  
BA272  
BA271  
BA270  
BA269  
BA268  
BA267  
BA266  
BA265  
BA264  
BA263  
BA262  
BA261  
BA260  
BA259  
BA258  
BA257  
BA256  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
938000h-93FFFFh  
930000h-937FFFh  
928000h-92FFFFh  
920000h-927FFFh  
918000h-91FFFFh  
910000h-917FFFh  
908000h-90FFFFh  
900000h-907FFFh  
8F8000h-8FFFFFh  
8F0000h-8F7FFFh  
8E8000h-8EFFFFh  
8E0000h-8E7FFFh  
8D8000h-8DFFFFh  
8D0000h-8D7FFFh  
8C8000h-8CFFFFh  
8C0000h-8C7FFFh  
8B8000h-8BFFFFh  
8B0000h-8B7FFFh  
8A8000h-8AFFFFh  
8A0000h-8A7FFFh  
898000h-89FFFFh  
890000h-897FFFh  
888000h-88FFFFh  
880000h-887FFFh  
878000h-87FFFFh  
870000h-877FFFh  
868000h-86FFFFh  
860000h-867FFFh  
858000h-85FFFFh  
850000h-857FFFh  
848000h-84FFFFh  
840000h-847FFFh  
838000h-83FFFFh  
830000h-837FFFh  
828000h-82FFFFh  
820000h-827FFFh  
818000h-81FFFFh  
810000h-817FFFh  
808000h-80FFFFh  
800000h-807FFFh  
Bank 6  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Bank 7  
14  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Top Boot Boot Block Address Table  
Bank  
Block  
BA255  
BA254  
BA253  
BA252  
BA251  
BA250  
BA249  
BA248  
BA247  
BA246  
BA245  
BA244  
BA243  
BA242  
BA241  
BA240  
BA239  
BA238  
BA237  
BA236  
BA235  
BA234  
BA233  
BA232  
BA231  
BA230  
BA229  
BA228  
BA227  
BA226  
BA225  
BA224  
BA223  
BA222  
BA221  
BA220  
BA219  
BA218  
BA217  
BA216  
BA215  
BA214  
BA213  
BA212  
Block Size  
(x16) Address Range  
7F8000h-7FFFFFh  
7F0000h-7F7FFFh  
7E8000h-7EFFFFh  
7E0000h-7E7FFFh  
7D8000h-7DFFFFh  
7D0000h-7D7FFFh  
7C8000h-7CFFFFh  
7C0000h-7C7FFFh  
7B8000h-7BFFFFh  
7B0000h-7B7FFFh  
7A8000h-7AFFFFh  
7A0000h-7A7FFFh  
798000h-79FFFFh  
790000h-797FFFh  
788000h-78FFFFh  
780000h-787FFFh  
778000h-77FFFFh  
770000h-777FFFh  
768000h-76FFFFh  
760000h-767FFFh  
758000h-75FFFFh  
750000h-757FFFh  
748000h-74FFFFh  
740000h-747FFFh  
738000h-73FFFFh  
730000h-737FFFh  
728000h-72FFFFh  
720000h-727FFFh  
718000h-71FFFFh  
710000h-717FFFh  
708000h-70FFFFh  
700000h-707FFFh  
6F8000h-6FFFFFh  
6F0000h-6F7FFFh  
6E8000h-6EFFFFh  
6E0000h-6E7FFFh  
6D8000h-6DFFFFh  
6D0000h-6D7FFFh  
6C8000h-6CFFFFh  
6C0000h-6C7FFFh  
6B8000h-6BFFFFh  
6B0000h-6B7FFFh  
6A8000h-6AFFFFh  
6A0000h-6A7FFFh  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Bank 8  
Bank 9  
15  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Top Boot Block Address Table  
Bank  
Block  
BA211  
BA210  
BA209  
BA208  
BA207  
BA206  
BA205  
BA204  
BA203  
BA202  
BA201  
BA200  
BA199  
BA198  
BA197  
BA196  
BA195  
BA194  
BA193  
BA192  
BA191  
BA190  
BA189  
BA188  
BA187  
BA186  
BA185  
BA184  
BA183  
BA182  
BA181  
BA180  
BA179  
BA178  
BA177  
BA176  
BA175  
BA174  
BA173  
BA172  
BA171  
BA170  
BA169  
BA168  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
698000h-69FFFFh  
690000h-697FFFh  
688000h-68FFFFh  
680000h-687FFFh  
678000h-67FFFFh  
670000h-677FFFh  
668000h-66FFFFh  
660000h-667FFFh  
658000h-65FFFFh  
650000h-657FFFh  
648000h-64FFFFh  
640000h-647FFFh  
638000h-63FFFFh  
630000h-637FFFh  
628000h-62FFFFh  
620000h-627FFFh  
618000h-61FFFFh  
610000h-617FFFh  
608000h-60FFFFh  
600000h-607FFFh  
5F8000h-5FFFFFh  
5F0000h-5F7FFFh  
5E8000h-5EFFFFh  
5E0000h-5E7FFFh  
5D8000h-5DFFFFh  
5D0000h-5D7FFFh  
5C8000h-5CFFFFh  
5C0000h-5C7FFFh  
5B8000h-5BFFFFh  
5B0000h-5B7FFFh  
5A8000h-5AFFFFh  
5A0000h-5A7FFFh  
598000h-59FFFFh  
590000h-597FFFh  
588000h-58FFFFh  
580000h-587FFFh  
578000h-57FFFFh  
570000h-577FFFh  
568000h-56FFFFh  
560000h-567FFFh  
558000h-55FFFFh  
550000h-557FFFh  
548000h-54FFFFh  
540000h-547FFFh  
Bank 9  
Bank 10  
16  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Top Boot Block Address Table  
Bank  
Block  
BA167  
BA166  
BA165  
BA164  
BA163  
BA162  
BA161  
BA160  
BA159  
BA158  
BA157  
BA156  
BA155  
BA154  
BA153  
BA152  
BA151  
BA150  
BA149  
BA148  
BA147  
BA146  
BA145  
BA144  
BA143  
BA142  
BA141  
BA140  
BA139  
BA138  
BA137  
BA136  
BA135  
BA134  
BA133  
BA132  
BA131  
BA130  
BA129  
BA128  
BA127  
BA126  
BA125  
BA124  
BA123  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
538000h-53FFFFh  
530000h-537FFFh  
528000h-52FFFFh  
520000h-527FFFh  
518000h-51FFFFh  
510000h-517FFFh  
508000h-50FFFFh  
500000h-507FFFh  
4F8000h-4FFFFFh  
4F0000h-4F7FFFh  
4E8000h-4EFFFFh  
4E0000h-4E7FFFh  
4D8000h-4DFFFFh  
4D0000h-4D7FFFh  
4C8000h-4CFFFFh  
4C0000h-4C7FFFh  
4B8000h-4BFFFFh  
4B0000h-4B7FFFh  
4A8000h-4AFFFFh  
4A0000h-4A7FFFh  
498000h-49FFFFh  
490000h-497FFFh  
488000h-48FFFFh  
480000h-487FFFh  
478000h-47FFFFh  
470000h-477FFFh  
468000h-46FFFFh  
460000h-467FFFh  
458000h-45FFFFh  
450000h-457FFFh  
448000h-44FFFFh  
440000h-447FFFh  
438000h-43FFFFh  
430000h-437FFFh  
428000h-42FFFFh  
420000h-427FFFh  
418000h-41FFFFh  
410000h-417FFFh  
408000h-40FFFFh  
400000h-407FFFh  
3F8000h-3FFFFFh  
3F0000h-3F7FFFh  
3E8000h-3EFFFFh  
3E0000h-3E7FFFh  
3D8000h-3DFFFFh  
Bank 10  
Bank 11  
Bank 12  
17  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Top Boot Block Address Table  
Bank  
Block  
BA122  
BA121  
BA120  
BA119  
BA118  
BA117  
BA116  
BA115  
BA114  
BA113  
BA112  
BA111  
BA110  
BA109  
BA108  
BA107  
BA106  
BA105  
BA104  
BA103  
BA102  
BA101  
BA100  
BA99  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
3D0000h-3D7FFFh  
3C8000h-3CFFFFh  
3C0000h-3C7FFFh  
3B8000h-3BFFFFh  
3B0000h-3B7FFFh  
3A8000h-3AFFFFh  
3A0000h-3A7FFFh  
398000h-39FFFFh  
390000h-397FFFh  
388000h-38FFFFh  
380000h-387FFFh  
378000h-37FFFFh  
370000h-377FFFh  
368000h-36FFFFh  
360000h-367FFFh  
358000h-35FFFFh  
350000h-357FFFh  
348000h-34FFFFh  
340000h-347FFFh  
338000h-33FFFFh  
330000h-337FFFh  
328000h-32FFFFh  
320000h-327FFFh  
318000h-31FFFFh  
310000h-317FFFh  
308000h-30FFFFh  
300000h-307FFFh  
2F8000h-2FFFFFh  
2F0000h-2F7FFFh  
2E8000h-2EFFFFh  
2E0000h-2E7FFFh  
2D8000h-2DFFFFh  
2D0000h-2D7FFFh  
2C8000h-2CFFFFh  
2C0000h-2C7FFFh  
2B8000h-2BFFFFh  
2B0000h-2B7FFFh  
2A8000h-2AFFFFh  
2A0000h-2A7FFFh  
298000h-29FFFFh  
290000h-297FFFh  
288000h-28FFFFh  
280000h-287FFFh  
278000h-27FFFFh  
270000h-277FFFh  
Bank 12  
BA98  
BA97  
BA96  
BA95  
BA94  
BA93  
BA92  
BA91  
BA90  
BA89  
BA88  
BA87  
Bank 13  
BA86  
BA85  
BA84  
BA83  
BA82  
BA81  
BA80  
BA79  
BA78  
18  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Top Boot Block Address Table  
Bank  
Block  
BA77  
BA76  
BA75  
BA74  
BA73  
BA72  
BA71  
BA70  
BA69  
BA68  
BA67  
BA66  
BA65  
BA64  
BA63  
BA62  
BA61  
BA60  
BA59  
BA58  
BA57  
BA56  
BA55  
BA54  
BA53  
BA52  
BA51  
BA50  
BA49  
BA48  
BA47  
BA46  
BA45  
BA44  
BA43  
BA42  
BA41  
BA40  
BA39  
BA38  
BA37  
BA36  
BA35  
BA34  
BA33  
BA32  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
268000h-26FFFFh  
260000h-267FFFh  
258000h-25FFFFh  
250000h-257FFFh  
248000h-24FFFFh  
240000h-247FFFh  
238000h-23FFFFh  
230000h-237FFFh  
228000h-22FFFFh  
220000h-227FFFh  
218000h-21FFFFh  
210000h-217FFFh  
208000h-20FFFFh  
200000h-207FFFh  
1F8000h-1FFFFFh  
1F0000h-1F7FFFh  
1E8000h-1EFFFFh  
1E0000h-1E7FFFh  
1D8000h-1DFFFFh  
1D0000h-1D7FFFh  
1C8000h-1CFFFFh  
1C0000h-1C7FFFh  
1B8000h-1BFFFFh  
1B0000h-1B7FFFh  
1A8000h-1AFFFFh  
1A0000h-1A7FFFh  
198000h-19FFFFh  
190000h-197FFFh  
188000h-18FFFFh  
180000h-187FFFh  
178000h-17FFFFh  
170000h-177FFFh  
168000h-16FFFFh  
160000h-167FFFh  
158000h-15FFFFh  
150000h-157FFFh  
148000h-14FFFFh  
140000h-147FFFh  
138000h-13FFFFh  
130000h-137FFFh  
128000h-12FFFFh  
120000h-127FFFh  
118000h-11FFFFh  
110000h-117FFFh  
108000h-10FFFFh  
100000h-107FFFh  
Bank 13  
Bank 14  
19  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Top Boot Block Address Table  
Bank  
Block  
BA31  
BA30  
BA29  
BA28  
BA27  
BA26  
BA25  
BA24  
BA23  
BA22  
BA21  
BA20  
BA19  
BA18  
BA17  
BA16  
BA15  
BA14  
BA13  
BA12  
BA11  
BA10  
BA9  
Block Size  
(x16) Address Range  
0F8000h-0FFFFFh  
0F0000h-0F7FFFh  
0E8000h-0EFFFFh  
0E0000h-0E7FFFh  
0D8000h-0DFFFFh  
0D0000h-0D7FFFh  
0C8000h-0CFFFFh  
0C0000h-0C7FFFh  
0B8000h-0BFFFFh  
0B0000h-0B7FFFh  
0A8000h-0AFFFFh  
0A0000h-0A7FFFh  
098000h-09FFFFh  
090000h-097FFFh  
088000h-08FFFFh  
080000h-087FFFh  
078000h-07FFFFh  
070000h-077FFFh  
068000h-06FFFFh  
060000h-067FFFh  
058000h-05FFFFh  
050000h-057FFFh  
048000h-04FFFFh  
040000h-047FFFh  
038000h-03FFFFh  
030000h-037FFFh  
028000h-02FFFFh  
020000h-027FFFh  
018000h-01FFFFh  
010000h-017FFFh  
008000h-00FFFFh  
000000h-007FFFh  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Bank 15  
BA8  
BA7  
BA6  
BA5  
BA4  
BA3  
BA2  
BA1  
BA0  
Table 3-1-1. Top Boot Block OTP Addresses Table  
Block Address  
A23 ~ A8  
Block Size  
128words  
(x16) Address Range  
OTP  
FFFF80h-FFFFFFh  
FFFFh  
After entering OTP block, any issued addresses should be in the range of OTP block address  
20  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Bottom Boot Block Address Table  
Bank  
Block  
BA518  
BA517  
BA516  
BA515  
BA514  
BA513  
BA512  
BA511  
BA510  
BA509  
BA508  
BA507  
BA506  
BA505  
BA504  
BA503  
BA502  
BA501  
BA500  
BA499  
BA498  
BA497  
BA496  
BA495  
BA494  
BA493  
BA492  
BA491  
BA490  
BA489  
BA488  
BA487  
BA486  
BA485  
BA484  
BA483  
BA482  
Block Size  
(x16) Address Range  
FF8000h-FFFFFFh  
FF0000h-FF7FFFh  
FE8000h-FEFFFFh  
FE0000h-FE7FFFh  
FD8000h-FDFFFFh  
FD0000h-FD7FFFh  
FC8000h-FCFFFFh  
FC0000h-FC7FFFh  
FB8000h-FBFFFFh  
FB0000h-FB7FFFh  
FA8000h-FAFFFFh  
FA0000h-FA7FFFh  
F98000h-F9FFFFh  
F90000h-F97FFFh  
F88000h-F8FFFFh  
F80000h-F87FFFh  
F78000h-F7FFFFh  
F70000h-F77FFFh  
F68000h-F6FFFFh  
F60000h-F67FFFh  
F58000h-F5FFFFh  
F50000h-F57FFFh  
F48000h-F4FFFFh  
F40000h-F47FFFh  
F38000h-F3FFFFh  
F30000h-F37FFFh  
F28000h-F2FFFFh  
F20000h-F27FFFh  
F18000h-F1FFFFh  
F10000h-F17FFFh  
F08000h-F0FFFFh  
F00000h-F07FFFh  
EF8000h-EFFFFFh  
EF0000h-EF7FFFh  
EE8000h-EEFFFFh  
EE0000h-EE7FFFh  
ED8000h-EDFFFFh  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Bank 15  
Bank 14  
21  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Bottom Boot Block Address Table  
Bank  
Block  
BA481  
BA480  
BA479  
BA478  
BA477  
BA476  
BA475  
BA474  
BA473  
BA472  
BA471  
BA470  
BA469  
BA468  
BA467  
BA466  
BA465  
BA464  
BA463  
BA462  
BA461  
BA460  
BA459  
BA458  
BA457  
BA456  
BA455  
BA454  
BA453  
BA452  
BA451  
BA450  
BA449  
BA448  
BA447  
BA446  
BA445  
BA444  
BA443  
BA442  
BA441  
BA440  
BA439  
BA438  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
ED0000h-ED7FFFh  
EC8000h-ECFFFFh  
EC0000h-EC7FFFh  
EB8000h-EBFFFFh  
EB0000h-EB7FFFh  
EA8000h-EAFFFFh  
EA0000h-EA7FFFh  
E98000h-E9FFFFh  
E90000h-E97FFFh  
E88000h-E8FFFFh  
E80000h-E87FFFh  
E78000h-E7FFFFh  
E70000h-E77FFFh  
E68000h-E6FFFFh  
E60000h-E67FFFh  
E58000h-E5FFFFh  
E50000h-E57FFFh  
E48000h-E4FFFFh  
E40000h-E47FFFh  
E38000h-E3FFFFh  
E30000h-E37FFFh  
E28000h-E2FFFFh  
E20000h-E27FFFh  
E18000h-E1FFFFh  
E10000h-E17FFFh  
E08000h-E0FFFFh  
E00000h-E07FFFh  
DF8000h-DFFFFFh  
DF0000h-DF7FFFh  
DE8000h-DEFFFFh  
DE0000h-DE7FFFh  
DD8000h-DDFFFFh  
DD0000h-DD7FFFh  
DC8000h-DCFFFFh  
DC0000h-DC7FFFh  
DB8000h-DBFFFFh  
DB0000h-DB7FFFh  
DA8000h-DAFFFFh  
DA0000h-DA7FFFh  
D98000h-D9FFFFh  
D90000h-D97FFFh  
D88000h-D8FFFFh  
D80000h-D87FFFh  
D78000h-D7FFFFh  
Bank 14  
Bank 13  
22  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Bottom Boot Block Address Table  
Bank  
Block  
BA437  
BA436  
BA435  
BA434  
BA433  
BA432  
BA431  
BA430  
BA429  
BA428  
BA427  
BA426  
BA425  
BA424  
BA423  
BA422  
BA421  
BA420  
BA419  
BA418  
BA417  
BA416  
BA415  
BA414  
BA413  
BA412  
BA411  
BA410  
BA409  
BA408  
BA407  
BA406  
BA405  
BA404  
BA403  
BA402  
BA401  
BA400  
BA399  
BA398  
BA397  
BA396  
BA395  
BA394  
BA393  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
D70000h-D77FFFh  
D68000h-D6FFFFh  
D60000h-D67FFFh  
D58000h-D5FFFFh  
D50000h-D57FFFh  
D48000h-D4FFFFh  
D40000h-D47FFFh  
D38000h-D3FFFFh  
D30000h-D37FFFh  
D28000h-D2FFFFh  
D20000h-D27FFFh  
D18000h-D1FFFFh  
D10000h-D17FFFh  
D08000h-D0FFFFh  
D00000h-D07FFFh  
CF8000h-CFFFFFh  
CF0000h-CF7FFFh  
CE8000h-CEFFFFh  
CE0000h-CE7FFFh  
CD8000h-CDFFFFh  
CD0000h-CD7FFFh  
CC8000h-CCFFFFh  
CC0000h-CC7FFFh  
CB8000h-CBFFFFh  
CB0000h-CB7FFFh  
CA8000h-CAFFFFh  
CA0000h-CA7FFFh  
C98000h-C9FFFFh  
C90000h-C97FFFh  
C88000h-C8FFFFh  
C80000h-C87FFFh  
C78000h-C7FFFFh  
C70000h-C77FFFh  
C68000h-C6FFFFh  
C60000h-C67FFFh  
C58000h-C5FFFFh  
C50000h-C57FFFh  
C48000h-C4FFFFh  
C40000h-C47FFFh  
C38000h-C3FFFFh  
C30000h-C37FFFh  
C28000h-C2FFFFh  
C20000h-C27FFFh  
C18000h-C1FFFFh  
C10000h-C17FFFh  
Bank 13  
Bank 12  
23  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Bottom Boot Block Address Table  
Bank  
Block  
BA392  
BA391  
BA390  
BA389  
BA388  
BA387  
BA386  
BA385  
BA384  
BA383  
BA382  
BA381  
BA380  
BA379  
BA378  
BA377  
BA376  
BA375  
BA374  
BA373  
BA372  
BA371  
BA370  
BA369  
BA368  
BA367  
BA366  
BA365  
BA364  
BA363  
BA362  
BA361  
BA360  
BA359  
BA358  
BA357  
BA356  
BA355  
BA354  
BA353  
BA352  
BA351  
BA350  
BA349  
BA348  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
C08000h-C0FFFFh  
C00000h-C07FFFh  
BF8000h-BFFFFFh  
BF0000h-BF7FFFh  
BE8000h-BEFFFFh  
BE0000h-BE7FFFh  
BD8000h-BDFFFFh  
BD0000h-BD7FFFh  
BC8000h-BCFFFFh  
BC0000h-BC7FFFh  
BB8000h-BBFFFFh  
BB0000h-BB7FFFh  
BA8000h-BAFFFFh  
BA0000h-BA7FFFh  
B98000h-B9FFFFh  
B90000h-B97FFFh  
B88000h-B8FFFFh  
B80000h-B87FFFh  
B78000h-B7FFFFh  
B70000h-B77FFFh  
B68000h-B6FFFFh  
B60000h-B67FFFh  
B58000h-B5FFFFh  
B50000h-B57FFFh  
B48000h-B4FFFFh  
B40000h-B47FFFh  
B38000h-B3FFFFh  
B30000h-B37FFFh  
B28000h-B2FFFFh  
B20000h-B27FFFh  
B18000h-B1FFFFh  
B10000h-B17FFFh  
B08000h-B0FFFFh  
B00000h-B07FFFh  
AF8000h-AFFFFFh  
AF0000h-AF7FFFh  
AE8000h-AEFFFFh  
AE0000h-AE7FFFh  
AD8000h-ADFFFFh  
AD0000h-AD7FFFh  
AC8000h-ACFFFFh  
AC0000h-AC7FFFh  
AB8000h-ABFFFFh  
AB0000h-AB7FFFh  
AA8000h-AAFFFFh  
Bank 12  
Bank 11  
Bank 10  
24  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Bottom Boot Block Address Table  
Bank  
Block  
BA347  
BA346  
BA345  
BA344  
BA343  
BA342  
BA341  
BA340  
BA339  
BA338  
BA337  
BA336  
BA335  
BA334  
BA333  
BA332  
BA331  
BA330  
BA329  
BA328  
BA327  
BA326  
BA325  
BA324  
BA323  
BA322  
BA321  
BA320  
BA319  
BA318  
BA317  
BA316  
BA315  
BA314  
BA313  
BA312  
BA311  
BA310  
BA309  
BA308  
BA307  
BA306  
BA305  
BA304  
BA303  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
AA0000h-AA7FFFh  
A98000h-A9FFFFh  
A90000h-A97FFFh  
A88000h-A8FFFFh  
A80000h-A87FFFh  
A78000h-A7FFFFh  
A70000h-A77FFFh  
A68000h-A6FFFFh  
A60000h-A67FFFh  
A58000h-A5FFFFh  
A50000h-A57FFFh  
A48000h-A4FFFFh  
A40000h-A47FFFh  
A38000h-A3FFFFh  
A30000h-A37FFFh  
A28000h-A2FFFFh  
A20000h-A27FFFh  
A18000h-A1FFFFh  
A10000h-A17FFFh  
A08000h-A0FFFFh  
A00000h-A07FFFh  
9F8000h-9FFFFFh  
9F0000h-9F7FFFh  
9E8000h-9EFFFFh  
9E0000h-9E7FFFh  
9D8000h-9DFFFFh  
9D0000h-9D7FFFh  
9C8000h-9CFFFFh  
9C0000h-9C7FFFh  
9B8000h-9BFFFFh  
9B0000h-9B7FFFh  
9A8000h-9AFFFFh  
9A0000h-9A7FFFh  
998000h-99FFFFh  
990000h-997FFFh  
988000h-98FFFFh  
980000h-987FFFh  
978000h-97FFFFh  
970000h-977FFFh  
968000h-96FFFFh  
960000h-967FFFh  
958000h-95FFFFh  
950000h-957FFFh  
948000h-94FFFFh  
940000h-947FFFh  
Bank 10  
Bank 9  
25  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Bottom Boot Block Address Table  
Bank  
Block  
BA302  
BA301  
BA300  
BA299  
BA298  
BA297  
BA296  
BA295  
BA294  
BA293  
BA292  
BA291  
BA290  
BA289  
BA288  
BA287  
BA286  
BA285  
BA284  
BA283  
BA282  
BA281  
BA280  
BA279  
BA278  
BA277  
BA276  
BA275  
BA274  
BA273  
BA272  
BA271  
BA270  
BA269  
BA268  
BA267  
BA266  
BA265  
BA264  
BA263  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
938000h-93FFFFh  
930000h-937FFFh  
928000h-92FFFFh  
920000h-927FFFh  
918000h-91FFFFh  
910000h-917FFFh  
908000h-90FFFFh  
900000h-907FFFh  
8F8000h-8FFFFFh  
8F0000h-8F7FFFh  
8E8000h-8EFFFFh  
8E0000h-8E7FFFh  
8D8000h-8DFFFFh  
8D0000h-8D7FFFh  
8C8000h-8CFFFFh  
8C0000h-8C7FFFh  
8B8000h-8BFFFFh  
8B0000h-8B7FFFh  
8A8000h-8AFFFFh  
8A0000h-8A7FFFh  
898000h-89FFFFh  
890000h-897FFFh  
888000h-88FFFFh  
880000h-887FFFh  
878000h-87FFFFh  
870000h-877FFFh  
868000h-86FFFFh  
860000h-867FFFh  
858000h-85FFFFh  
850000h-857FFFh  
848000h-84FFFFh  
840000h-847FFFh  
838000h-83FFFFh  
830000h-837FFFh  
828000h-82FFFFh  
820000h-827FFFh  
818000h-81FFFFh  
810000h-817FFFh  
808000h-80FFFFh  
800000h-807FFFh  
Bank 9  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Bank 8  
26  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Bottom Boot Boot Block Address Table  
Bank  
Block  
BA262  
BA261  
BA260  
BA259  
BA258  
BA257  
BA256  
BA255  
BA254  
BA253  
BA252  
BA251  
BA250  
BA249  
BA248  
BA247  
BA246  
BA245  
BA244  
BA243  
BA242  
BA241  
BA240  
BA239  
BA238  
BA237  
BA236  
BA235  
BA234  
BA233  
BA232  
BA231  
BA230  
BA229  
BA228  
BA227  
BA226  
BA225  
BA224  
BA223  
BA222  
BA221  
BA220  
BA219  
Block Size  
(x16) Address Range  
7F8000h-7FFFFFh  
7F0000h-7F7FFFh  
7E8000h-7EFFFFh  
7E0000h-7E7FFFh  
7D8000h-7DFFFFh  
7D0000h-7D7FFFh  
7C8000h-7CFFFFh  
7C0000h-7C7FFFh  
7B8000h-7BFFFFh  
7B0000h-7B7FFFh  
7A8000h-7AFFFFh  
7A0000h-7A7FFFh  
798000h-79FFFFh  
790000h-797FFFh  
788000h-78FFFFh  
780000h-787FFFh  
778000h-77FFFFh  
770000h-777FFFh  
768000h-76FFFFh  
760000h-767FFFh  
758000h-75FFFFh  
750000h-757FFFh  
748000h-74FFFFh  
740000h-747FFFh  
738000h-73FFFFh  
730000h-737FFFh  
728000h-72FFFFh  
720000h-727FFFh  
718000h-71FFFFh  
710000h-717FFFh  
708000h-70FFFFh  
700000h-707FFFh  
6F8000h-6FFFFFh  
6F0000h-6F7FFFh  
6E8000h-6EFFFFh  
6E0000h-6E7FFFh  
6D8000h-6DFFFFh  
6D0000h-6D7FFFh  
6C8000h-6CFFFFh  
6C0000h-6C7FFFh  
6B8000h-6BFFFFh  
6B0000h-6B7FFFh  
6A8000h-6AFFFFh  
6A0000h-6A7FFFh  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
Bank 7  
Bank 6  
27  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Bottom Boot Block Address Table  
Bank  
Block  
BA218  
BA217  
BA216  
BA215  
BA214  
BA213  
BA212  
BA211  
BA210  
BA209  
BA208  
BA207  
BA206  
BA205  
BA204  
BA203  
BA202  
BA201  
BA200  
BA199  
BA198  
BA197  
BA196  
BA195  
BA194  
BA193  
BA192  
BA191  
BA190  
BA189  
BA188  
BA187  
BA186  
BA185  
BA184  
BA183  
BA182  
BA181  
BA180  
BA179  
BA178  
BA177  
BA176  
BA175  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
698000h-69FFFFh  
690000h-697FFFh  
688000h-68FFFFh  
680000h-687FFFh  
678000h-67FFFFh  
670000h-677FFFh  
668000h-66FFFFh  
660000h-667FFFh  
658000h-65FFFFh  
650000h-657FFFh  
648000h-64FFFFh  
640000h-647FFFh  
638000h-63FFFFh  
630000h-637FFFh  
628000h-62FFFFh  
620000h-627FFFh  
618000h-61FFFFh  
610000h-617FFFh  
608000h-60FFFFh  
600000h-607FFFh  
5F8000h-5FFFFFh  
5F0000h-5F7FFFh  
5E8000h-5EFFFFh  
5E0000h-5E7FFFh  
5D8000h-5DFFFFh  
5D0000h-5D7FFFh  
5C8000h-5CFFFFh  
5C0000h-5C7FFFh  
5B8000h-5BFFFFh  
5B0000h-5B7FFFh  
5A8000h-5AFFFFh  
5A0000h-5A7FFFh  
598000h-59FFFFh  
590000h-597FFFh  
588000h-58FFFFh  
580000h-587FFFh  
578000h-57FFFFh  
570000h-577FFFh  
568000h-56FFFFh  
560000h-567FFFh  
558000h-55FFFFh  
550000h-557FFFh  
548000h-54FFFFh  
540000h-547FFFh  
Bank 6  
Bank 5  
28  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Bottom Boot Block Address Table  
Bank  
Block  
BA174  
BA173  
BA172  
BA171  
BA170  
BA169  
BA168  
BA167  
BA166  
BA165  
BA164  
BA163  
BA162  
BA161  
BA160  
BA159  
BA158  
BA157  
BA156  
BA155  
BA154  
BA153  
BA152  
BA151  
BA150  
BA149  
BA148  
BA147  
BA146  
BA145  
BA144  
BA143  
BA142  
BA141  
BA140  
BA139  
BA138  
BA137  
BA136  
BA135  
BA134  
BA133  
BA132  
BA131  
BA130  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
538000h-53FFFFh  
530000h-537FFFh  
528000h-52FFFFh  
520000h-527FFFh  
518000h-51FFFFh  
510000h-517FFFh  
508000h-50FFFFh  
500000h-507FFFh  
4F8000h-4FFFFFh  
4F0000h-4F7FFFh  
4E8000h-4EFFFFh  
4E0000h-4E7FFFh  
4D8000h-4DFFFFh  
4D0000h-4D7FFFh  
4C8000h-4CFFFFh  
4C0000h-4C7FFFh  
4B8000h-4BFFFFh  
4B0000h-4B7FFFh  
4A8000h-4AFFFFh  
4A0000h-4A7FFFh  
498000h-49FFFFh  
490000h-497FFFh  
488000h-48FFFFh  
480000h-487FFFh  
478000h-47FFFFh  
470000h-477FFFh  
468000h-46FFFFh  
460000h-467FFFh  
458000h-45FFFFh  
450000h-457FFFh  
448000h-44FFFFh  
440000h-447FFFh  
438000h-43FFFFh  
430000h-437FFFh  
428000h-42FFFFh  
420000h-427FFFh  
418000h-41FFFFh  
410000h-417FFFh  
408000h-40FFFFh  
400000h-407FFFh  
3F8000h-3FFFFFh  
3F0000h-3F7FFFh  
3E8000h-3EFFFFh  
3E0000h-3E7FFFh  
3D8000h-3DFFFFh  
Bank 5  
Bank 4  
Bank 3  
29  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Bottom Boot Block Address Table  
Bank  
Block  
BA129  
BA128  
BA127  
BA126  
BA125  
BA124  
BA123  
BA122  
BA121  
BA120  
BA119  
BA118  
BA117  
BA116  
BA115  
BA114  
BA113  
BA112  
BA111  
BA110  
BA109  
BA108  
BA107  
BA106  
BA105  
BA104  
BA103  
BA102  
BA101  
BA100  
BA99  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
3D0000h-3D7FFFh  
3C8000h-3CFFFFh  
3C0000h-3C7FFFh  
3B8000h-3BFFFFh  
3B0000h-3B7FFFh  
3A8000h-3AFFFFh  
3A0000h-3A7FFFh  
398000h-39FFFFh  
390000h-397FFFh  
388000h-38FFFFh  
380000h-387FFFh  
378000h-37FFFFh  
370000h-377FFFh  
368000h-36FFFFh  
360000h-367FFFh  
358000h-35FFFFh  
350000h-357FFFh  
348000h-34FFFFh  
340000h-347FFFh  
338000h-33FFFFh  
330000h-337FFFh  
328000h-32FFFFh  
320000h-327FFFh  
318000h-31FFFFh  
310000h-317FFFh  
308000h-30FFFFh  
300000h-307FFFh  
2F8000h-2FFFFFh  
2F0000h-2F7FFFh  
2E8000h-2EFFFFh  
2E0000h-2E7FFFh  
2D8000h-2DFFFFh  
2D0000h-2D7FFFh  
2C8000h-2CFFFFh  
2C0000h-2C7FFFh  
2B8000h-2BFFFFh  
2B0000h-2B7FFFh  
2A8000h-2AFFFFh  
2A0000h-2A7FFFh  
298000h-29FFFFh  
290000h-297FFFh  
288000h-28FFFFh  
280000h-287FFFh  
278000h-27FFFFh  
270000h-277FFFh  
Bank 3  
BA98  
BA97  
BA96  
BA95  
BA94  
Bank 2  
BA93  
BA92  
BA91  
BA90  
BA89  
BA88  
BA87  
BA86  
BA85  
30  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Bottom Boot Block Address Table  
Bank  
Block  
BA84  
BA83  
BA82  
BA81  
BA80  
BA79  
BA78  
BA77  
BA76  
BA75  
BA74  
BA73  
BA72  
BA71  
BA70  
BA69  
BA68  
BA67  
BA66  
BA65  
BA64  
BA63  
BA62  
BA61  
BA60  
BA59  
BA58  
BA57  
BA56  
BA55  
BA54  
BA53  
BA52  
BA51  
BA50  
BA49  
BA48  
BA47  
BA46  
BA45  
BA44  
BA43  
BA42  
BA41  
BA40  
BA39  
Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
(x16) Address Range  
268000h-26FFFFh  
260000h-267FFFh  
258000h-25FFFFh  
250000h-257FFFh  
248000h-24FFFFh  
240000h-247FFFh  
238000h-23FFFFh  
230000h-237FFFh  
228000h-22FFFFh  
220000h-227FFFh  
218000h-21FFFFh  
210000h-217FFFh  
208000h-20FFFFh  
200000h-207FFFh  
1F8000h-1FFFFFh  
1F0000h-1F7FFFh  
1E8000h-1EFFFFh  
1E0000h-1E7FFFh  
1D8000h-1DFFFFh  
1D0000h-1D7FFFh  
1C8000h-1CFFFFh  
1C0000h-1C7FFFh  
1B8000h-1BFFFFh  
1B0000h-1B7FFFh  
1A8000h-1AFFFFh  
1A0000h-1A7FFFh  
198000h-19FFFFh  
190000h-197FFFh  
188000h-18FFFFh  
180000h-187FFFh  
178000h-17FFFFh  
170000h-177FFFh  
168000h-16FFFFh  
160000h-167FFFh  
158000h-15FFFFh  
150000h-157FFFh  
148000h-14FFFFh  
140000h-147FFFh  
138000h-13FFFFh  
130000h-137FFFh  
128000h-12FFFFh  
120000h-127FFFh  
118000h-11FFFFh  
110000h-117FFFh  
108000h-10FFFFh  
100000h-107FFFh  
Bank 2  
Bank 1  
31  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 3-1. Bottom Boot Block Address Table  
Bank  
Block  
BA38  
BA37  
BA36  
BA35  
BA34  
BA33  
BA32  
BA31  
BA30  
BA29  
BA28  
BA27  
BA26  
BA25  
BA24  
BA23  
BA22  
BA21  
BA20  
BA19  
BA18  
BA17  
BA16  
BA15  
BA14  
BA13  
BA12  
BA11  
BA10  
BA9  
Block Size  
(x16) Address Range  
0F8000h-0FFFFFh  
0F0000h-0F7FFFh  
0E8000h-0EFFFFh  
0E0000h-0E7FFFh  
0D8000h-0DFFFFh  
0D0000h-0D7FFFh  
0C8000h-0CFFFFh  
0C0000h-0C7FFFh  
0B8000h-0BFFFFh  
0B0000h-0B7FFFh  
0A8000h-0AFFFFh  
0A0000h-0A7FFFh  
098000h-09FFFFh  
090000h-097FFFh  
088000h-08FFFFh  
080000h-087FFFh  
078000h-07FFFFh  
070000h-077FFFh  
068000h-06FFFFh  
060000h-067FFFh  
058000h-05FFFFh  
050000h-057FFFh  
048000h-04FFFFh  
040000h-047FFFh  
038000h-03FFFFh  
030000h-037FFFh  
028000h-02FFFFh  
020000h-027FFFh  
018000h-01FFFFh  
010000h-017FFFh  
008000h-00FFFFh  
007000h-007FFFh  
006000h-006FFFh  
005000h-005FFFh  
004000h-004FFFh  
003000h-003FFFh  
002000h-002FFFh  
001000h-001FFFh  
000000h-000FFFh  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
32 Kwords  
4 Kwords  
Bank 0  
BA8  
BA7  
BA6  
4 Kwords  
BA5  
4 Kwords  
BA4  
4 Kwords  
BA3  
4 Kwords  
BA2  
4 Kwords  
BA1  
4 Kwords  
BA0  
4 Kwords  
Table 3-1-2. Bottom Boot Block OTP Block Addresses  
Block Address  
A23 ~ A8  
Block Size  
128words  
(x16) Address Range  
OTP  
000000h-00007Fh  
0000h  
After entering OTP block, any issued addresses should be in the range of OTP block address  
32  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
PRODUCT INTRODUCTION  
The device is a 256Mbit (268,435,456 bits) NOR-type Burst Flash memory. The device features 1.8V single voltage power supply  
operating within the range of 1.7V to 1.95V. The device is programmed by using the Channel Hot Electron (CHE) injection mecha-  
nism which is used to program EPROMs. The device is erased electrically by using Fowler-Nordheim tunneling mechanism. To pro-  
vide highly flexible erase and program capability, the device adopts a block memory architecture that divides its memory array into  
519 blocks (32-Kword x 511 , 4-Kword x 8, ). Programming is done in units of 16 bits (Word). All bits of data in one or multiple blocks  
can be erased when the device executes the erase operation. To prevent the device from accidental erasing or over-writing the pro-  
grammed data, 519 memory blocks can be hardware protected. Regarding read access time, at 54MHz, the device provides a burst  
access of 14.5ns with initial access times of 88.5ns at 30pF. At 66MHz, the device provides a burst access of 11ns with initial access  
times of 70ns at 30pF. The command set of device is compatible with standard Flash devices. The device uses Chip Enable (CE),  
Write Enable (WE), Address Valid(AVD) and Output Enable (OE) to control asynchronous read and write operation. For burst opera-  
tions, the device additionally requires Ready (RDY) and Clock (CLK). Device operations are executed by selective command codes.  
The command codes to be combined with addresses and data are sequentially written to the command registers using microproces-  
sor write timing. The command codes serve as inputs to an internal state machine which controls the program/erase circuitry. Regis-  
ter contents also internally latch addresses and data necessary to execute the program and erase operations. The device is  
implemented with Internal Program/Erase Routines to execute the program/erase operations. The Internal Program/Erase Routines  
are invoked by program/erase command sequences. The Internal Program Routine automatically programs and verifies data at  
specified addresses. The Internal Erase Routine automatically pre-programs the memory cell which is not programmed and then  
executes the erase operation. The device has means to indicate the status of completion of program/erase operations. The status  
can be indicated via Data polling of DQ7, or the Toggle bit (DQ6). Once the operations have been completed, the device automati-  
cally resets itself to the read mode. The device requires only 30mA as burst and asynchronous mode read current and 15 mA for pro-  
gram/erase operations.  
Table 4. Device Bus Operations  
Operation  
CE  
OE  
WE  
A0-22  
DQ0-15  
RESET  
CLK  
AVD  
Asynchronous Read Operation  
L
L
H
Add In  
I/O  
H
L
L
Write  
L
H
X
L
H
X
X
H
L
Add In  
I/O  
High-Z  
High-Z  
X
H
H
L
L
X
X
X
X
X
Standby  
X
X
H
H
X
X
H
X
Hardware Reset  
Load Initial Burst Address  
X
Add In  
X
H
H
H
L
Burst  
DOUT  
Burst Read Operation  
L
H
X
X
Terminate Burst Read Cycle  
H
X
L
X
X
H
X
High-Z  
High-Z  
I/O  
X
X
Terminate Burst Read Cycle via RESET  
X
Terminate Current Burst Read Cycle and Start  
New Burst Read Cycle  
Add In  
H
Note : L=VIL (Low), H=VIH (High), X=Don’t Care.  
33  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
COMMAND DEFINITIONS  
The device operates by selecting and executing its operational modes. Each operational mode has its own command set. In order to  
select a certain mode, a proper command with specific address and data sequences must be written into the command register. Writ-  
ing incorrect information which include address and data or writing an improper command will reset the device to the read mode. The  
defined valid register command sequences are stated in Table 5.  
Table 5. Command Sequences  
Command Definitions  
Cycle  
1st Cycle 2nd Cycle 3rd Cycle  
4th Cycle  
5th Cycle 6th Cycle  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
RA  
RD  
Asynchronous Read  
1
XXXH  
F0H  
Reset(Note 5)  
1
4
4
4
4
4
3
2
2
2
2
5
6
6
1
1
1
1
555H  
AAH  
2AAH  
55H  
(DA)555H  
90H  
(DA)X00H  
ECH  
Autoselect  
Manufacturer ID(Note 6)  
555H  
AAH  
2AAH  
55H  
(DA)555H  
90H  
(DA)X01H  
Note6  
Autoselect  
Device ID(Note 6)  
555H  
AAH  
2AAH  
55H  
(BA)555H  
90H  
(BA)X02H  
00H/01H  
(DA)X03H  
0H/1H  
Autoselect  
Block Protection Verify(Note 7)  
555H  
AAH  
2AAH  
55H  
(DA)555H  
90H  
Autoselect  
Handshaking(Note 6, 8)  
555H  
AAH  
2AAH  
55H  
555H  
PA  
Program  
A0H  
PD  
555H  
AAH  
2AAH  
55H  
555H  
Unlock Bypass  
20H  
XXX  
PA  
Unlock Bypass Program(Note 9)  
Unlock Bypass Block Erase(Note 9)  
Unlock Bypass Chip Erase(Note 9)  
Unlock Bypass Reset  
A0H  
PD  
XXX  
BA  
80H  
30H  
XXXH  
80H  
XXXH  
10H  
XXXH  
90H  
XXXH  
00H  
XXX  
PA1  
PA2  
PD2  
555H  
80H  
PA3  
PD3  
PA4  
PD4  
Quadruple word Accelerated Program(Note 10)  
Chip Erase  
A5H  
PD1  
2AAH  
55H  
555H  
AAH  
555H  
AAH  
555H  
AAH  
2AAH  
55H  
555H  
10H  
BA  
555H  
AAH  
2AAH  
55H  
555H  
80H  
2AAH  
55H  
Block Erase  
30H  
(DA)XXXH  
B0H  
Erase Suspend (Note 11)  
Erase Resume (Note 12)  
Program Suspend (Note13)  
Program Resume (Note12)  
(DA)XXXH  
30H  
(DA)XXXH  
B0H  
(DA)XXXH  
30H  
34  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 5. Command Sequences (Continued)  
Command Definitions  
Cycle  
1st Cycle 2nd Cycle 3rd Cycle 4th Cycle 5th Cycle 6th Cycle  
Add  
Block Protection/Unprotection (Note 14)  
Data  
XXX  
60H  
XXX  
60H  
ABP  
60H  
3
Add  
(DA)X55H  
98H  
CFI Query (Note 15)  
Data  
1
3
3
4
Add  
Set Burst Mode Configuration Register (Note 16)  
Data  
555H  
AAH  
2AAH  
55H  
(CR)555H  
C0H  
Addr  
555H  
AAH  
2AAH  
55H  
555H  
70H  
Enter OTP Block Region  
Data  
Addr  
555H  
AAH  
2AAH  
55H  
555H  
75H  
XXX  
00H  
Exit OTP Block Region  
Data  
Notes:  
1. RA : Read Address , PA : Program Address, RD : Read Data, PD : Program Data , BA : Block Address (A23 ~ A12)  
DA : Bank Address (A23 ~ A20) , ABP : Address of the block to be protected or unprotected, CR : Configuration Register Setting  
2. The 4th cycle data of autoselect mode and RD are output data. The others are input data.  
3. Data bits DQ15–DQ8 are don’t care in command sequences, except for RD, PD and Device ID.  
4. Unless otherwise noted, address bits A23–A11 are don’t cares.  
5. The reset command is required to return to read mode.  
If a bank entered the autoselect mode during the erase suspend mode, writing the reset command returns that bank to the erase suspend mode.  
If a bank entered the autoselect mode during the program suspend mode, writing the reset command returns that bank to the program suspend mode.  
If DQ5 goes high during the program or erase operation, writing the reset command returns that bank to read mode or erase suspend mode if that  
bank was in erase suspend mode.  
6. The 3rd and 4th cycle bank address of autoselect mode must be same.  
Device ID Data : "22FCH" for Top Boot Block Device, "22FDH" for Bottom Boot Block Device  
7. 00H for an unprotected block and 01H for a protected block.  
8. 0H for handshaking, 1H for non-handshaking  
9. The unlock bypass command sequence is required prior to this command sequence.  
10. Quadruple word accelerated program is invoked only at Vpp=VID ,Vpp setup is required prior to this command sequence.  
PA1, PA2, PA3, PA4 have the same A23~A2 address.  
11. The system may read and program in non-erasing blocks when in the erase suspend mode.  
The system may enter the autoselect mode when in the erase suspend mode.  
The erase suspend command is valid only during a block erase operation, and requires the bank address.  
12. The erase/program resume command is valid only during the erase/program suspend mode, and requires the bank address.  
13. This mode is used only to enable Data Read by suspending the Program operation.  
14. Set block address(BA) as either A6 = VIH, A1 = VIH and A0 = VIL for unprotected or A6 = VIL, A1 = VIH and A0 = VIL for protected.  
15. Command is valid when the device is in Read mode or Autoselect mode.  
16. See "Set Burst Mode Congiguration Register" for details.  
35  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
DEVICE OPERATION  
To write a command or command sequence (which includes programming data to the device and erasing blocks of memory), the sys-  
tem must drive CLK, WE and CE to VIL and OE to VIH when providing address or data. The device provide the unlock bypass mode  
to save its program time for program operation. Unlike the standard program command sequence which is comprised of four bus  
cycles, only two program cycles are required to program a word in the unlock bypass mode. One block, multiple blocks, or the entire  
device can be erased. Table 3 indicates the address space that each block occupies. The device’s address space is divided into six-  
teen banks: Bank 0 contains the boot/parameter blocks, and the other banks(from Bank 1 to 15) consist of uniform blocks. A “bank  
address” is the address bits required to uniquely select a bank. Similarly, a “block address” is the address bits required to uniquely  
select a block. ICC2 in the DC Characteristics table represents the active current specification for the write mode. The AC Character-  
istics section contains timing specification tables and timing diagrams for write operations.  
Read Mode  
The device automatically enters to asynchronous read mode after device power-up. No commands are required to retrieve data in  
asynchronous mode. After completing an Internal Program/Erase Routine, each bank is ready to read array data. The reset com-  
mand is required to return a bank to the read(or erase-suspend-read)mode if DQ5 goes high during an active program/erase opera-  
tion, or if the bank is in the autoselect mode.  
The synchronous(burst) mode will automatically be enabled on the first rising edge on the CLK input while AVD is held low. That  
means device enters burst read mode from asynchronous read mode to burst read mode using CLK and AVD signal. When the burst  
read is finished(or terminated), the device return to asynchronous read mode automatically.  
Asynchronous Read Mode  
For the asynchronous read mode a valid address should be asserted on A0-A23, while driving AVD and CE to VIL. WE should  
remain at VIH . The data will appear on DQ0-DQ15. Since the memory array is divided into sixteen banks, each bank remains  
enabled for read access until the command register contents are altered.  
Address access time (tAA) is equal to the delay from valid addresses to valid output data. The chip enable access time(tCE) is the  
delay from the falling edge of CE to valid data at the outputs. The output enable access time(tOE) is the delay from the falling edge of  
OE to valid data at the output. To prevent the memory content from spurious altering during power transition, the initial state machine  
is set for reading array data upon device power-up, or after a hardware reset.  
Synchronous (Burst) Read Mode  
The device is capable of continuous linear burst operation and linear burst operation of a preset length. For the burst mode, the sys-  
tem should determine how many clock cycles are desired for the initial word(tIACC) of each burst access and what mode of burst  
operation is desired using "Burst Mode Configuration Register" command sequences. See "Set Burst Mode Configuration" for further  
details. The status data also can be read during burst read mode by using AVD signal with a bank address. To initiate the synchro-  
nous read again, a new address and AVD pulse is needed after the host has completed status reads or the device has completed  
the program or erase operation.  
Continuous Linear Burst Read  
The synchronous(burst) mode will automatically be enabled on the first rising edge on the CLK input while AVD is held low. Note that  
the device is enabled for asynchronous mode when it first powers up. The initial word is output tIAA after the rising edge of the first  
CLK cycle. Subsequent words are output tBA after the rising edge of each successive clock cycle, which automatically increments the  
internal address counter. Note that the device has internal address boundary that occurs every 16 words. When the device is cross-  
ing the first word boundary, additional clock cycles are needed before data appears for the next address. The number of addtional  
clock cycle can varies from zero to three cycles, and the exact number of additional clock cycle depends on the starting address of  
burst read.(Refer to Figure 13) The RDY output indicates this condition to the system by pulsing low. The device will continue to out-  
put sequential burst data, wrapping around to address 000000h after it reaches the highest addressable memory location until the  
system asserts CE high, RESET low or AVD low in conjunction with a new address.(See Table 4.) The reset command does not ter-  
minate the burst read operation.  
If the host system crosses the bank boundary while reading in burst mode, and the accessed bank is not programming or erasing, a  
additional clock cycles are needed as previously mentioned. If the host system crosses the bank boundary while the accessed bank  
is programming or erasing, that is busy bank, the synchronous read will be terminated.  
36  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
8-,16-Word Linear Burst Read  
As well as the Continuous Linear Burst Mode, there are two(8 & 16 word) linear wrap & no-wrap mode, in which a fixed number of  
words are read from consecutive addresses. In these modes, the addresses for burst read are determined by the group within which  
the starting address falls. The groups are sized according to the number of words read in a single burst sequence for a given  
mode.(See Table. 6)  
Table 6. Burst Address Groups(Wrap mode only)  
Burst Mode  
8 word  
Group Size  
8 words  
Group Address Ranges  
0-7h, 8-Fh, 10-17h, ....  
0-Fh, 10-1Fh, 20-2Fh, ....  
16 word  
16words  
As an example:  
In wrap mode case, if the starting address in the 8-word mode is 2h, the address range to be read would be 0-7h, and the wrap burst  
sequence would be 2-3-4-5-6-7-0-1h. The burst sequence begins with the starting address written to the device, but wraps back to  
the first address in the selected group. In a similar manner, 16-word wrap mode begin their burst sequence on the starting address  
written to the device, and then wrap back to the first address in the selected address group.  
In no-wrap mode case, if the starting address in the 8-word mode is 2h, the no-wrap burst sequence would be 2-3-4-5-6-7-8-9h. The  
burst sequence begins with the starting address written to the device, and continue to the 8th address from starting address. In a sim-  
ilar manner, 16-word no-wrap mode begin their burst sequence on the starting address written to the device, and continue to the 16th  
address from starting address. Also, when the address cross the word boundary in no-wrap mode, same number of additional clock  
cycles as continuous linear mode is needed.  
Programmable Wait State  
The programmable wait state feature indicates to the device the number of additional clock cycles that must elapse after AVD is  
driven active for burst read mode. Upon power up, the number of total initial access cycles defaults to seven.  
Handshaking  
The handshaking feature allows the host system to simply monitor the RDY signal from the device to determine when the initial word  
of burst data is ready to be read. To set the number of initial cycle for optimal burst mode, the host should use the programmable wait  
state configuration.(See "Set Burst Mode Configuration Register" for details.) The rising edge of RDY after OE goes low indicates  
the initial word of valid burst data. Using the autoselect command sequence the handshaking feature may be verified in the device.  
Set Burst Mode Configuration Register  
The device uses a configuration register to set the various burst parameters : the number of initial cycles for burst and burst read  
mode. The burst mode configuration register must be set before the device enter burst mode.  
The burst mode configuration register is loaded with a three-cycle command sequences. On the third cycle, the data should be C0h,  
address bits A11-A0 should be 555h, and address bits A18-A12 set the code to be latched. The device will power up or after a hard-  
ware reset with the default setting.  
Table 7. Burst Mode Configuration Register Table  
Address Bit  
Function  
Settings(Binary)  
1 = RDY active one clock cycle before data  
0 = RDY active with data(default)  
A18  
RDY Active  
A17  
A16  
000 = Continuous(default)  
001 = 8-word linear with wrap  
010 = 16-word linear with wrap  
011 = 8-word linear with no-wrap  
100 = 16-word linear with no-wrap  
101 ~ 111 = Reserve  
Burst Read Mode  
A15  
A14  
A13  
000 = Data is valid on the 4th active CLK edge after AVD transition to VIH  
001 = Data is valid on the 5th active CLK edge after AVD transition to VIH  
010 = Data is valid on the 6th active CLK edge after AVD transition to VIH  
011 = Data is valid on the 7th active CLK edge after AVD transition to VIH (default)  
Programmable Wait State  
100 = Reserve  
101 = Reserve  
110 = Reserve  
111 = Reserve  
A12  
Programmable Wait State Configuration  
This feature informs the device of the number of clock cycles that must elapse after AVD# is driven active before data will be avail-  
able. This value is determined by the input frequency of the device. Address bits A14-A12 determine the setting. (See Burst Mode  
Configuration Register Table)  
37  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
The Programmable wait state setting instructs the device to set a particular number of clock cycles for the initial access in burst  
mode. Note that hardware reset will set the wait state to the default setting, that is 7 initial cycles.  
Burst Read Mode Setting  
The device supports five different burst read modes : continuous linear mode, 8 and 16 word linear burst modes with wrap and 8 and  
16 word linear burst modes with no-wrap.  
RDY Configuration  
By default, the RDY pin will be high whenever there is valid data on the output. The device can be set so that RDY goes active one  
data cycle before active data. Address bit A18 determine this setting. Note that RDY always go high with valid data in case of word  
boundary crossing.  
Table 8. Burst Address Sequences  
Burst Address Sequence(Decimal)  
Start  
Addr.  
Continuous Burst  
0-1-2-3-4-5-6...  
1-2-3-4-5-6-7...  
2-3-4-5-6-7-8...  
8-word Burst  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
16-word Burst  
0
1
2
0-1-2-3-4-....-13-14-15  
1-2-3-4-5-....-14-15-0  
2-3-4-5-6-....-15-0-1  
Wrap  
.
.
.
.
.
.
.
.
0
1
2
0-1-2-3-4-5-6...  
1-2-3-4-5-6-7...  
2-3-4-5-6-7-8...  
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-8  
2-3-4-5-6-7-8-9  
0-1-2-3-4-....-13-14-15  
1-2-3-4-5-....-14-15-16  
2-3-4-5-6-....-15-16-17  
No-wrap  
.
.
.
.
.
.
.
.
Autoselect Mode  
By writing the autoselect command sequences to the system, the device enters the autoselect mode. This mode can be read only by  
asynchronous read mode. The system can then read autoselect codes from the internal register(which is separate from the memory  
array). Standard asynchronous read cycle timings apply in this mode. The device offers the Autoselect mode to identify manufacturer  
and device type by reading a binary code. In addition, this mode allows the host system to verify the block protection or unprotection.  
Table 5 shows the address and data requirements. The autoselect command sequence may be written to an address within a bank  
that is in the read mode, erase-suspend-read mode or program-suspend-read mode. The autoselect command may not be written  
while the device is actively programming or erasing in the device. The autoselect command sequence is initiated by first writing two  
unlock cycles. This is followed by a third write cycle that contains the address and the autoselect command. Note that the block  
address is needed for the verification of block protection. The system may read at any address within the same bank any number of  
times without initiating another autoselect command sequence. And the burst read should be prohibited during Autoselect Mode. To  
terminate the autoselect operation, write Reset command(F0H) into the command register.  
Table 9. Autoselct Mode Description  
Description  
Manufacturer ID  
Address  
(DA) + 00H  
(DA) + 01H  
(BA) + 02H  
(DA) + 03H  
Read Data  
ECH  
Device ID  
22FCH(Top Boot Block), 22FDH(Bottom Boot Block)  
01H (protected), 00H (unprotected)  
Block Protection/Unprotection  
Handshaking  
0H : handshaking, 1H : non-handshaking  
Standby Mode  
When the CE and RESET inputs are both held at VCC ± 0.2V or the system is not reading or writing, the device enters Stand-by mode  
to minimize the power consumption. In this mode, the device outputs are placed in the high impedence state, independent of the OE  
input. When the device is in either of these standby modes, the device requires standard access time (tCE ) for read access before it  
is ready to read data. If the device is deselected during erasure or programming, the device draws active current until the operation is  
completed. ICC5 in the DC Characteristics table represents the standby current specification.  
Automatic Sleep Mode  
The device features Automatic Sleep Mode to minimize the device power consumption during both asynchronous and burst mode.  
When addresses remain stable for tAA+60ns, the device automatically enables this mode. The automatic sleep mode is independent  
of the CE, WE, and OE control signals. In a sleep mode, output data is latched and always available to the system. When addresses  
are changed, the device provides new data without wait time. Automatic sleep mode current is equal to standby mode current.  
38  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Output Disable Mode  
When the OE input is at VIH , output from the device is disabled. The outputs are placed in the high impedance state.  
Block Protection & Unprotection  
To protect the block from accidental writes, the block protection/unprotection command sequence is used. On power up, all blocks in  
the device are protected. To unprotect a block, the system must write the block protection/unprotection command sequence. The first  
two cycles are written: addresses are don’t care and data is 60h. Using the third cycle, the block address (ABP) and command (60h)  
is written, while specifying with addresses A6, A1 and A0 whether that block should be protected (A6 = VIL, A1 = VIH, A0 = VIL) or  
unprotected (A6 = VIH, A1 = VIH, A0 = VIL). After the third cycle, the system can continue to protect or unprotect additional cycles, or  
exit the sequence by writing F0h (reset command).  
The device offers three types of data protection at the block level:  
The block protection/unprotection command sequence disables or re-enables both program and erase operations in any block.  
When WP is at VIL, the two outermost blocks are protected.  
When VPP is at VIL, all blocks are protected.  
Note that user never float the Vpp and WP, that is, Vpp is always connected with VIH, VIL or VID and WP is VIH or VIL.  
Hardware Reset  
The device features a hardware method of resetting the device by the RESET input. When the RESET pin is held low(VIL) for at least  
a period of tRP, the device immediately terminates any operation in progress, tristates all outputs, and ignores all read/write com-  
mands for the duration of the RESET pulse. The device also resets the internal state machine to asynchronous read mode. To  
ensure data integrity, the interrupted operation should be reinitiated once the device is ready to accept another command sequence.  
As previously noted, when RESET is held at VSS ± 0.2V, the device enters standby mode. The RESET pin may be tied to the system  
reset pin. If a system reset occurs during the Internal Program or Erase Routine, the device will be automatically reset to the asyn-  
chronous read mode; this will enable the systems microprocessor to read the boot-up firmware from the Flash memory. If RESET is  
asserted during a program or erase operation, the device requires a time of tREADY (during Internal Routines) before the device is  
ready to read data again. If RESET is asserted when a program or erase operation is not executing, the reset operation is completed  
within a time of tREADY (not during Internal Routines). tRH is needed to read data after RESET returns to VIH. Refer to the AC Char-  
acteristics tables for RESET parameters and to Figure 6 for the timing diagram.  
Software Reset  
The reset command provides that the bank is reseted to read mode, erase-suspend-read mode or program-suspend-read mode. The  
addresses are in Don’t Care state. The reset command may be written between the sequence cycles in an erase command  
sequence before erasing begins, or in a program command sequence before programming begins. If the device begins erasure or  
programming, the reset command is ignored until the operation is completed. If the program command sequence is written to a bank  
that is in the Erase Suspend mode, writing the reset command returns that bank to the erase-suspend-read mode. The reset com-  
mand is valid between the sequence cycles in an autoselect command sequence. In an autoselect mode, the reset command must  
be written to return to the read mode. If a bank entered the autoselect mode while in the Erase Suspend mode, writing the reset com-  
mand returns that bank to the erase-suspend-read mode. Also, if a bank entered the autoselect mode while in the Program Suspend  
mode, writing the reset command returns that bank to the program-suspend-read mode. If DQ5 goes high during a program or an  
erase operation, writing the reset command returns the banks to the read mode. (or erase-suspend-read mode if the bank was in  
Erase Suspend)  
Program  
The device can be programmed in units of a word. Programming is writing 0's into the memory array by executing the Internal Pro-  
gram Routine. In order to perform the Internal Program Routine, a four-cycle command sequence is necessary. The first two cycles  
are unlock cycles. The third cycle is assigned for the program setup command. In the last cycle, the address of the memory location  
and the data to be programmed at that location are written. The device automatically generates adequate program pulses and veri-  
fies the programmed cell margin by the Internal Program Routine. During the execution of the Routine, the system is not required to  
provide further controls or timings. During the Internal Program Routine, commands written to the device will be ignored.  
Note that a hardware reset during a program operation will cause data corruption at the corresponding location.  
Accelerated Program Operation  
The device provides Single/Quadruple word accelerated program operations through the Vpp input. Using this mode, faster manu-  
facturing throughput at the factory is possible. When VID is asserted on the Vpp input, the device automatically enters the Unlock  
Bypass mode, temporarily unprotects any protected blocks, and uses the higher voltage on the input to reduce the time required for  
program operations. By removing VID returns the device to normal operation mode.  
Note that Read while Accelerated Programm and Program suspend mode are not guaranteed  
39  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Single word accelerated program operation  
The system would use two-cycle program sequence (One-cycle (XXX - A0H) is for single word program command, and Next one-  
cycle (PA - PD) is for program address and data ).  
Quadruple word accelerated program operation  
As well as Single word accelerated program, the system would use five-cycle program sequence (One-cycle (XXX - A5H) is for qua-  
druple word program command, and four cycles are for program address and data).  
Only four words programming is possible  
Each program address must have the same A23~A2 address  
The device automatically generates adequate program pulses and ignores other command after program command  
Unlock Bypass  
The device provides the unlock bypass mode to save its operation time. This mode is possible for program, block erase and chip  
erase operation. There are two methods to enter the unlock bypass mode. The mode is invoked by the unlock bypass command  
sequence or the assertion of VID on VPP pin. Unlike the standard program/erase command sequence that contains four/six bus  
cycles, the unlock bypass program/erase command sequence needs only two bus cycles. The unlock bypass mode is engaged by  
issuing the unlock bypass command sequence which is comprised of three bus cycles. Writing first two unlock cycles is followed by  
a third cycle containing the unlock bypass command (20H). Once the device is in the unlock bypass mode, the unlock bypass pro-  
gram/erase command sequence is necessary. The unlock bypass program command sequence is comprised of only two bus cycles;  
writing the unlock bypass program command (A0H) is followed by the program address and data. This command sequence is the  
only valid one for programming the device in the unlock bypass mode. Also, The unlock bypass erase command sequence is com-  
prised of two bus cycles; writing the unlock bypass block erase command(80H-30H) or writing the unlock bypass chip erase com-  
mand(80H-10H). This command sequences are the only valid ones for erasing the device in the unlock bypass mode. The unlock  
bypass reset command sequence is the only valid command sequence to exit the unlock bypass mode. The unlock bypass reset  
command sequence consists of two bus cycles. The first cycle must contain the data (90H). The second cycle contains only the data  
(00H). Then, the device returns to the read mode.  
To enter the unlock bypass mode in hardware level, the VID also can be used. By assertion VID on the VPP pin, the device enters the  
unlock bypass mode. Also, the all blocks are temporarily unprotected when the device using the VID for unlock bypass mode. To exit  
the unlock bypass mode, just remove the asserted VID from the VPP pin.(Note that user never float the Vpp, that is, Vpp is always  
connected with VIH, VIL or VID.).  
Chip Erase  
To erase a chip is to write 1s into the entire memory array by executing the Internal Erase Routine. The Chip Erase requires six bus  
cycles to write the command sequence. The erase set-up command is written after first two "unlock" cycles. Then, there are two  
more write cycles prior to writing the chip erase command. The Internal Erase Routine automatically pre-programs and verifies the  
entire memory for an all zero data pattern prior to erasing. The automatic erase begins on the rising edge of the last WE pulse in the  
command sequence and terminates when DQ7 is "1". After that the device returns to the read mode.  
Block Erase  
To erase a block is to write 1s into the desired memory block by executing the Internal Erase Routine. The Block Erase requires six  
bus cycles to write the command sequence shown in Table 5. After the first two "unlock" cycles, the erase setup command (80H) is  
written at the third cycle. Then there are two more "unlock" cycles followed by the Block Erase command. The Internal Erase Routine  
automatically pre-programs and verifies the entire memory prior to erasing it. Multiple blocks can be erased sequentially by writing  
the sixth bus-cycle. Upon completion of the last cycle for the Block Erase, additional block address and the Block Erase command  
(30H) can be written to perform the Multi-Block Erase. For the Multi-Block Erase, only sixth cycle(block address and 30H) is  
needed.(Similarly, only second cycle is needed in unlock bypass block erase.) An 50us (typical) "time window" is required between  
the Block Erase command writes. The Block Erase command must be written within the 50us "time window", otherwise the Block  
Erase command will be ignored. The 50us "time window" is reset when the falling edge of the WE occurs within the 50us of "time  
window" to latch the Block Erase command. During the 50us of "time window", any command other than the Block Erase or the  
Erase Suspend command written to the device will reset the device to read mode. After the 50 us of "time window", the Block Erase  
command will initiate the Internal Erase Routine to erase the selected blocks. Any Block Erase address and command following the  
exceeded "time window" may or may not be accepted. No other commands will be recognized except the Erase Suspend command  
during Block Erase operation.  
The device provides accelerated erase operations through the Vpp input. When VID is asserted on the Vpp input, the device auto-  
matically enters the Unlock Bypass mode, temporarily unprotects any protected blocks, and uses the higher voltage on the input to  
reduce the time required for erase. By removing VID returns the device to normal operation mode.  
40  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Erase Suspend / Resume  
The Erase Suspend command interrupts the Block Erase to read or program data in a block that is not being erased. Also, it is pos-  
sible to protect or unprotect of the block that is not being erased in erase suspend mode. The Erase Suspend command is only valid  
during the Block Erase operation including the time window of 50 us. The Erase Suspend command is not valid while the Chip Erase  
or the Internal Program Routine sequence is running. When the Erase Suspend command is written during a Block Erase operation,  
the device requires a maximum of 20 us(recovery time) to suspend the erase operation. Therefore system must wait for 20us(recov-  
ery time) to read the data from the bank which include the block being erased. Otherwise, system can read the data immediately from  
a bank which don’t include the block being erased without recovery time(max. 20us) after Erase Suspend command. And, after the  
maximum 20us recovery time, the device is availble for programming data in a block that is not being erased. But, when the Erase  
Suspend command is written during the block erase time window (50 us) , the device immediately terminates the block erase time  
window and suspends the erase operation. The system may also write the autoselect command sequence when the device is in the  
Erase Suspend mode. When the Erase Resume command is executed, the Block Erase operation will resume. When the Erase Sus-  
pend or Erase Resume command is executed, the addresses are in Don't Care state.  
Program Suspend / Resume  
The device provides the Program Suspend/Resume mode. This mode is used to enable Data Read by suspending the Program  
operation. The device accepts a Program Suspend command in Program mode(including Program operations performed during  
Erase Suspend) but other commands are ignored. After input of the Program Suspend command, 2us is needed to enter the Pro-  
gram Suspend Read mode. Therefore system must wait for 2us(recovery time) to read the data from the bank which include the  
block being programmed. Othwewise, system can read the data immediately from a bank which don't include block being pro-  
grammed without ecovery time(max. 2us) after Program Suspend command. Like an Erase Suspend mode, the device can be  
returned to Program mode by using a Program Resume command.  
Read While Write Operation  
The device is capable of reading data from one bank while writing in the other banks. This is so called the Read While Write opera-  
tion. An erase operation may also be suspended to read from or program to another location within the same bank(except the block  
being erased). The Read While Write operation is prohibited during the chip erase operation. Figure 12 shows how read and write  
cycles may be initiated for simultaneous operation with zero latency. Refer to the DC Characteristics table for read-while-write current  
specifications.  
OTP Block Region  
The OTP Block feature provides a 256-byte Flash memory region that enables permanent part identification through an Electronic  
Serial Number (ESN). The OTP Block is customer lockable and shipped with itself unlocked, allowing customers to untilize the that  
block in any manner they choose. The customer-lockable OTP Block has the Protection Verify Bit (DQ0) set to a "0" for Unlocked  
state or a "1" for Locked state.  
The system accesses the OTP Block through a command sequence (see "Enter OTP Block / Exit OTP Block Command sequence"  
at Table8). After the system has written the "Enter OTP Block" Command sequence, it may read the OTP Block by using the  
addresses (FFFF80h~FFFFFFh) normally and may check the Protection Verify Bit (DQ0) by using the "Autoselect Block Protection  
Verify" Command sequence with OTP Block address. This mode of operation continues until the system issues the "Exit OTP Block"  
Command suquence, a hardware reset or until power is removed from the device. On power-up, or following a hardware reset, the  
device reverts to sending commands to main blocks. Note that the Accelerated function and unlock bypass modes are not available  
when the OTP Block is enabled.  
Customer Lockable  
In a Customer lockable device, The OTP Block is one-time programmable and can be locked only once. Note that the Accelerated  
programming and Unlock bypass functions are not available when programming the OTP Block. Locking operation to the OTP Block  
is started by writing the "Enter OTP Block" Command sequence, and then the "Block Protection" Command sqeunce (Table 8) with  
an OTP Block address. Hardware reset terminates Locking operation, and then makes exiting from OTP Block. The Locking opera-  
tion has to be above 100us.  
The OTP Block Lock operation must be used with caution since, once locked, there is no procedure available for unlocking  
and none of the bits in the OTP Block space can be modified in any way.  
Low VCC Write Inhibit  
To avoid initiation of a write cycle during Vcc power-up and power-down, a write cycle is locked out for Vcc less than VLKO. If the Vcc  
< VLKO (Lock-Out Voltage), the command register and all internal program/erase circuits are disabled. Under this condition the  
device will reset itself to the read mode.Subsequent writes will be ignored until the Vcc level is greater than VLKO. It is the user’s  
responsibility to ensure that the control pins are logically correct to prevent unintentional writes when Vcc is above VLKO.  
41  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Write Pulse “Glitch” Protection  
Noise pulses of less than 5ns (typical) on OE, CE, AVD or WE do not initiate a write cycle.  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE = VIL , CE = VIH or WE = VIH. To initiate a write cycle, CE and WE must be a log-  
ical zero while OE is a logical one.  
Power-up Protection  
To avoid initiation of a write cycle during VCC power-up, RESET low must be asserted during Power-up. After RESET goes high. the  
device is reset to the read mode.  
FLASH MEMORY STATUS FLAGS  
The device has means to indicate its status of operation in the bank where a program or erase operation is in processes. Address  
must include bank address being executed internal routine operation. The status is indicated by raising the device status flag via cor-  
responding DQ pins. This status read is supported in burst mode and asynchronous mode. The status data can be read during burst  
read mode by using AVD signal with a bank address. That means status read is supported in synchronous mode. If status read is  
performed, the data provided in the burst read is identical to the data in the initial access. To initiate the synchronous read again, a  
new address and AVD pulse is needed after the host has completed status reads or the device has completed the program or erase  
operation. The corresponding DQ pins are DQ7, DQ6, DQ5, DQ3 and DQ2.  
Table 10. Hardware Sequence Flags  
Status  
DQ7  
DQ7  
0
DQ6  
Toggle  
Toggle  
DQ5  
DQ3  
DQ2  
1
Programming  
0
0
0
1
Block Erase or Chip Erase  
Erase Suspend Read  
Toggle  
Erase Suspended  
Block  
Toggle  
(Note 1)  
1
1
Data  
Toggle  
1
0
Data  
0
0
Data  
0
Non-EraseSuspended  
Block  
Erase Suspend Read  
Data  
DQ7  
DQ7  
Data  
Data  
1
In Progress  
Erase Suspend  
Program  
Non-EraseSuspended  
Block  
Program Suspended  
Block  
Toggle  
(Note 1)  
Program Suspend Read  
Program Suspend Read  
0
0
Non- program  
Suspended Block  
Data  
Data  
Data  
Data  
No  
Toggle  
Programming  
DQ7  
0
Toggle  
Toggle  
Toggle  
1
1
1
0
1
0
Exceeded  
Time Limits  
Block Erase or Chip Erase  
Erase Suspend Program  
(Note 2)  
No  
Toggle  
DQ7  
Notes :  
1. DQ2 will toggle when the device performs successive read operations from the erase/program suspended block.  
2. If DQ5 is High (exceeded timing limits), successive reads from a problem block will cause DQ2 to toggle.  
DQ7 : Data Polling  
When an attempt to read the device is made while executing the Internal Program, the complement of the data is written to DQ7 as  
an indication of the Routine in progress. When the Routine is completed an attempt to access to the device will produce the true data  
written to DQ7. When a user attempts to read the block being erased, DQ7 will be low. If the device is placed in the Erase/Program  
Suspend Mode, the status can be detected via the DQ7 pin. If the system tries to read an address which belongs to a block that is  
being erase suspended, DQ7 will be high. And, if the system tries to read an address which belongs to a block that is being program  
suspended, the output will be the true data of DQ7 itself. If a non-erase-suspended or non-program-suspended block address is  
read, the device will produce the true data to DQ7. If an attempt is made to program a protected block, DQ7 outputs complements  
the data for approximately 1µs and the device then returns to the Read Mode without changing data in the block. If an attempt is  
made to erase a protected block, DQ7 outputs complement data in approximately 100us and the device then returns to the Read  
Mode without erasing the data in the block.  
42  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
DQ6 : Toggle Bit  
Toggle bit is another option to detect whether an Internal Routine is in progress or completed. Once the device is at a busy state,  
DQ6 will toggle. Toggling DQ6 will stop after the device completes its Internal Routine. If the device is in the Erase/Program Suspend  
Mode, an attempt to read an address that belongs to a block that is being erased or programmed will produce a high output of DQ6.  
If an address belongs to a block that is not being erased or programmed, toggling is halted and valid data is produced at DQ6. If an  
attempt is made to program a protected block, DQ6 toggles for approximately 1us and the device then returns to the Read Mode  
without changing the data in the block. If an attempt is made to erase a protected block, DQ6 toggles for approximately 100µs and  
the device then returns to the Read Mode without erasing the data in the block.  
DQ5 : Exceed Timing Limits  
If the Internal Program/Erase Routine extends beyond the timing limits, DQ5 will go High, indicating program/erase failure.  
DQ3 : Block Erase Timer  
The status of the multi-block erase operation can be detected via the DQ3 pin. DQ3 will go High if 50µs of the block erase time win-  
dow expires. In this case, the Internal Erase Routine will initiate the erase operation.Therefore, the device will not accept further write  
commands until the erase operation is completed. DQ3 is Low if the block erase time window is not expired. Within the block erase  
time window, an additional block erase command (30H) can be accepted. To confirm that the block erase command has been  
accepted, the software may check the status of DQ3 following each block erase command.  
DQ2 : Toggle Bit 2  
The device generates a toggling pulse in DQ2 only if an Internal Erase Routine or an Erase/Program Suspend is in progress. When  
the device executes the Internal Erase Routine, DQ2 toggles only if an erasing block is read. Although the Internal Erase Routine is  
in the Exceeded Time Limits, DQ2 toggles only if an erasing block in the Exceeded Time Limits is read. When the device is in the  
Erase/Program Suspend mode, DQ2 toggles only if an address in the erasing or programming block is read. If a non-erasing or non-  
programmed block address is read during the Erase/Program Suspend mode, then DQ2 will produce valid data. DQ2 will go High if  
the user tries to program a non-erase suspend block while the device is in the Erase Suspend mode.  
RDY: Ready  
Normally the RDY signal is used to indicate if new burst data is available at the rising edge of the clock cycle or not. If RDY is low  
state, data is not valid at expected time, and if high state, data is valid. Note that, if CE is low and OE is high, the RDY is high state.  
Start  
Start  
Yes  
No  
DQ7 = Data ?  
No  
DQ6 = Toggle ?  
Yes  
No  
No  
DQ5 = 1 ?  
DQ5 = 1 ?  
Yes  
Yes  
No  
Yes  
DQ6 = Toggle ?  
DQ7 = Data ?  
Yes  
Fail  
No  
Pass  
Pass  
Fail  
Figure 2. Toggle Bit Algorithms  
Figure 1. Data Polling Algorithms  
43  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Commom Flash Memory Interface  
Common Flash Momory Interface is contrived to increase the compatibility of host system software. It provides the specific informa-  
tion of the device, such as memory size and electrical features. Once this information has been obtained, the system software will  
know which command sets to use to enable flash writes, block erases, and control the flash component.  
When the system writes the CFI command(98H) to address 55H , the device enters the CFI mode. And then if the system writes the  
address shown in Table 11, the system can read the CFI data. Query data are always presented on the lowest-order data out-  
puts(DQ0-7) only. In word(x16) mode, the upper data outputs(DQ8-15) is 00h. To terminate this operation, the system must write the  
reset command.  
Table 11. Common Flash Memory Interface Code  
Addresses  
Description  
Data  
(Word Mode)  
10H  
11H  
12H  
0051H  
0052H  
0059H  
Query Unique ASCII string "QRY"  
13H  
14H  
0002H  
0000H  
Primary OEM Command Set  
15H  
16H  
0040H  
0000H  
Address for Primary Extended Table  
17H  
18H  
0000H  
0000H  
Alternate OEM Command Set (00h = none exists)  
19H  
1AH  
0000H  
0000H  
Address for Alternate OEM Extended Table (00h = none exists)  
Vcc Min. (write/erase)  
D7-D4: volt, D3-D0: 100 millivolt  
1BH  
1CH  
0017H  
0019H  
Vcc Max. (write/erase)  
D7-D4: volt, D3-D0: 100 millivolt  
Vpp(Acceleration Program) Supply Minimum  
00 = Not Supported, D7 - D4 : Volt, D3 - D0 : 100mV  
1DH  
1EH  
0085H  
0095H  
Vpp(Acceleration Program) Supply Maximum  
00 = Not Supported, D7 - D4 : Volt, D3 - D0 : 100mV  
Typical timeout per single word write 2N us  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
0004H  
0000H  
000AH  
0013H  
0005H  
0000H  
0004H  
0000H  
0019H  
Typical timeout for Min. size buffer write 2N us(00H = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms(00H = not supported)  
Max. timeout for word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical(00H = not supported)  
Device Size = 2N byte  
28H  
29H  
0000H  
0000H  
Flash Device Interface description  
2AH  
2BH  
0000H  
0000H  
Max. number of byte in multi-byte write = 2N  
Number of Erase Block Regions within device  
2CH  
0002H  
44  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 11. Common Flash Memory Interface Code (Continued)  
Description  
Addresses  
(Word Mode)  
Data  
2DH  
2EH  
2FH  
30H  
0007H  
0000H  
0020H  
0000H  
Erase Block Region 1 Information  
Bits 0~15: y+1=block number  
Bits 16~31: block size= z x 256bytes  
31H  
32H  
33H  
34H  
00FEH  
0001H  
0000H  
0001H  
Erase Block Region 2 Information  
Erase Block Region 3 Information  
35H  
36H  
37H  
38H  
0000H  
0000H  
0000H  
0000H  
39H  
3AH  
3BH  
3CH  
0000H  
0000H  
0000H  
0000H  
Erase Block Region 4 Information  
Query-unique ASCII string "PRI"  
40H  
41H  
42H  
0050H  
0052H  
0049H  
Major version number, ASCII  
Minor version number, ASCII  
43H  
44H  
0031H  
0030H  
Address Sensitive Unlock(Bits 1-0)  
0 = Required, 1= Not Required  
Silcon Revision Number(Bits 7-2)  
45H  
0000H  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
46H  
47H  
0002H  
0001H  
Block Protect  
00 = Not Supported, 01 = Supported  
Block Temporary Unprotect 00 = Not Supported, 01 = Supported  
Block Protect/Unprotect scheme 00 = Not Supported, 01 = Supported  
48H  
49H  
0000H  
0001H  
Simultaneous Operation  
00 = Not Supported, 01 = Supported  
4AH  
4BH  
4CH  
0001H  
0001H  
0000H  
Burst Mode Type 00 = Not Supported, 01 = Supported  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page 02 = 8 Word Page  
Max. Operating Clock Frequency (MHz )  
4EH  
4FH  
0042H  
0000H  
RWW(Read While Write) Functionality Restriction (00H = non exists , 01H = exists)  
Handshaking  
00 = Not Supported at both mode, 01 = Supported at Sync. Mode  
10 = Supported at Async. Mode, 11 = Supported at both Mode  
50H  
0001H  
45  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Symbol  
Rating  
-0.5 to +2.5  
-0.5 to +9.5  
-0.5 to +2.5  
-30 to +125  
-65 to +150  
5
Unit  
Vcc  
Vcc  
Voltage on any pin relative to VSS  
V
VPP  
VIN  
All Other Pins  
Temperature Under Bias  
Storage Temperature  
Tbias  
Tstg  
IOS  
TA  
°C  
°C  
Short Circuit Output Current  
Operating Temperature  
mA  
°C  
-30 to + 85  
Notes :  
1. Minimum DC voltage is -0.5V on Input/ Output pins. During transitions, this level may fall to -1.5V for periods <20ns.  
Maximum DC voltage is Vcc+0.6V on input / output pins which, during transitions, may overshoot to Vcc+1.5V for periods <20ns.  
2. Minimum DC input voltage is -0.5V on VPP . During transitions, this level may fall to -1.5V for periods <20ns.  
Maximum DC input voltage is +9.5V on VPP which, during transitions, may overshoot to +11.0V for periods <20ns.  
3. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions  
detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
RECOMMENDED OPERATING CONDITIONS ( Voltage reference to GND )  
Parameter  
Symbol  
Min  
1.7  
0
Typ.  
1.8  
0
Max  
1.95  
0
Unit  
V
Supply Voltage  
VCC  
Supply Voltage  
VSS  
V
DC CHARACTERISTICS  
Parameter  
Symbol  
ILI  
Test Conditions  
Min  
Typ  
Max  
+ 1.0  
35  
Unit  
Input Leakage Current  
VPP Leakage Current  
Output Leakage Current  
Active Burst Read Current  
VIN=VSS to VCC, VCC=VCCmax  
VCC=VCCmax , VPP=9.5V  
- 1.0  
-
µA  
µA  
ILIP  
-
-
ILO  
VOUT=VSS to VCC, VCC=VCCmax, OE=VIH  
CE=VIL, OE=VIH  
- 1.0  
-
+ 1.0  
45  
µA  
ICCB1  
-
-
-
-
-
-
-
-
30  
30  
3
mA  
mA  
mA  
mA  
mA  
mA  
µA  
10MHz  
45  
Active Asynchronous  
Read Current  
ICC1  
CE=VIL, OE=VIH  
1MHz  
5
Active Write Current (Note 2)  
Read While Write Current  
Accelerated Program Current  
Standby Current  
ICC2  
ICC3  
ICC4  
ICC5  
ICC6  
CE=VIL, OE=VIH, WE=VIL, VPP=VIH  
CE=VIL, OE=VIH  
15  
40  
15  
25  
25  
30  
70  
CE=VIL, OE=VIH , VPP=9.5V  
CE= RESET=VCC ± 0.2V  
RESET = VSS ± 0.2V  
30  
70  
Standby Current During Reset  
70  
µA  
CE=VSS ± 0.2V, Other Pins=VIL or VIH  
VIL = VSS ± 0.2V, VIH = VCC ± 0.2V  
Automatic Sleep Mode(Note 3)  
ICC7  
-
25  
70  
µA  
Input Low Voltage  
VIL  
VIH  
-0.5  
VCC-0.4  
-
-
0.4  
VCC+0.4  
0.1  
V
V
V
V
V
V
Input High Voltage  
-
Output Low Voltage  
VOL  
VOH  
VID  
IOL = 100 µA , VCC=VCCmin  
IOH = -100 µA , VCC=VCCmin  
-
-
Output High Voltage  
VCC-0.1  
8.5  
-
Voltage for Accelerated Program  
Low VCC Lock-out Voltage  
9.0  
-
9.5  
VLKO  
1.0  
1.3  
Notes:  
1. Maximum ICC specifications are tested with VCC = VCCmax.  
2. ICC active while Internal Erase or Internal Program is in progress.  
3. Device enters automatic sleep mode when addresses are stable for tAA + 60ns.  
46  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
CAPACITANCE(TA = 25 °C, VCC = 1.8V, f = 1.0MHz)  
Item  
Symbol  
Test Condition  
Min  
Max  
Unit  
pF  
Input Capacitance  
CIN  
VIN=0V  
-
-
-
10  
10  
10  
Output Capacitance  
Control Pin Capacitance  
COUT  
CIN2  
VOUT=0V  
VIN=0V  
pF  
pF  
Note : Capacitance is periodically sampled and not 100% tested.  
AC TEST CONDITION  
Parameter  
Value  
0V to VCC  
5ns  
Input Pulse Levels  
Input Rise and Fall Times  
Input and Output Timing Levels  
Output Load  
VCC/2  
CL = 30pF  
Device  
Under  
Test  
VCC  
Input & Output  
VCC/2  
VCC/2  
Test Point  
* CL = 30pF including scope  
and Jig capacitance  
0V  
Input Pulse and Test Point  
Output Load  
AC CHARACTERISTICS  
Synchronous/Burst Read  
7B  
(54 MHz)  
7C  
(66 MHz)  
Parameter  
Symbol  
Unit  
Min  
Max  
Min  
Max  
Initial Access Time  
tIAA  
tBA  
-
-
88.5  
-
-
70  
11  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Burst Access Time Valid Clock to Output Delay  
AVD Setup Time to CLK  
AVD Hold Time from CLK  
AVD High to OE Low  
14.5  
tAVDS  
tAVDH  
tAVDO  
tACS  
tACH  
tBDH  
tOE  
5
7
0
5
7
4
-
-
5
6
0
5
6
4
-
-
-
-
-
Address Setup Time to CLK  
Address Hold Time from CLK  
Data Hold Time from Next Clock Cycle  
Output Enable to Data  
-
-
-
-
-
-
20  
14.5  
20  
15  
-
20  
11  
20  
15  
-
Output Enable to RDY valid  
CE Disable to High Z  
tOER  
tCEZ  
-
-
-
-
OE Disable to High Z  
tOEZ  
tCES  
tRDYA  
tRDYS  
tCH/L  
tCHCL  
-
-
CE Setup Time to CLK  
7
-
6
-
CLK to RDY Setup Time  
RDY Setup Time to CLK  
CLK High or Low Time  
14.5  
-
11  
-
4
4.5  
-
4
3.5  
-
-
-
CLK Fall or Rise Time  
3
3
47  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
SWITCHING WAVEFORMS  
5 cycles for initial access shown.  
CR setting : A14=0, A13=0, A12=1  
15.2 ns typ.  
tCES  
tCEZ  
CE  
CLK  
tAVDS  
tAVDH  
AVD  
A0-A23  
tBDH  
tACS  
tBA  
tACH  
Hi-Z  
DQ0-DQ15  
Da  
Da+1 Da+2  
tIAA  
Da+3  
Da+n  
tOEZ  
OE  
tOER  
tRDYS  
Hi-Z  
tRDYA  
Hi-Z  
RDY  
Figure 3. Burst Mode Read (66 MHz)  
Note: In order to avoid a bus conflict the OE signal is enabled on the next rising edge after AVD is going high.  
5 cycles for initial access shown.  
CR setting : A14=0, A13=0, A12=1  
18.5 ns typ.  
tCES  
tCEZ  
CE  
CLK  
tAVDS  
AVD  
A0-A23  
tAVDH  
tBDH  
tACS  
tBA  
tACH  
Hi-Z  
DQ0-DQ15  
Da  
Da+1 Da+2  
tIAA  
Da+3  
Da+n  
tOEZ  
OE  
tOER  
tRDYS  
Hi-Z  
tRDYA  
Hi-Z  
RDY  
Figure 4. Burst Mode Read (54 MHz)  
Note: In order to avoid a bus conflict the OE signal is enabled on the next rising edge after AVD is going high.  
48  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
SWITCHING WAVEFORMS  
5 cycles for initial access shown.  
CR setting : A14=0, A13=0, A12=1  
15.2 ns typ.  
tCES  
CE  
CLK  
tAVDS  
tAVDH  
AVD  
A0-A23  
tBDH  
tACS  
tBA  
tACH  
DQ0-DQ15  
tIAA  
D6  
D7  
D0  
D2  
D7  
D1  
D3  
D0  
OE  
tOER  
tRDYS  
Hi-Z  
tRDYA  
RDY  
Figure 5. 8 word Linear Burst Mode with Wrap Around (66 MHz)  
Note: In order to avoid a bus conflict the OE signal is enabled on the next rising edge after AVD is going high.  
5 cycles for initial access shown.  
CR setting : A14=0, A13=0, A12=1  
15.2 ns typ.(66MHz)  
tCES  
CE  
CLK  
tAVDS  
AVD  
A0-A23  
tAVDH  
tBDH  
tACS  
tBA  
tACH  
DQ0-DQ15  
tIAA  
D6  
D7  
D0  
D2  
D7  
D1  
D3  
D0  
OE  
tOER  
tRDYS  
Hi-Z  
tRDYA  
RDY  
Figure 6. 8 word Linear Burst with RDY Set One Cycle Before Data (CR setting : A18=1)  
Note: In order to avoid a bus conflict the OE signal is enabled on the next rising edge after AVD is going high.  
49  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
SWITCHING WAVEFORMS  
5 cycles for initial access shown.  
CR setting : A14=0, A13=0, A12=1  
15.2 ns typ(66MHz).  
tCES  
tCEZ  
CE  
CLK  
tAVDS  
tAVDH  
AVD  
A0-A23  
tBDH  
tACS  
tBA  
tACH  
Hi-Z  
DQ0-DQ15  
D6  
D7  
D8  
tIAA  
D9  
D13  
tOEZ  
OE  
tOER  
tRDYS  
Hi-Z  
tRDYA  
Hi-Z  
RDY  
Figure 7. 8 word Linear Burst Mode (No Wrap Case)  
Note: In order to avoid a bus conflict the OE signal is enabled on the next rising edge after AVD is going high.  
50  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
AC CHARACTERISTICS  
Asynchronous Read  
7B  
7C  
Parameter  
Symbol  
Unit  
Min  
Max  
90  
90  
-
Min  
Max  
80  
80  
-
Access Time from CE Low  
tCE  
tAA  
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
Asynchronous Access Time  
AVD Low Setup Time to CE Enable  
AVD Low Hold Time from CE Disable  
Output Enable to Output Valid  
tAVDCS  
tAVDCH  
tOE  
0
0
-
0
0
-
-
-
20  
-
20  
-
Read  
0
0
Output Enable Hold  
Time  
tOEH  
tOEZ  
Toggle and  
Data Polling  
10  
-
-
10  
-
-
ns  
ns  
Output Disable to High Z(Note 1)  
15  
15  
Note: 1. Not 100% tested.  
SWITCHING WAVEFORMS  
Asynchronous Mode Read  
VIL  
CLK  
CE  
AVD  
OE  
tAVDCH  
tAVDCS  
tOE  
tOEH  
WE  
tCE  
tOEZ  
DQ0-DQ15  
Valid RD  
tAA  
A0-A22  
VA  
Figure 8. Asynchronous Mode Read  
Note: VA=Valid Read Address, RD=Read Data.  
51  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
AC CHARACTERISTICS  
Hardware Reset(RESET)  
Parameter  
All Speed Options  
Symbol  
Unit  
Max  
Min  
RESET Pin Low(During Internal Routines)  
to Read Mode (Note)  
tReady  
tReady  
µs  
-
20  
RESET Pin Low(NOT During Internal Routines)  
to Read Mode (Note)  
ns  
-
500  
RESET Pulse Width  
tRP  
tRH  
200  
200  
20  
-
-
-
ns  
ns  
µs  
Reset High Time Before Read (Note)  
RESET Low to Standby Mode  
tRPD  
Note: Not 100% tested.  
SWITCHING WAVEFORMS  
CE, OE  
RESET  
tRH  
tRP  
tReady  
Reset Timings NOT during Internal Routines  
CE, OE  
RESET  
tReady  
tRP  
Reset Timings during Internal Routines  
Figure 9. Reset Timings  
52  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
AC CHARACTERISTICS  
Erase/Program Operation  
7B, 7C  
Parameter  
Symbol  
Unit  
Min  
100  
0
Typ  
Max  
WE Cycle Time(Note 1)  
tWC  
tAS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
Address Setup Time(Note 2)  
Address Hold Time(Note 2)  
Data Setup Time  
-
tAH  
50  
50  
0
-
tDS  
-
Data Hold Time  
tDH  
-
Read Recovery Time Before Write  
CE Setup Time  
tGHWL  
tCS  
-
0
5
-
CE Hold Time  
tCH  
5
-
WE Pulse Width  
tWP  
70  
30  
0
-
WE Pulse Width High  
tWPH  
tSR/W  
tPGM  
-
-
Latency Between Read and Write Operations  
Word Programming Operation  
Accelerated Single word Programming Operation  
Accelerated Quad word Programming Operation  
Block Erase Operation (Note 3)  
VPP Rise and Fall Time  
-
11.5  
6.5  
6.5  
0.7  
-
tACCPGM  
tACCPGM_QUAD  
tBERS  
tVPP  
-
µs  
µs  
-
-
sec  
ns  
µs  
500  
1
VPP Setup Time (During Accelerated Programming)  
VCC Setup Time  
tVPS  
-
tVCS  
µs  
50  
-
Notes:  
1. Not 100% tested.  
2. In write timing, addresses are latched on the falling edge of WE.  
3. Include the preprogramming time.  
FLASH Erase/Program Performance  
Limits  
Parameter  
Unit  
Comments  
Min.  
Typ.  
0.7  
Max.  
32 Kword  
4 Kword  
-
-
-
-
-
-
-
-
-
14  
Block Erase Time  
Chip Erase Time  
Includes 00h programming prior  
to erasure  
0.2  
4
sec  
360  
11.5  
6.5  
-
210  
120  
30  
-
Word Programming Time  
Accelerated Sinlge Programming Time (@word)  
Accelerated Quad Programming Time (@word)  
Chip Programming Time  
µs  
1.6  
Excludes system level overhead  
193  
109  
27  
Accelerated Single word Chip Programming Time  
Accelerated Quad word Chip Programming Time  
-
sec  
-
Minimum 100,000 cycles guaran-  
teed in all Bank  
Erase/Program Endurance (Note 3)  
100,000  
-
-
Cycles  
Notes:  
1. 25°C, VCC = 1.8V, 100,000 cycles, typical pattern.  
2. System-level overhead is defined as the time required to execute the two or four bus cycle command necessary to program each  
word. In the preprogramming step of the Internal Erase Routine, all words are programmed to 00H before erasure.  
3. 100K Program/Erase Cycle in all Bank  
53  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
SWITCHING WAVEFORMS  
Program Operations  
Program Command Sequence (last two cycles)  
Read Status Data  
tAS  
tAH  
A0:A23  
555h  
PA  
VA  
VA  
In  
DQ0-DQ15  
Complete  
Progress  
A0h  
PD  
tDS  
tDH  
CE  
OE  
WE  
tCH  
tWP  
tWPH  
tPGM  
tCS  
tWC  
VIL  
tVCS  
CLK  
VCC  
Notes:  
1. PA = Program Address, PD = Program Data, VA = Valid Address for reading status bits.  
2. “In progress” and “complete” refer to status of program operation.  
3. A16–A23 are don’t care during command sequence unlock cycles.  
4. Status reads in this figure is asynchronous read, but status read in synchronous mode is also supported.  
5. AVD Setup/Hold Time to CE Enable are same to Asynchronous Mode Read  
Figure 10. Program Operation Timing  
54  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Start  
555h/AAh  
2AAh/55h  
555h/A0h  
Program Address/Program Data  
DATA Polling or Toggle Bit  
Algorithm(See Below)  
NO  
Last Address?  
Address = Address + 1  
YES  
Program Completed  
Program Command Sequence (address/data)  
Start  
Read(DQ0~DQ7)  
Valid Address  
Start  
Read(DQ0~DQ7)  
Valid Address  
Read(DQ0~DQ7)  
Valid Address  
DQ6 = Toggle ?  
DQ7 = Data ?  
No  
No  
Yes  
Yes  
No  
No  
DQ5 = 1 ?  
Yes  
DQ5 = 1 ?  
Yes  
Read twice(DQ0~DQ7)  
Valid Address  
Read(DQ0~DQ7)  
Valid Address  
No  
Yes  
DQ6 = Toggle ?  
DQ7 = Data ?  
Yes  
Fail  
No  
Fail  
Pass  
Pass  
Figure 2. Toggle Bit Algorithms  
Figure 1. Data Polling Algorithms  
Figure 11. Program Operation Flow Chart  
55  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
SWITCHING WAVEFORMS  
Erase Operation  
Erase Command Sequence (last two cycles)  
Read Status Data  
555h for  
chip erase  
tAS  
tAH  
A0:A23  
DQ0-DQ15  
CE  
2AAh  
BA  
VA  
VA  
10h for  
chip erase  
In  
Complete  
Progress  
55h  
30h  
tDS  
tDH  
tCH  
OE  
tWP  
WE  
tWPH  
tBERS  
tCS  
tWC  
VIL  
CLK  
VCC  
tVCS  
Notes:  
1. BA is the block address for Block Erase.  
2. Address bits A16–A23 are don’t cares during unlock cycles in the command sequence.  
3. Status reads in this figure is asynchronous read, but status read in synchronous mode is also supported.  
4. AVD Setup/Hold Time to CE Enable are same to Asynchronous Mode Read  
Figure 11. Chlp/Block Erase Operations  
56  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Start  
555h/AAh  
2AAh/55h  
555h/80h  
555h/AAh  
2AAh/55h  
555h/10h(Chip Erase)  
BA/30h(Block Erase)  
DATA Polling or Toggle Bit  
Algorithm(See Below)  
Erase Completed  
Figure 13. Erase Operation Flow Chart  
Start  
Read(DQ0~DQ7)  
Valid Address  
Start  
Read(DQ0~DQ7)  
Valid Address  
Read(DQ0~DQ7)  
Valid Address  
DQ6 = Toggle ?  
DQ7 = Data ?  
No  
Yes  
Yes  
No  
No  
No  
DQ5 = 1 ?  
DQ5 = 1 ?  
Yes  
Yes  
Read twice(DQ0~DQ7)  
Valid Address  
Read(DQ0~DQ7)  
Valid Address  
No  
Yes  
DQ6 = Toggle ?  
DQ7 = Data ?  
Yes  
No  
Fail  
Fail  
Pass  
Pass  
Figure 2. Toggle Bit Algorithms  
Figure 1. Data Polling Algorithms  
57  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
SWITCHING WAVEFORMS  
Unlock Bypass Program Operations(Accelerated Program)  
CE  
WE  
PA  
A0:A23  
DQ0-DQ15  
Don’t Care  
A0h  
Don’t Care  
PD  
Don’t Care  
OE  
1us  
tVPS  
VID  
tVPP  
VPP  
VIL or VIH  
Unlock Bypass Block Erase Operations  
CE  
WE  
BA  
A0:A23  
555h for  
chip erase  
10h for  
chip erase  
DQ0-DQ15  
OE  
Don’t Care  
80h  
Don’t Care  
30h  
Don’t Care  
1us  
tVPS  
VID  
tVPP  
VPP  
VIL or VIH  
Notes:  
1. VPP can be left high for subsequent programming pulses.  
2. Use setup and hold times from conventional program operations.  
3. Unlock Bypass Program/Erase commands can be used when the VID is applied to Vpp.  
4. AVD Setup/Hold Time to CE Enable are same to Asynchronous Mode Read  
Figure 12. Unlock Bypass Operation Timings  
58  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Start  
Unlock Bypass Program Command  
Sequence (see below)  
DATA Polling or Toggle Bit  
Algorithm(See Below)  
NO  
Last Address?  
Address = Address + 1  
YES  
Program Completed  
Unlock Bypass Reset  
Command Sequence  
Unlock Bypass Program  
Command Sequence  
(address/data)  
(address/data)  
555h/AAh  
XXXh/90h  
XXXh/00h  
2AAh/55h  
555h/20h  
XXXh/A0h  
Figure 15. Unlock Bypass Operation Flow Chart  
Program Address/Program Data  
Start  
Read(DQ0~DQ7)  
Valid Address  
Start  
Read(DQ0~DQ7)  
Valid Address  
Read(DQ0~DQ7)  
Valid Address  
DQ6 = Toggle ?  
No  
DQ7 = Data ?  
No  
Yes  
Yes  
No  
No  
DQ5 = 1 ?  
DQ5 = 1 ?  
Yes  
Yes  
Read twice(DQ0~DQ7)  
Valid Address  
Read(DQ0~DQ7)  
Valid Address  
No  
Yes  
DQ6 = Toggle ?  
DQ7 = Data ?  
Yes  
No  
Fail  
Fail  
Pass  
Pass  
Figure 2. Toggle Bit Algorithms  
Figure 1. Data Polling Algorithms  
59  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
SWITCHING WAVEFORMS  
Data Polling Operations  
tCES  
CE  
CLK  
tAVDS  
AVD  
tAVDH  
tACS  
A0-A23  
VA  
VA  
tACH  
Status Data  
Status Data  
DQ0-DQ15  
tIAA  
OE  
tRDYS  
Hi-Z  
RDY  
Notes:  
1. VA = Valid Address. When the Internal Routine operation is complete, and Data Polling will output true data.  
Figure 13. Data Polling Timings (During Internal Routine)  
Toggle Bit Operations  
tCES  
CE  
CLK  
tAVDS  
AVD  
tAVDH  
tACS  
A0-A23  
VA  
VA  
tACH  
DQ0-DQ15  
Status Data  
Status Data  
tIAA  
OE  
tRDYS  
Hi-Z  
RDY  
Notes:  
1. VA = Valid Address. When the Internal Routine operation is complete, the toggle bits will stop toggling.  
Figure 14. Toggle Bit Timings(During Internal Routine)  
60  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
SWITCHING WAVEFORMS  
Read While Write Operations  
Last Cycle in  
Program or  
Block Erase  
Begin another  
Program or Erase  
Command Sequences  
Read status in same bank  
and/or array data from other bank  
Command Sequence  
tWC  
tRC  
tRC  
tWC  
CE  
OE  
tOE  
tOEH  
tGHWL  
WE  
tWPH  
tWP  
tDS  
tAA  
tDH  
tOEH  
RD  
DQ0-DQ15  
A0-A23  
PD/30h  
RD  
AAh  
tSR/W  
PA/BA  
RA  
RA  
555h  
Figure 15. Read While Write Operation  
Note:  
Breakpoints in waveforms indicate that system may alternately read array data from the “non-busy bank” and checking the status of the program or  
erase operation in the “busy” bank.  
61  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Crossing of First Word Boundary in Burst Read Mode  
The additional clock insertion for word boundary is needed only at the first crossing of word boundary. This means that no addtional  
clock cycle is needed from 2nd word boundary crossing to the end of continuous burst read. Also, the number of addtional clock cycle  
for the first word boundary can varies from zero to three cycles, and the exact number of additional clock cycle depends on the start-  
ing address of burst read.  
The rule to determine the additional clock cycle is as follows. All addresses can be divided into 4 groups. The applied rule is "The res-  
idue obtained when the address is divided by 4" or "two LSB bits of address". Using this rule, all address can be divided by 4 different  
groups as shown in below table. For simplicity of terminology, "4N" stands for the address of which the residue is "0"(or the two LSB  
bits are "00") and "4N+1" for the address of which the residue is "1"(or the two LSB bits are "01"), etc.  
The additional clock cycles for first word boundary crossing are zero, one, two or three when the burst read start from "4N" address,  
"4N+1" address, "4N+2" address or "4N+3" address respectively.  
Starting Address vs. Additional Clock Cycles for first word boundary  
Srarting Address Group  
for Burst Read  
Additional Clock Cycles for  
First Word Boundary Crossing  
The Residue of (Address/4)  
LSB Bits of Address  
4N  
0
1
2
3
00  
01  
10  
11  
0 cycle  
1 cycle  
2 cycles  
3 cycles  
4N+1  
4N+2  
4N+3  
Case 1 : Start from "4N" address group  
5 cycle for initial access shown.(54MHz case)  
A0-A23  
C
D
E
10  
11  
12  
13  
Data Bus  
F
CLK  
AVD  
C
D
11  
12  
13  
14  
E
F
10  
No Additional Cycle for First Word Boundary  
CE  
OE  
tCEZ  
tOEZ  
tOER  
RDY  
Notes:  
1. Address boundry occurs every 16 words beginning at address 00000FH , 00001FH , 00002FH , etc.  
2. Address 000000H is also a boundry crossing.  
3. No additional clock cycles are needed except for 1st boundary crossing.  
Figure 16. Crossing of first word boundary in burst read mode.  
62  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Case2 : Start from "4N+1" address group  
5 cycle for initial access shown.(54MHz case)  
A0-A23  
Data Bus  
D
E
F
10  
11  
12  
13  
CLK  
AVD  
D
E
11  
12  
13  
14  
F
10  
Additional 1 Cycle for First Word Boundary  
CE  
OE  
tCEZ  
tOEZ  
tOER  
RDY  
Case 3 : Start from "4N+2" address group  
5 cycle for initial access shown.(54MHz case)  
A0-A23  
Data Bus  
E
F
10  
11  
12  
13  
CLK  
AVD  
E
F
11  
12  
13  
14  
10  
Additional 2 Cycle for First Word Boundary  
CE  
OE  
tCEZ  
tOEZ  
tOER  
RDY  
Notes:  
1. Address boundry occurs every 16 words beginning at address 00000FH , 00001FH , 00002FH , etc.  
2. Address 000000H is also a boundry crossing.  
3. No additional clock cycles are needed except for 1st boundary crossing.  
Figure 16. Crossing of first word boundary in burst read mode.  
63  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Case4 : Start from "4N+3" address group  
5 cycle for initial access shown.(54MHz case)  
A0-A23  
Data Bus  
F
10  
1
12  
13  
CLK  
AVD  
F
10  
11  
12  
13  
14  
Additional 3 Cycle for First Word Boundary  
CE  
OE  
tCEZ  
tOEZ  
tOER  
RDY  
Notes:  
1. Address boundry occurs every 16 words beginning at address 00000FH , 00001FH , 00002FH , etc.  
2. Address 000000H is also a boundry crossing.  
3. No additional clock cycles are needed except for 1st boundary crossing.  
Figure 16. Crossing of first word boundary in burst read mode.  
64  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
128M Bit(8M x16)  
Synchronous Burst UtRAM M-die  
65  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
POWER UP SEQUENCE  
After applying VCC upto minimum operating voltage(2.5V), drive CS High first and then drive MRS High. Then the device gets into the  
Power Up mode. Wait for minimum 200µs to get into the normal operation mode. During the Power Up mode, the standby current can  
not be guaranteed. To get the stable standby current level, at least one cycle of active operation should be implemented regardless of  
wait time duration. To get the appropriate device operation, be sure to keep the following power up sequence.  
1. Apply power.  
2. Maintain stable power(Vcc min.=2.5V) for a minimum 200µs with CS and MRS high.  
Fig.3 POWER UP TIMING  
200µs  
VCC(Min)  
VCC  
VCCQ(Min)  
VCCQ  
Min. 0ns  
MRS  
Min. 200µs  
Min. 0ns  
CS  
Power Up Mode  
NormalOperation  
Fig.4 STANDBY MODE STATE MACHINES  
CS=UB=LB=VIL,  
WE=VIL, MRS=VIL  
CS=VIH  
MRS=VIH  
CS=VIL, UB or LB=VIL  
MRS=VIH  
CS=VIH  
MRS=VIH  
MRS=VIL  
Initial State  
(Wait 200µs)  
Standby  
Mode  
PAR  
Mode  
MRS Setting  
Power On  
Active  
MRS Setting  
CS=VIL,  
WE=VIL, MRS=VIL  
Default mode after power up is Asynchronous mode(4 Page Read and Asynchronous Write). But this default mode is not 100%  
guaranteed so MRS setting sequence is highly recommended after power up.  
For entry to PAR mode, drive MRS pin into VIL for over 0.5µs(suspend period) during standby mode after MRS setting has  
been completed(A4=1, A3=0). If MRS pin is driven into VIH during PAR mode, the device gets back to the standby mode  
without wake up sequence.  
66  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
FUNCTIONAL DESCRIPTION  
Table 3. ASYNCHRONOUS 4 PAGE READ & ASYNCHRONOUS WRITE MODE(A15/A14=0/0)  
CS  
H
H
L
MRS  
H
OE  
X1)  
X1)  
H
WE  
X1)  
X1)  
H
LB  
X1)  
X1)  
X1)  
H
UB  
X1)  
X1)  
X1)  
H
DQ0~7  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
DQ8~15  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
Mode  
Power  
Standby  
PAR  
Deselected  
L
Deselected  
H
Output Disabled  
Output Disabled  
Lower Byte Read  
Upper Byte Read  
Word Read  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
X1)  
L
X1)  
H
L
H
L
H
L
H
L
H
L
H
H
L
High-Z  
Dout  
L
H
L
H
L
L
Dout  
L
H
H
L
L
H
Din  
High-Z  
Din  
Lower Byte Write  
Upper Byte Write  
Word Write  
L
H
H
L
H
L
High-Z  
Din  
L
H
H
L
L
L
Din  
L
L
H
L
L
L
High-Z  
High-Z  
Mode Register Set  
1. X must be low or high state.  
2. In asynchronous mode, Clock and ADV are ignored.  
3. /WAIT pin is High-Z in Asynchronous mode.  
Table 5. SYNCHRONOUS BURST READ & SYNCHRONOUS BURST WRITE MODE(A15/A14=1/0)  
CS  
H
H
L
MRS  
H
OE  
X1)  
X1)  
H
WE  
X1)  
X1)  
H
LB  
X1)  
X1)  
X1)  
H
UB  
X1)  
X1)  
X1)  
H
DQ0~7  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
DQ8~15  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Dout  
CLK  
X2)  
ADV  
X2)  
X2)  
H
Mode  
Power  
Standby  
PAR  
Deselected  
X2)  
L
Deselected  
X2)  
H
Output Disabled  
Output Disabled  
Read Command  
Lower Byte Read  
Upper Byte Read  
Word Read  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
X1)  
X1)  
L
X1)  
H
X2)  
L
H
H
X1)  
L
X1)  
H
L
H
L
H
H
H
H
H
L
H
L
H
H
L
High-Z  
Dout  
L
H
L
H
L
L
Dout  
X1)  
H
X1)  
L
X1)  
H
L
H
L or  
X1)  
X1)  
X1)  
L or  
High-Z  
Din  
High-Z  
High-Z  
Din  
Write Command  
Lower Byte Write  
Upper Byte Write  
Word Write  
L
H
H
H
H
L
H
H
H
L
High-Z  
Din  
L
H
H
L
L
Din  
L
L
H
L
L
High-Z  
High-Z  
Mode Register Set  
1. X must be low or high state.  
2. X means "Don’t care"(can be low, high or toggling).  
3. /WAIT is device output signal so does not have any affect to the mode definition. Please refer to each timing diagram for /WAIT pin function.  
4. The last data written in the previous Asynchronous write mode is not valid. To make the lastly written data valid, then implement at least one dummy  
write cycle before change mode into synchronous burst read and synchronous burst write mode.  
5. The data written in Synchronous burst write operation can be corrupted by the next Asynchronous write operation. So the transition from Synchronous  
burst write operation to Asynchronous write operation is prohibited.  
67  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
MODE REGISTER SETTING OPERATION  
The device has several modes : Asynchronous Page Read mode, Asynchronous Write mode, Synchronous Burst Read mode, Syn-  
chronous Burst Write mode, Standby mode and Partial Array Refresh(PAR) mode.  
Partial Array Refresh(PAR) mode is defined through Mode Register Set(MRS) option. Mode Register Set(MRS) option also defines  
Burst Length, Burst Type, Wait Polarity and Latency Count at Synchronous Burst Read/Write mode.  
Mode Register Set (MRS)  
The mode register stores the data for controlling the various operation modes of UtRAM. It programs Partial Array Refresh(PAR),  
Burst Length, Burst Type, Latency Count and various vendor specific options to make UtRAM useful for a variety of different applica-  
tions. The default values of mode register are defined, therefore when the reserved address is input, the device runs at default modes.  
The mode register is written by driving CS, ADV, WE, UB, LB and MRS to VIL and driving OE to VIH during valid address. The mode  
register is divided into various fields depending on the fields of functions. The Partial Array Refresh(PAR) field uses A0~A4, Burst  
Length field uses A5~A7, Burst Type uses A8, Latency Count uses A9~A11, Wait Polarity uses A13, Operation Mode uses A14~A15  
and Driver Strength uses A16~A17.  
Refer to the Table below for detailed Mode Register Setting. A18~A22 addresses are "Don’t care" in Mode Register Setting.  
Table 6. Mode Register Setting according to field of function  
Address  
Function  
A17~A16  
A15~A14  
A13  
A12  
A11~A9  
A8  
A7~A5  
A4~A3  
A2  
A1~A0  
DS  
MS  
WP  
RFU  
Latency  
BT  
BL  
PAR  
PARA  
PARS  
NOTE : DS(Driver Strength), MS(Mode Select), WP(Wait Polarity), Latency(Latency Count), BT(Burst Type),  
BL(Burst Length), PAR(Partial Array Refresh), PARA(Partial Array Refresh Array),  
PARS(Partial Array Refresh Size), RFU(Reserved for Future Use)  
Table 7. Mode Register Set  
Driver Strength  
Mode Select  
MS  
A17  
0
A16  
0
DS  
A15  
0
A14  
0
Full Drive  
1/2 Drive  
1/4 Drive  
Async. 4 Page Read / Async. Write  
Not Support  
0
1
0
1
1
0
1
0
Sync. Burst Read / Sync. Burst Write**  
WAIT Polarity  
WP  
RFU  
Latency Count  
Burst Type  
Burst Length  
A13  
0
A12  
RFU  
Must  
-
A11  
0
A10  
0
A9  
0
Latency  
A8  
0
BT  
A7  
0
A6  
1
A5  
0
BL  
Low Enable  
0
1
3*  
4
Linear  
4 word  
8 word  
1
High Enable  
0
0
1
1
Interleave  
0
1
1
0
1
0
5
1
0
0
1
16 word  
0
1
1
6
1
1
Full(256 word)  
Partial Array Refresh  
PAR Array  
PARA  
PAR Size  
A4  
1
A3  
0
PAR  
A2  
0
A1  
A0  
0
PARS  
PAR Enable  
Bottom Array  
0
0
1
1
Full Array  
3/4 Array  
1/2 Array  
1/4 Array  
1
1
PAR Disable  
1
Top Array  
1
0
1
NOTE : The address bits other than those listed in the table above are reserved for future use.  
Each field has its own default mode and these default modes are written in blue-bold in the table above.  
But this default mode is not 100% guaranteed so MRS setting sequence is highly recommended after power up.  
A12 is a reserved bit for future use. A12 must be set as "0".  
Not all the mode settings are tested. Per the mode settings to be tested, please contact Samsung Product Planning team.  
256 word Full page burst mode needs to meet tBC(Burst Cycle time) parameter as max. 2500ns.  
* Latency 3 is supported in 52.9MHz with tCD 12ns.  
** The last data written in the previous Asynchronous write mode is not valid. To make the lastly written data valid, then imple-  
ment at least one dummy write cycle before change mode into synchronous burst read and synchronous burst write mode.  
** The data written in Synchronous burst write operation can be corrupted by the next Asynchronous write operation. So the  
transition from Synchronous burst write operation to Asynchronous write operation is prohibited.  
68  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
MRS pin Control Type Mode Register Setting Timing  
In this device, MRS pin is used for two purposes. One is to get into the mode register setting and the other one is to execute Partial  
Array Refresh mode.  
To get into the Mode Register Setting, the system must drive MRS pin to VIL and immediately(within 0.5µs) issue a write com-  
mand(drive CS, ADV, UB, LB and WE to VIL and drive OE to VIH during valid address). If the subsequent write command(WE signal  
input) is not issued within 0.5µs, then the device might get into the PAR mode.  
Fig.5 MODE REGISTER SETTING TIMING(OE=VIH)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
CLK  
ADV  
tWC  
Address  
tCW  
tAW  
CS  
tBW  
UB, LB  
tWP  
WE  
tAS  
tWU  
tMW  
MRS  
Register Update Complete  
Register Write Complete  
Register Write Start  
(MRS SETTING TIMING)  
1. Clock input is ignored.  
Table 8. MRS AC CHARACTERISTICS(VCC=2.5~2.7V, VCCQ=1.7~2.0V TA=-30 to 85°C, Maximum Main Clock Frequency  
= 52.9MHz)  
Speed  
Parameter List  
Symbol  
Units  
Min  
0
Max  
500  
-
MRS Enable to Register Write Start  
End of Write to MRS Disable  
tMW  
tWU  
ns  
ns  
MRS  
0
69  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
ASYNCHRONOUS OPERATION  
SYNCHRONOUS BURST OPERATION  
Burst mode operations enable the system to get high perfor-  
mance read and write operation. The address to be accessed is  
latched on the rising edge of clock or ADV(whichever occurs  
first). CS should be setup before the address latch. During this  
first clock rising edge, WE indicates whether the operation is  
going to be a Read(WE High) or a Write(WE Low).  
Asynchronous 4 Page Read Operation  
Asynchronous normal read operation starts when CS, OE and  
UB or LB are driven to VIL under the valid address without tog-  
gling page addresses(A0, A1). If the page addresses(A0, A1)  
are toggled under the other valid address, the first data will be  
out with the normal read cycle time(tRC) and the second, the  
third and the fourth data will be out with the page cycle  
time(tPC). (MRS and WE should be driven to VIH during the  
asynchronous (page) read operation)  
For the optimized Burst Mode to each system, the system  
should determine how many clock cycles are required for the  
first data of each burst access(Latency Count), how many  
words the device outputs at an access(Burst Length) and which  
type of burst operation(Burst Type : Linear or Interleave) is  
needed. The Wait Polarity should also be determined.(See  
Table "Mode Register Set")  
Clock, ADV, WAIT signals are ignored during the asynchronous  
(page) read operation.  
Asynchronous Write Operation  
Synchronous Burst Read Operation  
Asynchronous write operation starts when CS, WE and UB or  
LB are driven to VIL under the valid address.(MRS and OE  
should be driven to VIH during the asynchronous write opera-  
tion.) Clock, ADV, WAIT signals are ignored during the asyn-  
chronous (page) read operation.  
The Synchronous Burst Read command is implemented when  
the clock rising is detected during the ADV low pulse. ADV and  
CS should be set up before the clock rising. During Read com-  
mand, WE should be held in VIH. The multiple clock risings(dur-  
ing low ADV period) are allowed but the burst operation starts  
from the first clock rising. The first data will be out with Latency  
count and tCD.  
Synchronous Burst Write Operation  
The Synchronous Burst Write command is implemented when  
the clock rising is detected during the ADV and WE low pulse.  
ADV, WE and CS should be set up before the clock rising. The  
multiple clock risings(during low ADV period) are allowed but  
the burst operation starts from the first clock rising. The first  
data will be written in the Latency clock with tDS.  
Fig.6 ASYNCHRONOUS 4-PAGE READ  
Fig.8 SYNCHRONOUS BURST READ(Latency 5, BL 4, WP : Low Enable)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
CLK  
A22~A2  
A1~A0  
CS  
ADV  
Addr.  
CS  
UB, LB  
OE  
UB, LB  
OE  
Data out  
Data out  
WAIT  
Fig.9 SYNCHRONOUS BURST WRITE(Latency 5, BL 4, WP : Low Enable)  
Fig.7 ASYNCHRONOUS WRITE  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
CLK  
Address  
ADV  
Addr.  
CS  
CS  
UB, LB  
WE  
UB, LB  
WE  
High-Z  
Data in  
Data in  
High-Z  
High-Z  
Data out  
WAIT  
70  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
SYNCHRONOUS BURST OPERATION TERMINOLOGY  
Clock(CLK)  
The clock input is used as the reference for synchronous burst read and write operation of UtRAM. The synchronous burst read and  
write operation is synchronized to the rising edge of the clock. The clock transitions must swing between VIL and VIH.  
Latency Count  
The Latency Count configuration tells the device how many clocks must elapse from the burst command before the first data should  
be available on its data pins. This value depends on the input clock frequency.  
The supported Latency Count is as follows.  
Table 9. Latency Count support : 3, 4, 5  
Clock Frequency  
Latency Count  
Upto 66MHz  
5
Upto 54MHz  
4
Upto 52.9MHz  
3
Table 10. Number of Clocks for 1st Data  
Set Latency  
Latency 3  
Latency 4  
Latency 5  
# of Clocks for 1st data(Read)  
# of Clocks for 1st data(Write)  
4
2
5
3
6
4
Fig.10 Latency Configuration(Read)  
T
Clock  
ADV  
Address  
Latency 3  
Data out  
DQ1  
DQ2  
DQ1  
DQ3  
DQ2  
DQ1  
DQ4  
DQ3  
DQ2  
DQ1  
DQ5  
DQ4  
DQ3  
DQ2  
DQ6  
DQ5  
DQ4  
DQ3  
DQ7  
DQ6  
DQ5  
DQ4  
DQ8  
DQ7  
DQ6  
DQ5  
DQ9  
Latency 4  
DQ8  
DQ7  
DQ6  
Data out  
Latency 5  
Data out  
Latency 6  
Data out  
NOTE : The first data will always keep the Latency. From the second data, some period of wait time might be caused by WAIT pin.  
Burst Length  
Burst Length identifies how many data the device outputs at an access. The device supports 4 word, 8 word, 16 word and 256 word  
burst read or write. 256 word Full page burst mode needs to meet tBC(Burst Cycle time) parameter as max. 2500ns.  
The first data will be out with the set Latency + tCD. From the second data, the data will be out with tCD from each clock.  
Burst Stop  
Burst stop is used when the system wants to stop burst operation on special purpose. If driving CS to VIH during the burst read opera-  
tion, then the burst operation will be stopped. During the burst read operation, the new burst operation can not be issued. The new  
burst operation can be issued only after the previous burst operation is finished.  
The burst stop feature is very useful because it enables the user to utilize the un-supported burst length such as 1 burst or 2 burst  
which accounts for big portion in usage for the mobile handset application environment.  
71  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
SYNCHRONOUS BURST OPERATION TERMINOLOGY  
WAIT Control(WAIT)  
The WAIT signal is the device’s output signal which indicates to the host system when the device’s data-out or data-in is valid.  
To be compatible with the Flash interfaces of various microprocessor types, the WAIT polarity(WP) can be configured. The polarity  
can be programmed to be either low enable or high enable.  
For the timing of WAIT signal, the WAIT signal should be set active one clock prior to the data regardless of Read or Write cycle.  
Fig.11 WAIT Control and Read/Write Latency Control(LATENCY : 5, Burst Length : 4, WP : Low Enable)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
CLK  
ADV  
CS  
Latency 5  
Read  
Data out  
DQ0  
D2  
DQ1  
D3  
DQ2  
DQ3  
High-Z  
High-Z  
WAIT  
Latency 5  
Write  
Data in  
D0  
D1  
WAIT  
Burst Type  
The device supports Linear type burst sequence and Interleave type burst sequence. Linear type burst sequentially increments the  
burst address from the starting address. The detailed Linear and Interleave type burst address sequence is shown in burst sequence  
table in next page.  
72  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 11. Burst Sequence  
Burst Address Sequence(Decimal)  
Wrap1)  
Start  
Addr.  
4 word Burst  
8 word Burst  
Linear  
16 word Burst  
Linear Interleave  
Full Page(256 word)  
Linear  
Linear  
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
Interleave  
0-1-2-3  
1-0-3-2  
2-3-0-1  
3-2-1-0  
Interleave  
0-1-2-...-6-7  
1-0-3-...-7-6  
2-3-0-...-4-5  
3-2-1-...-5-4  
4-5-6-...-2-3  
5-4-7-...-3-2  
6-7-4-...-0-1  
7-6-5-...-1-0  
0
1
0-1-...-5-6-7  
1-2-...-6-7-0  
2-3-...-7-0-1  
3-4-...-0-1-2  
4-5-...-1-2-3  
5-6-...-2-3-4  
6-7-...-3-4-5  
7-0-...-4-5-6  
0-1-2-...-14-15  
1-2-3-...-15-0  
2-3-4-...-0-1  
3-4-5-...-1-2  
4-5-6-...-2-3  
5-6-7-...-3-4  
6-7-8-...-4-5  
7-8-9-...-5-6  
~
0-1-2-3-4...14-15  
1-0-3-2-5...15-14  
2-3-0-1-6...12-13  
3-2-1-0-7...13-12  
4-5-6-7-0...10-11  
5-4-7-6-1...11-10  
6-7-4-5-2...8-9  
7-6-5-4-3...9-8  
~
0-1-2-...-254-255  
1-2-3-...-255-0  
2
2-3-4-...-255-0-1  
3-4-5-...-255-0-1-2  
4-5-6-...-255-0-1-2-3  
5-6-7-...-255-...-3-4  
6-7-8-...-255-...-4-5  
7-8-9-...-255-...-5-6  
~
3
4
5
6
7
~
14  
15  
~
14-15-0-...-12-13  
15-0-1-...-13-14  
14-15-12-...-0-1  
15-14-13-...-1-0  
14-15-...-255-...-12-13  
15-16-...-255-...-13-14  
~
255  
255-0-1-...-253-254  
1. Wrap : Burst Address wraps within word boundary and ends after fulfilled the burst length.  
2. 256 word Full page burst mode needs to meet tBC(Burst Cycle time) parameter as max. 2500ns.  
73  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
LOW POWER FEATURES  
Driver Strength Optimization  
Internal TCSR  
The optimization of output driver strength is possible through  
the mode register setting to adjust for the different data load-  
ings. Through this driver strength optimization, the device can  
minimize the noise generated on the data bus during read oper-  
ation. The device supports full drive, 1/2 drive and 1/4 drive.  
The internal Temperature Compensated Self Refresh(TCSR)  
feature is a very useful tool for reducing standby current in room  
temperature(below 40°C). DRAM cell has weak refresh charac-  
teristics in higher temperature. So high temperature requires  
more refresh cycles, which lead to standby current increase.  
Without internal TCSR, the refresh cycle should be set as worst  
condition so as to cover high temperature(85°C) refresh char-  
acteristics. But with internal TCSR, the refresh cycle below  
40°C can be optimized, so the standby current in room temper-  
ature can be highly reduced. This feature is really beneficial to  
mobile phone because most of mobile phones are used at  
below 40°C in the phone standby mode.  
Partial Array Refresh(PAR) mode  
The PAR mode enables the user to specify the active memory  
array size. UtRAM consists of 4 blocks and user can select  
1 block, 2 blocks, 3 blocks or all blocks as active memory array  
through Mode Register Setting. The active memory array is  
periodically refreshed whereas the disabled array is not going  
to be refreshed and so the previously stored data will get lost.  
Even though PAR mode is enabled through the Mode Register  
Setting, PAR mode execution by MRS pin is still needed.  
The normal operation can be executed even in refresh-disabled  
array as long as MRS pin is not driven to low for over 0.5µs.  
Driving MRS pin to high makes the device to get back to the  
normal operation mode from PAR executed mode,  
Fig.13 PAR MODE EXECUTION and EXIT  
0.5µs  
MRS  
Normal  
Operation  
Normal  
Operation  
Suspend  
PAR mode  
MODE  
CS  
Refer to Fig.13 and Table 12 for PAR operation and PAR  
address mapping.  
Table 12. PAR MODE CHARACTERISTIC  
Standby3)  
(ISB1, <40°C) (ISB1, <85°C)  
Standby3)  
Address  
Power Mode  
Address  
(Top Array)2)  
Memory  
Cell Data  
Wait  
Time(µs)  
(Bottom Array)2)  
Valid1)  
Valid1)  
Valid1)  
Valid1)  
Standby(Full Array)  
000000h ~ 7FFFFFh  
000000h ~ 5FFFFFh  
000000h ~ 3FFFFFh  
000000h ~ 1FFFFFh  
000000h ~ 7FFFFFh  
200000h ~ 7FFFFFh  
400000h ~ 7FFFFFh  
600000h ~ 7FFFFFh  
130µA  
125µA  
120µA  
115µA  
250µA  
235µA  
220µA  
205µA  
0
0
0
0
Partial Refresh(3/4 Block)  
Partial Refresh(1/2 Block)  
Partial Refresh(1/4 Block)  
1. Only the data in the refreshed block are valid  
2. PAR Array can be selected through Mode Register Set(See Page 66)  
3. Standby mode is supposed to be set up after at least one active operation.after power up.  
ISB1 is measured after 60ms from the time when standby mode is set up.  
74  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 14. ABSOLUTE MAXIMUM RATINGS1)  
Item  
Voltage on any pin relative to Vss  
Power supply voltage relative to Vss  
Output power supply voltage relative to Vss  
Power Dissipation  
Symbol  
VIN, VOUT  
VCC  
Ratings  
Unit  
-0.2 to VCC+0.3V  
-0.2 to 3.0V  
-0.2 to 2.5V  
1.0  
V
V
VCCQ  
PD  
V
W
°C  
°C  
Storage temperature  
TSTG  
-65 to 150  
-30 to 85  
Operating Temperature  
TA  
1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be  
restricted to be used under recommended operating condition. Exposure to absolute maximum rating conditions longer than 1 second may affect reli-  
ability.  
Table 15. RECOMMENDED DC OPERATING CONDITIONS1)  
Item  
Symbol  
VCC  
Min  
2.5  
Typ  
2.6  
1.85  
0
Max  
Unit  
V
Power supply voltage  
I/O power supply voltage  
Ground  
2.7  
VCCQ  
Vss  
1.7  
2.0  
V
0
0
V
VCCQ+0.22)  
0.4  
Input high voltage  
Input low voltage  
VIH  
0.8 x VCCQ  
-0.23)  
-
V
VIL  
-
V
1. TA=-30 to 85°C, otherwise specified.  
2. Overshoot: VCC+1.0V in case of pulse width 20ns.  
3. Undershoot: -1.0V in case of pulse width 20ns.  
4. Overshoot and undershoot are sampled, not 100% tested.  
75  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Table 16. CAPACITANCE1)(f=1MHz, TA=25°C)  
Item  
Input capacitance  
Symbol  
CIN  
Test Condition  
VIN=0V  
Min  
Max  
8
Unit  
pF  
-
-
Input/Output capacitance  
CIO  
VIO=0V  
10  
pF  
1. Capacitance is sampled, not 100% tested.  
Table 17. DC AND OPERATING CHARACTERISTICS  
Symbol  
ILI  
Item  
Test Conditions  
Min  
-1  
Typ  
Max Unit  
Input Leakage Current  
Output Leakage Current  
VIN=Vss to VCCQ  
-
-
1
1
µA  
µA  
ILO  
CS=VIH, MRS=VIH, OE=VIH or WE=VIL, VIO=Vss to VCCQ  
-1  
Average Operating  
Current(Async)  
Cycle time=tRC+3tPC, IIO=0mA, 100% duty, CS=VIL, MRS=VIH,  
VIN=VIL or VIH  
ICC2  
ICC3  
-
-
-
-
40  
40  
mA  
Average Operating  
Current(Sync)  
Burst Length 4, Latency 3, 52.9MHz, IIO=0mA, Address transi-  
tion 1 time, CS=VIL, MRS=VIH, VIN=VIL or VIH  
mA  
Output Low Voltage  
Output High Voltage  
VOL  
VOH  
IOL=0.1mA  
IOH=-0.1mA  
-
-
-
-
-
-
-
-
-
-
-
0.2  
-
V
V
1.4  
CSVCCQ-0.2V, MRSVCCQ-0.2V, Other  
inputs=Vss to VCCQ  
< 40°C  
< 85°C  
-
-
-
-
-
-
-
-
130  
250  
125  
120  
115  
235  
220  
205  
µA  
µA  
2)  
Standby Current(CMOS)  
Partial Refresh Current  
ISB1  
3/4 Block  
< 40°C  
µA  
1/2 Block  
1/4 Block  
3/4 Block  
1/2 Block  
1/4 Block  
MRS0.2V, CSVCCQ-0.2V  
Other inputs=Vss to VCCQ  
1)  
ISBP  
< 85°C  
µA  
1. Full Array Partial Refresh Current(ISBP) is same as Standby Current(ISB1).  
2. Standby mode is supposed to be set up after at least one active operation.after power up.  
ISB1 is measured after 60ms from the time when standby mode is set up.  
76  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Vtt=0.5 x VCCQ  
Figure 14. AC Output Load Circuit  
AC OPERATING CONDITIONS  
TEST CONDITIONS(Test Load and Test Input/Output Reference)  
Input pulse level: 0.2 to VCCQ-0.2V  
50Ω  
Input rising and falling time: 3ns  
Input and output reference voltage: 0.5 x VCCQ  
Output load: CL=30pF  
Dout  
Z0=50Ω  
30pF  
Table 18. ASYNCHRONOUS AC CHARACTERISTICS (VCC=2.5~2.7V, VCCQ=1.7~2.0V, TA=-30 to 85°C)  
Speed  
Parameter List  
Symbol  
Units  
Min  
10  
70  
25  
-
Max  
Common  
CS High Pulse Width  
tCSHP(A)  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Read Cycle Time  
tRC  
tPC  
Page Read Cycle Time  
-
Address Access Time  
tAA  
70  
20  
70  
35  
35  
-
Page Access Time  
tPA  
-
Chip Select to Output  
tCO  
tOE  
-
Output Enable to Valid Output  
UB, LB Access Time  
-
Async.  
(Page)  
Read  
tBA  
-
Chip Select to Low-Z Output  
UB, LB Enable to Low-Z Output  
Output Enable to Low-Z Output  
Chip Disable to High-Z Output  
UB, LB Disable to High-Z Output  
Output Disable to High-Z Output  
Output Hold  
tLZ  
10  
5
tBLZ  
tOLZ  
tCHZ  
tBHZ  
tOHZ  
tOH  
tWC  
tCW  
tADV  
tAS  
-
5
-
0
12  
12  
12  
-
0
0
3
Write Cycle Time  
70  
60  
7
-
Chip Select to End of Write  
ADV Minimum Low Pulse Width  
Address Set-up Time to Beginning of Write  
Address Valid to End of Write  
UB, LB Valid to End of Write  
Write Pulse Width  
-
-
0
-
tAW  
tBW  
tWP  
tWHP  
tWR  
tDW  
tDH  
60  
60  
551)  
5
-
Async.  
Write  
-
-
WE High Pulse Width  
-
Write Recovery Time  
0
-
Data to Write Time Overlap  
Data Hold from Write Time  
30  
0
-
-
1. tWP(min)=70ns for continuous write operation over 50 times.  
77  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
ASYNCHRONOUS READ TIMING WAVEFORM  
Fig.15 TIMING WAVEFORM OF ASYNCHRONOUS READ CYCLE (MRS=VIH, WE=VIH, WAIT=High-Z)  
tRC  
Address  
tAA  
tCSHP(A)  
tOH  
tCO  
CS  
tCHZ  
tBHZ  
tBA  
UB, LB  
tOE  
OE  
tOLZ  
tBLZ  
tLZ  
tOHZ  
High-Z  
Data out  
Data Valid  
(ASYNCHRONOUS READ CYCLE)  
1. tCHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.  
2. At any given temperature and voltage condition, tCHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device  
interconnection.  
3. In asynchronous read cycle, Clock, ADV and WAIT signals are ignored.  
Table 19. ASYNCHRONOUS READ AC CHARACTERISTICS  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
-
Min  
5
Max  
-
tRC  
tAA  
70  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOLZ  
tBLZ  
tLZ  
ns  
ns  
ns  
ns  
ns  
ns  
70  
70  
35  
35  
-
5
-
tCO  
-
10  
0
-
tBA  
-
tCHZ  
tBHZ  
tOHZ  
12  
12  
12  
tOE  
-
0
tOH  
3
10  
0
tCSHP(A)  
-
78  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
ASYNCHRONOUS READ TIMING WAVEFORM  
Fig.16 TIMING WAVEFORM OF PAGE READ CYCLE(MRS=VIH, WE=VIH, WAIT=High-Z)  
tRC  
Valid  
Address  
A22~A2  
A1~A0  
tOH  
tAA  
Valid  
Address  
Valid  
Valid  
Valid  
Address Address Address  
tPC  
tCO  
CS  
tBA  
UB, LB  
tBHZ  
tOE  
OE  
tCHZ  
tOHZ  
tOLZ  
tBLZ  
tPA  
tLZ  
High Z  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Data  
Valid  
Data out  
(ASYNCHRONOUS 4 PAGE READ CYCLE)  
1. tCHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.  
2. At any given temperature and voltage condition, tCHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device  
interconnection.  
3. In asynchronous 4 page read cycle, Clock, ADV and WAIT signals are ignored.  
Table 20. ASYNCHRONOUS PAGE READ AC CHARACTERISTICS  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
-
Min  
3
Max  
tRC  
tAA  
tPC  
tPA  
tCO  
tBA  
tOE  
70  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOH  
tOLZ  
tBLZ  
tLZ  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
70  
-
5
25  
-
5
-
20  
70  
35  
35  
10  
0
-
-
tCHZ  
tBHZ  
tOHZ  
12  
12  
12  
-
0
-
0
79  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
ASYNCHRONOUS WRITE TIMING WAVEFORM  
Fig.17 TIMING WAVEFORM OF WRITE CYCLE(1)(MRS=VIH, OE=VIH, WAIT=High-Z, WE Controlled)  
tWC  
tWC  
Address  
CS  
tCSHP(A)  
tWR  
tAW  
tCW  
tAW  
tCW  
tWR  
tBW  
tBW  
UB, LB  
WE  
tWHP  
tAS  
tWP  
tWP  
tAS  
tDH  
tDH  
tDW  
tDW  
Data in  
Data Valid  
Data Valid  
Data out  
High-Z  
High-Z  
(ASYNCHRONOUS WRITE CYCLE - WE Controlled)  
1. A write occurs during the overlap(tWP) of low CS and low WE. A write begins when CS goes low and WE goes low with asserting UB  
or LB for single byte operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest transition  
when CS goes high or WE goes high. The tWP is measured from the beginning of write to the end of write.  
2. tCW is measured from the CS going low to the end of write.  
3. tAS is measured from the address valid to the beginning of write.  
4. tWR is measured from the end of write to the address change. tWR is applied in case a write ends with CS or WE going high.  
5. In asynchronous write cycle, Clock, ADV and WAIT signals are ignored.  
6. Condition for continuous write operation over 50 times : tWP(min)=70ns  
Table 21. ASYNCHRONOUS WRITE AC CHARACTERISTICS(WE Controlled)  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
70  
Max  
Min  
0
Max  
tWC  
tCW  
tAW  
tBW  
tWP  
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
tAS  
tWR  
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
60  
0
60  
tDW  
30  
0
60  
tDH  
551)  
tCSHP(A)  
10  
1. tWP(min)=70ns for continuous write operation over 50 times.  
80  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
ASYNCHRONOUS WRITE TIMING WAVEFORM  
Fig.18 TIMING WAVEFORM OF WRITE CYCLE(2)(MRS=VIH, OE=VIH, WAIT=High-Z, UB & LB Controlled)  
tWC  
Address  
tWR  
tCW  
CS  
tAW  
tBW  
UB, LB  
tAS  
tWP  
WE  
tDH  
tDW  
Data Valid  
Data in  
High-Z  
Data out  
High-Z  
(ASYNCHRONOUS WRITE CYCLE - UB & LB Controlled)  
1. A write occurs during the overlap(tWP) of low CS and low WE. A write begins when CS goes low and WE goes low with asserting UB  
or LB for single byte operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest transition  
when CS goes high or WE goes high. The tWP is measured from the beginning of write to the end of write.  
2. tCW is measured from the CS going low to the end of write.  
3. tAS is measured from the address valid to the beginning of write.  
4. tWR is measured from the end of write to the address change. tWR is applied in case a write ends with CS or WE going high.  
5. In asynchronous write cycle, Clock, ADV and WAIT signals are ignored.  
Table 22. ASYNCHRONOUS WRITE AC CHARACTERISTICS(UB & LB Controlled)  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
70  
Max  
Min  
0
Max  
tWC  
tCW  
tAW  
tBW  
tWP  
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
tAS  
tWR  
tDW  
tDH  
-
-
-
-
ns  
ns  
ns  
ns  
60  
0
60  
30  
0
60  
551)  
1. tWP(min)=70ns for continuous write operation over 50 times.  
81  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
Vtt=0.5 x VCCQ  
Figure 24. AC Output Load Circuit  
AC OPERATING CONDITIONS  
TEST CONDITIONS(Test Load and Test Input/Output Reference)  
Input pulse level: 0.2 to VCCQ-0.2V  
50Ω  
Input rising and falling time: 3ns  
Input and output reference voltage: 0.5 x VCCQ  
Output load: CL=30pF  
Dout  
Z0=50Ω  
30pF  
Table 28. SYNCHRONOUS AC CHARACTERISTICS (VCC=2.5~2.7V, VCCQ=1.7~2.0V, TA=-30 to 85°C, Maximum Main Clock  
Frequency=52.9MHz)  
Speed  
Parameter List  
Clock Cycle Time  
Symbol  
Units  
Min  
18.9  
-
Max  
T
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock  
Clock  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Burst Cycle Time  
tBC  
2500  
Address Set-up Time to ADV Falling(Burst)  
Address Hold Time from ADV Rising(Burst)  
ADV Setup Time  
tAS(B)  
tAH(B)  
tADVS  
tADVH  
tCSS(B)  
tBEADV  
tBSADV  
tCSLH  
tCSHP  
tADHP  
tWL  
0
7
5
7
5
7
12  
7
5
5
-
-
-
-
ADV Hold Time  
-
CS Setup Time to Clock Rising(Burst)  
Burst End to New ADV Falling  
Burst Stop to New ADV Falling  
CS Low Hold Time from Clock  
CS High Pulse Width  
-
Burst  
Operation  
(Common)  
-
-
-
-
ADV High Pulse Width  
-
Chip Select to WAIT Low  
10  
10  
12  
12  
-
ADV Falling to WAIT Low  
tAWL  
tWH  
-
Clock to WAIT High  
-
Chip De-select to WAIT High-Z  
UB, LB Enable to End of Latency Clock  
Output Enable to End of Latency Clock  
UB, LB Valid to Low-Z Output  
Output Enable to Low-Z Output  
Latency Clock Rising Edge to Data Output  
Output Hold  
tWZ  
-
tBEL  
1
1
5
5
-
tOEL  
tBLZ  
-
-
tOLZ  
tCD  
-
Burst Read  
Operation  
12  
-
tOH  
3
-
Burst End Clock to Output High-Z  
Chip De-select to Output High-Z  
Output Disable to Output High-Z  
UB, LB Disable to Output High-Z  
WE Set-up Time to Command Clock  
WE Hold Time from Command Clock  
WE High Pulse Width  
tHZ  
12  
12  
12  
12  
-
tCHZ  
tOHZ  
tBHZ  
tWES  
tWEH  
tWHP  
tBS  
-
-
-
5
5
5
5
5
7
7
5
3
-
-
UB, LB Set-up Time to Clock  
UB, LB Hold Time from Clock  
Byte Masking Set-up Time to Clock  
Byte Masking Hold Time from Clock  
Data Set-up Time to Clock  
-
Burst Write  
Operation  
tBH  
-
tBMS  
tBMH  
tDS  
-
-
-
Data Hold Time from Clock  
tDHC  
-
82  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
SYNCHRONOUS BURST OPERATION TIMING WAVEFORM  
Fig.25 TIMING WAVEFORM OF BASIC BURST OPERATION [Latency=5,Burst Length=4](MRS=VIH)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
CLK  
ADV  
tADVH  
tADVS  
tBEADV  
tBEADV  
tAH(B)  
tAS(B)  
Address  
CS  
Valid  
Don’t Care  
Valid  
tCSS(B)  
tBC  
Undefined  
Data out  
Data in  
DQ0 DQ1 DQ2 DQ3  
D0  
D1  
D2  
D3  
D0  
Burst Command Clock  
Burst Read End Clock  
Burst Write End Clock  
Table 29. BURST OPERATION AC CHARACTERISTICS  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
200  
2500  
-
Min  
0
Max  
T
18.9  
ns  
ns  
ns  
ns  
tAS(B)  
tAH(B)  
-
-
-
-
ns  
ns  
ns  
ns  
tBC  
-
7
tADVS  
tADVH  
5
7
tCSS(B)  
tBEADV  
5
-
7
83  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
SYNCHRONOUS BURST READ TIMING WAVEFORM  
Fig.26 TIMING WAVEFORM OF BURST READ CYCLE(1) [Latency=5,Burst Length=4,WP=Low enable](WE=VIH, MRS=VIH)  
- CS Toggling Consecutive Burst Read  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
CLK  
ADV  
tADVH  
tADVS  
tBEADV  
tAH(B)  
tAS(B)  
Address  
CS  
Valid  
Don’t Care  
Valid  
tCSHP  
tCSS(B)  
tBC  
tBHZ  
tBEL  
LB, UB  
OE  
tBLZ  
tOHZ  
tOEL  
tCHZ  
tHZ  
tOLZ  
Latency 5  
tCD  
Undefined  
tOH  
Data out  
WAIT  
DQ0 DQ1 DQ2 DQ3  
tWZ  
tWL  
tWH  
tWH  
tWL  
High-Z  
(SYNCHRONOUS BURST READ CYCLE - CS Toggling Consecutive Burst Read)  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBEADV  
should be met.  
2. /WAIT Low(tWL or tAWL) : Data not available(driven by CS low going edge or ADV low going edge)  
/WAIT High(tWH) : Data available(driven by Latency-1 clock)  
/WAIT High-Z(tWZ) : Data don’t care(driven by CS high going edge)  
3. Multiple clock risings are allowed during low ADV period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time(tBC) should not be over 2.5µs.  
Table 30. BURST READ AC CHARACTERISTICS(CS Toggling Consecutive Burst)  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
5
Max  
Min  
Max  
12  
12  
12  
-
tCSHP  
tBEL  
tOEL  
tBLZ  
tOLZ  
tHZ  
-
-
ns  
clock  
clock  
ns  
tOHZ  
tBHZ  
tCD  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
1
-
-
5
-
tOH  
tWL  
tWH  
tWZ  
3
-
5
-
ns  
10  
12  
12  
-
12  
12  
ns  
-
tCHZ  
-
ns  
-
84  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
SYNCHRONOUS BURST READ TIMING WAVEFORM  
Fig.27 TIMING WAVEFORM OF BURST READ CYCLE(2) [Latency=5,Burst Length=4,WP=Low enable](WE=VIH, MRS=VIH)  
- CS Low Holding Consecutive Burst Read  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
T
CLK  
ADV  
tADVH  
tADVS  
tBEADV  
tAH(B)  
tAS(B)  
Address  
CS  
Valid  
Don’t Care  
Valid  
tCSS(B)  
tBC  
tBEL  
tOEL  
LB, UB  
OE  
tBLZ  
tOLZ  
Latency 5  
tCD  
Undefined  
tOH  
tHZ  
Data out  
WAIT  
DQ0 DQ1 DQ2 DQ3  
tAWL  
tWH  
tWL  
tWH  
High-Z  
(SYNCHRONOUS BURST READ CYCLE - CS Low Holding Consecutive Burst Read)  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBEADV  
should be met.  
2. /WAIT Low(tWL or tAWL) : Data not available(driven by CS low going edge or ADV low going edge)  
/WAIT High(tWH) : Data available(driven by Latency-1 clock)  
/WAIT High-Z(tWZ) : Data don’t care(driven by CS high going edge)  
3. Multiple clock risings are allowed during low ADV period. The burst operation starts from the first clock rising.  
4. The consecutive multiple burst read operation with holding CS low is possible through issuing only new ADV and address.  
5. Burst Cycle Time(tBC) should not be over 2.5µs.  
Table 31. BURST READ AC CHARACTERISTICS(CS Low Holding Consecutive Burst)  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
1
Max  
Min  
Max  
12  
-
tBEL  
tOEL  
tBLZ  
tOLZ  
tHZ  
-
-
clock  
clock  
ns  
tCD  
tOH  
-
3
-
ns  
ns  
ns  
ns  
ns  
1
5
-
tWL  
10  
10  
12  
5
-
ns  
tAWL  
tWH  
-
-
12  
ns  
-
85  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
SYNCHRONOUS BURST READ TIMING WAVEFORM  
Fig.28 TIMING WAVEFORM OF BURST READ CYCLE(3) [Latency=5,Burst Length=4,WP=Low enable](WE=VIH, MRS=VIH)  
- Last Data Sustaining  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
T
CLK  
ADV  
tADVH  
tADVS  
tAH(B)  
tAS(B)  
Address  
CS  
Valid  
Don’t Care  
tCSS(B)  
tBC  
tBEL  
tOEL  
LB, UB  
OE  
tBLZ  
tOLZ  
Latency 5  
tOH  
tCD  
Undefined  
Data out  
DQ0 DQ1 DQ2 DQ3  
tWL  
tWH  
High-Z  
WAIT  
(SYNCHRONOUS BURST READ CYCLE - Last Data Sustaining)  
1. /WAIT Low(tWL or tAWL) : Data not available(driven by CS low going edge or ADV low going edge)  
/WAIT High(tWH) : Data available(driven by Latency-1 clock)  
/WAIT High-Z(tWZ) : Data don’t care(driven by CS high going edge)  
2. Multiple clock risings are allowed during low ADV period. The burst operation starts from the first clock rising.  
3. Burst Cycle Time(tBC) should not be over 2.5µs.  
Table 32. BURST READ AC CHARACTERISTICS(Last Data Sustaining)  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
1
Max  
Min  
Max  
12  
-
tBEL  
tOEL  
tBLZ  
tOLZ  
-
-
-
-
clock  
clock  
ns  
tCD  
tOH  
tWL  
tWH  
-
3
-
ns  
ns  
ns  
ns  
1
5
10  
12  
5
ns  
-
86  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
SYNCHRONOUS BURST WRITE TIMING WAVEFORM  
Fig.29 TIMING WAVEFORM OF BURST WRITE CYCLE(1) [Latency=5,Burst Length=4,WP=Low enable](OE=VIH, MRS=VIH)  
- CS Toggling Consecutive Burst Write  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
T
CLK  
ADV  
tADVH  
tADVS  
tBEADV  
tAH(B)  
tAS(B)  
Address  
Valid  
Valid  
Don’t Care  
tBC  
tCSS(B)  
tCSHP  
CS  
tBS  
tBMS  
tBH  
tBMH  
LB, UB  
WE  
tWEH  
tWHP  
tWES  
tDS  
tDHC  
tDHC  
Latency 5  
tWH  
Latency 5  
tWH  
Data in  
WAIT  
D0  
D1  
D2  
D3  
D0  
tWZ  
tWL  
tWL  
High-Z  
(SYNCHRONOUS BURST WRITE CYCLE - CS Toggling Consecutive Burst Write)  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBEADV  
should be met.  
2. Multiple clock risings are allowed during low ADV period. The burst operation starts from the first clock rising.  
3. /WAIT Low(tWL or tAWL) : Data not available(driven by CS low going edge or ADV low going edge)  
/WAIT High(tWH) : Data available(driven by Latency-1 clock)  
/WAIT High-Z(tWZ) : Data don’t care(driven by CS high going edge)  
4. D2 is masked by UB and LB.  
5. Burst Cycle Time(tBC) should not be over 2.5µs.  
Table 33. BURST WRITE AC CHARACTERISTICS(CS Toggling Consecutive Burst)  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
5
Max  
Min  
Max  
-
tCSHP  
tBS  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWHP  
tDS  
5
5
3
-
ns  
ns  
ns  
ns  
ns  
ns  
5
-
tBH  
5
tDHC  
tWL  
-
tBMS  
tBMH  
tWES  
tWEH  
7
10  
12  
12  
7
tWH  
tWZ  
-
5
-
5
87  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
SYNCHRONOUS BURST WRITE TIMING WAVEFORM  
Fig.30 TIMING WAVEFORM OF BURST WRITE CYCLE(2) [Latency=5,Burst Length=4,WP=Low enable](OE=VIH, MRS=VIH)  
- CS Low Holding Consecutive Burst Write  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
T
CLK  
ADV  
tADVH  
tADVS  
tBEADV  
tAH(B)  
tAS(B)  
Address  
CS  
Valid  
Valid  
Don’t Care  
tBC  
tCSS(B)  
tBS  
tBMS  
tBH  
tBMH  
LB, UB  
WE  
tWEH  
tWHP  
tWES  
tDS  
tDHC  
tDHC  
Latency 5  
tWH  
Latency 5  
tWH  
Data in  
WAIT  
D0  
D1  
D2  
D3  
D0  
tWL  
tAWL  
High-Z  
(SYNCHRONOUS BURST WRITE CYCLE - CS Low Holding Consecutive Burst Write)  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBEADV  
should be met.  
2. Multiple clock risings are allowed during low ADV period. The burst operation starts from the first clock rising.  
3. /WAIT Low(tWL or tAWL) : Data not available(driven by CS low going edge or ADV low going edge)  
/WAIT High(tWH) : Data available(driven by Latency-1 clock)  
/WAIT High-Z(tWZ) : Data don’t care(driven by CS high going edge)  
4. D2 is masked by UB and LB.  
5. The consecutive multiple burst read operation with holding CS low is possible through issuing only new ADV and address.  
6. Burst Cycle Time(tBC) should not be over 2.5µs.  
Table 34. BURST WRITE AC CHARACTERISTICS(CS Low Holding Consecutive Burst)  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
5
Max  
Min  
Max  
-
tBS  
tBH  
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
tWHP  
tDS  
5
5
3
-
ns  
ns  
ns  
ns  
ns  
ns  
5
-
tBMS  
tBMH  
tWES  
tWEH  
7
tDHC  
tWL  
-
7
10  
10  
12  
5
tAWL  
tWH  
-
5
-
88  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
SYNCHRONOUS BURST READ STOP TIMING WAVEFORM  
Fig.31 TIMING WAVEFORM OF BURST READ STOP by CS [Latency=5,Burst Length=4,WP=Low enable](WE=VIH, MRS=VIH)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
T
CLK  
ADV  
tADVH  
tADVS  
tBSADV  
tCSHP  
tAH(B)  
tAS(B)  
Address  
CS  
Valid  
Don’t Care  
Valid  
tCSS(B)  
tCSLH  
tBEL  
tOEL  
LB, UB  
OE  
tBLZ  
tOLZ  
Latency 5  
tOH  
tCHZ  
tCD  
Undefined  
Data  
DQ0  
DQ1  
tWZ  
tWL  
tWL  
tWH  
High-Z  
High-Z  
WAIT  
(SYNCHRONOUS BURST READ STOP TIMING)  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBSADV  
should be met  
2. /WAIT Low(tWL or tAWL) : Data not available(driven by CS low going edge or ADV low going edge)  
/WAIT High(tWH) : Data available(driven by Latency-1 clock)  
/WAIT High-Z(tWZ) : Data don’t care(driven by CS high going edge)  
3. Multiple clock risings are allowed during low ADV period. The burst operation starts from the first clock rising.  
4. The burst stop operation should not be repeated for over 2.5µs.  
Table 35. BURST READ STOP AC CHARACTERISTICS  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
12  
7
Max  
Min  
Max  
12  
-
tBSADV  
tCSLH  
tCSHP  
tBEL  
-
-
-
-
-
-
-
ns  
ns  
tCD  
tOH  
tCHZ  
tWL  
tWH  
tWZ  
-
3
-
ns  
ns  
ns  
ns  
ns  
ns  
5
ns  
12  
10  
12  
12  
1
clock  
clock  
ns  
-
tOEL  
1
-
tBLZ  
5
-
tOLZ  
5
ns  
89  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
SYNCHRONOUS BURST WRITE STOP TIMING WAVEFORM  
Fig.32 TIMING WAVEFORM OF BURST WRITE STOP by CS [Latency=5,Burst Length=4,WP=Low enable](OE=VIH, MRS=VIH)  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
T
CLK  
ADV  
tADVH  
tADVS  
tBSADV  
tCSHP  
tAH(B)  
tAS(B)  
Don’t Care  
Address  
Valid  
Valid  
tCSS(B)  
tCSLH  
tBH  
CS  
tBS  
LB, UB  
WE  
tWHP  
tWEH  
tWES  
tDS  
tDHC  
Latency 5  
tWH  
Latency 5  
tWH  
Data in  
WAIT  
D0  
D1  
D0  
D1  
D2  
tWZ  
tWL  
tWL  
High-Z  
High-Z  
(SYNCHRONOUS BURST WRITE STOP TIMING)  
1. The new burst operation can be issued only after the previous burst operation is finished.  
2. /WAIT Low(tWL or tAWL) : Data not available(driven by CS low going edge or ADV low going edge)  
/WAIT High(tWH) : Data available(driven by Latency-1 clock)  
/WAIT High-Z(tWZ) : Data don’t care(driven by CS high going edge)  
3. Multiple clock risings are allowed during low ADV period. The burst operation starts from the first clock rising.  
4. The burst stop operation should not be repeated for over 2.5µs.  
Table 36. BURST WRITE STOP AC CHARACTERISTICS  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
12  
7
Max  
Min  
Max  
-
tBSADV  
tCSLH  
tCSHP  
tBS  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWHP  
tDS  
5
5
3
-
ns  
ns  
ns  
ns  
ns  
ns  
-
5
tDHC  
tWL  
-
5
10  
12  
12  
tBH  
5
tWH  
tWZ  
-
tWES  
tWEH  
5
-
5
90  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
SYNCHRONOUS BURST READ SUSPEND TIMING WAVEFORM  
Fig.33 TIMING WAVEFORM OF BURST READ SUSPEND CYCLE(1) [Latency=5,Burst Length=4,WP=Low enable](WE=VIH, MRS=VIH)  
0
1
2
3
4
5
6
7
8
9
10  
11  
T
CLK  
ADV  
tADVH  
tADVS  
tAH(B)  
tAS(B)  
Address  
CS  
Valid  
Don’t Care  
tCSS(B)  
tBC  
tBEL  
tOEL  
LB, UB  
OE  
tBLZ  
tOLZ  
Latency 5  
tOHZ  
tOLZ  
tOH  
tCD  
Undefined  
tHZ  
High-Z  
Data out  
WAIT  
DQ0 DQ1  
DQ1 DQ2 DQ3  
tWZ  
tWL  
tWH  
High-Z  
(SYNCHRONOUS BURST READ SUSPEND CYCLE)  
1. If clock input is halted during burst read operation, the data out will be suspended. During the burst read suspend period, OE high  
drives data out to high-Z. If clock input is resumed, the suspended data will be out first.  
2. /WAIT Low(tWL or tAWL) : Data not available(driven by CS low going edge or ADV low going edge)  
/WAIT High(tWH) : Data available(driven by Latency-1 clock)  
/WAIT High-Z(tWZ) : Data don’t care(driven by CS high going edge)  
3. During suspend period, OE high drives DQ to High-Z and OE low drives DQ to Low-Z.  
If OE stays low during suspend period, the previous data will be sustained.  
4. Burst Cycle Time(tBC) should not be over 2.5µs.  
Table 37. BURST READ SUSPEND AC CHARACTERISTICS  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
1
Max  
Min  
Max  
12  
tBEL  
tOEL  
tBLZ  
tOLZ  
tCD  
-
-
clock  
clock  
ns  
tHZ  
tOHZ  
tWL  
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
1
12  
5
-
10  
5
-
ns  
tWH  
tWZ  
12  
-
12  
-
ns  
12  
tOH  
3
ns  
91  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
TRANSITION TIMING WAVEFORM BETWEEN READ AND WRITE  
Fig.34 SYNCH. BURST READ to ASYNCH. WRITE(Address Latch Type) TIMING WAVEFORM  
[Latency=5, Burst Length=4](MRS=VIH)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
T
CLK  
ADV  
tADVH  
tADVS  
tADV  
tAH(A)  
tBEADV  
tAS(A)  
tAH(B)  
tAS(B)  
Valid  
Don’t Care  
Valid  
Address  
CS  
tCSS(B)  
tAW  
tCW  
tBC  
tCSS(A)  
tWLRL  
tWP  
WE  
OE  
tAS  
tOEL  
tBEL  
tBW  
LB, UB  
Data in  
Data out  
WAIT  
tDH  
tDW  
Data Valid  
Latency 5  
High-Z  
tCD  
tOH  
DQ0 DQ1 DQ2 DQ3  
tHZ  
High-Z  
tWL  
tWZ  
tWH  
High-Z  
High-Z  
Read Latency 5  
(SYNCHRONOUS BURST READ CYCLE)  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBEADV  
should be met.  
2. /WAIT Low(tWL or tAWL) : Data not available(driven by CS low going edge or ADV low going edge)  
/WAIT High(tWH) : Data available(driven by Latency-1 clock)  
/WAIT High-Z(tWZ) : Data don’t care(driven by CS high going edge)  
3. Multiple clock risings are allowed during low ADV period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time(tBC) should not be over 2.5µs.  
(ADDRESS LATCH TYPE ASYNCHRONOUS WRITE CYCLE - WE controlled)  
1. Clock input does not have any affect to the write operation if WE is driven to low before Read Latency-1 clock. Read Latency-1 clock  
in write timing is just a reference to WE low going for proper write operation.  
Table 38. BURST READ to ASYNCH. WRITE(Address Latch Type) AC CHARACTERISTICS  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
tBEADV  
7
-
ns  
tWLRL  
1
-
clock  
92  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
TRANSITION TIMING WAVEFORM BETWEEN READ AND WRITE  
Fig.35 SYNCH. BURST READ to ASYNCH. WRITE(Low ADV Type) TIMING WAVEFORM  
[Latency=5, Burst Length=4](MRS=VIH)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
21  
T
CLK  
ADV  
tADVH  
tADVS  
tBEADV  
tAH(B)  
tAS(B)  
Address  
CS  
Valid  
Don’t Care  
Valid Address  
tWR  
tAW  
tCW  
tCSS(B)  
tBC  
tWLRL  
tWP  
WE  
OE  
tAS  
tOEL  
tBEL  
tBW  
LB, UB  
Data in  
Data out  
tDH  
tDW  
Data Valid  
Latency 5  
High-Z  
tCD  
tOH  
DQ0 DQ1 DQ2 DQ3  
tHZ  
High-Z  
tWL  
tWZ  
tWH  
High-Z  
High-Z  
Read Latency 5  
WAIT  
(SYNCHRONOUS BURST READ CYCLE)  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBEADV  
should be met.  
2. /WAIT Low(tWL or tAWL) : Data not available(driven by CS low going edge or ADV low going edge)  
/WAIT High(tWH) : Data available(driven by Latency-1 clock)  
/WAIT High-Z(tWZ) : Data don’t care(driven by CS high going edge)  
3. Multiple clock risings are allowed during low ADV period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time(tBC) should not be over 2.5µs.  
(LOW ADV TYPE ASYNCHRONOUS WRITE CYCLE - WE controlled)  
1. Clock input does not have any affect to the write operation if WE is driven to low before Read Latency-1 clock. Read Latency-1 clock  
in write timing is just a reference to WE low going for proper write operation.  
Table 39. BURST READ to ASYNCH. WRITE(Low ADV Type) AC CHARACTERISTICS  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
tBEADV  
7
-
ns  
tWLRL  
1
-
clock  
93  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
TRANSITION TIMING WAVEFORM BETWEEN READ AND WRITE  
Fig.36 ASYNCH. WRITE(Address Latch Type) to SYNCH. BURST READ TIMING WAVEFORM  
[Latency=5, Burst Length=4](MRS=VIH)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
T
0
CLK  
ADV  
tADVH  
tAH(B)  
tADVS  
tADV  
tAH(A)  
tAS(A)  
tAS(B)  
Address  
CS  
Don’t Care  
tAW  
tCW  
Don’t Care  
Valid  
Valid  
tBC  
tCSS(A)  
tCSS(B)  
tWLRL  
tWP  
WE  
OE  
tAS  
tOEL  
tBEL  
tBW  
LB, UB  
Data in  
Data out  
tDH  
tDW  
Data Valid  
Latency 5  
tCD  
tOH  
tHZ  
High-Z  
Read Latency 5  
DQ0 DQ1 DQ2 DQ3  
tWH  
tWL  
tWZ  
High-Z  
WAIT  
(SYNCHRONOUS BURST READ CYCLE)  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBEADV  
should be met.  
2. /WAIT Low(tWL or tAWL) : Data not available(driven by CS low going edge or ADV low going edge)  
/WAIT High(tWH) : Data available(driven by Latency-1 clock)  
/WAIT High-Z(tWZ) : Data don’t care(driven by CS high going edge)  
3. Multiple clock risings are allowed during low ADV period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time(tBC) should not be over 2.5µs.  
(ADDRESS LATCH TYPE ASYNCHRONOUS WRITE CYCLE - WE controlled)  
1. Clock input does not have any affect to the write operation if WE is driven to low before Read Latency-1 clock. Read Latency-1 clock  
in write timing is just a reference to WE low going for proper write operation.  
Table 40. ASYNCH. WRITE(Address Latch Type) to BURST READ AC CHARACTERISTICS  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
tWLRL  
1
-
clock  
94  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
TRANSITION TIMING WAVEFORM BETWEEN READ AND WRITE  
Fig.37 ASYNCH. WRITE(Low ADV Type) to SYNCH. BURST READ TIMING WAVEFORM  
[Latency=5, Burst Length=4](MRS=VIH)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
T
0
CLK  
tADVH  
tAH(B)  
tADtHAPDVS  
ADV  
tAS(B)  
tWC  
Address  
CS  
Valid  
Valid  
Don’t Care  
tAW  
tCW  
tWR  
tBC  
tCSS(B)  
tWLRL  
tWP  
WE  
OE  
tAS  
tOEL  
tBEL  
tBW  
LB, UB  
Data in  
Data out  
tDH  
tDW  
Data Valid  
Latency 5  
tCD  
tOH  
tHZ  
High-Z  
DQ0 DQ1 DQ2 DQ3  
tWH  
tWL  
tWZ  
High-Z  
Read Latency 5  
WAIT  
(SYNCHRONOUS BURST READ CYCLE)  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBEADV  
should be met.  
2. /WAIT Low(tWL or tAWL) : Data not available(driven by CS low going edge or ADV low going edge)  
/WAIT High(tWH) : Data available(driven by Latency-1 clock)  
/WAIT High-Z(tWZ) : Data don’t care(driven by CS high going edge)  
3. Multiple clock risings are allowed during low ADV period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time(tBC) should not be over 2.5µs.  
(LOW ADV TYPE ASYNCHRONOUS WRITE CYCLE - WE controlled)  
1. Clock input does not have any affect to the write operation if WE is driven to low before Read Latency-1 clock. Read Latency-1 clock  
in write timing is just a reference to WE low going for proper write operation.  
Table 41. ASYNCH. WRITE(Low ADV Type) to BURST READ AC CHARACTERISTICS  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
tWLRL  
1
-
clock  
tADHP  
5
-
ns  
95  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
TRANSITION TIMING WAVEFORM BETWEEN READ AND WRITE  
Fig.38 SYNCH. BURST READ to SYNCH. BURST WRITE TIMING WAVEFORM  
[Latency=5, Burst Length=4](MRS=VIH)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
T
CLK  
ADV  
tADVH  
tADVS  
tBEADV  
tAH(B)  
tAH(B)  
tAS(B)  
tAS(B)  
Valid  
Don’t Care  
Valid  
Address  
CS  
tCSS(B)  
tBC  
tBC  
tCSS(B)  
tWES  
tWEH  
WE  
OE  
tOEL  
tBEL  
tBS  
tBH  
LB, UB  
Data in  
tDS  
D3  
Latency 5  
tDHC  
D0  
D1  
D2  
High-Z  
Latency 5  
High-Z  
tCD  
tOH  
DQ0 DQ1 DQ2 DQ3  
tWZ  
tHZ  
High-Z  
Data out  
WAIT  
tWH  
tWZ  
tWL  
tWH  
tWL  
High-Z  
(SYNCHRONOUS BURST READ & WRITE CYCLE)  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBEADV  
should be met.  
2. /WAIT Low(tWL or tAWL) : Data not available(driven by CS low going edge or ADV low going edge)  
/WAIT High(tWH) : Data available(driven by Latency-1 clock)  
/WAIT High-Z(tWZ) : Data don’t care(driven by CS high going edge)  
3. Multiple clock risings are allowed during low ADV period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time(tBC) should not be over 2.5µs.  
Table 42. BURST READ to BURST WRITE AC CHARACTERISTICS  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
tBEADV  
7
-
ns  
96  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
TRANSITION TIMING WAVEFORM BETWEEN READ AND WRITE  
Fig.39 SYNCH. BURST WRITE to SYNCH. BURST READ TIMING WAVEFORM  
[Latency=5, Burst Length=4](MRS=VIH)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
T
CLK  
ADV  
tADVH  
tADVS  
tBEADV  
tAH(B)  
tAH(B)  
tAS(B)  
tAS(B)  
Valid  
Don’t Care  
Valid  
Address  
CS  
tCSS(B)  
tBC  
tBC  
tCSS(B)  
tWES  
tWEH  
WE  
OE  
tOEL  
tBS  
tBH  
tBEL  
LB, UB  
tDS  
Latency 5  
tDHC  
D0  
D1  
D2  
D3  
High-Z  
Data in  
Data out  
WAIT  
Latency 5  
tCD  
tOH  
tHZ  
DQ0 DQ1 DQ2 DQ3  
High-Z  
tWL  
tWH  
tWZ  
tWH  
tWL  
High-Z  
(SYNCHRONOUS BURST READ & WRITE CYCLE)  
1. The new burst operation can be issued only after the previous burst operation is finished. For the new burst operation, tBEADV  
should be met.  
2. /WAIT Low(tWL or tAWL) : Data not available(driven by CS low going edge or ADV low going edge)  
/WAIT High(tWH) : Data available(driven by Latency-1 clock)  
/WAIT High-Z(tWZ) : Data don’t care(driven by CS high going edge)  
3. Multiple clock risings are allowed during low ADV period. The burst operation starts from the first clock rising.  
4. Burst Cycle Time(tBC) should not be over 2.5µs.  
Table 43. BURST WRITE to BURST READ AC CHARACTERISTICS  
Speed  
Speed  
Symbol  
Units  
Symbol  
Units  
Min  
Max  
Min  
Max  
tBEADV  
7
-
ns  
97  
Revision 1.0  
November 2004  
Preliminary  
Preliminary  
MCP MEMORY  
K5L5628JT(B)M  
PACKAGE DIMENSION  
115-Ball FINE PITCH BGA Package (measured in millimeters)  
#A1 INDEX MARK  
8.00±0.10  
0.10 MAX  
A
8.00±0.10  
0.80x9=7.20  
(Datum A)  
B
10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
0.80  
#A1  
(Datum B)  
G
H
J
K
L
M
N
P
3.60  
0.32±0.05  
1.30±0.10  
115-  
0.45±0.05  
BOTTOM VIEW  
TOP VIEW  
0.20  
M A B  
98  
Revision 1.0  
November 2004  

相关型号:

K5N1229ACD-BQ12

512Mb (32M x16) Muxed Burst, Multi Bank SLC NOR Flash
SAMSUNG

K5P2880YCM

Multi-Chip Package MEMORY 128M Bit 16Mx8 Nand Flash Memory / 8M Bit 1Mx8/512Kx16 Full CMOS SRAM
SAMSUNG

K5P2881BCM-F0700

Memory Circuit, 16MX8, CMOS, PBGA69, 8 X 11 MM, 0.80 MM PITCH, FBGA-69
SAMSUNG

K5P5781FCM-F055

Memory Circuit, Flash+SRAM, CMOS, PBGA69
SAMSUNG

K5P5781FCM-F0550

Memory Circuit, 16MX16, CMOS, PBGA69, 8 X 11 MM, 0.80 MM PITCH, FBGA-69
SAMSUNG

K5P6480YCM-T085

Memory Circuit, 8MX8, CMOS, PBGA69, 8 X 13 MM, 0.80 MM PITCH, TBGA-69
SAMSUNG

K5Q6432YCM-T010

Memory Circuit, Flash+PSRAM, 8MX8, CMOS, PBGA69, 8 X 13 MM, 0.80 MM PITCH, TBGA-69
SAMSUNG

K5S3216Y0A-T370

Memory Circuit, PSRAM+SRAM, 2MX16, CMOS, PBGA69, 8 X 11 MM, 0.80 MM PITCH, TBGA-69
SAMSUNG

K5S3216Y0A-T385

Memory Circuit, PSRAM+SRAM, 2MX16, CMOS, PBGA69, 8 X 11 MM, 0.80 MM PITCH, TBGA-69
SAMSUNG

K5S3216Y0M-T010

Memory Circuit, 2MX16, CMOS, PBGA69, 9 X 12.50 MM, TBGA-69
SAMSUNG

K5S3216Y0M-T070

Memory Circuit, 2MX16, CMOS, PBGA69, 9 X 12.50 MM, TBGA-69
SAMSUNG

K5SMD.SA

General Purpose Tweezers
ETC