K7A203200A-14 [SAMSUNG]

64Kx32-Bit Synchronous Pipelined Burst SRAM; 64Kx32位同步流水线突发SRAM
K7A203200A-14
型号: K7A203200A-14
厂家: SAMSUNG    SAMSUNG
描述:

64Kx32-Bit Synchronous Pipelined Burst SRAM
64Kx32位同步流水线突发SRAM

静态存储器
文件: 总15页 (文件大小:279K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
K7A203200A  
64Kx32 Synchronous SRAM  
Document Title  
64Kx32-Bit Synchronous Pipelined Burst SRAM,  
Revision History  
History  
Remark  
Final  
Rev. No.  
Draft Date  
Final spec release.  
Add VDDQ Supply voltage( 2.5V )  
0.0  
1.0  
Nov. 10. 1998  
Dec. 02. 1998  
Final  
The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the  
specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any ques-  
tions, please contact the SAMSUNG branch office near your office, call or contact Headquarters.  
- 1 -  
December 1998  
Rev 1.0  
PRELIMINARY  
K7A203200A  
64Kx32 Synchronous SRAM  
64Kx32-Bit Synchronous Pipelined Burst SRAM  
FEATURES  
• Synchronous Operation.  
GENERAL DESCRIPTION  
The K7A203200A is a 2,097,152-bit Synchronous Static Ran-  
• 2 Stage Pipelined operation with 4 Burst.  
• On-Chip Address Counter.  
• Self-Timed Write Cycle.  
• On-Chip Address and Control Registers.  
• VDD= 3.3V+0.3V/-0.165V Power Supply.  
• VDDQ Supply Voltage 3.3V+0.3V/-0.165V for 3.3V I/O  
dom Access Memory designed for high performance second  
level cache of Pentium and Power PC based System.  
It is organized as 64K words of 32bits and integrates address  
and control registers, a 2-bit burst address counter and added  
some new functions for high performance cache RAM applica-  
tions; GW, BW, LBO, ZZ. Write cycles are internally self-timed  
and synchronous.  
or 2.5V+0.4V/-0.125V for 2.5V I/O.  
• 5V Tolerant Inputs Except I/O Pins.  
• Byte Writable Function.  
Full bus-width write is done by GW, and each byte write is per-  
formed by the combination of WEx and BW when GW is high.  
And with CS1 high, ADSP is blocked to control signals.  
Burst cycle can be initiated with either the address status pro-  
cessor(ADSP) or address status cache controller(ADSC)  
inputs. Subsequent burst addresses are generated internally in  
the system¢s burst sequence and are controlled by the burst  
address advance(ADV) input.  
• Global Write Enable Controls a full bus-width write.  
• Power Down State via ZZ Signal.  
• LBO Pin allows a choice of either a interleaved burst or a  
linear burst.  
• Three Chip Enables for simple depth expansion with No Data  
Contention ; 2 cycle Enable, 1 cycle Disable.  
• Asynchronous Output Enable Control.  
• ADSP, ADSC, ADV Burst Control Pins.  
• TTL-Level Three-State Output.  
LBO pin is DC operated and determines burst sequence(linear  
or interleaved).  
• 100-TQFP-1420A  
ZZ pin controls Power Down State and reduces Stand-by cur-  
rent regardless of CLK.  
FAST ACCESS TIMES  
The K7A203200A is fabricated using SAMSUNG¢s high perfor-  
mance CMOS technology and is available in a 100pin TQFP  
package. Multiple power and ground pins are utilized to mini-  
mize ground bounce.  
PARAMETER  
Cycle Time  
Symbol -15 -14 -10  
Unit  
ns  
tCYC  
tCD  
6.7  
3.8  
3.8  
7.2  
10  
Clock Access Time  
4.0 4.5  
4.0 4.5  
ns  
Output Enable Access  
tOE  
ns  
LOGIC BLOCK DIAGRAM  
CLK  
LBO  
64Kx32  
BURST CONTROL  
LOGIC  
BURST  
MEMORY  
ADDRESS  
COUNTER  
ADV  
ADSC  
A¢0~A¢1  
ARRAY  
A0~A1  
A2~A15  
ADDRESS  
REGISTER  
A0~A15  
ADSP  
DATA-IN  
REGISTER  
CS  
CS  
CS  
1
2
2
GW  
BW  
WEa  
WEb  
WEc  
WEd  
OUTPUT  
REGISTER  
CONTROL  
LOGIC  
BUFFER  
OE  
ZZ  
DQa0 ~ DQd7  
- 2 -  
December 1998  
Rev 1.0  
PRELIMINARY  
K7A203200A  
64Kx32 Synchronous SRAM  
PIN CONFIGURATION(TOP VIEW)  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
N.C  
N.C  
DQc0  
DQc1  
VDDQ  
VSSQ  
DQc2  
DQc3  
DQc4  
DQc5  
VSSQ  
VDDQ  
DQc6  
DQc7  
N.C.  
1
2
3
4
5
6
7
8
DQb7  
DQb6  
VDDQ  
VSSQ  
DQb5  
DQb4  
DQb3  
DQb2  
VSSQ  
VDDQ  
DQb1  
DQb0  
VSS  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
100 Pin TQFP  
N.C.  
VDD  
ZZ  
VDD  
N.C.  
VSS  
(20mm x 14mm)  
DQd0  
DQd1  
VDDQ  
VSSQ  
DQd2  
DQd3  
DQd4  
DQd5  
VSSQ  
VDDQ  
DQd6  
DQd7  
N.C  
DQa7  
DQa6  
VDDQ  
VSSQ  
DQa5  
DQa4  
DQa3  
DQa2  
VSSQ  
VDDQ  
DQa1  
DQa0  
N.C  
PIN NAME  
SYMBOL  
A0-A15  
PIN NAME  
Address Inputs  
TQFP PIN NO.  
SYMBOL  
PIN NAME  
TQFP PIN NO.  
32,33,34,35,36,37,  
44,45,46,47,48,49,  
81,82,99,100  
83  
84  
85  
89  
98  
VDD  
VSS  
N.C.  
Power Supply(+3.3V)  
Ground  
No Connect  
15,41,65,91  
17,40,67,90  
1,14,16,30,38,39,42,43  
50,51,66,80  
ADV  
ADSP  
ADSC  
CLK  
CS1  
CS2  
CS2  
WEx  
OE  
Burst Address Advance  
Address Status Processor  
Address Status Controller  
Clock  
Chip Select  
Chip Select  
Chip Select  
Byte Write Inputs  
Output Enable  
DQa0~a7  
DQb0~b7  
DQc0~c7  
DQd0~d7  
Data Inputs/Outputs  
52,53,56,57,58,59,62,63  
68,69,72,73,74,75,78,79  
2,3,6,7,8,9,12,13  
97  
92  
18,19,22,23,24,25,28,29  
93,94,95,96  
Output Power Supply  
(2.5V or 3.3V)  
Output Ground  
4,11,20,27,54,61,70,77  
5,10,21,26,55,60,71,76  
VDDQ  
VSSQ  
86  
88  
87  
64  
31  
GW  
BW  
ZZ  
LBO  
Global Write Enable  
Byte Write Enable  
Power Down Input  
Burst Mode Control  
- 3 -  
December 1998  
Rev 1.0  
PRELIMINARY  
K7A203200A  
64Kx32 Synchronous SRAM  
FUNCTION DESCRIPTION  
The K7A203200A is a synchronous SRAM designed to support the burst address accessing sequence of the P6 and Power PC  
based microprocessor. All inputs (with the exception of OE, LBO and ZZ) are sampled on rising clock edges. The start and duration  
of the burst access is controlled by ADSC, ADSP and ADV and chip select pins.  
The accesses are enabled with the chip select signals and output enabled signals. Wait states are inserted into the access with ADV.  
When ZZ is pulled high, the SRAM will enter a Power Down State. At this time, internal state of the SRAM is preserved. When ZZ  
returns to low, the SRAM normally operates after 2 cycles of wake up time. ZZ pin is pulled down internally.  
Read cycles are initiated with ADSP(regardless of WEx and ADSC) using the new external address clocked into the on-chip address  
register whenever ADSP is sampled low, the chip selects are sampled active, and the output buffer is enabled with OE. In read oper-  
ation the data of cell array accessed by the current address, registered in the Data-out registers by the positive edge of CLK, are car-  
ried to the Data-out buffer by the next positive edge of CLK. The data, registered in the Data-out buffer, are projected to the output  
pins. ADV is ignored on the clock edge that samples ADSP asserted, but is sampled on the subsequent clock edges. The address  
increases internally for the next access of the burst when WEx are sampled High and ADV is sampled low. And ADSP is blocked to  
control signals by disabling CS1.  
All byte write is done by GW(regaedless of BW and WEx.), and each byte write is performed by the combination of BW and WEx  
when GW is high.  
Write cycles are performed by disabling the output buffers with OE and asserting WEx. WEx are ignored on the clock edge that sam-  
ples ADSP low, but are sampled on the subsequent clock edges. The output buffers are disabled when WEx are sampled  
Low(regaedless of OE). Data is clocked into the data input register when WEx sampled Low. The address increases internally to the  
next address of burst, if both WEx and ADV are sampled Low. Individual byte write cycles are performed by any one or more byte  
write enable signals(WEa, WEb, WEc or WEd) sampled low. The WEa control DQa0 ~ DQa7, WEb controls DQb0 ~ DQb7, WEc con-  
trols DQc0 ~ DQc7, and WEd control DQd0 ~ DQd7. Read or write cycle may also be initiated with ADSC, instead of ADSP. The differ-  
ences between cycles initiated with ADSC and ADSP as are follows;  
ADSP must be sampled high when ADSC is sampled low to initiate a cycle with ADSC.  
WEx are sampled on the same clock edge that sampled ADSC low(and ADSP high).  
Addresses are generated for the burst access as shown below, The starting point of the burst sequence is provided by the external  
address. The burst address counter wraps around to its initial state upon completion. The burst sequence is determined by the state  
of the LBO pin. When this pin is Low, linear burst sequence is selected. When this pin is High, Interleaved burst sequence is  
selected.  
BURST SEQUENCE TABLE  
(Interleaved Burst)  
Case 4  
Case 1  
Case 2  
Case 3  
LBO PIN  
HIGH  
First Address  
A1  
A0  
A1  
A0  
A1  
A0  
A1  
A0  
0
0
1
1
0
1
0
1
0
0
1
1
1
0
1
0
1
1
0
0
0
1
0
1
1
1
0
0
1
0
1
0
Fourth Address  
BURST SEQUENCE TABLE  
(Linear Burst)  
Case 1  
Case 2  
Case 3  
Case 4  
LBO PIN  
LOW  
First Address  
A1  
A0  
A1  
A0  
A1  
A0  
A1  
A0  
0
0
1
1
0
1
0
1
0
1
1
0
1
0
1
0
1
1
0
0
0
1
0
1
1
0
0
1
1
0
1
0
Fourth Address  
Note : 1. LBO pin must be tied to High or Low, and Floating State must not be allowed.  
- 4 -  
December 1998  
Rev 1.0  
PRELIMINARY  
K7A203200A  
64Kx32 Synchronous SRAM  
TRUTH TABLES  
SYNCHRONOUS TRUTH TABLE  
CS1  
H
L
CS2  
X
L
CS2  
X
X
H
X
H
L
ADSP ADSC ADV WRITE CLK  
ADDRESS ACCESSED  
N/A  
OPERATION  
Not Selected  
X
L
L
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
N/A  
Not Selected  
L
X
L
L
N/A  
Not Selected  
L
X
X
L
N/A  
Not Selected  
L
X
H
H
H
X
X
X
X
X
X
X
X
L
N/A  
Not Selected  
L
X
L
External Address  
External Address  
External Address  
Next Address  
Next Address  
Next Address  
Next Address  
Current Address  
Current Address  
Current Address  
Current Address  
Begin Burst Read Cycle  
Begin Burst Write Cycle  
Begin Burst Read Cycle  
Continue Burst Read Cycle  
Continue Burst Read Cycle  
Continue Burst Write Cycle  
Continue Burst Write Cycle  
Suspend Burst Read Cycle  
Suspend Burst Read Cycle  
Suspend Burst Write Cycle  
Suspend Burst Write Cycle  
L
L
H
H
H
X
H
X
H
X
H
X
L
L
L
H
H
H
L
X
H
X
H
X
H
X
H
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
L
L
L
L
H
H
H
H
H
H
L
L
Notes : 1. X means "Don¢t Care".  
2. The rising edge of clock is symbolized by .  
3. WRITE = L means Write operation in WRITE TRUTH TABLE.  
WRITE = H means Read operation in WRITE TRUTH TABLE.  
4. Operation finally depends on status of asynchronous input pins(ZZ and OE).  
WRITE TRUTH TABLE  
GW  
H
BW  
H
L
WEa  
X
WEb  
X
WEc  
X
WEd  
X
OPERATION  
READ  
H
H
H
H
H
READ  
H
L
L
H
H
H
WRITE BYTE a  
WRITE BYTE b  
WRITE BYTE c and d  
WRITE ALL BYTEs  
WRITE ALL BYTEs  
H
L
H
L
H
H
H
L
H
H
L
L
H
L
L
L
L
L
L
X
X
X
X
X
Notes : 1. X means "Don¢t Care".  
2. All inputs in this table must meet setup and hold time around the rising edge of CLK().  
ASYNCHRONOUS TRUTH TABLE  
(See Notes 1 and 2):  
OPERATION  
ZZ  
H
L
OE  
X
I/O STATUS  
High-Z  
Notes  
Sleep Mode  
1. X means "D  
2. ZZ pin  
on¢t Care".  
is pulled down inte  
at following read c  
with OE, otherwise  
Mode means po  
on cycle time.  
means power do  
nds on cycle time.  
rnally  
L
DQ  
3.  
For write cycles th  
ycles, the output b  
uffers must  
Read  
be disabled  
4. Sleep  
does not depend  
5. Deselected  
data bus contentio  
wer down state of  
n will occur.  
which stand-by c  
L
H
X
High-Z  
urrent  
Write  
L
Din, High-Z  
High-Z  
wn state of which  
stand-by current  
Deselected  
L
X
depe  
- 5 -  
December 1998  
Rev 1.0  
PRELIMINARY  
K7A203200A  
64Kx32 Synchronous SRAM  
PASS-THROUGH TRUTH TABLE  
PREVIOUS CYCLE  
PRESENT CYCLE  
NEXT CYCLE  
OPERATION  
WRITE  
OPERATION  
CS1  
WRITE  
OE  
Initiate Read Cycle  
Address=An  
Data=Qn-1 for all bytes  
Write Cycle, All bytes  
Address=An-1, Data=Dn-1  
Read Cycle  
Data=Qn  
All L  
L
H
L
Write Cycle, All bytes  
Address=An-1, Data=Dn-1  
No new cycle  
Data=Qn-1 for all bytes  
No carryover from  
previous cycle  
All L  
All L  
H
H
H
H
L
Write Cycle, All bytes  
Address=An-1, Data=Dn-1  
No new cycle  
Data=High-Z  
No carryover from  
previous cycle  
H
Initiate Read Cycle  
Address=An  
Data=Qn-1 for one byte  
Write Cycle, One byte  
Address=An-1, Data=Dn-1  
Read Cycle  
Data=Qn  
One L  
One L  
L
H
H
L
L
Write Cycle, One byte  
Address=An-1, Data=Dn-1  
No new cycle  
Data=Qn-1 for one byte  
No carryover from  
previous cycle  
H
Note : 1. This operation makes written data immediately available at output during a read cycle preceded by a write cycle.  
ABSOLUTE MAXIMUM RATINGS*  
PARAMETER  
Voltage on VDD Supply Relative to VSS  
Voltage on VDDQ Supply Relative to VSS  
Voltage on Input Pin Relative to VSS  
Voltage on I/O Pin Relative to VSS  
Power Dissipation  
SYMBOL  
VDD  
RATING  
-0.3 to 4.6  
VDD  
UNIT  
V
VDDQ  
VIN  
V
-0.3 to 6.0  
-0.3 to VDDQ+0.5  
1.2  
V
VIO  
V
PD  
W
Storage Temperature  
TSTG  
TOPR  
TBIAS  
-65 to 150  
0 to 70  
°C  
°C  
°C  
Operating Temperature  
Storage Temperature Range Under Bias  
-10 to 85  
*Note : Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
OPERATING CONDITIONS at 3.3V I/O (0°C£ TA£70°C)  
PARAMETER  
Supply Voltage  
Ground  
SYMBOL  
VDD  
MIN  
3.135  
3.135  
0
Typ.  
3.3  
3.3  
0
MAX  
3.6  
3.6  
0
UNIT  
V
V
V
VDDQ  
VSS  
OPERATING CONDITIONS at 2.5V I/O(0°C £ TA £ 70°C)  
PARAMETER  
Supply Voltage  
Ground  
SYMBOL  
VDD  
MIN  
3.135  
2.375  
0
Typ.  
3.3  
2.5  
0
MAX  
3.6  
2.9  
0
UNIT  
V
V
V
VDDQ  
VSS  
CAPACITANCE*(TA=25°C, f=1MHz)  
PARAMETER  
SYMBOL  
TEST CONDITION  
VIN=0V  
MIN  
MAX  
UNIT  
pF  
Input Capacitance  
CIN  
-
-
5
7
Output Capacitance  
COUT  
VOUT=0V  
pF  
*Note : Sampled not 100% tested.  
- 6 -  
December 1998  
Rev 1.0  
PRELIMINARY  
K7A203200A  
64Kx32 Synchronous SRAM  
DC ELECTRICAL CHARACTERISTICS(TA=0 to 70°C, VDD=3.3V+0.3V/- 0.165V)  
MIN  
MAX  
+2  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
VDD=Max ; VIN=VSS to VDD  
UNIT  
mA  
Input Leakage Current(except ZZ)  
Output Leakage Current  
IIL  
-2  
-2  
-
mA  
IOL  
Output Disabled, VOUT=VSS to VDDQ  
+2  
-15  
-14  
-10  
-15  
-14  
-10  
320  
280  
220  
80  
Device Selected, IOUT=0mA,  
ZZ£VIL, All Inputs=VIL or VIH  
Cycle Time³ tCYC min  
Operating Current  
Standby Current  
ICC  
ISB  
-
mA  
mA  
-
-
Device deselected, IOUT = 0mA,  
ZZ£VIL, f = Max,  
All Inputs£0.2V or³ VDD-0.2V  
-
70  
-
60  
Device deselected, IOUT = 0mA, ZZ£0.2V,  
f=0, All Inputs=fixed (VDD-0.2V or 0.2V)  
ISB1  
ISB2  
-
-
20  
20  
mA  
mA  
Device deselected, IOUT=0mA, ZZ³ VDD-0.2V,  
f = Max, All Inputs£VIL or³ VIH  
Output Low Voltage(3.3V I/O)  
Output High Voltage(3.3V I/O)  
Output Low Voltage(2.5V I/O)  
Output High Voltage(2.5V I/O)  
Input Low Voltage(3.3V I/O)  
Input High Voltage(3.3V I/O)  
Input Low Voltage(2.5V I/O)  
Input High Voltage(2.5V I/O)  
VOL  
VOH  
VOL  
VOH  
VIL  
IOL = 8.0mA  
IOH = -4.0mA  
IOL = 1.0mA  
IOH = -1.0mA  
-
0.4  
V
V
V
V
V
V
V
V
2.4  
-
-
0.4  
-
2.0  
-0.5*  
2.0  
-0.3*  
1.7  
0.8  
VIH  
VDD+0.5**  
0.7  
VIL  
VIH  
VDD+0.5**  
*
VIL(Min)=-2.0(Pulse Width £ tCYC/2)  
** VIH(Max)=4.6(Pulse Width £ tCYC/2)  
** In Case of I/O Pins, the Max. VIH=VDDQ+0.5V  
TEST CONDITIONS  
(VDD=3.3V+0.3V/-0.165V,VDDQ=3.3V+0.3/-0.165V or VDD=3.3V+0.3V/-0.165V,VDDQ=2.5V+0.4V/-0.125V, TA=0 to 70°C)  
PARAMETER  
VALUE  
0 to 3V  
0 to 2.5V  
1ns  
Input Pulse Level(for 3.3V I/O)  
Input Pulse Level(for 2.5V I/O)  
Input Rise and Fall Time(Measured at 0.3V and 2.7V for 3.3V I/O)  
Input Rise and Fall Time(Measured at 0.3V and 2.1V for 2.5V I/O)  
Input and Output Timing Reference Levels for 3.3V I/O  
Input and Output Timing Reference Levels for 2.5V I/O  
Output Load  
1ns  
1.5V  
VDDQ/2  
See Fig. 1  
- 7 -  
December 1998  
Rev 1.0  
PRELIMINARY  
K7A203200A  
64Kx32 Synchronous SRAM  
Output Load(A)  
Output Load(B)  
(for tLZC, tLZOE, tHZOE & tHZC)  
+3.3V for 3.3V I/O  
/+2.5V for 2.5V I/O  
Dout  
RL=50W  
VL=1.5V for 3.3V I/O  
VDDQ/2 for 2.5V I/O  
319W / 1667W  
30pF*  
Dout  
Z0=50W  
353W / 1538W  
5pF*  
* Capacitive Load consists of all components of  
the test environment.  
* Including Scope and Jig Capacitance  
Fig. 1  
AC TIMING CHARACTERISTICS(TA=0 to 70°C, VDD=3.3V+0.3V/-0.165V)  
-15  
-14  
-10  
PARAMETER  
SYMBOL  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Cycle Time  
tCYC  
tCD  
6.7  
-
-
3.8  
3.8  
-
7.2  
-
-
4.0  
4.0  
-
10  
-
-
4.5  
4.5  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Access Time  
Output Enable to Data Valid  
Clock High to Output Low-Z  
Output Hold from Clock High  
Output Enable Low to Output Low-Z  
tOE  
-
-
-
tLZC  
tOH  
0
0
0
1.5  
0
-
1.5  
0
-
1.5  
0
-
tLZOE  
-
-
-
Output Enable High to Output High-Z  
Clock High to Output High-Z  
Clock High Pulse Width  
tHZOE  
tHZC  
tCH  
-
3.8  
-
4.0  
-
4.5  
1.5  
2.4  
2.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
2
3.8  
-
1.5  
2.8  
2.8  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
2
4.0  
-
1.5  
2.8  
2.8  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
2
4.5  
-
ns  
ns  
Clock Low Pulse Width  
tCL  
-
-
-
ns  
Address Setup to Clock High  
tAS  
-
-
-
ns  
Address Status Setup to Clock High  
Data Setup to Clock High  
tSS  
-
-
-
ns  
tDS  
-
-
-
ns  
Write Setup to Clock High (GW, BW, WEX)  
Address Advance Setup to Clock High  
Chip Select Setup to Clock High  
Address Hold from Clock High  
tWS  
-
-
-
ns  
tADVS  
tCSS  
tAH  
-
-
-
ns  
-
-
-
ns  
-
-
-
ns  
Address Status Hold from Clock High  
tSH  
-
-
-
ns  
Data Hold from Clock High  
tDH  
-
-
-
ns  
Write Hold from Clock High (GW, BW, WEX)  
Address Advance Hold from Clock High  
tWH  
tADVH  
tCSH  
tPDS  
tPUS  
-
-
-
ns  
-
-
-
ns  
Chip Select Hold from Clock High  
ZZ High to Power Down  
ZZ Low to Power Up  
-
-
-
ns  
-
-
-
cycle  
cycle  
2
-
2
-
2
-
Notes : 1. All address inputs must meet the specified setup and hold times for all rising clock edges whenever ADSC and/or ADSP is sampled low and  
CS is sampled low. All other synchronous inputs must meet the specified setup and hold times whenever this device is chip selected.  
2. Both chip selects must be active whenever ADSC or ADSP is sampled low in order for the this device to remain enabled.  
3. ADSC or ADSP must not be asserted for at least 2 Clock after leaving ZZ state.  
- 8 -  
December 1998  
Rev 1.0  
PRELIMINARY  
K7A203200A  
64Kx32 Synchronous SRAM  
- 9 -  
December 1998  
Rev 1.0  
PRELIMINARY  
K7A203200A  
64Kx32 Synchronous SRAM  
- 10 -  
December 1998  
Rev 1.0  
PRELIMINARY  
K7A203200A  
64Kx32 Synchronous SRAM  
- 11 -  
December 1998  
Rev 1.0  
PRELIMINARY  
K7A203200A  
64Kx32 Synchronous SRAM  
- 12 -  
December 1998  
Rev 1.0  
PRELIMINARY  
K7A203200A  
64Kx32 Synchronous SRAM  
- 13 -  
December 1998  
Rev 1.0  
PRELIMINARY  
K7A203200A  
64Kx32 Synchronous SRAM  
APPLICATION INFORMATION  
DEPTH EXPANSION  
The Samsung 64Kx32 Synchronous Pipelined Burst SRAM has two additional chip selects for simple depth expansion.  
This permits easy secondary cache upgrades from 64K depth to 128K depth without extra logic.  
I/O[0:63]  
Data  
Address  
A[0:16]  
A[16]  
A[0:15]  
A[16]  
A[0:15]  
Address Data  
CS  
Address Data  
CS  
CLK  
2
2
CS2  
CS2  
64-Bits  
Microprocessor  
64Kx32  
SPB  
SRAM  
64Kx32  
SPB  
SRAM  
CLK  
ADSC  
WEx  
OE  
CLK  
ADSC  
WEx  
OE  
Address  
CLK  
(Bank 1)  
(Bank 0)  
Cache  
Controller  
CS1  
CS1  
ADV ADSP  
ADV ADSP  
ADS  
INTERLEAVE READ TIMING (Refer to non-interleave write timing for interleave write timing)  
(ADSP CONTROLLED , ADSC=HIGH)  
Clock  
tSS  
tSH  
ADSP  
tAS  
tAH  
A1  
A2  
ADDRESS  
[0:n]  
tWS  
tWH  
WRITE  
tCSS  
tCSH  
CS1  
Bank 0 is selected by CS2, and Bank 1 deselected by CS2  
An+1  
ADV  
OE  
Bank 0 is deselected by CS2, and Bank 1 selected by CS2  
tADVS  
tADVH  
tOE  
tHZC  
tLZOE  
Data Out  
(Bank 0)  
Q1-1  
Q1-2  
Q1-3  
Q1-4  
tCD  
tLZC  
Data Out  
(Bank 1)  
Q2-1  
Q2-2  
Q2-3  
Q2-4  
*NOTES n = 14 32K depth, 15 64K depth, 16 128K depth, 17 256K depth  
Don¢t Care  
Undefined  
- 14 -  
December 1998  
Rev 1.0  
PRELIMINARY  
K7A203200A  
64Kx32 Synchronous SRAM  
PACKAGE DIMENSIONS  
Units:millimeters/inches  
100-TQFP-1420A  
22.00 ±0.30  
20.00 ±0.20  
0~8°  
+ 0.10  
- 0.05  
0.127  
16.00 ±0.30  
14.00 ±0.20  
0.10 MAX  
(0.83)  
0.50 ±0.10  
#1  
0.65  
(0.58)  
0.30 ±0.10  
0.10 MAX  
1.40 ±0.10  
1.60 MAX  
0.05 MIN  
0.50 ±0.10  
- 15 -  
December 1998  
Rev 1.0  

相关型号:

K7A203200A-15

64Kx32-Bit Synchronous Pipelined Burst SRAM
SAMSUNG

K7A203200A-TC100

Cache SRAM, 64KX32, 4.5ns, CMOS, PQFP100, 20 X 14 MM, TQFP-100
SAMSUNG

K7A203200A-TC140

Cache SRAM, 64KX32, 4ns, CMOS, PQFP100, 20 X 14 MM, TQFP-100
SAMSUNG

K7A203200A-TC150

Cache SRAM, 64KX32, 3.8ns, CMOS, PQFP100, 20 X 14 MM, TQFP-100
SAMSUNG

K7A203200B

64Kx36/x32 Synchronous SRAM
SAMSUNG

K7A203200B-QC(I)14

64Kx36 & 64Kx32-Bit Synchronous Pipelined Burst SRAM
SAMSUNG

K7A203200B-QC14

64Kx36 & 64Kx32-Bit Synchronous Pipelined Burst SRAM
SAMSUNG

K7A203200B-QC140

Cache SRAM, 64KX32, 4ns, CMOS, PQFP100, 20 X 14 MM, TQFP-100
SAMSUNG

K7A203200B-QC14T

Cache SRAM, 64KX32, 4ns, CMOS, PQFP100, 20 X 14 MM, TQFP-100
SAMSUNG

K7A203200B-QC16

Cache SRAM, 64KX32, 3.5ns, CMOS, PQFP100, 20 X 14 MM, TQFP-100
SAMSUNG

K7A203200B-QC160

Cache SRAM, 64KX32, 3.5ns, CMOS, PQFP100, 20 X 14 MM, TQFP-100
SAMSUNG

K7A203200B-QC20

Cache SRAM, 64KX32, 2.8ns, CMOS, PQFP100, 20 X 14 MM, TQFP-100
SAMSUNG