K7P321888M-GC25 [SAMSUNG]

SRAM;
K7P321888M-GC25
型号: K7P321888M-GC25
厂家: SAMSUNG    SAMSUNG
描述:

SRAM

静态存储器
文件: 总14页 (文件大小:390K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
K7P323688M  
K7P321888M  
1Mx36 & 2Mx18 SRAM  
32Mb M-die LW SRAM Specification  
119BGA with Pb & Pb-Free  
(RoHS compliant)  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.  
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,  
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,  
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY.  
ALL INFORMATION IN THIS DOCUMENT IS PROVIDED  
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or simi-  
lar applications where Product failure could result in loss of life or personal or physical harm, or any military  
or defense application, or any governmental procurement to which special terms or provisions may apply.  
* Samsung Electronics reserves the right to change products or specification without notice.  
Dec. 2005  
Rev 1.3  
- 1 -  
K7P323688M  
K7P321888M  
1Mx36 & 2Mx18 SRAM  
Document Title  
1Mx36 & 2Mx18 Synchronous Pipelined SRAM  
Revision History  
Draft Date  
Remark  
Rev. No.  
History  
Apr. 2002  
Advance  
Rev. 0.0  
- Initial Document  
Feb. 2003  
Advance  
Rev. 0.1  
- Recommended DC operating conditions are changed  
Max VDIF-CLK : VDDQ+0.3 -> VDDQ+0.6  
- AC Characteristics are changed  
TAVKH / TDVKH / TWVKH / TSVKH : 0.4 / 0.4 / 0.4 - > 0.3 / 0.3 / 0.3  
TKHAX / TKHDX / TKHWX / TKHSX : 0.5 / 0.6 / 0.7 - > 0.5 / 0.5 / 0.5  
TKHAX / TKHDX / TKHWX / TKHSX : 1.6 / 1.7 / 2.0 - > 1.5 / 1.6 / 2.0  
Feb. 2003  
Mar. 2003  
May 2003  
Sep. 2004  
Oct. 2004  
Advance  
Advance  
Advance  
Final  
Rev. 0.2  
Rev. 0.3  
Rev. 0.4  
Rev. 1.0  
Rev. 1.1  
- PACKAGE PIN CONFIGURATION are changed  
Numbering each SA pins.  
- AC Characteristics are changed  
TKHQV (-33) : 0.5 - > 0.6  
- PIN CAPACITANCE is changed  
Add Clock Pin capacitance  
- Fill the themal Data  
- Remove 333MHz Bin  
Final  
- JTAG DC operating conditions are changed  
Change VIH, VIL VOH, VOL  
Oct. 2005  
Dec. 2005  
Final  
Final  
Rev. 1.2  
Rev. 1.3  
- Add Pb free.  
- Modify package dimensions  
The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the  
right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters  
of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or cortact Headquarters.  
Dec. 2005  
Rev 1.3  
- 2 -  
K7P323688M  
K7P321888M  
1Mx36 & 2Mx18 SRAM  
1Mx36 & 2Mx18 Synchronous Pipelined SRAM  
FEATURES  
• 1Mx36 or 2Mx18 Organizations.  
Maximum Access  
Part Number  
• 1.8V VDD/1.5V or 1.8V VDDQ.  
Org.  
Frequency  
Time  
• HSTL Input and Output Levels.  
• Differential, HSTL Clock Inputs K, K.  
1Mx36  
K7P323688M-H(G)C30  
K7P323688M-H(G)C25  
K7P321888M-H(G)C30  
K7P321888M-H(G)C25  
300MHz  
250MHz  
300MHz  
250MHz  
1.7  
2.0  
1.7  
2.0  
• Synchronous Read and Write Operation  
• Registered Input and Registered Output  
• Internal Pipeline Latches to Support Late Write.  
• Byte Write Capability(four byte write selects, one for each 9bits)  
• Synchronous or Asynchronous Output Enable.  
• Power Down Mode via ZZ Signal.  
2Mx18  
* G : Lead free package  
• Programmable Impedance Output Drivers.  
• JTAG Boundary Scan (subset of IEEE std. 1149.1).  
• 119(7x17) Flip Chip Ball Grid Array Package(14mmx22mm).  
FUNCTIONAL BLOCK DIAGRAM  
20 or 21  
SA[0:19]  
Read  
or [0:20]  
Address  
2:1  
Memory Array  
Dec.  
MUX  
1Mx36  
2Mx18  
Register  
Clock  
K,K  
Data Out  
36 or 18  
Data In  
36 or 18  
W/D  
Buffer  
20 or 21  
Write  
Address  
S/A Array  
Register  
Array  
36 or 18  
MUX0  
36 or 18  
36 or 18  
36 or 18  
WAY  
Data In  
Register  
(2 stage)  
Data Out  
Register  
SS  
SW  
ZZ  
Control  
Control  
Logic  
E
Register  
36 or 18  
OE  
G
36 or 18  
36 or 18  
XDIN  
Internal  
Clock  
Generator  
DQ  
PIN DESCRIPTION  
Pin Name  
Pin Description  
Pin Name  
Pin Description  
K, K  
SAn  
DQn  
SS  
Differential Clocks  
ZZ  
ZQ  
Asynchronous Power Down  
Synchronous Address Input  
Output Driver Impedance Control  
JTAG Test Clock  
Bi-directional Data Bus  
TCK  
TMS  
TDI  
Synchronous Select  
JTAG Test Mode Select  
JTAG Test Data Input  
JTAG Test Data Output  
HSTL Input Reference Voltage  
Power Supply  
SW  
Synchronous Global Write Enable  
Synchronous Byte a Write Enable  
Synchronous Byte b Write Enable  
Synchronous Byte c Write Enable  
Synchronous Byte d Write Enable  
Read Protocol Mode Pins (M1=VSS, M2=VDDQ)  
Asynchronous Output Enable  
SWa  
SWb  
SWc  
SWd  
M1, M2  
G
TDO  
VREF  
VDD  
VDDQ  
VSS  
Output Power Supply  
GND  
NC  
No Connection  
Dec. 2005  
Rev 1.3  
- 3 -  
K7P323688M  
K7P321888M  
1Mx36 & 2Mx18 SRAM  
PACKAGE PIN CONFIGURATIONS(TOP VIEW)  
K7P323688MK7P321888M(1Mx36)  
1
2
3
4
5
6
7
A
B
C
D
E
F
VDDQ  
NC  
SA13  
SA18  
SA12  
DQc9  
DQc7  
DQc5  
DQc4  
DQc2  
VDD  
SA10  
SA9  
SA11  
VSS  
VSS  
VSS  
SWc  
VSS  
VREF  
VSS  
SWd  
VSS  
VSS  
VSS  
M1  
NC  
SA19  
VDD  
ZQ  
SS  
SA7  
SA8  
SA6  
VSS  
VSS  
VSS  
SWb  
VSS  
VREF  
VSS  
SWa  
VSS  
VSS  
VSS  
M2  
SA4  
VDDQ  
NC  
SA17  
SA5  
NC  
NC  
DQc8  
DQc6  
VDDQ  
DQc3  
DQc1  
VDDQ  
DQd1  
DQd3  
VDDQ  
DQd6  
DQd8  
NC  
DQb9  
DQb7  
DQb5  
DQb4  
DQb2  
VDD  
DQb8  
DQb6  
VDDQ  
DQb3  
DQb1  
VDDQ  
DQa1  
DQa3  
VDDQ  
DQa6  
DQa8  
NC  
G
G
H
J
NC  
NC  
VDD  
K
K
L
DQd2  
DQd4  
DQd5  
DQd7  
DQd9  
SA15  
NC  
DQa2  
DQa4  
DQa5  
DQa7  
DQa9  
SA2  
K
M
N
P
R
T
SW  
SA0  
SA1  
VDD  
SA16  
TCK  
NC  
SA14  
TDI  
SA3  
TDO  
NC  
ZZ  
U
VDDQ  
TMS  
NC  
VDDQ  
K7P321888M(2Mx18)  
1
2
3
4
NC  
SA20  
VDD  
ZQ  
SS  
5
6
7
A
B
C
D
E
F
VDDQ  
NC  
SA13  
SA19  
SA12  
NC  
SA10  
SA9  
SA11  
VSS  
VSS  
VSS  
SWb  
VSS  
VREF  
VSS  
NC  
SA7  
SA8  
SA6  
VSS  
VSS  
VSS  
NC  
SA4  
SA17  
SA5  
DQa9  
NC  
VDDQ  
NC  
NC  
NC  
DQb1  
NC  
NC  
DQb2  
NC  
DQa8  
VDDQ  
DQa6  
NC  
VDDQ  
NC  
G
DQa7  
NC  
G
H
J
DQb3  
NC  
NC  
NC  
VDD  
K
DQb4  
VDDQ  
NC  
VSS  
VREF  
VSS  
SWa  
VSS  
VSS  
VSS  
M2  
DQa5  
VDD  
NC  
VDD  
VDDQ  
DQa4  
NC  
K
L
DQb5  
NC  
DQb6  
VDDQ  
DQb8  
NC  
K
DQa3  
NC  
M
N
P
R
T
DQb7  
NC  
VSS  
VSS  
VSS  
M1  
SW  
SA0  
SA1  
VDD  
NC  
TCK  
VDDQ  
NC  
DQa2  
NC  
DQb9  
SA15  
SA18  
TMS  
DQa1  
NC  
NC  
SA2  
SA16  
NC  
NC  
SA14  
TDI  
SA3  
TDO  
ZZ  
U
VDDQ  
VDDQ  
Dec. 2005  
Rev 1.3  
- 4 -  
K7P323688M  
K7P321888M  
1Mx36 & 2Mx18 SRAM  
FUNCTION DESCRIPTION  
The K7P323688M and K7P321888M are 37,748,736 bit Synchronous Pipeline Mode SRAM. It is organized as 1,048,576 words of  
36 bits(or 2,097,152 words of 18 bits)and is implemented in SAMSUNGs advanced CMOS technology.  
Single differential HSTL level K clocks are used to initiate read/write operation and all internal operations are self-timed. At the rising  
edge of K clock, all Addresses, Write Enables, Synchronous Select and Data Ins are registered internally. Data outs are updated  
from output registers at the next rising edge of K clock. An internal write data buffer allows write data to follow one cycle after  
addresses and controls. The package is 119(7x17) Ball Grid Array with balls on a 1.27mm pitch.  
Read Operation  
During read operations, addresses and controls are registered during the first rising edge of K clock and then the internal array is  
read between first rising and falling edges of K clock. Data outputs are updated from output registers off the falling edge of K clock.  
During consecutive read operations where the address is the same, the data output must be held constant without any glitches. This  
characteristic is because the SRAM will be read by devices that will operate slower than the SRAM frequency and will require multi-  
ple SRAM cycles to perform a single read operation.  
Write Operation(Late Write)  
During write operations, addresses and controls are registered at the first rising edge of K clock and data inputs are registered at the  
following rising edge of K clock. Write addresses and data inputs are stored in the data in registers until the next write operation, and  
only at the next write opeation are data inputs fully written into SRAM array. Byte write operation is supported using SW[a:d] and the  
timing of SW[a:d] is the same as the SW signal.  
Bypass Read Operation  
Bypass read operation occurs when the last write operation is followed by a read operation where write and read addresses are  
identical. For this case, data outputs are from the data in registers instead of SRAM array. Bypass read operation occurs on a byte to  
byte basis. If only one byte is written during a write operation but a read operation is required on the same address, a partial bypass  
read operation occurs since the new byte data is from the data in registers while the remaing bytes are from SRAM arry.  
Sleep Mode  
Sleep mode is a low power mode initiated by bringing the asynchronous ZZ pin high. During sleep mode, all other inputs are ignored  
and outputs are brought to a High-Impedance state. Sleep mode current and output High-Z are guaranteed after the specified sleep  
mode enable time. During sleep mode the memory array data content is preserved. Sleep mode must not be initiated until after all  
pending operations have completed, since any pending operation will not guaranteed once sleep mode is initiated. Normal opera-  
tions can be resumed by bringing the ZZ pin low, but only after the specified sleep mode recovery time.  
Mode Control  
There are two mode control select pins (M1 and M2) used to set the proper read protocol. This SRAM supports single clock pipelined  
operating mode. For proper specified device operation, M1 must be connected to VSS and M2 must be connected to VDDQ. These  
mode pins must be set at power-up and must not change during device operation.  
Programmable Impedance Output Driver  
The data output driver impedance is adjusted by an external resistor, RQ, connected between ZQ pin and VSS, and is equal to RQ/5.  
For example, 250resistor will give an output impedance of 50. Output driver impedance tolerance is 15% by test(10% by design)  
and is periodically readjusted to reflect the changes in supply voltage and temperature. Impedance updates occur early in cycles that  
do not activate the outputs, such as deselect cycles. They may also occur in cycles initiated with G high. In all cases impedance  
updates are transparent to the user and do not produce access time "push-outs" or other anomalous behavior in the SRAM. Imped-  
ance updates occur no more often than every 32 clock cycles. Clock cycles are counted whether the SRAM is selected or not and  
proceed regardless of the type of cycle being executed. Therefore, the user can be assured that after 33 continuous read cycles  
have occurred, an impedance update will occur the next time G are high at a rising edge of the K clock. There are no power up  
requirements for the SRAM. However, to guarantee optimum output driver impedance after power up, the SRAM needs 1024 non-  
read cycles. The output buffers can also be programmed in a minimum impedance configuration by connecting ZQ to VSS or VDDQ.  
Power-Up/Power-Down Supply Voltage Sequencing  
The following power-up supply voltage application is recommended: VSS, VDD, VDDQ, VREF, then VIN. VDD and VDDQ can be applied  
simultaneously, as long as VDDQ does not exceed VDD by more than 0.5V during power-up. The following power-down supply voltage  
removal sequence is recommended: VIN, VREF, VDDQ, VDD, VSS. VDD and VDDQ can be removed simultaneously, as long as VDDQ  
does not exceed VDD by more than 0.5V during power-down.  
Dec. 2005  
Rev 1.3  
- 5 -  
K7P323688M  
K7P321888M  
1Mx36 & 2Mx18 SRAM  
TRUTH TABLE  
K
X
X
ZZ  
H
L
G
X
H
L
SS  
X
X
H
L
SW SWa SWb SWc SWd DQa DQb DQc DQd  
Operation  
Hi-Z Hi-Z Hi-Z Hi-Z Power Down Mode. No Operation  
Hi-Z Hi-Z Hi-Z Hi-Z Output Disabled.  
X
X
X
H
L
L
L
L
L
L
X
X
X
X
H
L
X
X
X
X
H
H
L
X
X
X
X
H
H
H
L
X
X
X
X
H
H
H
H
L
L
Hi-Z Hi-Z Hi-Z Hi-Z Output Disabled. No Operation  
DOUT DOUT DOUT DOUT Read Cycle  
L
L
L
X
X
X
X
X
X
L
Hi-Z Hi-Z Hi-Z Hi-Z No Bytes Written  
L
L
DIN  
Hi-Z Hi-Z Hi-Z Write first byte  
Hi-Z Hi-Z Write second byte  
L
L
H
H
H
L
Hi-Z  
DIN  
L
L
H
H
L
Hi-Z Hi-Z  
DIN  
Hi-Z Write third byte  
DIN Write fourth byte  
DIN Write all bytes  
L
L
H
L
Hi-Z Hi-Z Hi-Z  
L
L
L
DIN  
DIN  
DIN  
NOTE : K & K are complementary  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Core Supply Voltage Relative to VSS  
Output Supply Voltage Relative to VSS  
Voltage on any pin Relative to VSS  
Output Short-Circuit Current(per I/O)  
Operating Temperature  
Symbol  
Value  
-0.5 to 2.3  
Unit  
V
VDD  
VDDQ  
VIN  
-0.5 to 2.3  
V
-0.5 to VDDQ+0.5 (2.3V MAX)  
25  
V
IOUT  
TOPR  
TSTR  
mA  
°C  
°C  
0 to 70  
Storage Temperature  
-55 to 125  
NOTE : Power Dissipation Capability will be dependent upon package characteristics and use environment. See enclosed thermal impedance data.  
Stresses greater than those listed under " Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
RECOMMENDED DC OPERATING CONDITIONS  
Parameter  
Core Power Supply Voltage  
Output Power Supply Voltage  
Input High Level  
Symbol  
VDD  
Min  
1.7  
Typ  
1.8  
1.8  
-
Max  
1.9  
Unit  
V
Note  
VDDQ  
1.4  
1.9  
V
VIH  
VREF+0.1  
-0.3  
VDDQ+0.3  
VREF-0.1  
0.95  
V
1, 2  
1, 3  
Input Low Level  
VIL  
-
V
Input Reference Voltage  
Clock Input Signal Voltage  
Clock Input Differential Voltage  
Clock Input Common Mode Voltage  
VREF  
0.7  
0.9  
-
V
VIN-CLK  
VDIF-CLK  
VCM-CLK  
-0.3  
VDDQ+0.3  
VDDQ+0.6  
0.95  
V
0.1  
-
V
0.7  
0.9  
V
NOTE :1. These are DC test criteria. DC design criteria is VREF±50mV. The AC VIH/VIL levels are defined separately for measuring  
timing parameters.  
2. VIH (Max)DC=VDDQ+0.3, VIH (Max)AC=2.6V (2.1V for DQs) (pulse width 20% of cycle time).  
3. VIL (Min)DC=-0.3V, VIL (Min)AC=-1.0V (-0.5V for DQs) (pulse width 20% of cycle time).  
Dec. 2005  
Rev 1.3  
- 6 -  
K7P323688M  
K7P321888M  
1Mx36 & 2Mx18 SRAM  
PIN CAPACITANCE  
Parameter  
Symbol  
CIN  
Test Condition  
VIN=0V  
Min  
Max  
Unit  
pF  
Input Capacitance  
-
-
-
4
5
5
Data Output Capacitance  
Clock Capacitance  
COUT  
CCLK  
VOUT=0V  
pF  
VCLK=0V  
pF  
NOTE : Periodically sampled and not 100% tested.(TA=25°C, f=1MHz)  
DC CHARACTERISTICS  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Average Power Supply Operating Current-x36  
(VIN=VIH or VIL, ZZ & SS=VIL)  
IDD30  
IDD25  
620  
550  
-
mA  
1, 2  
Average Power Supply Operating Current-x18  
(VIN=VIH or VIL, ZZ & SS=VIL)  
IDD30  
IDD25  
570  
500  
-
-
mA  
mA  
mA  
µA  
1, 2  
1
Power Supply Standby Current  
(VIN=VIH or VIL, ZZ=VIH)  
ISBZZ  
ISBSS  
ILI  
70  
200  
1
Active Standby Power Supply Current  
(VIN=VIH or VIL, SS=VIH, ZZ=VIL)  
-
1
Input Leakage Current  
(VIN=VSS or VDDQ)  
-1  
-1  
Output Leakage Current  
(VOUT=VSS or VDDQ, DQ in High-Z)  
ILO  
1
µA  
Output High Voltage(Programmable Impedance Mode)  
Output Low Voltage(Programmable Impedance Mode)  
Output High Voltage(IOH=-0.1mA)  
VOH1  
VOL1  
VOH2  
VOL2  
VOH3  
VOL3  
VDDQ/2  
VSS  
VDDQ  
VDDQ/2  
VDDQ  
0.2  
V
V
V
V
V
V
3,5  
4,5  
6
VDDQ-0.2  
VSS  
Output Low Voltage(IOL=0.1mA)  
6
Output High Voltage(IOH=-6mA)  
VDDQ-0.4  
VSS  
VDDQ  
0.4  
6
Output Low Voltage(IOL=6mA)  
6
NOTE :1. Minimum cycle. IOUT=0mA.  
2. 50% read cycles.  
3. |IOH|=(VDDQ/2)/(RQ/5)±15% @VOH=VDDQ/2 for 175Ω ≤ RQ 350.  
4. |IOL|=(VDDQ/2)/(RQ/5)±15% @VOL=VDDQ/2 for 175Ω ≤ RQ 350.  
5. Programmable Impedance Output Buffer Mode. The ZQ pin is connected to VSS through RQ.  
6. Minimum Impedance Output Buffer Mode. The ZQ pin is connected to VSS or VDDQ.  
Dec. 2005  
Rev 1.3  
- 7 -  
K7P323688M  
K7P321888M  
1Mx36 & 2Mx18 SRAM  
AC TEST CONDITIONS (TA=0 to 70°C, RQ=250)  
Parameter  
Core Power Supply Voltage  
Output Power Supply Voltage  
Input High/Low Level  
Symbol  
Value  
1.7~1.9  
1.8  
Unit  
V
Note  
VDD  
VDDQ  
VIH/VIL  
VREF  
V
1
1
1
VDDQ/2 ± 0.5  
VDDQ/2  
V
Input Reference Level  
V
Input Rise/Fall Time  
TR/TF  
0.5/0.5  
ns  
V
Input and Out Timing Reference Level  
Clock Input Timing Reference Level  
NOTE : 1. VDDQ should never be higher than VDD.  
VDDQ/2  
1
Cross Point  
V
AC TEST OUTPUT LOAD  
50Ω  
VDDQ  
VDDQ  
50Ω  
5pF  
25Ω  
DQ  
VDDQ  
50Ω  
50Ω  
5pF  
AC CHARACTERISTICS  
-30  
-25  
Parameter  
Symbol  
Unit  
Note  
Min  
3.3  
1.3  
1.3  
-
0.5  
0.3  
0.5  
0.3  
0.5  
0.3  
0.5  
0.3  
0.5  
-
Max  
-
-
-
1.6  
-
-
-
-
-
-
-
-
Min  
4.0  
1.6  
1.6  
-
0.5  
0.3  
0.5  
0.3  
0.5  
0.3  
0.5  
0.3  
0.5  
-
Max  
Clock Cycle Time  
tKHKH  
tKHKL  
tKLKH  
tKHQV  
tKHQX  
tAVKH  
tKHAX  
tDVKH  
tKHDX  
tWVKH  
tKHWX  
tSVKH  
tKHSX  
tKHQZ  
tKHQX1  
tGHQZ  
tGLQX  
tGLQV  
tZZE  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock High Pulse Width  
Clock Low Pulse Width  
Clock High to Output Valid  
Clock High to Output Hold  
Address Setup Time  
Address Hold Time  
Write Data Setup Time  
Write Data Hold Time  
2.0  
-
-
-
-
-
-
-
-
SW, SW[a:d] Setup Time  
SW, SW[a:d] Hold Time  
SS Setup Time  
SS Hold Time  
-
-
Clock High to Output Hi-Z  
Clock High to Output Low-Z  
G High to Output High-Z  
G Low to Output Low-Z  
G Low to Output Valid  
ZZ High to Power Down(Sleep Time)  
ZZ Low to Recovery(Wake-up Time)  
1.7  
-
1.7  
-
1.7  
15  
20  
2.0  
-
2.0  
-
2.0  
15  
20  
0.5  
-
0.5  
-
-
-
0.5  
-
0.5  
-
-
-
tZZR  
Dec. 2005  
Rev 1.3  
- 8 -  
K7P323688M  
K7P321888M  
1Mx36 & 2Mx18 SRAM  
TIMING WAVEFORMS OF NORMAL ACTIVE CYCLES (SS Controlled, G=Low)  
1
2
3
4
5
6
7
8
K
tKHKH  
tAVKH  
tKHKL  
tKLKH  
tKHAX  
tKHSX  
SAn  
SS  
A1  
A2  
A3  
A4  
A5  
A4  
A6  
A7  
tSVKH  
tWVKH  
tKHWX  
tWVKH  
tWVKH  
tKHWX  
tKHWX  
SW  
SWx  
DQn  
tKHDX  
tKHQZ  
tDVKH tKHDX  
tKHQV  
tKHQX  
tKHQX1  
Q2  
D4  
Q1  
D3  
Q5  
Q4  
NOTE  
1. D3 is the input data written in memory location A3.  
2. Q4 is the output data read from the write data buffer(not from the cell array), as a result of address A4 being a match from the  
last write cycle address.  
TIMING WAVEFORMS OF NORMAL ACTIVE CYCLES (G Controlled, SS=Low)  
1
2
3
4
5
6
7
8
K
tKHKH  
A3  
SAn  
G
A1  
A2  
A4  
A5  
A4  
A6  
A7  
SW  
SWx  
DQn  
tGHQZ  
tGLQV  
tGLQX  
Q1  
Q2  
D3  
D4  
Q5  
Q4  
NOTE  
1. D3 is the input data written in memory location A3.  
2. Q4 is the output data read from the write data buffer(not from the cell array), as a result of address A4 being a match from the last  
write cycle address.  
Dec. 2005  
Rev 1.3  
- 9 -  
K7P323688M  
K7P321888M  
1Mx36 & 2Mx18 SRAM  
TIMING WAVEFORMS OF STANDBY CYCLES  
1
2
3
4
5
6
7
8
K
tKHKH  
SAn  
SS  
A1  
A2  
A1  
A2  
A3  
SW  
SWx  
ZZ  
tZZE  
tZZR  
tKHQV  
tKHQV  
DQn  
Q1  
Q2  
Q1  
Dec. 2005  
Rev 1.3  
- 10  
K7P323688M  
K7P321888M  
1Mx36 & 2Mx18 SRAM  
IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG  
The SRAM provides a limited set of IEEE standard 1149.1 JTAG functions. This is to test the connectivity during manufacturing  
between SRAM, printed circuit board and other components. Internal data is not driven out of SRAM under JTAG control. In conform-  
ance with IEEE 1149.1, the SRAM contains a TAP controller, Instruction Register, Bypass Register and ID register. The TAP control-  
ler has a standard 16-state machine that resets internally upon power-up, therefore, TRST signal is not required. It is possible to use  
this device without utilizing the TAP. To disable the TAP controller without interfacing with normal operation of the SRAM, TCK must  
be tied to VSS to preclude mid level input. TMS and TDI are designed so an undriven input will produce a response identical to the  
application of a logic 1, and therefore can be left unconnected. But they may also be tied to VDD through a resistor. TDO should be left  
unconnected.  
JTAG Instruction Coding  
JTAG Block Diagram  
IR2 IR1 IR0 Instruction  
TDO Output  
SAMPLE-Z Boundary Scan Register  
IDCODE Identification Register  
SAMPLE-Z Boundary Scan Register  
Notes  
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
1
3
4
5
3
3
0
0
0
BYPASS  
SAMPLE  
PRIVATE  
BYPASS  
BYPASS  
Bypass Register  
1
Boundary Scan Register  
1
SRAM  
1
Bypass Register  
Bypass Register  
CORE  
1
M1  
M2  
NOTE :  
1. Places DQs in Hi-Z in order to sample all input data regardless of  
other SRAM inputs.  
2. TDI is sampled as an input to the first ID register to allow for the serial  
shift of the external TDI data.  
3. Bypass register is initiated to VSS when BYPASS instruction is  
invoked. The Bypass Register also holds serially loaded TDI when  
exiting the Shift DR states.  
TDI  
BYPASS Reg.  
Identification Reg.  
Instruction Reg.  
TDO  
4. SAMPLE instruction does not places DQs in Hi-Z.  
Control Signals  
TAP Controller  
5. PRIVATE is reserved for the exclusive use of SAMSUNG. This  
TMS  
TCK  
instruction should not be used.  
TAP Controller State Diagram  
1
0
Test Logic Reset  
0
1
1
0
1
Run Test Idle  
Select DR  
0
Capture DR  
0
Shift DR  
1
Exit1 DR  
0
Select IR  
0
Capture IR  
0
1
1
1
1
0
Shift IR  
1
Exit1 IR  
0
0
0
0
0
Pause DR  
1
Exit2 DR  
1
Update DR  
0
Pause IR  
1
Exit2 IR  
1
Update IR  
1
1
0
Dec. 2005  
Rev 1.3  
- 11  
K7P323688M  
K7P321888M  
1Mx36 & 2Mx18 SRAM  
SCAN REGISTER DEFINITION  
Part  
Instruction Register  
Bypass Register  
1 bits  
ID Register  
32 bits  
32 bits  
Boundary Scan  
70 bits  
1Mx36  
2Mx18  
3 bits  
3 bits  
1 bits  
51 bits  
ID REGISTER DEFINITION  
Revision Number Part Configuration Vendor Definition Samsung JEDEC Code  
Part  
Start Bit(0)  
(31:28)  
0000  
(27:18)  
(17:12)  
XXXXXX  
XXXXXX  
(11: 1)  
1Mx36  
2Mx18  
01000 00100  
00001001110  
1
1
0000  
01001 00011  
00001001110  
BOUNDARY SCAN EXIT ORDER(x36)  
BOUNDARY SCAN EXIT ORDER(x18)  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
3B  
2B  
3A  
3C  
2C  
2A  
2D  
1D  
2E  
1E  
2F  
2G  
1G  
2H  
1H  
3G  
4D  
4E  
4B  
4H  
4M  
3L  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
5B  
6B  
5A  
5C  
6C  
6A  
6D  
7D  
6E  
7E  
6F  
6G  
7G  
6H  
7H  
5G  
4F  
4K  
4L  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
26  
27  
28  
29  
30  
31  
3B  
2B  
3A  
3C  
2C  
2A  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
5B  
6B  
5A  
5C  
6C  
6A  
6D  
25  
24  
23  
22  
21  
20  
19  
SA  
SA  
SA  
DQa9  
DQc9  
DQc8  
DQc7  
DQc6  
DQc5  
DQc4  
DQc3  
DQc2  
DQc1  
SWc  
ZQ  
DQb9  
DQb8  
DQb7  
DQb6  
DQb5  
DQb4  
DQb3  
DQb2  
DQb1  
SWb  
G
32  
33  
1D  
2E  
DQb1  
DQb2  
DQa8  
DQa7  
7E  
6F  
18  
17  
34  
2G  
DQb3  
DQa6  
DQa5  
7G  
6H  
16  
15  
35  
36  
37  
38  
39  
40  
41  
1H  
3G  
4D  
4E  
4B  
4H  
4M  
DQb4  
SWb  
ZQ  
G
K
K
SWa  
DQa4  
4F  
4K  
4L  
5L  
7K  
14  
13  
12  
11  
10  
SS  
SA  
NC*1  
SW  
K
K
SS  
SA  
NC*  
1
SWa  
DQa1  
DQa2  
DQa3  
DQa4  
DQa5  
DQa6  
DQa7  
DQa8  
DQa9  
ZZ  
5L  
7K  
6K  
7L  
SW  
SWd  
DQd1  
DQd2  
DQd3  
DQd4  
DQd5  
DQd6  
DQd7  
DQd8  
DQd9  
SA  
1K  
2K  
1L  
6L  
42  
43  
2K  
1L  
DQb5  
DQb6  
DQa3  
6L  
9
6M  
7N  
6N  
7P  
6P  
7T  
5T  
6R  
4T  
4P  
2L  
2M  
1N  
2N  
1P  
2P  
3T  
2R  
4N  
44  
45  
2M  
1N  
DQb7  
DQb8  
DQa2  
DQa1  
6N  
7P  
8
7
8
7
6
5
4
3
2
ZZ  
SA  
SA  
7T  
5T  
6R  
6
5
4
SA  
SA  
SA  
SA  
46  
47  
48  
49  
50  
51  
2P  
3T  
2R  
4N  
2T  
3R  
DQb9  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
M2  
4P  
6T  
5R  
3
2
1
70  
3R  
M1  
M2  
5R  
1
M1  
NOTE :1. Pin 4H is no connection pin to internal chip and the scanned data is "0".  
Dec. 2005  
Rev 1.3  
- 12  
K7P323688M  
K7P321888M  
1Mx36 & 2Mx18 SRAM  
JTAG DC OPERATING CONDITIONS  
Parameter  
Symbol  
Min  
1.7  
Typ  
Max  
1.9  
Unit  
V
Note  
Power Supply Voltage  
VDD  
VIH  
1.8  
Input High Level  
0.65 VDD  
-0.3  
-
-
-
-
VDD+0.3  
0.35 VDD  
VDD  
V
Input Low Level  
VIL  
V
Output High Voltage(IOH=-2mA)  
Output Low Voltage(IOL=2mA)  
VOH  
VOL  
VDD - 0.45  
VSS  
V
0.45  
V
NOTE : 1. The input level of SRAM pin is to follow the SRAM DC specification.  
JTAG AC TEST CONDITIONS  
Parameter  
Symbol  
VIH/VIL  
TR/TF  
Min  
1.8/0.0  
1.0/1.0  
0.9  
Unit  
V
Note  
Input High/Low Level  
Input Rise/Fall Time  
ns  
V
Input and Output Timing Reference Level  
NOTE : 1. See SRAM AC test output load on page 7.  
1
JTAG AC Characteristics  
Parameter  
Symbol  
Min  
50  
20  
20  
5
Max  
Unit  
Note  
TCK Cycle Time  
tCHCH  
tCHCL  
tCLCH  
tMVCH  
tCHMX  
tDVCH  
tCHDX  
tSVCH  
tCHSX  
tCLQV  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK High Pulse Width  
TCK Low Pulse Width  
TMS Input Setup Time  
TMS Input Hold Time  
TDI Input Setup Time  
TDI Input Hold Time  
-
-
5
-
5
-
5
-
SRAM Input Setup Time  
SRAM Input Hold Time  
Clock Low to Output Valid  
5
-
5
-
0
10  
JTAG TIMING DIAGRAM  
TCK  
tCHCH  
tCLCH  
tCHCL  
tMVCH  
tCHMX  
tCHDX  
TMS  
TDI  
tDVCH  
tSVCH  
tCHSX  
PI  
(SRAM)  
tCLQV  
TDO  
Dec. 2005  
Rev 1.3  
- 13  
K7P323688M  
K7P321888M  
1Mx36 & 2Mx18 SRAM  
119 BGA PACKAGE DIMENSIONS  
# A1 INDEX MARK  
1.27 x 6 = 7.62  
0.30 MAX  
14.00 ± 0.10  
7
6
5
4
3
2
1
A
B
C
D
E
F
2.00  
1.00 Dp 0.10 ± 0.05  
G
H
J
K
L
M
N
P
R
T
2.00  
U
4x C0.70  
4x C1.00  
2.00 Dp 0.10 ± 0.05  
119x 0.750±0.15  
1.27  
12.50 ± 0.10  
NOTE :  
1.All Dimensions are in Millimeters.  
2. Cavity Surface : Mat finish (Rz 10~15um)  
Pin Surface : polish (Rz 2um Max)  
3. Solder Ball to PCB Offset : 0.10 MAX.  
4. PCB to Cavity Offset : 0.10 MAX.  
5. PKG Warpage : 0.05 MAX  
119 BGA PACKAGE THERMAL CHARACTERISTICS  
Parameter  
Junction to Ambient(at still air)  
Junction to Case  
Symbol  
Theta_JA  
Theta_JC  
Theta_JB  
Thermal Resistance  
Unit  
°C/W  
°C/W  
°C/W  
Note  
20.0  
4.3  
1.5W Heating  
Junction to Board  
5.4  
1.5W Heating  
NOTE : 1. Junction temperature can be calculated by : TJ = TA + PD x Theta_JA.  
Dec. 2005  
Rev 1.3  
- 14  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY