K9F1G08 [SAMSUNG]

1Gb NAND Flash;
K9F1G08
型号: K9F1G08
厂家: SAMSUNG    SAMSUNG
描述:

1Gb NAND Flash

文件: 总38页 (文件大小:687K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Rev. 1.1, Nov. 2010  
K9F1G08U0D  
1Gb NAND Flash  
Single-Level-Cell (1bit/cell)  
datasheet  
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND  
SPECIFICATIONS WITHOUT NOTICE.  
Products and specifications discussed herein are for reference purposes only. All information discussed  
herein is provided on an "AS IS" basis, without warranties of any kind.  
This document and all information discussed herein remain the sole and exclusive property of Samsung  
Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property  
right is granted by one party to the other party under this document, by implication, estoppel or other-  
wise.  
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or  
similar applications where product failure could result in loss of life or personal or physical harm, or any  
military or defense application, or any governmental procurement to which special terms or provisions  
may apply.  
For updates or additional information about Samsung products, contact your nearest Samsung office.  
All brand names, trademarks and registered trademarks belong to their respective owners.  
2010 Samsung Electronics Co., Ltd. All rights reserved.  
- 1 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
Revision History  
Revision No.  
History  
Draft Date  
Dec. 09, 2009  
May. 03, 2010  
Remark  
Advance  
Advance  
Editor  
-
0.0  
0.1  
1. Initial issue  
1. Max tR value has changed from 35us to 40us  
H.K.Kim  
2. Min tRC/ tWC value has changed from 30ns to 25ns  
3. Chapter 2.9, 2.10 AC parameters revised  
4. Chapter 2.3 ISB2 MAX value has changed from 50 to 80  
5. Chapter 2.6 Capacitance value has changed from 8 to 10  
1.0  
1.1  
1. FBGA pkg code change H->B  
2. Device code(4th Cycle) has changed from 15h to 95h  
3. Chapter 1.5.1 63ball FBGA pkg dimension has changed.  
Jul. 07, 2010  
Nov. 12, 2010  
Final  
Final  
H.K.Kim  
H.K.Kim  
1. Chapter 2.4 NOTE is Amendment.  
2. Chapter 1.4.1 PACKAGE DIMENSIONS revised.  
3. Chapter 1.5 Pin Configuration (FBGA) revised.  
- 2 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
Table Of Contents  
1.0 INTRODUCTION ........................................................................................................................................................4  
1.1 General Description................................................................................................................................................. 4  
1.2 Features ................................................................................................................................................................. 4  
1.3 General Description................................................................................................................................................. 4  
1.4Pin Configuration (TSOP1)....................................................................................................................................... 5  
1.4.1 Package Dimensions ........................................................................................................................................ 5  
1.5 Pin Configuration (FBGA)........................................................................................................................................ 6  
1.5.1 Package Dimensions ........................................................................................................................................ 7  
1.6 Pin Description ........................................................................................................................................................ 8  
2.0 PRODUCT INTRODUCTION......................................................................................................................................10  
2.1 Absolute Maximum Ratings..................................................................................................................................... 11  
2.2 Recommended Operating Conditions ..................................................................................................................... 11  
2.3 DC And Operating Characteristics(Recommended operating conditions otherwise noted.) ................................... 11  
2.4 Valid Block.............................................................................................................................................................. 12  
2.5 AC Test Condition ................................................................................................................................................... 12  
2.6 Capacitance(TA=25°C, VCC=3.3V, f=1.0MHz)....................................................................................................... 12  
2.7 Mode Selection........................................................................................................................................................ 12  
2.8 Program / Erase Characteristics.............................................................................................................................. 13  
2.9 AC Timing Characteristics for Command / Address / Data Input ............................................................................ 13  
2.10 AC Characteristics for Operation........................................................................................................................... 14  
3.0 NAND FLASH TECHNICAL NOTES ..........................................................................................................................15  
3.1 Initial Invalid Block(s)............................................................................................................................................... 15  
3.2 Identifying Initial Invalid Block(s) ............................................................................................................................. 15  
3.3 Error in Write or Read Operation............................................................................................................................. 16  
3.4 Addressing for Program Operation.......................................................................................................................... 18  
4.0 SYSTEM INTERFACE USING CE DON’T-CARE. .....................................................................................................19  
4.1 Command Latch Cycle ............................................................................................................................................ 20  
4.2 Address Latch Cycle................................................................................................................................................ 20  
4.3 Input Data Latch Cycle ............................................................................................................................................ 21  
4.4 Status Read Cycle................................................................................................................................................... 22  
4.5 Read Operation ....................................................................................................................................................... 23  
4.6 Read Operation(Intercepted by CE)........................................................................................................................ 23  
4.7 Random Data Output In a Page ............................................................................................................................. 24  
4.8 Page Program Operation......................................................................................................................................... 25  
4.9 Page Program Operation with Random Data Input................................................................................................. 26  
4.10 Copy-Back Program Operation with Random Data Input...................................................................................... 27  
4.11 Block Erase Operation........................................................................................................................................... 28  
4.12 Read ID Operation................................................................................................................................................. 28  
5.0 DEVICE OPERATION ................................................................................................................................................31  
5.1 Page Read............................................................................................................................................................... 31  
5.2 Page Program ......................................................................................................................................................... 32  
5.3 Copy-Back Program ................................................................................................................................................ 33  
5.4 Block Erase ............................................................................................................................................................. 34  
5.5 Read Status............................................................................................................................................................. 34  
5.6 Read ID ................................................................................................................................................................... 35  
5.7 Reset ....................................................................................................................................................................... 35  
5.8 Ready/busy.............................................................................................................................................................. 36  
6.0 DEVICE OPERATION ................................................................................................................................................37  
7.0 BACKWARD COMPATIBILITY INFORMATION.........................................................................................................38  
- 3 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
1.0 INTRODUCTION  
1.1 General Description  
Part Number  
K9F1G08U0D-S  
K9F1G08U0D-B  
Vcc Range  
Organization  
PKG Type  
TSOP1  
2.7V ~ 3.6V  
2.7V ~ 3.6V  
x8  
x8  
63FBGA  
1.2 Features  
Voltage Supply  
Fast Write Cycle Time  
- 3.3V Device(K9F1G08U0D) : 2.7V ~ 3.6V  
Organization  
- Page Program time : 250μs(Typ.)  
- Block Erase Time : 2ms(Typ.)  
- Memory Cell Array : (128M + 4M) x 8bit  
- Data Register : (2K + 64) x 8bit  
Automatic Program and Erase  
- Page Program : (2K + 64)Byte  
- Block Erase : (128K + 4K)Byte  
Page Read Operation  
Command/Address/Data Multiplexed I/O Port  
Hardware Data Protection  
- Program/Erase Lockout During Power Transitions  
Reliable CMOS Floating-Gate Technology  
-Endurance & Data Retention : Refor to the gualification report  
-ECC regnirement : 1 bit / 528bytes  
- Page Size : (2K + 64)Byte  
- Random Read : 40μs(Max.)  
- Serial Access : 25ns(Min.)  
Command Driven Operation  
Unique ID for Copyright Protection  
Package :  
- K9F1G08U0D-SCB0/SIB0 : Pb-FREE PACKAGE  
48 - Pin TSOP I (12 x 20 / 0.5 mm pitch)  
- K9F1G08U0D-BCB0/BIB0 : Pb-FREE PACKAGE  
63 FBGA (9 x 11 / 0.8 mm pitch)  
1.3 General Description  
Offered in 128Mx8bit, the K9F1G08U0D is a 1G-bit NAND Flash Memory with spare 32M-bit. Its NAND cell provides the most cost-effective solution for  
the solid state application market. A program operation can be performed in typical 250μs on the (2K+64)Byte page and an erase operation can be per-  
formed in typical 2ms on a (128K+4K)Byte block. Data in the data register can be read out at 25ns cycle time per Byte. The I/O pins serve as the ports for  
address and data input/output as well as command input. The on-chip write controller automates all program and erase functions including pulse repeti-  
tion, where required, and internal verification and margining of data. Even the write-intensive systems can take advantage of the K9F1G08U0Ds  
extended reliability by providing ECC(Error Correcting Code) with real time mapping-out algorithm. The K9F1G08U0D is an optimum solution for large  
nonvolatile storage applications such as solid state file storage and other portable app.lications requiring non-volatility.  
- 4 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
1.4Pin Configuration (TSOP1)  
K9F1G08U0D-SCB0/SIB0  
N.C  
N.C  
N.C  
N.C  
I/O7  
I/O6  
I/O5  
I/O4  
N.C  
N.C  
N.C  
Vcc  
Vss  
N.C  
N.C  
N.C  
I/O3  
I/O2  
I/O1  
I/O0  
N.C  
N.C  
N.C  
N.C  
N.C  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1
N.C  
N.C  
N.C  
N.C  
N.C  
R/B  
RE  
2
3
4
5
6
7
8
CE  
9
N.C  
N.C  
Vcc  
Vss  
N.C  
N.C  
CLE  
ALE  
WE  
WP  
N.C  
N.C  
N.C  
N.C  
N.C  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
48-pin TSOP1  
Standard Type  
12mm x 20mm  
1.4.1 Package Dimensions  
48-PIN LEAD FREE PLASTIC THIN SMALL OUT-LINE PACKAGE TYPE(I)  
Unit :mm/Inch  
48 - TSOP1 - 1220AF  
20.00±0.20  
0.787±0.008  
#1  
#48  
#24  
#25  
1.00±0.05  
0.039±0.002  
0.05  
0.002  
MIN  
1.20  
0.047  
MAX  
18.40±0.10  
0.724±0.004  
0~8°  
0.45~0.75  
0.018~0.030  
0.50  
0.020  
(
)
- 5 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
1.5 Pin Configuration (FBGA)  
K9F1G08U0D-BCB0/BIB0  
Top View  
10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
N.C N.C  
N.C  
N.C N.C  
N.C N.C  
/WP ALE Vss /CE /WE R/B  
NC  
NC  
NC  
NC  
/RE CLE NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC NC  
NC NC  
NC NC  
G
H
J
NC NC  
NC  
NC I/O0 NC  
NC  
Vcc  
NC I/O1 NC Vcc I/O5 I/O7  
Vss I/O2 I/O3 I/O4 I/O6 Vss  
K
L
N.C N.C  
N.C N.C  
N.C N.C  
N.C N.C  
M
- 6 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
1.5.1 Package Dimensions  
63-Ball FBGA (measured in millimeters)  
9.00±0.10  
A
0.80 x 9= 7.20  
#A1 INDEX MARK  
3.60  
0.80  
8
0.40  
B
9.00±0.10  
10  
9
7
6
5
4
3
2
1
A
B
#A1  
C
(Datum B)  
D
E
F
G
H
J
K
L
M
0.32±0.05  
0.90±0.10  
(Datum A)  
63-0.45±0.05  
0.2  
M A B  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
- 7 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
1.6 Pin Description  
Pin Name  
Pin Function  
DATA INPUTS/OUTPUTS  
I/O0 ~ I/O7  
CLE  
The I/O pins are used to input command, address and data, and to output data during read operations. The I/O pins float to  
high-z when the chip is deselected or when the outputs are disabled.  
COMMAND LATCH ENABLE  
The CLE input controls the activating path for commands sent to the command register. When active high, commands are  
latched into the command register through the I/O ports on the rising edge of the WE signal.  
ADDRESS LATCH ENABLE  
ALE  
The ALE input controls the activating path for address to the internal address registers. Addresses are latched on the rising  
edge of WE with ALE high.  
CHIP ENABLE  
CE  
The CE input is the device selection control. When the device is in the Busy state, CE high is ignored, and the device does  
not return to standby mode in program or erase operation.  
READ ENABLE  
RE  
WE  
WP  
The RE input is the serial data-out control, and when active drives the data onto the I/O bus. Data is valid tREA after the fall-  
ing edge of RE which also increments the internal column address counter by one.  
WRITE ENABLE  
The WE input controls writes to the I/O port. Commands, address and data are latched on the rising edge of the WE pulse.  
WRITE PROTECT  
The WP pin provides inadvertent program/erase protection during power transitions. The internal high voltage generator is  
reset when the WP pin is active low.  
READY/BUSY OUTPUT  
The R/B output indicates the status of the device operation. When low, it indicates that a program, erase or random read  
operation is in process and returns to high state upon completion. It is an open drain output and does not float to high-z con-  
dition when the chip is deselected or when outputs are disabled.  
R/B  
Vcc  
POWER  
VCC is the power supply for device.  
Vss  
N.C  
GROUND  
NO CONNECTION  
NOTE :  
Connect all VCC and VSS pins of each device to common power supply outputs.  
- 8 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
V
CC  
VSS  
1,024M + 32M Bit  
NAND Flash  
ARRAY  
X-Buffers  
Latches  
& Decoders  
A12 - A27  
(2,048 + 64)Byte x 65,536  
Y-Buffers  
Latches  
A0 - A11  
& Decoders  
Data Register & S/A  
Y-Gating  
Command  
Command  
Register  
V
V
CC  
SS  
I/O Buffers & Latches  
Global Buffers  
CE  
RE  
WE  
Control Logic  
& High Voltage  
Generator  
I/0 0  
Output  
Driver  
I/0 7  
CLE ALE  
WP  
[Figure 1] K9F1G08U0D Functional Block Diagram  
1 Block = 64 Pages  
(128K + 4k) Byte  
1 Page = (2K + 64)Bytes  
1 Block = (2K + 64)B x 64 Pages  
= (128K + 4K) Bytes  
1 Device = (2K+64)B x 64Pages x 1,024 Blocks  
= 1,056 Mbits  
64K Pages  
(=1,024 Blocks)  
8 bit  
2K Bytes  
64 Bytes  
64 Bytes  
I/O 0 ~ I/O 7  
Page Register  
2K Bytes  
[Figure 2] K9F1G08U0D Array Organization  
I/O 0  
A0  
I/O 1  
A1  
I/O 2  
A2  
I/O 3  
A3  
I/O 4  
A4  
I/O 5  
A5  
I/O 6  
A6  
I/O 7  
A7  
Column Address  
Column Address  
1st Cycle  
2nd Cycle  
3rd Cycle  
4th Cycle  
A8  
A9  
A10  
A14  
A22  
A11  
A15  
A23  
*L  
*L  
*L  
*L  
A12  
A20  
A13  
A21  
A16  
A24  
A17  
A25  
A18  
A26  
A19  
A27  
Row Address  
Row Address  
NOTE :  
Column Address : Starting Address of the Register.  
* L must be set to "Low".  
* The device ignores any additional input of address cycles than required.  
- 9 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
2.0 PRODUCT INTRODUCTION  
NAND Flash Memory has addresses multiplexed into 8 I/Os. This scheme dramatically reduces pin counts and allows system upgrades to future densities  
by maintaining consistency in system board design. Command, address and data are all written through I/O's by bringing WE to low while CE is low.  
Those are latched on the rising edge of WE. Command Latch Enable(CLE) and Address Latch Enable(ALE) are used to multiplex command and address  
respectively, via the I/O pins. Some commands require one bus cycle. For example, Reset Command, Status Read Command, etc. require just one cycle  
bus. Some other commands, like page read and block erase and page program, require two cycles: one cycle for setup and the other cycle for execution..  
Page Read and Page Program need the same five address cycles following the required command input. In Block Erase operation, however, only the  
three row address cycles are used. Device operations are selected by writing specific commands into the command register. Table 1 defines the specific  
commands of the K9G1G08U0D.  
[Table 1] Command Sets  
Function  
1st Cycle  
00h  
2nd Cycle  
Acceptable Command during Busy  
Read  
30h  
35h  
-
Read for Copy Back  
Read ID  
00h  
90h  
Reset  
FFh  
80h  
-
O
Page Program  
Copy-Back Program  
Block Erase  
10h  
10h  
D0h  
-
85h  
60h  
Random Data Input(1)  
Random Data Output(1)  
Read Status  
85h  
05h  
E0h  
-
70h  
O
NOTE :  
1) Random Data Input/Output can be executed in a page.  
Caution :  
Any undefined command inputs are prohibited except for above command set of Table 1.  
- 10 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
2.1 Absolute Maximum Ratings  
Parameter  
Symbol  
VCC  
Rating  
Unit  
-0.6 to + 4.6  
-0.6 to + 4.6  
Voltage on any pin relative to VSS  
VIN  
V
VI/O  
-0.6 to Vcc + 0.3 (< 4.6V)  
-10 to +125  
K9F1G08U0D-SCB0  
Temperature Under Bias  
Storage Temperature  
TBIAS  
°C  
K9F1G08U0D-SIB0  
K9F1G08U0D-SCB0  
K9F1G08U0D-SIB0  
-40 to +125  
TSTG  
IOS  
-65 to +150  
5
°C  
Short Circuit Current  
mA  
NOTE :  
1) Minimum DC voltage is -0.6V on input/output pins. During transitions, this level may undershoot to -2.0V for periods <30ns.  
Maximum DC voltage on input/output pins is VCC+0.3V which, during transitions, may overshoot to VCC+2.0V for periods <20ns.  
2) Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions  
as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
2.2 Recommended Operating Conditions  
(Voltage reference to GND, K9F1G08U0D-SCB0 :TA=0 to 70°C, K9F1G08U0D-SIB0:TA=-40 to 85°C)  
K9F1G08U0D(3.3V)  
Parameter  
Symbol  
Unit  
Min  
2.7  
0
Typ.  
3.3  
0
Max  
3.6  
0
Supply Voltage  
Supply Voltage  
VCC  
VSS  
V
V
2.3 DC And Operating Characteristics(Recommended operating conditions otherwise noted.)  
K9F1G08U0D(3.3V)  
Typ  
Parameter  
Symbol  
Test Conditions  
Unit  
Min  
Max  
Page Read with Serial  
Access  
tRC=25ns  
CE=VIL, IOUT=0mA  
ICC1  
Operating  
Current  
-
20  
35  
Program  
Erase  
ICC2  
ICC3  
ISB1  
ISB2  
ILI  
-
-
mA  
Stand-by Current(TTL)  
Stand-by Current(CMOS)  
Input Leakage Current  
Output Leakage Current  
CE=VIH, WP=0V/VCC  
CE=VCC-0.2, WP=0V/VCC  
VIN=0 to Vcc(max)  
-
-
-
-
-
10  
-
1
80  
±10  
±10  
μA  
ILO  
VOUT=0 to Vcc(max)  
-
VCC  
(1)  
Input High Voltage  
VIH  
-
0.8xVcc  
-
+0.3  
(1)  
Input Low Voltage, All inputs  
Output High Voltage Level  
Output Low Voltage Level  
Output Low Current(R/B)  
VIL  
-
-0.3  
2.4  
-
-
-
0.2XVcc  
V
VOH  
VOL  
K9F1G08U0D :IOH=-400μA  
K9F1G08U0D :IOL=2.1mA  
K9F1G08U0D :VOL=0.4V  
-
0.4  
-
-
IOL(R/B)  
8
10  
mA  
NOTE :  
1) VIL can undershoot to -0.4V and VIH can overshoot to VCC +0.4V for durations of 20 ns or less  
2) Typical value is measured at Vcc=3.3V, TA=25°C. Not 100% tested.  
- 11 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
2.4 Valid Block  
Parameter  
Symbol  
Min  
Typ.  
Max  
Unit  
K9F1G08U0D  
NVB  
1,004  
-
1,024  
Blocks  
NOTE :  
1) The device may include initial invalid blocks when first shipped. Additional invalid blocks may develop while being used. The number of valid blocks is presented with both  
cases of invalid blocks considered. Invalid blocks are defined as blocks that contain one or more bad bits. Do not erase or program factory-marked bad blocks. Refer to the  
attached technical notes for appropriate management of invalid blocks.  
2) The 1st block, which is placed on 00h block address, is guaranteed to be a valid block up to 1K program/erase cycles with 1bit/528Byte ECC.  
2.5 AC Test Condition  
(K9F1G08U0D-XCB0 :TA=0 to 70°C, K9F1G08U0D-XIB0:TA=-40 to 85°C, K9F1G08U0D : Vcc=2.7V~3.6V unless otherwise noted)  
Parameter  
K9F1G08U0D  
Input Pulse Levels  
0V to Vcc  
Input Rise and Fall Times  
Input and Output Timing Levels  
Output Load  
5ns  
Vcc/2  
1 TTL GATE and CL=50pF  
2.6 Capacitance(TA=25°C, VCC=3.3V, f=1.0MHz)  
Item  
Input/Output Capacitance  
Input Capacitance  
Symbol  
CI/O  
Test Condition  
VIL=0V  
Min  
Max  
10  
Unit  
pF  
-
-
CIN  
VIN=0V  
10  
pF  
NOTE :  
Capacitance is periodically sampled and not 100% tested.  
2.7 Mode Selection  
CLE  
H
L
ALE  
L
CE  
L
WE  
RE  
H
WP  
Mode  
X
Command Input  
Read Mode  
H
L
H
X
Address Input(4clock)  
H
L
L
L
H
H
Command Input  
Write Mode  
H
L
H
H
Address Input(4clock)  
L
L
L
H
H
Data Input  
L
L
L
H
X
X
X
X
X
X
Data Output  
X
X
X
X
X
X
H
H
X
X
X
X
X
During Read(Busy)  
During Program(Busy)  
During Erase(Busy)  
Write Protect  
X
X
H
X
X
H
L
X(1)  
X
X
(2)  
X
Stand-by  
0V/VCC  
NOTE :  
1) X can be VIL or VIH.  
2) WP should be biased to CMOS high or CMOS low for standby.  
- 12 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
2.8 Program / Erase Characteristics  
Parameter  
Program Time  
Symbol  
tPROG  
Nop  
Min  
Typ  
250  
-
Max  
750  
4
Unit  
μs  
-
-
-
Number of Partial Program Cycles  
Block Erase Time  
cycles  
ms  
tBERS  
2
10  
NOTE :  
1) Typical value is measured at Vcc=3.3V, TA=25°C. Not 100% tested.  
2) Typical program time is defined as the time within which more than 50% of the whole pages are programmed at 3.3V Vcc and 25°C temperature.  
2.9 AC Timing Characteristics for Command / Address / Data Input  
Parameter  
Symbol  
Min  
12  
5
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(1)  
CLE Setup Time  
CLE Hold Time  
CE Setup Time  
CE Hold Time  
-
-
-
-
-
-
-
-
-
-
-
-
tCLS  
tCLH  
(1)  
20  
5
tCS  
tCH  
tWP  
WE Pulse Width  
ALE Setup Time  
ALE Hold Time  
Data Setup Time  
Data Hold Time  
Write Cycle Time  
WE High Hold Time  
12  
12  
5
(1)  
tALS  
tALH  
(1)  
12  
5
tDS  
tDH  
tWC  
tWH  
25  
10  
100  
(2)  
Address to Data Loading Time  
tADL  
NOTE :  
1) The transition of the corresponding control pins must occur only once while WE is held low  
2) tADL is the time from the WE rising edge of final address cycle to the WE rising edge of first data cycle  
- 13 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
2.10 AC Characteristics for Operation  
Parameter  
Data Transfer from Cell to Register  
ALE to RE Delay  
Symbol  
tR  
Min  
-
Max  
Unit  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
40  
tAR  
10  
10  
20  
12  
-
-
CLE to RE Delay  
tCLR  
tRR  
-
Ready to RE Low  
-
RE Pulse Width  
tRP  
-
WE High to Busy  
tWB  
100  
Read Cycle Time  
tRC  
25  
-
-
RE Access Time  
tREA  
tCEA  
tRHZ  
tCHZ  
tCSD  
tRHOH  
tCOH  
tREH  
tIR  
20  
CE Access Time  
-
25  
RE High to Output Hi-Z  
CE High to Output Hi-Z  
CE High to ALE or CLE Don’t Care  
RE High to Output Hold  
CE High to Output Hold  
RE High Hold Time  
-
100  
-
30  
0
-
15  
15  
10  
0
-
-
-
Output Hi-Z to RE Low  
RE High to WE Low  
-
tRHW  
tWHR  
tRST  
100  
60  
-
-
WE High to RE Low  
-
5/10/500(1)  
Device Resetting Time(Read/Program/Erase)  
NOTE :  
1) If reset command(FFh) is written at Ready state, the device goes into Busy for maximum 5μs.  
- 14 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
3.0 NAND FLASH TECHNICAL NOTES  
3.1 Initial Invalid Block(s)  
Initial invalid blocks are defined as blocks that contain one or more initial invalid bits whose reliability is not guaranteed by Samsung. The information  
regarding the initial invalid block(s) is called the initial invalid block information. Devices with initial invalid block(s) have the same quality level as devices  
with all valid blocks and have the same AC and DC characteristics. An initial invalid block(s) does not affect the performance of valid block(s) because it  
is isolated from the bit line and the common source line by a select transistor. The system design must be able to mask out the initial invalid block(s) via  
address mapping. The 1st block, which is placed on 00h block address, is guaranteed to be a valid block up to 1K program/erase cycles with 1bit/528Byte  
ECC.  
3.2 Identifying Initial Invalid Block(s)  
All device locations are erased(FFh) except locations where the initial invalid block(s) information is written prior to shipping. The initial invalid block(s)  
status is defined by the 1st byte in the spare area. Samsung makes sure that either the 1st or 2nd page of every initial invalid block has non-FFh data at  
the column address of 2048. Since the initial invalid block information is also erasable in most cases, it is impossible to recover the information once it has  
been erased. Therefore, the system must be able to recognize the initial invalid block(s) based on the original initial invalid block information and create  
the initial invalid block table via the following suggested flow chart(Figure 3). Any intentional erasure of the original initial invalid block information is pro-  
hibited.  
Start  
Set Block Address = 0  
Increment Block Address  
Check "FFh" at the column address 2048  
*
of the 1st and 2nd page in the block  
No  
Create (or update)  
Check "FFh"  
Initial  
Invalid Block(s) Table  
Yes  
No  
Last Block ?  
Yes  
End  
[Figure 3] Flow chart to create initial invalid block table  
- 15 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
3.3 Error in Write or Read Operation  
Within its life time, additional invalid blocks may develop with NAND Flash memory. Refer to the qualification report for the actual data.The following pos-  
sible failure modes should be considered to implement a highly reliable system. In the case of status read failure after erase or program, block replace-  
ment should be done. Because program status fail during a page program does not affect the data of the other pages in the same block, block  
replacement can be executed with a page-sized buffer by finding an erased empty block and reprogramming the current target data and copying the rest  
of the replaced block. In case of Read, ECC must be employed. To improve the efficiency of memory space, it is recommended that the read or verifica-  
tion failure due to single bit error be reclaimed by ECC without any block replacement. The said additional block failure rate does not include those  
reclaimed blocks.  
Failure Mode  
Erase Failure  
Detection and Countermeasure sequence  
Status Read after Erase --> Block Replacement  
Status Read after Program --> Block Replacement  
Verify ECC -> ECC Correction  
Write  
Program Failure  
Single Bit Failure  
Read  
ECC  
: Error Correcting Code --> Hamming Code etc.  
Example) 1bit correction & 2bit detection  
Program Flow Chart  
Start  
Write 80h  
Write Address  
Write Data  
Write 10h  
Read Status Register  
No  
I/O 6 = 1 ?  
or R/B = 1 ?  
Yes  
*
No  
I/O 0 = 0 ?  
Yes  
Program Completed  
: If program operation results in an error, map out  
the block including the page in error and copy the  
target data to another block.  
*
- 16 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
NAND Flash Technical Notes (Continued)  
Erase Flow Chart  
Read Flow Chart  
Start  
Write 00h  
Start  
Write 60h  
Write Block Address  
Write Address  
Write 30h  
Write D0h  
Read Data  
Read Status Register  
ECC Generation  
No  
I/O 6 = 1 ?  
or R/B = 1 ?  
No  
Verify ECC  
Reclaim the Error  
Yes  
*
No  
Yes  
Erase Error  
I/O 0 = 0 ?  
Page Read Completed  
Yes  
Erase Completed  
: If erase operation results in an error, map out  
the failing block and replace it with another block.  
*
Block Replacement  
Block A  
1st  
{
(n-1)th  
1
nth  
an error occurs.  
(page)  
Buffer memory of the controller.  
Block B  
1st  
2
{
(n-1)th  
nth  
(page)  
* Step1  
When an error happens in the nth page of the Block ’A’ during erase or program operation.  
* Step2  
Copy the data in the 1st ~ (n-1)th page to the same location of another free block. (Block ’B’)  
* Step3  
Then, copy the nth page data of the Block ’A’ in the buffer memory to the nth page of the Block ’B’.  
* Step4  
Do not erase or program to Block ’A’ by creating an ’invalid block’ table or other appropriate scheme.  
- 17 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
3.4 Addressing for Program Operation  
Within a block, the pages must be programmed consecutively from the LSB(least significant bit) page of the block to the MSB(most significant bit) pages  
of the block. Random page address programming is prohibited. In this case, the definition of LSB page is the LSB among the pages to be programmed.  
Therefore, LSB doesn't need to be page 0.  
(64)  
(64)  
Page 63  
Page 31  
Page 63  
Page 31  
:
:
(1)  
:
(32)  
:
(3)  
(2)  
(1)  
Page 2  
Page 1  
Page 0  
(3)  
(32)  
(2)  
Page 2  
Page 1  
Page 0  
Data register  
Data register  
From the LSB page to MSB page  
DATA IN: Data (1)  
Data (64)  
Ex.) Random page program (Prohibition)  
DATA IN: Data (1)  
Data (64)  
- 18 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
4.0 SYSTEM INTERFACE USING CE DON’T-CARE.  
For an easier system interface, CE may be inactive during the data-loading or serial access as shown below. The internal 2,112byte data registers are  
utilized as separate buffers for this operation and the system design gets more flexible. In addition, for voice or audio applications which use slow cycle  
time on the orde  
CLE  
CE don’t-care  
CE  
WE  
ALE  
I/Ox  
80h  
Address(4Cycles)  
tCS  
Data Input  
Data Input  
10h  
tCH  
tCEA  
CE  
CE  
tREA  
tWP  
RE  
WE  
out  
I/O  
0~7  
[Figure 4] Program Operation with CE don’t-care.  
CLE  
CE  
CE don’t-care  
RE  
ALE  
t
R/B  
WE  
I/Ox  
Data Output(serial access)  
00h  
Address(4Cycle)  
30h  
[Figure 5] Read Operation with CE don’t-care.  
Address Information  
Device  
I/O  
I/Ox  
DATA  
ADDRESS  
Col. Add2 Row Add1  
A8~A11 A12~A19  
Data In/Out  
Col. Add1  
Row Add2  
K9F1G08U0D  
I/O 0 ~ I/O 7  
~2112byte  
A0~A7  
A20~A27  
- 19 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
4.1 Command Latch Cycle  
CLE  
CE  
tCLS  
tCS  
tCLH  
tCH  
tWP  
WE  
tALS  
tALH  
ALE  
I/Ox  
tDH  
tDS  
Command  
4.2 Address Latch Cycle  
tCLS  
tCS  
CLE  
tWC  
tWC  
tWC  
CE  
tWP  
tWP  
tWP  
tWP  
WE  
tWH  
tALH  
tWH  
tALH  
tWH  
tALH  
tALH  
tDH  
tALS  
tALS  
tALS  
tALS  
ALE  
I/Ox  
tDH  
tDH  
tDH  
tDS  
tDS  
tDS  
tDS  
Col. Add2  
Row Add1  
Col. Add1  
Row Add2  
- 20 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
4.3 Input Data Latch Cycle  
tCLH  
CLE  
tCH  
CE  
tWC  
ALE  
tALS  
tWP  
tWP  
tWP  
WE  
tWH  
tDH  
tDH  
tDH  
tDS  
tDS  
tDS  
I/Ox  
DIN final  
DIN 0  
DIN 1  
* Serial Access Cycle after Read(CLE=L, WE=H, ALE=L)  
tRC  
CE  
tCHZ  
tREH  
tREA  
tREA  
tREA  
tCOH  
RE  
tRHZ  
tRHZ  
tRHOH  
I/Ox  
Dout  
Dout  
Dout  
tRR  
R/B  
NOTE :  
Transition is measured at ±200mV from steady state voltage with load.  
This parameter is sampled and not 100% tested.  
tRHOH starts to be valid when frequency is lower than 33MHz.  
- 21 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
4.4 Status Read Cycle  
tCLR  
CLE  
tCLS  
tCLH  
tCS  
CE  
tCH  
tWP  
WE  
tCEA  
tCHZ  
tCOH  
tWHR  
RE  
tRHZ  
tDH  
tREA  
tDS  
tIR  
tRHOH  
I/Ox  
Status Output  
70h  
- 22 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
4.5 Read Operation  
tCLR  
CLE  
CE  
tWC  
WE  
ALE  
RE  
tCSD  
tWB  
tAR  
tRHZ  
tR  
tRC  
tRR  
Col. Add2 Row Add1 Row Add2  
00h  
Col. Add1  
30h  
Dout N  
Dout N+1  
Dout M  
I/Ox  
Column Address  
Row Address  
Busy  
R/B  
4.6 Read Operation(Intercepted by CE)  
CLE  
CE  
WE  
ALE  
RE  
tCSD  
tCHZ  
tWB  
tAR  
tCOH  
tR  
tRC  
tRR  
Row Add1 Row Add2  
Dout N+2  
00h  
Col. Add1 Col. Add2  
30h  
Dout N  
Dout N+1  
I/Ox  
R/B  
Row Address  
Column Address  
Busy  
- 23 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
4.7 Random Data Output In a Page  
- 24 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
4.8 Page Program Operation  
CLE  
CE  
tWC  
tWC  
tWC  
WE  
tPROG  
tWB  
tADL  
tWHR  
ALE  
RE  
Din  
N
Din  
M
Col. Add2 Row Add1 Row Add2  
Co.l Add1  
I/Ox  
R/B  
10h  
80h  
70h  
I/O0  
SerialData  
Input Command  
Program  
Command  
1 up to m Byte  
Serial Input  
Read Status  
Command  
Column Address  
Row Address  
I/O  
I/O  
0
0
=0 Successful Program  
=1 Error in Program  
m = 2112byte  
NOTE :  
tADL is the time from the WE rising edge of final address cycle to the WE rising edge of first data cycle.  
- 25 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
4.9 Page Program Operation with Random Data Input  
≈ ≈  
≈ ≈  
- 26 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
4.10 Copy-Back Program Operation with Random Data Input  
≈ ≈  
≈ ≈  
- 27 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
4.11 Block Erase Operation  
CLE  
CE  
tWC  
WE  
ALE  
RE  
tBERS  
tWB  
tWHR  
I/Ox  
Row Add1 Row Add2  
60h  
D0h  
70h  
I/O 0  
Row Address  
Busy  
R/B  
Auto Block Erase  
Setup Command  
Erase Command  
I/O0=0 Successful Erase  
Read Status I/O0=1 Error in Erase  
Command  
4.12 Read ID Operation  
CLE  
CE  
WE  
tAR  
ALE  
RE  
tREA  
Device  
Code  
I/Ox  
3rd cyc.  
4th cyc.  
5th cyc.  
00h  
ECh  
90h  
Read ID Command  
Maker Code Device Code  
Address 1cycle  
Device  
Device Code (2nd Cycle)  
F1h  
3rd Cycle  
4th Cycle  
95h  
5th Cycle  
40h  
K9F1G08U0D  
00h  
- 28 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
ID Definition Table  
Description  
1st Byte  
2nd Byte  
3rd Byte  
4th Byte  
5th Byte  
Maker Code  
Device Code  
Internal Chip Number, Cell Type, Number of Simultaneously Programmed Pages, Etc  
Page Size, Block Size,Redundant Area Size, Organization, Serial Access Minimum  
Plane Number, Plane Size  
3rd ID Data  
Internal Chip Number  
Cell Type  
Description  
I/O7  
I/O6  
I/O5 I/O4  
I/O3 I/O2  
I/O1 I/O0  
1
2
4
8
0
0
1
1
0
1
0
1
2 Level Cell  
4 Level Cell  
8 Level Cell  
0
0
1
1
0
1
0
1
16 Level Cell  
1
2
4
8
0
0
1
1
0
1
0
1
Number of  
Simultaneously  
Programmed Pages  
Interleave Program  
Between multiple chips  
Not Support  
Support  
0
1
Not Support  
Support  
0
1
Cache Program  
4th ID Data  
Description  
I/O7  
I/O6  
I/O5 I/O4  
I/O3  
I/O2  
I/O1 I/O0  
1KB  
2KB  
4KB  
8KB  
0
0
1
1
0
1
0
1
Page Size  
(w/o redundant area )  
64KB  
128KB  
256KB  
512KB  
0
0
1
1
0
1
0
1
Block Size  
(w/o redundant area )  
Redundant Area Size  
( byte/512byte)  
8
16  
0
1
x8  
x16  
0
1
Organization  
50ns/30ns  
25ns  
Reserved  
Reserved  
0
1
0
1
0
0
1
1
Serial Access Minimum  
- 29 -  
Rev. 1.1  
K9F1G08U0D  
5th ID Data  
datasheet  
FLASH MEMORY  
Description  
I/O7  
I/O6 I/O5 I/O4  
I/O3 I/O2  
I/O1  
I/O0  
1
2
4
8
0
0
1
1
0
1
0
1
Plane Number  
64Mb  
128Mb  
256Mb  
512Mb  
1Gb  
2Gb  
4Gb  
8Gb  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Plane Size  
(w/o redundant Area)  
Reserved  
0
0
0
- 30 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
5.0 DEVICE OPERATION  
5.1 Page Read  
Page read is initiated by writing 00h-30h to the command register along with four address cycles. After initial power up, 00h command is latched. There-  
fore only four address cycles and 30h command initiates that operation after initial power up. The 2,112 bytes of data within the selected page are trans-  
ferred to the data registers in less than 40μs(tR). The system controller can detect the completion of this data transfer(tR) by analyzing the output of R/B  
pin. Once the data in a page is loaded into the data registers, they may be read out in 25ns cycle time by sequentially pulsing RE. The repetitive high to  
low transitions of the RE clock make the device output the data starting from the selected column address up to the last column address.  
The device may output random data in a page instead of the consecutive sequential data by writing random data output command. The column address  
of next data, which is going to be out, may be changed to the address which follows random data output command. Random data output can be operated  
multiple times regardless of how many times it is done in a page.  
CLE  
CE  
WE  
ALE  
t
R/B  
RE  
I/Ox  
00h  
Address(4Cycle)  
30h  
Data Output(Serial Access)  
Col. Add.1,2 & Row Add.1,2  
Data Field  
Spare Field  
[Figure 6] Read Operation  
- 31 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
t
R/B  
RE  
Address  
4Cycles  
Address  
2Cycles  
Data Output  
05h  
Data Output  
30h  
E0h  
00h  
I/Ox  
Col. Add.1,2 & Row Add.1,2  
Col. Add.1,2  
Data Field  
Data Field  
Spare Field  
Spare Field  
[Figure 7] Random Data Output In a Page  
5.2 Page Program  
The device is programmed basically on a page basis, but it does allow multiple partial page programming of a word or consecutive bytes up to 2,112, in a  
single page program cycle. The number of consecutive partial page programming operation within the same page without an intervening erase operation  
must not exceed 4 times for a single page. The addressing should be done in sequential order in a block. A page program cycle consists of a serial data  
loading period in which up to 2,112bytes of data may be loaded into the data register, followed by a non-volatile programming period where the loaded  
data is programmed into the appropriate cell.  
The serial data loading period begins by inputting the Serial Data Input command(80h), followed by the four cycle address inputs and then serial data  
loading. The words other than those to be programmed do not need to be loaded. The device supports random data input in a page. The column address  
for the next data, which will be entered, may be changed to the address which follows random data input command(85h). Random data input may be  
operated multiple times regardless of how many times it is done in a page. The Page Program confirm command(10h) initiates the programming process.  
Writing 10h alone without previously entering the serial data will not initiate the programming process. The internal write state controller automatically exe-  
cutes the algorithms and timings necessary for program and verify, thereby freeing the system controller for other tasks. Once the program process starts,  
the Read Status Register command may be entered to read the status register. The system controller can detect the completion of a program cycle by  
monitoring the R/B output, or the Status bit(I/O 6) of the Status Register. Only the Read Status command and Reset command are valid while program-  
ming is in progress. When the Page Program is complete, the Write Status Bit(I/O 0) may be checked(Figure 8). The internal write verify detects only  
errors for "1"s that are not successfully programmed to "0"s. The command register remains in Read Status command mode until another valid command  
is written to the command register.  
tPROG  
R/B  
"0"  
Pass  
80h  
Address & Data Input  
I/O0  
Fail  
I/Ox  
10h  
70h  
Col. Add.1,2 & Row Add.1,2  
Data  
"1"  
[Figure 8] Program & Read Status Operation  
- 32 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
tPROG  
R/B  
I/Ox  
"0"  
Pass  
80h  
Address & Data Input  
Address & Data Input  
I/O0  
85h  
10h  
70h  
Col. Add.1,2  
Data  
Col. Add.1,2 & Row Add1,2  
Data  
"1"  
Fail  
[Figure 9] Random Data Input In a Page  
5.3 Copy-Back Program  
Copy-Back program with Read for Copy-Back is configured to quickly and efficiently rewrite data stored in one page. The benefit is especially obvious  
when a portion of a block is updated and the rest of the block also needs to be copied to the newly assigned free block. Copy-Back operation is a sequen-  
tial execution of Read for Copy-Back and of copy-back program with the destination page address. A read operation with "35h" command and the  
address of the source page moves the whole 2,112-byte data into the internal data buffer. A bit error is checked by sequential reading the data output. In  
the case where there is no bit error, the data do not need to be reloaded. Therefore Copy-Back program operation is initiated by issuing Page-Copy Data-  
Input command (85h) with destination page address. Actual programming operation begins after Program Confirm command (10h) is issued. Once the  
program process starts, the Read Status Register command (70h) may be entered to read the status register. The system controller can detect the com-  
pletion of a program cycle by monitoring the R/B output, or the Status bit(I/O 6) of the Status Register. When the Copy-Back Program is complete, the  
Write Status Bit(I/O 0) may be checked(Figure 10). The command register remains in Read Status command mode until another valid command is written  
to the command register.  
During copy-back program, data modification is possible using random data input command (85h) as shown in Figure 11.  
tR  
tPROG  
R/B  
I/Ox  
"0"  
Data Output  
Add.(4Cycles)  
Add.(4Cycles)  
Pass  
00h  
35h  
85h  
10h  
70h  
I/O0  
Col. Add.1,2 & Row Add.1,2  
Destination Address  
Col. Add.1,2 & Row Add.1,2  
Source Address  
"1"  
Fail  
NOTE :  
Copy-Back Program operation is allowed only within the same memory plane.  
[Figure 10] Page Copy-Back Program Operation  
tPROG  
tR  
R/B  
I/Ox  
Add.(4Cycles)  
00h  
35h  
Data Output  
85h Add.(4Cycles)  
Add.(2Cycles)  
Col. Add.1,2  
10h  
70h  
Data 85h  
Data  
Col. Add.1,2 & Row Add.1,2  
Source Address  
Col. Add.1,2 & Row Add.1,2  
Destination Address  
There is no limitation for the number of repetition.  
[Figure 11] Page Copy-Back Program Operation with Random Data Input  
- 33 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
5.4 Block Erase  
The Erase operation is done on a block basis. Block address loading is accomplished in two cycles initiated by an Erase Setup command(60h). Only  
address A18 to A27 is valid while A12 to A17 is ignored. The Erase Confirm command(D0h) following the block address loading initiates the internal erasing  
process. This two-step sequence of setup followed by execution command ensures that memory contents are not accidentally erased due to external  
noise conditions.  
At the rising edge of WE after the erase confirm command input, the internal write controller handles erase and erase-verify. When the erase operation is  
completed, the Write Status Bit(I/O 0) may be checked. Figure 12 details the sequence.  
tBERS  
R/B  
"0"  
Pass  
60h  
I/O0  
Fail  
70h  
Address Input(2Cycle)  
Row Add 1,2  
I/Ox  
D0h  
"1"  
[Figure 12] Block Erase Operation  
5.5 Read Status  
The device contains a Status Register which may be read to find out whether program or erase operation is completed, and whether the program or erase  
operation is completed successfully. After writing 70h command to the command register, a read cycle outputs the content of the Status Register to the I/  
O pins on the falling edge of CE or RE, whichever occurs last. This two line control allows the system to poll the progress of each device in multiple mem-  
ory connections even when R/B pins are common-wired. RE or CE does not need to be toggled for updated status. Refer to Table 2 for specific Status  
Register definitions. The command register remains in Status Read mode until further commands are issued to it. Therefore, if the status register is read  
during a random read cycle, the read command(00h) should be given before starting read cycles.  
[Table 2] Status Register Definition for 70h Command  
I/O  
Page Program  
Pass/Fail  
Not use  
Block Erase  
Pass/Fail  
Not use  
Read  
Not use  
Definition  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
Pass : "0"  
Fail : "1"  
Not use  
Don’t -cared  
Don’t -cared  
Don’t -cared  
Don’t -cared  
Don’t -cared  
Busy : "0"  
Not use  
Not use  
Not use  
Not Use  
Not Use  
Not Use  
Not Use  
Not Use  
Not Use  
Not Use  
Not Use  
Not Use  
Ready/Busy  
Write Protect  
Ready/Busy  
Write Protect  
Ready/Busy  
Write Protect  
Ready : "1"  
Protected : "0"  
Not Protected : "1" "1"otected  
NOTE :  
I/Os defined ’Not use’ are recommended to be masked out when Read Status is being executed.  
- 34 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
5.6 Read ID  
The device contains a product identification mode, initiated by writing 90h to the command register, followed by an address input of 00h. Five read cycles  
sequentially output the manufacturer code(ECh), and the device code and 3rd, 4th, 5th cycle ID respectively. The command register remains in Read ID  
mode until further commands are issued to it. Figure 13 shows the operation sequence.  
tCLR  
CLE  
CE  
tCEA  
WE  
ALE  
RE  
tAR  
tWHR  
tREA  
Device  
Code  
I/OX  
90h  
ECh  
3rd Cyc.  
4th Cyc.  
5th Cyc.  
00h  
[Figure 13] Read ID Operation  
Device  
Device Code (2nd Cycle)  
3rd Cycle  
4th Cycle  
95h  
5th Cycle  
K9F1G08U0D  
F1h  
00h  
40h  
5.7 Reset  
The device offers a reset feature, executed by writing FFh to the command register. When the device is in Busy state during random read, program or  
erase mode, the reset operation will abort these operations. The contents of memory cells being altered are no longer valid, as the data will be partially  
programmed or erased. The command register is cleared to wait for the next command, and the Status Register is cleared to value C0h when WP is high.  
If the device is already in reset state a new reset command will be accepted by the command register. The R/B pin changes to low for tRST after the  
Reset command is written. Refer to Figure 14 below  
tRST  
R/B  
I/OX  
FFh  
[Figure 14] RESET Operation  
[Table 3] Device Status  
After Power-up  
00h Command is latched  
After Reset  
Operation mode Mode  
Waiting for next command  
- 35 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
5.8 Ready/busy  
The device has a R/B output that provides a hardware method of indicating the completion of a page program, erase and random read completion. The R/  
B pin is normally high but transitions to low after program or erase command is written to the command register or random read is started after address  
loading. It returns to high when the internal controller has finished the operation. The pin is an open-drain driver thereby allowing two or more R/B outputs  
to be Or-tied. Because pull-up resistor value is related to tr(R/B) and current drain during busy(ibusy) , an appropriate value can be obtained with the fol-  
lowing reference chart(.Figure 15). Its value can be determined by the following guidance.  
Rp  
ibusy  
VCC  
3.3V device - VOL : 0.4V, VOH : 2.4V  
Ready Vcc  
R/B  
VOH  
open drain output  
CL  
VOL  
Busy  
tf  
tr  
GND  
Device  
[Figure 15] Rp vs tr ,tf & Rp vs ibusy  
@ Vcc = 3.3V, Ta = 25  
°
C , C = 50pF  
L
2.4  
200  
Ibusy  
200n  
100n  
2m  
150  
0.8  
1.2  
100  
1m  
tr  
0.6  
3.6  
50  
3.6  
2K  
3.6  
3K  
3.6  
tf  
4K  
1K  
Rp(ohm)  
Rp value guidance  
VCC(Max.) - VOL(Max.)  
3.2V  
Rp(min, 3.3V part) =  
=
IOL + ΣIL  
8mA + ΣIL  
where IL is the sum of the input currents of all devices tied to the R/B pin.  
Rp(max) is determined by maximum permissible limit of tr  
- 36 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
6.0 DEVICE OPERATION  
The device is designed to offer protection from any involuntary program/erase during power-transitions. An internal voltage detector disables all functions  
whenever Vcc is below about 2V(3.3V device). WP pin provides hardware protection and is recommended to be kept at VIL during power-up and power-  
down. A recovery time of minimum 1ms is required before internal circuit gets ready for any command sequences as shown in Figure 16. The two step  
command sequence for program/erase provides additional software protection.  
~ 2.3V  
~ 2.3V  
VCC  
High  
WP  
WE  
Don’t care  
Operation  
5 ms max  
1ms  
Ready/Busy  
Invalid  
Don’t care  
[Figure 16] AC Waveforms for Power Transition  
- 37 -  
Rev. 1.1  
K9F1G08U0D  
datasheet  
FLASH MEMORY  
7.0 BACKWARD COMPATIBILITY INFORMATION  
The below table shows key parameters which are different with previous product, so that the host could use make or modify its firmware without misun-  
derstanding of compatibility. But the below table don’t have all the difference with previous product, but only key parameters’ changing which can be  
defined to have an effect on developing NAND firmware or hardware.  
Previous Generation Product  
K9F1G08U0C  
Current Generation Device  
K9F1G08U0D  
Part ID  
1. tR: 25us / tPROG(200us typ, 700us Max)  
tERS(1.5ms Typ, 10ms Max)  
2. tRC/tWC: 25ns  
1. tR: 40us / tPROG(250us typ, 750us Max)  
tERS(2ms Typ, 10ms Max)  
2. tRC/tWC: 25ns  
Features & Operations  
3. 2 Plane Program: support  
4. 2Plane Copy-back Program: Support  
5. 2Plane Erase: Support  
3. 2 Plane Program: N/A  
4. 2Plane Copy-back Program: N/A  
5. 2Plane Erase: N/A  
6. EDO: Support  
6. EDO: N/A  
1. ICC1 : 15mA(typ)/ 30mA(max)  
2. ICC2 : 15mA(typ)/ 30mA(max)  
3. ICC3 : 15mA(typ)/ 30mA(max)  
1. ICC1 : 20mA(typ)/ 35mA(max)  
2. ICC2 : 20mA(typ)/ 35mA(max)  
3. ICC3 : 20mA(typ)/ 35mA(max)  
AC & DC Parameters  
Technical Notes  
- 38 -  

相关型号:

K9F1G08D0A-PCB00

Flash, 128MX8, 30ns, PDSO48, 12 X 20 MM, 0.50 MM PITCH, LEAD FREE, PLASTIC, TSOP1-48
SAMSUNG

K9F1G08D0A-PIB0

Flash, 128MX8, 30ns, PDSO48,
SAMSUNG

K9F1G08D0A-YIB0

Flash, 128MX8, 30ns, PDSO48,
SAMSUNG

K9F1G08D0A-YIB00

Flash, 128MX8, 30ns, PDSO48, 12 X 20 MM, 0.50 MM PITCH, PLASTIC, TSOP1-48
SAMSUNG

K9F1G08D0M

128M x 8 Bit / 64M x 16 Bit NAND Flash Memory
SAMSUNG

K9F1G08D0M-PCB0

Flash, 128MX8, 30ns, PDSO48,
SAMSUNG

K9F1G08D0M-PCB00

Flash, 128MX8, 30ns, PDSO48, 12 X 20 MM, 0.50 MM PITCH, PLASTIC, TSOP1-48
SAMSUNG

K9F1G08D0M-PIB0

Flash, 128MX8, 30ns, PDSO48,
SAMSUNG

K9F1G08D0M-YCB0

Flash, 128MX8, 30ns, PDSO48,
SAMSUNG

K9F1G08D0M-YIB0

Flash, 128MX8, 30ns, PDSO48,
SAMSUNG

K9F1G08Q0A

FLASH MEMORY
SAMSUNG

K9F1G08Q0A-PCB00

Flash, 128MX8, 35ns, PDSO48, 12 X 20 MM, 0.50 MM PITCH, LEAD FREE, PLASTIC, TSOP1-48
SAMSUNG