K9GAG08B0M-P [SAMSUNG]

2G x 8 Bit NAND Flash Memory;
K9GAG08B0M-P
型号: K9GAG08B0M-P
厂家: SAMSUNG    SAMSUNG
描述:

2G x 8 Bit NAND Flash Memory

文件: 总51页 (文件大小:1364K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
K9XXG08UXM  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.  
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,  
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,  
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL  
INFORMATION IN THIS DOCUMENT IS PROVIDED  
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar  
applications where Product failure couldresult in loss of life or personal or physical harm, or any military or  
defense application, or any governmental procurement to which special terms or provisions may apply.  
* Samsung Electronics reserves the right to change products or specification without notice.  
1
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
Document Title  
2G x 8 Bit NAND Flash Memory  
Revision History  
Revision No History  
Draft Date  
Remark  
0.0  
0.1  
1. Initial issue  
April 12th 2006 Advance  
Sep. 21th 2006 Advance  
1. Add read status 2 command F1h  
2. Add 2-plane read operation  
3. Add address map (Table2)  
4. Remove adjacent page relationship table  
5. Modify figure of 2-plane copy-back program with random data input  
6. Modify figure of Rp vs tr ,tf & Rp vs ibusy  
7. Data retention 5years -> 10 years  
8. Remove K9LBG08U1M  
9. Modify figure of 2-plane page program  
10. Add nWP timing guide  
11. Add 2-plane read for copy-back operation  
12. Add 2-plane random data out operation  
13. Modify command table and note  
14. Modify invalid block definition  
15. Add program operation with 2KB data loading timing guide  
16. tRLOH is valid when frequency is higher than 20MHz.  
tRHOH starts to be valid when frequency is lower than 20MHz.  
-> tRLOH is valid when frequency is higher than 33MHz.  
tRHOH starts to be valid when frequency is lower than 33MHz.  
0.2  
1. Add 2.7V part  
Dec. 8th 2006  
Advance  
2. tCDS is added. (min. 10ns)  
0.3  
0.4  
0.5  
0.6  
1. Endurance is changed (10K->5K)  
Dec. 12th 2006 Advance  
Dec. 21st 2006 Preliminary  
Jan. 12th 2007 Preliminary  
Feb. 12th 2007 Preliminary  
1. Endurance is changed (5K -> TBD)  
1. K9GAG08U0M-I/K9LBG08U0M-I is added.  
2. Random data output for copy back is added.  
3. Wafer level capacitance is added.  
The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right  
to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions about device. If you have  
any questions, please contact the SAMSUNG branch office near your office.  
2
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
2G x 8 Bit NAND Flash Memory  
PRODUCT LIST  
Part Number  
K9GAG08U0M-P  
K9GAG08B0M-P  
K9GAG08U0M-I  
K9LBG08U1M-I  
Vcc Range  
2.7V ~ 3.6V  
2.5V ~ 2.9V  
Organization  
PKG Type  
TSOP1  
X8  
2.7V ~ 3.6V  
52ULGA  
FEATURES  
Voltage Supply  
Fast Write Cycle Time  
- 2.7V Device(K9F8G08B0M) : 2.5V ~ 2.9V  
- 3.3V Device(K9F8G08U0M) : 2.7V ~ 3.6V  
Organization  
- Program time : 800µs(Typ.)  
- Block Erase Time : 1.5ms(Typ.)  
Command/Address/Data Multiplexed I/O Port  
Hardware Data Protection  
- Memory Cell Array : (2G + 64M) x 8bit  
- Data Register  
: (4K + 128) x 8bit  
- Program/Erase Lockout During Power Transitions  
Reliable CMOS Floating-Gate Technology  
- Endurance : TBD(with 4bit/512byte ECC)  
- Data Retention : 10 Years  
Automatic Program and Erase  
- Page Program : (4K + 128)Byte  
- Block Erase : (512K + 16K)Byte  
Page Read Operation  
Command Register Operation  
- Page Size : (4K + 128)Byte  
- Random Read : 60µs(Max.)  
- Serial Access : 25ns(Min.)  
Memory Cell : 2bit / Memory Cell  
Unique ID for Copyright Protection  
Package :  
- K9GAG08U0M-PCB0/PIB0 : Pb-FREE PACKAGE  
48 - Pin TSOP I (12 x 20 / 0.5 mm pitch)  
- K9GAG08B0M-PCB0/PIB0 : Pb-FREE PACKAGE  
48 - Pin TSOP I (12 x 20 / 0.5 mm pitch)  
- K9GAG08U0M-ICB0/IIB0  
52 - Pin ULGA (12 x 17 / 1.00 mm pitch)  
- K9LBG08U1M-ICB0/IIB0  
52 - Pin ULGA (12 x 17 / 1.00 mm pitch)  
GENERAL DESCRIPTION  
Offered in 2Gx8bit, the K9GAG08X0M is a 16G-bit NAND Flash Memory with spare 512M-bit. The device is offered in 2.7V and 3.3V  
Vcc. Its NAND cell provides the most cost-effective solution for the solid state mass storage market. A program operation can be per-  
formed in typical 800µs on the 4,224-byte page and an erase operation can be performed in typical 1.5ms on a (512K+16K)byte  
block. Data in the data register can be read out at 25ns cycle time per byte. The I/O pins serve as the ports for address and data  
input/output as well as command input. The on-chip write controller automates all program and erase functions including pulse repe-  
tition, where required, and internal verification and margining of data. The K9GAG08X0M is an optimum solution for large nonvolatile  
storage applications such as solid state file storage and other portable applications requiring non-volatility.  
3
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
PIN CONFIGURATION (TSOP1)  
K9GAG08X0M-PCB0/PIB0  
N.C  
N.C  
N.C  
N.C  
I/O7  
I/O6  
I/O5  
I/O4  
N.C  
N.C  
N.C  
Vcc  
Vss  
N.C  
N.C  
N.C  
I/O3  
I/O2  
I/O1  
I/O0  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
R/B  
RE  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
3
4
5
6
7
8
CE  
9
N.C  
N.C  
Vcc  
Vss  
N.C  
N.C  
CLE  
ALE  
WE  
WP  
N.C  
N.C  
N.C  
N.C  
N.C  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
48-pin TSOP1  
Standard Type  
12mm x 20mm  
PACKAGE DIMENSIONS  
48-PIN LEAD FREE PLASTIC THIN SMALL OUT-LINE PACKAGE TYPE(I)  
48 - TSOP1 - 1220AF  
Unit :mm/Inch  
20.00±0.20  
0.787±0.008  
#1  
#48  
#24  
#25  
1.00±0.05  
0.039±0.002  
0.05  
0.002  
MIN  
1.20  
0.047  
MAX  
18.40±0.10  
0.724±0.004  
0~8°  
0.45~0.75  
0.018~0.030  
0.50  
0.020  
(
)
4
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
PIN CONFIGURATION (ULGA)  
K9GAG08U0M-ICB0/IIB0  
L
M
C
E
G
H
K
N
A
B
D
J
F
NC  
NC  
NC  
NC  
NC  
NC  
7
6
NC  
/RE  
NC  
NC  
NC  
NC  
NC  
NC  
Vcc  
NC  
Vss  
IO7  
IO1  
IO5  
Vcc  
5
4
3
R/B  
/CE  
IO6  
IO4  
NC  
NC  
NC  
NC  
IO0  
/WE  
IO2  
Vss  
CLE  
2
1
Vss  
NC  
/WP  
IO3  
Vss  
ALE  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
PACKAGE DIMENSIONS  
52-ULGA (measured in millimeters)  
Bottom View  
Top View  
12.00±0.10  
A
10.00  
2.00  
1.00  
1.00  
3
12.00±0.10  
7
6
5
4
2
1
B
1.00  
1.00  
(Datum A)  
#A1  
A
B
C
D
(Datum B)  
E
F
G
H
J
K
L
M
N
41-∅  
0.70±0.05  
12-∅  
1.00±0.05  
0.1  
M C AB  
0.1  
M C AB  
Side View  
17.00±0.10  
0.10 C  
5
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
K9LBG08U1M-ICB0/IIB0  
L
M
C
E
G
H
K
N
A
B
D
J
F
NC  
NC  
NC  
NC  
NC  
NC  
7
6
NC  
/RE1  
/CE2  
R/B2  
IO7-2  
NC  
IO6-2  
IO7-1  
IO6-1  
IO5-2  
Vcc  
/RE2  
Vss  
IO5-1  
Vcc  
5
4
3
R/B1  
/WE1  
/CE1  
/WP2  
IO4-1  
IO4-2  
IO3-2  
CLE2  
ALE2  
ALE1  
NC  
IO0-1  
IO2-1  
IO1-1 IO3-1  
IO0-2  
Vss  
CLE1  
2
1
Vss  
/WP1  
/WE2  
NC  
Vss  
NC  
NC  
IO1-2  
NC  
IO2-2  
NC  
NC  
NC  
PACKAGE DIMENSIONS  
52-ULGA (measured in millimeters)  
Bottom View  
Top View  
12.00±0.10  
A
10.00  
2.00  
1.00  
1.00  
3
12.00±0.10  
7
6
5
4
2
1
B
1.00  
1.00  
(Datum A)  
#A1  
A
B
C
D
(Datum B)  
E
F
G
H
J
K
L
M
N
41-∅  
0.70±0.05  
12-∅  
1.00±0.05  
0.1  
M C AB  
0.1  
M C AB  
Side View  
17.00±0.10  
0.10 C  
6
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
PIN DESCRIPTION  
Pin Name  
Pin Function  
DATA INPUTS/OUTPUTS  
I/O0 ~ I/O7  
CLE  
The I/O pins are used to input command, address and data, and to output data during read operations. The I/  
O pins float to high-z when the chip is deselected or when the outputs are disabled.  
COMMAND LATCH ENABLE  
The CLE input controls the activating path for commands sent to the command register. When active high,  
commands are latched into the command register through the I/O ports on the rising edge of the WE signal.  
ADDRESS LATCH ENABLE  
ALE  
The ALE input controls the activating path for address to the internal address registers. Addresses are  
latched on the rising edge of WE with ALE high.  
CHIP ENABLE  
The CE input is the device selection control. When the device is in the Busy state, CE high is ignored, and  
the device does not return to standby mode in program or erase operation. Regarding CE control during  
read operation, refer to ’Page read’ section of Device operation.  
CE  
READ ENABLE  
RE  
WE  
WP  
The RE input is the serial data-out control, and when active drives the data onto the I/O bus. Data is valid  
tREA after the falling edge of RE which also increments the internal column address counter by one.  
WRITE ENABLE  
The WE input controls writes to the I/O port. Commands, address and data are latched on the rising edge of  
the WE pulse.  
WRITE PROTECT  
The WP pin provides inadvertent write/erase protection during power transitions. The internal high voltage  
generator is reset when the WP pin is active low.  
READY/BUSY OUTPUT  
The R/B output indicates the status of the device operation. When low, it indicates that a program, erase or  
random read operation is in process and returns to high state upon completion. It is an open drain output and  
does not float to high-z condition when the chip is deselected or when outputs are disabled.  
R/B  
POWER  
Vcc  
Vss  
N.C  
VCC is the power supply for device.  
GROUND  
NO CONNECTION  
Lead is not internally connected.  
NOTE : Connect all VCC and VSS pins of each device to common power supply outputs.  
Do not leave VCC or VSS disconnected.  
7
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
Figure 1. K9GAG08X0M Functional Block Diagram  
VCC  
VSS  
16,384M + 512M Bit  
NAND Flash  
ARRAY  
X-Buffers  
A13 - A31  
Latches  
& Decoders  
(4,096 + 128)Byte x 524,288  
Y-Buffers  
Latches  
A0 - A12  
& Decoders  
Data Register & S/A  
Y-Gating  
Command  
Command  
Register  
VCC  
VSS  
I/O Buffers & Latches  
CE  
RE  
WE  
Control Logic  
& High Voltage  
Generator  
I/0 0  
Output  
Driver  
Global Buffers  
I/0 7  
CLE ALE  
WP  
Figure 2. K9GAG08X0M Array Organization  
1 Block = 128 Pages  
(512K + 16K) Bytes  
1 Page = (4K + 128)Bytes  
1 Block = (4K + 128)B x 128 Pages  
= (512K + 16K) Bytes  
1 Device = (4K+128)B x 128Pages x 4,096 Blocks  
= 16,896 Mbits  
512K Pages  
(=4,096 Blocks)  
8 bit  
4K Bytes  
128 Bytes  
I/O 0 ~ I/O 7  
Page Register  
4K Bytes  
128 Bytes  
I/O 0  
A0  
I/O 1  
A1  
I/O 2  
I/O 3  
A3  
I/O 4  
A4  
I/O 5  
A5  
I/O 6  
A6  
I/O 7  
A7  
Column Address  
Column Address  
Row Address  
1st Cycle  
2nd Cycle  
3rd Cycle  
4th Cycle  
5th Cycle  
A2  
A8  
A9  
A10  
A15  
A23  
A31  
A11  
A16  
A24  
*L  
A12  
A17  
A25  
*L  
*L  
*L  
*L  
A13  
A21  
A29  
A14  
A22  
A30  
A18  
A26  
*L  
A19  
A27  
*L  
A20  
A28  
*L  
Row Address  
Row Address  
NOTE : Column Address : Starting Address of the Register.  
* L must be set to "Low".  
* The device ignores any additional input of address cycles than required.  
8
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
Product Introduction  
The K9GAG08X0M is a 16,896Mbit(17,716,740,096 bit) memory organized as 524,288 rows(pages) by 4,224x8 columns. Spare 128  
columns are located from column address of 4,096~4,223. A 4,224-byte data register is connected to memory cell arrays for accom-  
modating data transfer between the I/O buffers and memory cells during page read and page program operations. The memory array  
is made up of 32 cells that are serially connected to form a NAND structure. Each of the 32 cells resides in a different page. A block  
consists of two NAND structured strings. A NAND structure consists of 32 cells. A cell has 2-bit data. Total 2,162,688 NAND cells  
reside in a block. The program and read operations are executed on a page basis, while the erase operation is executed on a block  
basis. The memory array consists of 4,096 separately erasable 512K-byte blocks. It indicates that the bit by bit erase operation is pro-  
hibited on the K9GAG08X0M.  
The K9GAG08X0M has addresses multiplexed into 8 I/Os. This scheme dramatically reduces pin counts and allows system upgrades  
to future densities by maintaining consistency in system board design. Command, address and data are all written through I/O's by  
bringing WE to low while CE is low. Those are latched on the rising edge of WE. Command Latch Enable(CLE) and Address Latch  
Enable(ALE) are used to multiplex command and address respectively, via the I/O pins. Some commands require one bus cycle. For  
example, Reset Command, Status Read Command, etc require just one cycle bus. Some other commands, like page read and block  
erase and page program, require two cycles: one cycle for setup and the other cycle for execution. The 2112M-byte physical space  
requires 32 addresses, thereby requiring five cycles for addressing : 2 cycles of column address, 3 cycles of row address, in that  
order. Page Read and Page Program need the same five address cycles following the required command input. In Block Erase oper-  
ation, however, only three row address cycles are used. Device operations are selected by writing specific commands into the com-  
mand register. Table 1 defines the specific commands of the K9GAG08X0M.  
In addition to the enhanced architecture and interface, the device incorporates copy-back program feature from one page to another  
page without need for transporting the data to and from the external buffer memory. Since the time-consuming serial access and  
data-input cycles are removed, system performance for solid-state disk application is significantly increased.  
Table 1. Command Sets  
Function  
1st Set  
00h  
2nd Set  
30h  
35h  
-
Acceptable Command during Busy  
Read  
Read for Copy Back  
Read ID  
00h  
90h  
Reset  
FFh  
-
O
Page Program  
Copy-Back Program  
Block Erase  
80h  
10h  
10h  
D0h  
-
85h  
60h  
Random Data Input(1)  
85h  
Random Data Output(1)  
Read Status  
05h  
E0h  
70h  
O
O
Read Status 2  
F1h  
Two-Plane Read (3)  
60h----60h  
60h----60h  
00h----05h  
80h----11h  
85h----11h  
60h----60h  
80h----11h  
85h----11h  
30h  
35h  
Two-Plane Read for Copy-Back  
Two-Plane Random Data Output (1) (3)  
Two-Plane Page Program(2)  
E0h  
81h----10h  
81h----10h  
D0h  
Two-Plane Copy-Back Program(2)  
Two-Plane Block Erase  
Page Program with 2KB Data (2)  
80h----10h  
85h----10h  
Copy-Back Program with 2KB Data (2)  
NOTE : 1. Random Data Input/Output can be executed in a page.  
2. Any command between 11h and 80h/81h/85h is prohibited except 70h/F1h and FFh.  
3. Two-Plane Random Data out must be used after Two-Plane Read operation  
Caution : Any undefined command inputs are prohibited except for above command set of Table 1.  
9
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Unit  
2.7V / 3.3V Device  
Parameter  
Symbol  
VCC  
VIN  
-0.6 to + 4.6  
Voltage on any pin relative to VSS  
V
-0.6 to + 4.6  
-0.6 to Vcc+0.3 (<4.6V)  
-10 to +125  
VI/O  
K9XXG08X0M-XCB0  
Temperature Under Bias  
TBIAS  
°C  
K9XXG08X0M-XIB0  
-40 to +125  
K9XXG08X0M-XCB0  
Storage Temperature  
TSTG  
Ios  
-65 to +150  
5
°C  
K9XXG08X0M-XIB0  
Short Circuit Current  
mA  
NOTE :  
1. Minimum DC voltage is -0.6V on input/output pins. During transitions, this level may undershoot to -2.0V for periods <30ns.  
Maximum DC voltage on input/output pins is VCC+0.3V which, during transitions, may overshoot to VCC+2.0V for periods <20ns.  
2. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions  
as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
RECOMMENDED OPERATING CONDITIONS  
(Voltage reference to GND, K9XXG08X0M-XCB0 :TA=0 to 70°C, K9GAG08X0M-XIB0:TA=-40 to 85°C)  
K9GAG08B0M(2.7V)  
K9XXG08UXM(3.3V)  
Parameter  
Symbol  
Unit  
Min  
2.5  
0
Typ.  
2.7  
0
Max  
2.9  
0
Min  
2.7  
0
Typ.  
3.3  
0
Max  
3.6  
0
Supply Voltage  
Supply Voltage  
VCC  
VSS  
V
V
DC AND OPERATING CHARACTERISTICS(Recommended operating conditions otherwise noted.)  
K9GAG08X0M  
Parameter  
Symbol  
Test Conditions  
2.7V  
3.3V  
Unit  
Min  
Typ Max  
Min  
Typ Max  
Page Read with  
Serial Access  
tRC=25ns  
CE=VIL, IOUT=0mA  
ICC1  
Operating  
Current  
-
15  
30  
-
15  
30  
Program  
Erase  
ICC2  
ICC3  
ISB1  
ISB2  
ILI  
-
mA  
-
Stand-by Current(TTL)  
Stand-by Current(CMOS)  
Input Leakage Current  
Output Leakage Current  
CE=VIH, WP=0V/VCC  
CE=VCC-0.2, WP=0V/VCC  
VIN=0 to Vcc(max)  
VOUT=0 to Vcc(max)  
-
-
-
-
-
10  
-
1
-
-
-
-
-
10  
-
1
50  
50  
±10  
±10  
±10  
±10  
µA  
ILO  
-
-
0.8  
0.8  
Vcc  
Vcc  
(1)  
Input High Voltage  
VIH  
-
-
-
-
-
-
+0.3  
+0.3  
xVcc  
xVcc  
0.2  
0.2  
(1)  
Input Low Voltage, All inputs  
Output High Voltage Level  
Output Low Voltage Level  
Output Low Current(R/B)  
-0.3  
-0.3  
2.4  
-
VIL  
xVcc  
xVcc  
V
K9GAG08B0M :IOH=-100µA  
K9GAG08U0M :IOH=-400µA  
VCC  
-0.4  
VOH  
VOL  
-
-
0.4  
-
-
-
0.4  
-
K9GAG08B0M :IOL=100uA  
K9GAG08U0M :IOL=2.1mA  
-
-
-
K9GAG08B0M :VOL=0.1V  
K9GAG08U0M :VOL=0.4V  
IOL(R/B)  
3
4
8
10  
mA  
NOTE : 1. VIL can undershoot to -0.4V and VIH can overshoot to VCC +0.4V for durations of 20 ns or less.  
2. Typical value is measured at Vcc=3.3V, TA=25°C. Not 100% tested.  
3. The typical value of the K9LBG08U1M’s ISB2 is 20µA and the maximum value is 100µA.  
10  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
VALID BLOCK  
Parameter  
K9GAG08X0M  
K9LBG08U1M  
Symbol  
NVB  
Min  
Typ.  
Max  
4,096  
8,192  
Unit  
3,996  
7,992  
-
-
Blocks  
Blocks  
NVB  
NOTE :  
1. The device may include initial invalid blocks when first shipped. Additional invalid blocks may develop while being used. The number of valid blocks is  
presented with both cases of invalid blocks considered. Invalid blocks are defined as blocks that contain one or more bad bits which cause status fail-  
ure during program and erase operation. Do not erase or program factory-marked bad blocks. Refer to the attached technical notes for appropriate  
management of initial invalid blocks.  
2. The 1st block, which is placed on 00h block address, is guaranteed to be a valid block at the time of shipment.  
3. The number of valid blocks is on the basis of single plane operations, and this may be decreased with two plane operations.  
* : Each K9GAG08U0M chip in the K9LBG08U1M has Maximum 100 invalid blocks  
AC TEST CONDITION  
(K9XXG08X0M-XCB0: TA=0 to 70°C, K9XXG08X0M-XIB0:TA=-40 to 85°C,  
K9GAG08B0M: Vcc=2.5V~2.9V, K9XXG08UXM: Vcc=2.7V~3.6V unless otherwise noted)  
Parameter  
Input Pulse Levels  
K9GAG08B0M  
K9XXG08UXM  
0V to Vcc  
0V to Vcc  
Input Rise and Fall Times  
Input and Output Timing Levels  
Output Load  
5ns  
Vcc/2  
5ns  
Vcc/2  
1 TTL GATE and CL=30pF  
1 TTL GATE and CL=50pF  
CAPACITANCE(TA=25°C, VCC=2.7V/3.3V, f=1.0MHz)  
Item  
Symbol  
Test Condition  
Min  
Max  
Unit  
pF  
CI/O  
VIL=0V  
-
-
-
-
5
5
5
5
Input/Output Capacitance  
CI/O(W)*  
CIN  
VIL=0V  
pF  
VIN=0V  
pF  
Input Capacitance  
CIN(W)*  
VIN=0V  
pF  
NOTE :1. Capacitance is periodically sampled and not 100% tested.  
2. CI/O(W)* and CIN(W)* are tested at wafer level.  
MODE SELECTION  
CLE  
H
L
ALE  
L
CE  
L
WE  
RE  
H
WP  
Mode  
Command Input  
X
Read Mode  
Write Mode  
H
L
H
X
Address Input(5clock)  
Command Input  
H
L
L
L
H
H
H
L
H
H
Address Input(5clock)  
L
L
L
H
H
Data Input  
L
L
L
H
X
X
X
X
X
X
Data Output  
X
X
X
X
X
X
H
H
X
X
X
X
X
During Read(Busy)  
During Program(Busy)  
During Erase(Busy)  
Write Protect  
X
X
H
X
X
H
L
X(1)  
X
X
(2)  
X
Stand-by  
0V/VCC  
NOTE : 1. X can be VIL or VIH.  
2. WP should be biased to CMOS high or CMOS low for standby.  
11  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
Program / Erase Characteristics  
Parameter  
Symbol  
tPROG  
tDBSY  
Nop  
Min  
Typ  
0.8  
0.5  
-
Max  
3
Unit  
ms  
Program Time  
-
Dummy Busy Time for Multi Plane Program  
Number of Partial Program Cycles in the Same Page  
Block Erase Time  
1
µs  
-
-
1
cycle  
ms  
tBERS  
1.5  
10  
NOTE: 1.Typical program time is measured at Vcc=3.3V, TA=25°C. Not 100% tested.  
2. Typical Program time is defined as the time within which more than 50% of the whole pages are programed at 3.3V Vcc and 25°C temperature.  
3. Within a same block, program time(tPROG) of page group A is faster than that of page group B. Typical tPROG is the average program time of  
the page group A and B(Table 5).  
Page Group A: Page 0, 1, 2, 3, 6, 7, 10, 11, ... , 110, 111, 114, 115, 118, 119, 122, 123  
Page Group B: Page 4, 5, 8, 9, 12, 13, 16, 17, ... , 116, 117, 120, 121, 124, 125, 126, 127  
AC Timing Characteristics for Command / Address / Data Input  
Min  
Max  
Parameter  
Symbol  
Unit  
3.3V(2.7V)  
3.3V(2.7V)  
(1)  
CLE Setup Time  
CLE Hold Time  
CE Setup Time  
CE Hold Time  
12  
5
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCLS  
tCLH  
(1)  
20  
5
tCS  
tCH  
tWP  
WE Pulse Width  
ALE Setup Time  
ALE Hold Time  
Data Setup Time  
Data Hold Time  
Write Cycle Time  
12  
12  
5
(1)  
tALS  
tALH  
(1)  
12  
5
tDS  
tDH  
tWC  
tWH  
25  
10  
100  
WE High Hold Time  
(2)  
Address to Data Loading Time  
tADL  
NOTES : 1. The transition of the corresponding control pins must occur only once while WE is held low.  
2. tADL is the time from the WE rising edge of final address cycle to the WE rising edge of first data cycle.  
12  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
AC Characteristics for Operation  
Min  
Max  
Unit  
Parameter  
Symbol  
3.3V(2.7V)  
3.3V(2.7V)  
Data Transfer from Cell to Register  
ALE to RE Delay  
tR  
tAR  
-
10  
10  
20  
12  
-
60  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
-
CLE to RE Delay  
tCLR  
tRR  
-
Ready to RE Low  
-
RE Pulse Width  
tRP  
-
WE High to Busy  
tWB  
100  
Read Cycle Time  
tRC  
25  
-
-
RE Access Time  
tREA  
tCEA  
tRHZ  
tCHZ  
tCSD  
tRHOH  
tRLOH  
tCOH  
tREH  
tIR  
20  
CE Access Time  
-
25  
RE High to Output Hi-Z  
CE High to Output Hi-Z  
CE High to ALE or CLE Don’t Care  
RE High to Output Hold  
RE Low to Output Hold  
CE High to Output Hold  
RE High Hold Time  
-
100  
-
30  
10  
15  
5
-
-
-
15  
10  
0
-
-
Output Hi-Z to RE Low  
RE High to WE Low  
WE High to RE Low  
-
tRHW  
tWHR  
tRST  
100  
60  
-
-
-
5/10/500(1)  
Device Resetting Time(Read/Program/Erase)  
NOTE: 1. If reset command(FFh) is written at Ready state, the device goes into Busy for maximum 5µs.  
13  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
NAND Flash Technical Notes  
Initial Invalid Block(s)  
Initial invalid blocks are defined as blocks that contain one or more initial invalid bits whose reliability is not guaranteed by Samsung.  
The information regarding the initial invalid block(s) is called the initial invalid block information. Devices with initial invalid block(s)  
have the same quality level as devices with all valid blocks and have the same AC and DC characteristics. An initial invalid block(s)  
does not affect the performance of valid block(s) because it is isolated from the bit line and the common source line by a select tran-  
sistor. The system design must be able to mask out the initial invalid block(s) via address mapping. The 1st block, which is placed on  
00h block address, is guaranteed to be a valid block at the time of shipment.  
Identifying Initial Invalid Block(s)  
All device locations are erased(FFh) except locations where the initial invalid block(s) information is written prior to shipping. The  
initial invalid block(s) status is defined by the 1st byte in the spare area. Samsung makes sure that the last page of every initial invalid  
block has non-FFh data at the column address of 4,096.The initial invalid block information is also erasable in most cases, and it is  
impossible to recover the information once it has been erased. Therefore, the system must be able to recognize the initial invalid  
block(s) based on the initial invalid block information and create the initial invalid block table via the following suggested flow  
chart(Figure 3). Any intentional erasure of the initial invalid block information is prohibited.  
Start  
Set Block Address = 0  
Increment Block Address  
Check "FFh" at the column address  
4,096 of the last page in the block  
*
No  
Create (or update)  
Check "FFh" ?  
Initial  
Invalid Block(s) Table  
Yes  
No  
Last Block ?  
Yes  
End  
Figure 3. Flow chart to create initial invalid block table.  
14  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
NAND Flash Technical Notes (Continued)  
Error in write or read operation  
Within its life time, additional invalid blocks may develop with NAND Flash memory. Refer to the qualification report for the actual  
data. Block replacement should be done upon erase or program error.  
Failure Mode  
Detection and Countermeasure sequence  
Status Read after Erase --> Block Replacement  
Status Read after Program --> Block Replacement  
Verify ECC -> ECC Correction  
Erase Failure  
Write  
Read  
Program Failure  
Up to Four Bit Failure  
: Error Correcting Code --> RS Code etc.  
Example) 4bit correction / 512-byte  
ECC  
Program Flow Chart  
Start  
Write 80h  
Write Address  
Write Data  
Write 10h  
Read Status Register  
No  
I/O 6 = 1 ?  
or R/B = 1 ?  
Yes  
*
No  
Program Error  
I/O 0 = 0 ?  
Yes  
Program Completed  
: If program operation results in an error, map out  
the block including the page in error and copy the  
target data to another block.  
*
15  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
NAND Flash Technical Notes (Continued)  
Erase Flow Chart  
Read Flow Chart  
Start  
Write 00h  
Start  
Write 60h  
Write Block Address  
Write Address  
Write 30h  
Write D0h  
Read Data  
Read Status Register  
ECC Generation  
No  
I/O 6 = 1 ?  
or R/B = 1 ?  
No  
Verify ECC  
Reclaim the Error  
Yes  
*
No  
Yes  
Erase Error  
I/O 0 = 0 ?  
Page Read Completed  
Yes  
Erase Completed  
: If erase operation results in an error, map out  
the failing block and replace it with another block.  
*
Block Replacement  
Block A  
1st  
{
(n-1)th  
1
nth  
an error occurs.  
(page)  
Buffer memory of the controller.  
Block B  
1st  
2
{
(n-1)th  
nth  
(page)  
* Step1  
When an error happens in the nth page of the Block ’A’ during erase or program operation.  
* Step2  
Copy the data in the 1st ~ (n-1)th page to the same location of another free block. (Block ’B’)  
* Step3  
Then, copy the nth page data of the Block ’A’ in the buffer memory to the nth page of the Block ’B’.  
* Step4  
Do not erase or program to Block ’A’ by creating an ’invalid block’ table or other appropriate scheme.  
16  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
NAND Flash Technical Notes (Continued)  
Addressing for program operation  
Within a block, the pages must be programmed consecutively from the LSB (least significant bit) page of the block to MSB (most sig-  
nificant bit) pages of the block. Random page address programming is prohibited. In this case, the definition of LSB page is the LSB  
among the pages to be programmed. Therefore, LSB doesn't need to be page 0.  
(128)  
(128)  
Page 127  
Page 31  
Page 127  
Page 31  
:
(32)  
:
:
(1)  
:
(3)  
(2)  
(1)  
Page 2  
Page 1  
Page 0  
(3)  
(32)  
(2)  
Page 2  
Page 1  
Page 0  
Data register  
Data register  
From the LSB page to MSB page  
DATA IN: Data (1)  
Ex.) Random page program (Prohibition)  
DATA IN: Data (1)  
Data (128)  
Data (128)  
17  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
System Interface Using CE don’t-care.  
For an easier system interface, CE may be inactive during the data-loading or serial access as shown below. The internal 4,224byte  
data registers are utilized as separate buffers for this operation and the system design gets more flexible. In addition, for voice or  
audio applications which use slow cycle time on the order of µ-seconds, de-activating CE during the data-loading and serial access  
would provide significant savings in power consumption.  
Figure 4. Program Operation with CE don’t-care.  
CLE  
CE don’t-care  
CE  
WE  
ALE  
I/Ox  
Address(5Cycles)  
tCS  
80h  
Data Input  
Data Input  
10h  
tCH  
tCEA  
CE  
RE  
CE  
tREA  
tWP  
WE  
out  
I/O0~7  
Figure 5. Read Operation with CE don’t-care.  
CLE  
CE  
CE don’t-care  
RE  
ALE  
tR  
R/B  
WE  
I/Ox  
Data Output(serial access)  
00h  
Address(5Cycle)  
30h  
18  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
NOTE  
I/O  
I/Ox  
DATA  
ADDRESS  
Device  
Data In/Out  
Col. Add1  
Col. Add2  
Row Add1  
Row Add2  
Row Add3  
K9GAG08X0M  
I/O 0 ~ I/O 7  
~4,224byte  
A0~A7  
A8~A12  
A13~A20  
A21~A28  
A29~A31  
Command Latch Cycle  
CLE  
tCLS  
tCS  
tCLH  
tCH  
CE  
tWP  
WE  
tALS  
tALH  
ALE  
I/Ox  
tDH  
tDS  
Command  
Address Latch Cycle  
CLE  
tWC  
tWC  
tWC  
tWC  
tCS  
CE  
tWP  
tWP  
tWP  
tWP  
WE  
tWH  
tWH  
tALH  
tWH  
tALH  
tWH  
tALH  
tALH  
tALH  
tDH  
tALS  
tALS  
tALS  
tALS  
tALS  
ALE  
I/Ox  
tDH  
tDH  
tDH  
tDH  
tDS  
tDS  
tDS  
tDS  
tDS  
Col. Add2  
Row Add1  
Col. Add1  
Row Add2  
Row Add3  
19  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
Input Data Latch Cycle  
tCLH  
CLE  
tCH  
CE  
tWC  
tALS  
ALE  
tWP  
tWP  
tWP  
WE  
tWH  
tDH  
tDH  
tDH  
tDS  
tDS  
tDS  
I/Ox  
DIN final  
DIN 0  
DIN 1  
* Serial Access Cycle after Read(CLE=L, WE=H, ALE=L)  
tRC  
CE  
(1)  
tCHZ  
tREH  
tREA  
tREA  
tREA  
tCOH  
RE  
(1)  
(1)  
tRHZ  
tRHZ  
(2)  
tRHOH  
I/Ox  
Dout  
Dout  
Dout  
tRR  
R/B  
NOTES : 1. Transition is measured at ±200mV from steady state voltage with load.  
This parameter is sampled and not 100% tested.  
2. tRHOH starts to be valid when frequency is lower than 33MHz.  
20  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
Serial Access Cycle after Read(EDO Type, CLE=L, WE=H, ALE=L)  
CE  
(1)  
tRC  
tCHZ  
tCOH  
tRP  
tREH  
RE  
(1)  
tRHZ  
tREA  
tCEA  
tREA  
tRLOH  
(2)  
(2)  
tRHOH  
I/Ox  
R/B  
Dout  
Dout  
tRR  
NOTES : 1. Transition is measured at ±200mV from steady state voltage with load.  
This parameter is sampled and not 100% tested.  
2. tRLOH is valid when frequency is higher than 33MHz.  
tRHOH starts to be valid when frequency is lower than 33MHz.  
Status Read Cycle  
tCLR  
CLE  
CE  
tCLS  
tCLH  
tCS  
tCH  
tWP  
WE  
tCEA  
tCHZ  
tCOH  
tWHR  
RE  
tRHZ  
tDH  
tREA  
tDS  
tIR  
tRHOH  
I/Ox  
Status Output  
70h/F1h  
21  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
Read Operation  
tCLR  
CLE  
CE  
tWC  
WE  
ALE  
RE  
tCSD  
tWB  
tAR  
tRHZ  
tR  
tRC  
tRR  
Col. Add2 Row Add1 Row Add2  
00h  
Col. Add1  
30h  
Dout N  
Dout N+1  
Dout M  
Row Add3  
I/Ox  
R/B  
Column Address  
Row Address  
Busy  
Read Operation(Intercepted by CE)  
tCLR  
CLE  
CE  
tCSD  
WE  
ALE  
RE  
tCHZ  
tWB  
tAR  
tCOH  
tR  
tRC  
tRR  
Row Add2 Row Add3  
Dout N+2  
00h  
Col. Add1 Col. Add2 Row Add1  
30h  
Dout N+1  
Dout N  
I/Ox  
R/B  
Row Address  
Column Address  
Busy  
22  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
23  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
Page Program Operation  
CLE  
CE  
tWC  
tWC  
tWC  
WE  
tPROG  
tWHR  
tWB  
tADL  
ALE  
RE  
Din  
N
Din  
M
Co.l Add1 Col. Add2 Row Add1 Row Add2 Row Add3  
70h  
80h  
I/Ox  
10h  
I/O0  
SerialData  
Input Command  
Program  
Command  
1 up to m Byte  
Serial Input  
Read Status  
Command  
Column Address  
Row Address  
R/B  
I/O  
0
=0 Successful Program  
=1 Error in Program  
I/O0  
NOTES : tADL is the time from the WE rising edge of final address cycle to the WE rising edge of first data cycle.  
24  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
≈ ≈  
≈ ≈  
25  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
≈ ≈  
≈ ≈  
26  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
Block Erase Operation  
CLE  
CE  
tWC  
WE  
tBERS  
tWB  
tWHR  
ALE  
RE  
I/Ox  
Row Add1 Row Add2 Row Add3  
Row Address  
60h  
D0h  
70h  
I/O 0  
Busy  
R/B  
Auto Block Erase  
Setup Command  
Erase Command  
I/O  
0
=0 Successful Erase  
Read Status I/O  
Command  
0=1 Error in Erase  
27  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
28  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
≈ ≈  
≈ ≈  
29  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
30  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
Read ID Operation  
CLE  
CE  
WE  
ALE  
tAR  
RE  
tREA  
Device  
Code  
I/Ox  
3rd cyc.  
4th cyc.  
5th cyc.  
00h  
ECh  
90h  
Read ID Command  
Maker Code Device Code  
Address. 1cycle  
Device  
Device Code(2nd Cycle)  
3rd Cycle  
4th Cycle  
5th Cycle  
K9GAG08B0M  
K9GAG08U0M  
K9LBG08U1M  
Same as K9GAG08U0M  
14h  
D5h  
B6h  
74h  
Same as K9GAG08U0M in it  
31  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
ID Definition Table  
90 ID : Access command = 90H  
Description  
1st Byte  
2nd Byte  
3rd Byte  
4th Byte  
5th Byte  
Maker Code  
Device Code  
Internal Chip Number, Cell Type, Number of Simultaneously Programmed Pages, etc  
Page Size, Block Size, Spare Size, Organization, Serial Access Minimum  
Plane Number, Plane Size  
3rd ID Data  
Internal Chip Number  
Cell Type  
Description  
I/O7  
I/O6  
I/O5 I/O4  
I/O3 I/O2  
I/O1 I/O0  
1
2
4
8
0
0
1
1
0
1
0
1
2 Level Cell  
4 Level Cell  
8 Level Cell  
0
0
1
1
0
1
0
1
16 Level Cell  
1
2
4
8
0
0
1
1
0
1
0
1
Number of  
Simultaneously  
Programmed Pages  
Interleave Program  
Between multiple chips  
Not Support  
Support  
0
1
Not Support  
Support  
0
1
Cache Program  
4th ID Data  
Description  
I/O7  
I/O6 I/O5 I/O4  
I/O3  
I/O2  
I/O1 I/O0  
1KB  
2KB  
4KB  
8KB  
0
0
1
1
0
1
0
1
Page Size  
(w/o redundant area )  
64KB  
0
0
1
1
0
1
0
1
Block Size  
(w/o redundant area )  
128KB  
256KB  
512KB  
Redundant Area Size  
( byte/512byte)  
8
16  
0
1
x8  
x16  
0
1
Organization  
50ns/30ns  
25ns  
Reserved  
Reserved  
0
1
0
1
0
0
1
1
Serial Access Minimum  
32  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
5th ID Data  
Description  
1
I/O7  
I/O6 I/O5 I/O4  
I/O3 I/O2  
I/O1  
I/O0  
0
0
1
1
0
1
0
1
2
4
Plane Number  
8
64Mb  
128Mb  
256Mb  
512Mb  
1Gb  
2Gb  
4Gb  
8Gb  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Plane Size  
(w/o redundant Area)  
Reserved  
0
0
0
33  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
Device Operation  
PAGE READ  
Page read is initiated by writing 00h-30h to the command register along with five address cycles. After initial power up, 00h command  
is latched. Therefore only five address cycles and 30h command initiates that operation after initial power up. The 4,224 bytes of data  
within the selected page are transferred to the data registers in less than 60µs(tR). The system controller can detect the completion of  
this data transfer(tR) by analyzing the output of R/B pin. Once the data in a page is loaded into the data registers, they may be read  
out in 25ns cycle time by sequentially pulsing RE. The repetitive high to low transitions of the RE clock make the device output the  
data starting from the selected column address up to the last column address.  
The device may output random data in a page instead of the consecutive sequential data by writing random data output command.  
The column address of next data, which is going to be out, may be changed to the address which follows random data output com-  
mand. Random data output can be operated multiple times regardless of how many times it is done in a page.  
Figure 6. Read Operation  
CLE  
CE  
WE  
ALE  
tR  
R/B  
RE  
I/Ox  
00h  
Address(5Cycle)  
30h  
Data Output(Serial Access)  
Col. Add.1,2 & Row Add.1,2,3  
Data Field  
Spare Field  
34  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
Figure 7. Random Data Output In a Page  
tR  
R/B  
RE  
Address  
5Cycles  
Address  
2Cycles  
Data Output  
Data Output  
30h/35h  
E0h  
00h  
05h  
I/Ox  
Col Add1,2 & Row Add1,2,3  
Data Field  
Data Field  
Spare Field  
Spare Field  
PAGE PROGRAM  
The device is programmed basically on a page basis, and the number of consecutive partial page programming operation within the  
same page without an intervening erase operation must not exceed 1 time for the page. The addressing should be done in sequential  
order in a block. A page program cycle consists of a serial data loading period in which up to 4,224bytes of data may be loaded into  
the data register, followed by a non-volatile programming period where the loaded data is programmed into the appropriate cell.  
The serial data loading period begins by inputting the Serial Data Input command(80h), followed by the five cycle address inputs and  
then serial data loading. The words other than those to be programmed do not need to be loaded. The device supports random data  
input in a page. The column address for the next data, which will be entered, may be changed to the address which follows random  
data input command(85h). Random data input may be operated multiple times regardless of how many times it is done in a page.  
The Page Program confirm command(10h) initiates the programming process. Writing 10h alone without previously entering the  
serial data will not initiate the programming process. The internal write state controller automatically executes the algorithms and tim-  
ings necessary for program and verify, thereby freeing the system controller for other tasks. Once the program process starts, the  
Read Status Register command may be entered to read the status register. The system controller can detect the completion of a pro-  
gram cycle by monitoring the R/B output, or the Status bit(I/O 6) of the Status Register. Only the Read Status command and Reset  
command are valid while programming is in progress. When the Page Program is complete, the Write Status Bit(I/O 0) may be  
checked(Figure 8). The internal write verify detects only errors for "1"s that are not successfully programmed to "0"s. The command  
register remains in Read Status command mode until another valid command is written to the command register.  
Figure 8. Program & Read Status Operation  
tPROG  
R/B  
"0"  
Pass  
80h  
Address & Data Input  
I/O0  
Fail  
I/Ox  
10h  
70h  
Col Add1,2 & Row Add1,2,3  
Data  
"1"  
35  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
Figure 9. Random Data Input In a Page  
tPROG  
R/B  
"0"  
Pass  
80h  
Address & Data Input  
Address & Data Input  
I/O0  
Fail  
85h  
10h  
70h  
I/Ox  
Col Add1,2  
Data  
Col Add1,2 & Row Add1,2,3  
Data  
"1"  
COPY-BACK PROGRAM  
Copy-Back program with Read for Copy-Back is configured to quickly and efficiently rewrite data stored in one page without data re-  
loading when the bit error is not in data stored. Since the time-consuming re-loading cycles are removed, the system performance is  
improved. The benefit is especially obvious when a portion of a block is updated and the rest of the block also needs to be copied to  
the newly assigned free block. Copy-Back operation is a sequential execution of Read for Copy-Back and of copy-back program with  
the destination page address. A read operation with "35h" command and the address of the source page moves the whole 4,224-byte  
data into the internal data buffer. A bit error is checked by sequential reading the data output. In the case where there is no bit error,  
the data do not need to be reloaded. Therefore Copy-Back program operation is initiated by issuing Page-Copy Data-Input command  
(85h) with destination page address. Actual programming operation begins after Program Confirm command (10h) is issued. Once  
the program process starts, the Read Status Register command (70h) may be entered to read the status register. The system control-  
ler can detect the completion of a program cycle by monitoring the R/B output, or the Status bit(I/O 6) of the Status Register. When  
the Copy-Back Program is complete, the Write Status Bit(I/O 0) may be checked(Figure 10 & Figure 11). The command register  
remains in Read Status command mode until another valid command is written to the command register.  
During copy-back program, data modification is possible using random data input command (85h) as shown in Figure11.  
Figure 10. Page Copy-Back Program Operation  
tR  
tPROG  
R/B  
I/Ox  
"0"  
Data Output  
Add.(5Cycles)  
Add.(5Cycles)  
Pass  
00h  
35h  
85h  
10h  
70h  
I/O0  
Col. Add.1,2 & Row Add.1,2,3  
Destination Address  
Col. Add.1,2 & Row Add.1,2,3  
Source Address  
"1"  
Fail  
Note: 1. Copy-Back Program operation is allowed only within the same memory plane.  
Figure 11. Page Copy-Back Program Operation with Random Data Input  
tPROG  
tR  
R/B  
Add.(5Cycles)  
I/Ox  
00h  
35h  
Data Output  
85h Add.(5Cycles)  
Add.(2Cycles)  
Col. Add.1,2  
10h  
70h  
Data 85h  
Data  
Col. Add.1,2 & Row Add.1,2,3  
Source Address  
Col. Add.1,2 & Row Add.1,2,3  
Destination Address  
There is no limitation for the number of repetition.  
36  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
BLOCK ERASE  
The Erase operation is done on a block basis. Block address loading is accomplished in three cycles initiated by an Erase Setup  
command(60h). Only address A20 to A31 is valid while A13 to A19 is ignored. The Erase Confirm command(D0h) following the block  
address loading initiates the internal erasing process. This two-step sequence of setup followed by execution command ensures that  
memory contents are not accidentally erased due to external noise conditions.  
At the rising edge of WE after the erase confirm command input, the internal write controller handles erase and erase-verify. When  
the erase operation is completed, the Write Status Bit(I/O 0) may be checked. Figure 12 details the sequence.  
Figure 12. Block Erase Operation  
tBERS  
R/B  
"0"  
Pass  
60h  
I/O0  
Fail  
70h  
Address Input(3Cycle)  
Row Add. : A13 ~ A31  
I/Ox  
D0h  
"1"  
TWO-PLANE PAGE READ  
Two-Plane Page Read is an extension of Page Read, for a single plane with 4,224 byte page registers. Since the device is equipped  
with two memory planes, activating the two sets of 4,224 byte page registers enables a random read of two pages. Two-Plane Page  
Read is initiated by repeating command 60h followed by three address cycles twice. In this case only same page of same block can  
be selected from each plane.  
After Read Confirm command(30h) the 8,448 bytes of data within the selected two page are transferred to the data registers in less  
than 60us(tR). The system controller can detect the completion of data transfer(tR) by monitoring the output of R/B pin.  
Once the data is loaded into the data registers, the data output of first plane can be read out by issuing command 00h with Five  
Address Cycles, command 05h with two column address and finally E0h. The data output of second plane can be read out using the  
identical command sequences. The restrictions for Two-Plane Page Program are shown in Figure 13. Two-Plane Read must be  
used in the block which has been programmed with Two-Plane Page Program.  
Figure 13. Two-Plane Page Read Operation with Two-Plane Random Data Out  
tR  
R/B  
60h  
30h  
I/OX  
60h  
Address (3 Cycle)  
Address (3 Cycle)  
Row Add.1,2,3  
Row Add.1,2,3  
A13 ~ A19 : Valid  
A13 ~ A19 : Fixed ’Low’  
A20  
: Fixed ’Low’  
A20  
: Fixed ’High’  
1
2
A21 ~ A31 : Fixed ’Low’  
A21 ~ A31 :Valid  
R/B  
I/Ox  
E0h  
Data Output  
Address (2 Cycle)  
05h  
00h  
Address (5 Cycle)  
Col. Add. 1,2 & Row Add.1,2,3  
Col. Add.1,2  
A0 ~ A12 : Fixed ’Low’  
A13 ~ A19 : Fixed ’Low’  
A0 ~ A12 : Valid  
1
A20  
: Fixed ’Low’  
A21 ~ A31 : Fixed ’Low’  
R/B  
I/Ox  
E0h  
Data Output  
Address (2 Cycle)  
05h  
00h  
Address (5 Cycle)  
Col. Add. 1,2 & Row Add.1,2,3  
Col. Add.1,2  
A0 ~ A12 : Fixed ’Low’  
A13 ~ A19 : Fixed ’Low’  
A0 ~ A12 : Valid  
2
A20  
: Fixed ’High’  
A21 ~ A31 : Fixed ’Low’  
37  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
TWO-PLANE PAGE PROGRAM  
Two-Plane Page Program is an extension of Page Program, for a single plane with 4,224 byte page registers. Since the device is  
equipped with two memory planes, activating the two sets of 4,224 byte page registers enables a simultaneous programming of two  
pages.  
After writing the first set of data up to 4,224 byte into the selected page register, Dummy Page Program command (11h) instead of  
actual Page Program (10h) is inputted to finish data-loading of the first plane. Since no programming process is involved, R/B  
remains in Busy state for a short period of time(tDBSY). Read Status command (70h/F1h) may be issued to find out when the device  
returns to Ready state by polling the Ready/Busy status bit(I/O 6). Then the next set of data for the other plane is inputted after the  
81h command and address sequences. After inputting data for the last plane, actual True Page Program(10h) instead of dummy  
Page Program command (11h) must be followed to start the programming process. The operation of R/B and Read Status is the  
same as that of Page Program. Status bit of I/O 0 is set to "1" when any of the pages fails. Restriction in addressing with Two-Plane  
Page Program is shown in Figure14.  
Figure 14. Two-Plane Page Program  
tDBSY  
Note*2  
tPROG  
R/B  
I/O0 ~ 7  
70h/F1h  
Address & Data Input  
Address & Data Input  
80h  
11h  
81h  
10h  
A0 ~ A12 : Valid  
A13 ~ A19 : Fixed ’Low’  
A0 ~ A12 : Valid  
A13 ~ A19 : Valid  
A20  
: Fixed ’Low’  
A20  
: Fixed ’High’  
A21 ~ A31 : Fixed ’Low’  
A21 ~ A31 : Valid  
NOTE : 1. It is noticeable that physically same row address is applied to two planes .  
2. Any command between 11h and 81h is prohibited except 70h/F1h and FFh.  
80h  
11h  
81h  
10h  
Data  
Input  
Plane 0  
Plane 1  
(2048 Block)  
(2048 Block)  
Block 0  
Block 2  
Block 1  
Block 3  
Block 4092  
Block 4094  
Block 4093  
Block 4095  
38  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
TWO-PLANE COPY-BACK PROGRAM  
Two-Plane Copy-Back Program is an extension of Copy-Back Program, for a single plane with 4224 byte page registers. Since the  
device is equipped with two memory planes, activating the two sets of 4224 byte page registers enables a simultaneous program-  
ming of two pages.  
Figure 15. Two-Plane Copy-Back Program Operation  
tR  
R/B  
60h  
35h  
I/OX  
60h  
Address (3 Cycle)  
Address (3 Cycle)  
Row Add.1,2,3  
Row Add.1,2,3  
A13 ~ A19 : Fixed ’Low’  
A13 ~ A19 : Valid  
A20  
: Fixed ’Low’  
A20  
: Fixed ’High’  
1
2
3
A21 ~ A31 : Fixed ’Low’  
A21 ~ A31 : Valid  
R/B  
I/Ox  
E0h  
Data Output  
Address (2 Cycle)  
05h  
00h  
Address (5 Cycle)  
Col. Add. 1,2 & Row Add.1,2,3  
Col. Add.1,2  
A0 ~ A12 : Fixed ’Low’  
A13 ~ A19 : Fixed ’Low’  
A20  
A0 ~ A12 : Valid  
1
: Fixed ’Low’  
A21 ~ A31 : Fixed ’Low’  
R/B  
I/Ox  
E0h  
Data Output  
Address (2 Cycle)  
05h  
00h  
Address (5 Cycle)  
Col. Add. 1,2 & Row Add.1,2,3  
Col. Add.1,2  
A0 ~ A12 : Fixed ’Low’  
A13 ~ A19 : Fixed ’Low’  
A0 ~ A12 : Valid  
2
A20  
: Fixed ’High’  
A21 ~ A31 : Fixed ’Low’  
tPROG  
tDBSY  
Note3  
R/B  
I/Ox  
Add.(5Cycles)  
11h  
Add.(5Cycles)  
10h  
85h  
81h  
70h  
Col. Add.1,2 & Row Add.1,2,3  
Destination Address  
Col. Add.1,2 & Row Add.1,2,3  
Destination Address  
3
A0 ~ A12 : Fixed ’Low’  
A13 ~ A19 : Fixed ’Low’  
A0 ~ A12 : Fixed ’Low’  
A13 ~ A19 : Valid  
A20  
: Fixed ’Low’  
A20  
: Fixed ’High’  
A21 ~ A31 : Fixed ’Low’  
A21 ~ A31 : Valid  
39  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
Plane0  
Plane1  
Source page  
Source page  
(1) : Two-Plane Read for Copy Back  
Target page  
Target page  
(2) : Two-Plane Random Data Out  
(3) : Two-Plane Copy-Back Program  
(1)  
(2)  
(3)  
(1)  
(3)  
Data Field  
Data Field  
Spare Field  
Spare Field  
(2)  
Note: 1. Copy-Back Program operation is allowed only within the same memory plane.  
2. Any command between 11h and 81h is prohibited except 70h/F1h and FFh.  
40  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
Figure 16. Two-Plane Copy-Back Program Operation with Random Data Input  
tR  
R/B  
60h  
35h  
I/OX  
60h  
Address (3 Cycle)  
Address (3 Cycle)  
Row Add.1,2,3  
Row Add.1,2,3  
A13 ~ A19 : Fixed ’Low’  
A13 ~ A19 : Valid  
A20  
: Fixed ’Low’  
A20  
: Fixed ’High’  
1
2
A21 ~ A31 : Fixed ’Low’  
A21 ~ A31 : Valid  
R/B  
I/Ox  
E0h  
Data Output  
Address (2 Cycle)  
05h  
00h  
Address (5 Cycle)  
Col. Add. 1,2 & Row Add.1,2,3  
Col. Add.1,2  
A0 ~ A12 : Fixed ’Low’  
A13 ~ A19 : Fixed ’Low’  
A0 ~ A12 : Valid  
1
A20  
: Fixed ’Low’  
A21 ~ A31 : Fixed ’Low’  
R/B  
I/Ox  
E0h  
Data Output  
Address (2 Cycle)  
05h  
00h  
Address (5 Cycle)  
Col. Add. 1,2 & Row Add.1,2,3  
Col. Add.1,2  
3
A0 ~ A12 : Fixed ’Low’  
A13 ~ A19 : Fixed ’Low’  
A0 ~ A12 : Valid  
2
A20  
: Fixed ’High’  
A21 ~ A31 : Fixed ’Low’  
tDBSY  
R/B  
I/Ox  
Add.(5Cycles)  
11h  
Data  
85h  
Data  
Add.(2Cycles)  
Col. Add.1,2  
85h  
Note3  
Col. Add.1,2 & Row Add.1,2,3  
Destination Address  
4
3
A0 ~ A12 : Valid  
A13 ~ A19 : Fixed ’Low’  
A20  
: Fixed ’Low’  
A21 ~ A31 : Fixed ’Low’  
tPROG  
R/B  
I/Ox  
Add.(5Cycles)  
10h  
Data  
85h  
Data  
Add.(2Cycles)  
Col. Add.1,2  
81h  
Col. Add.1,2 & Row Add.1,2,3  
Destination Address  
4
A0 ~ A12 : Valid  
A13 ~ A19 : Valid  
A20  
: Fixed ’High’  
A21 ~ A31 : Valid  
Note: 1. Copy-Back Program operation is allowed only within the same memory plane.  
2. Any command between 11h and 81h is prohibited except 70h/F1h and FFh.  
41  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
TWO-PLANE BLOCK ERASE  
Basic concept of Two-Plane Block Erase operation is identical to that of Two-Plane Page Program. Up to two blocks, one from each  
plane can be simultaneously erased. Standard Block Erase command sequences (Block Erase Setup command(60h) followed by  
three address cycles) may be repeated up to twice for erasing up to two blocks. Only one block should be selected from each plane.  
The Erase Confirm command(D0h) initiates the actual erasing process. The completion is detected by monitoring R/B pin or Ready/  
Busy status bit (I/O 6).  
Figure 17. Two-Plane Erase Operation  
tBERS  
R/B  
"0"  
60h  
D0h  
70h  
Pass  
I/OX  
60h  
Address (3 Cycle)  
Address (3 Cycle)  
I/O0  
A13 ~ A19 : Fixed ’Low’  
A13 ~ A19 : Fixed ’Low’  
"1"  
Fail  
A20  
: Fixed ’Low’  
A20  
: Fixed ’High’  
A21 ~ A31 : Fixed ’Low’  
A21 ~ A31 : Valid  
READ STATUS  
The device contains a Status Register which may be read to find out whether program or erase operation is completed, and whether  
the program or erase operation is completed successfully. After writing 70h or F1h command to the command register, a read cycle  
outputs the content of the Status Register to the I/O pins on the falling edge of CE or RE, whichever occurs last. This two line control  
allows the system to poll the progress of each device in multiple memory connections even when R/B pins are common-wired. RE or  
CE does not need to be toggled for updated status. Refer to table 2 for specific 70h Status Register definitions and table 3 for specific  
F1h Status Register definitions. The command register remains in Status Read mode until further commands are issued to it. There-  
fore, if the status register is read during a random read cycle, the read command(00h) should be given before starting read cycles.  
Table 2. 70h Read Status Register Definition  
I/O No.  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
Page Program  
Pass/Fail  
Not use  
Block Erase  
Pass/Fail  
Not use  
Read  
Not use  
Definition  
Fail : "1"  
Pass : "0"  
Not use  
Don’t -cared  
Don’t -cared  
Don’t -cared  
Don’t -cared  
Don’t -cared  
Busy : "0"  
Not use  
Not use  
Not use  
Not Use  
Not Use  
Not Use  
Not Use  
Not Use  
Not Use  
Not Use  
Not Use  
Not Use  
Ready/Busy  
Write Protect  
Ready/Busy  
Write Protect  
Ready/Busy  
Write Protect  
Ready : "1"  
Protected : "0"  
Not Protected : "1"  
NOTE : 1. I/Os defined ’Not use’ are recommended to be masked out when Read Status is being executed.  
Table 3. F1h Read Status Register Definition  
I/O No.  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
Page Program  
Chip Pass/Fail  
Plane0 Pass/Fail  
Plane1 Pass/Fail  
Not Use  
Block Erase  
Chip Pass/Fail  
Plane0 Pass/Fail  
Plane1 Pass/Fail  
Not Use  
Read  
Not use  
Definition  
Pass : "0"  
Fail : "1"  
Fail : "1"  
Fail : "1"  
Not use  
Pass : "0"  
Not use  
Pass : "0"  
Not Use  
Don’t -cared  
Don’t -cared  
Don’t -cared  
Busy : "0"  
Not Use  
Not Use  
Not Use  
Not Use  
Not Use  
Not Use  
Ready/Busy  
Write Protect  
Ready/Busy  
Write Protect  
Ready/Busy  
Write Protect  
Ready : "1"  
Protected : "0"  
Not Protected : "1"  
NOTE : 1. I/Os defined ’Not use’ are recommended to be masked out when Read Status is being executed.  
42  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
READ ID  
The device contains a product identification mode, initiated by writing 90h to the command register, followed by an address input of  
00h. Five read cycles sequentially output the manufacturer code(ECh), and the device code and 3rd cycle ID, 4th cycle ID, 5th cycle  
respectively. The command register remains in Read ID mode until further commands are issued to it. Figure 18 shows the operation  
sequence.  
Figure 18. Read ID Operation  
tCLR  
CLE  
CE  
tCEA  
WE  
ALE  
RE  
tAR  
tWHR  
Device  
Code  
tREA  
I/OX  
90h  
00h  
Address. 1cycle  
ECh  
3rd Cyc.  
4th Cyc.  
5th Cyc.  
Maker code  
Device code  
Device  
Device Code(2nd Cycle)  
3rd Cycle  
4th Cycle  
5th Cycle  
K9GAG08B0M  
K9GAG08U0M  
K9LBG08U1M  
Same as K9GAG08U0M  
14h  
D5h  
B6h  
74h  
Same as K9GAG08U0M in it  
RESET  
The device offers a reset feature, executed by writing FFh to the command register. When the device is in Busy state during random  
read, program or erase mode, the reset operation will abort these operations. The contents of memory cells being altered are no  
longer valid, as the data will be partially programmed or erased. The command register is cleared to wait for the next command, and  
the Status Register is cleared to value C0h when WP is high. Refer to Table 4 for device status after reset operation. If the device is  
already in reset state a new reset command will be accepted by the command register. The R/B pin changes to low for tRST after the  
Reset command is written. Refer to Figure 19 below.  
Figure 19. RESET Operation  
tRST  
R/B  
I/OX  
FFh  
Table 4. Device Status  
After Power-up  
After Reset  
Operation mode  
00h Command is latched  
Waiting for next command  
43  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
Table 5. Paired Page Address Information  
Paired Page Address  
Paired Page Address  
00h  
02h  
06h  
0Ah  
0Eh  
12h  
16h  
1Ah  
1Eh  
22h  
26h  
2Ah  
2Eh  
32h  
36h  
3Ah  
3Eh  
42h  
46h  
4Ah  
4Eh  
52h  
56h  
5Ah  
5Eh  
62h  
66h  
6Ah  
6Eh  
72h  
76h  
7Ah  
04h  
08h  
0Ch  
10h  
14h  
18h  
1Ch  
20h  
24h  
28h  
2Ch  
30h  
34h  
38h  
3Ch  
40h  
44h  
48h  
4Ch  
50h  
54h  
58h  
5Ch  
60h  
64h  
68h  
6Ch  
70h  
74h  
78h  
7Ch  
7Eh  
01h  
03h  
07h  
0Bh  
0Fh  
13h  
17h  
1Bh  
1Fh  
23h  
27h  
2Bh  
2Fh  
33h  
37h  
3Bh  
3Fh  
43h  
47h  
4Bh  
4Fh  
53h  
57h  
5Bh  
5Fh  
63h  
67h  
6Bh  
6Fh  
73h  
77h  
7Bh  
05h  
09h  
0Dh  
11h  
15h  
19h  
1Dh  
21h  
25h  
29h  
2Dh  
31h  
35h  
39h  
3Dh  
41h  
45h  
49h  
4Dh  
51h  
55h  
59h  
5Dh  
61h  
65h  
69h  
6Dh  
71h  
75h  
79h  
7Dh  
7Fh  
Note: When program operation is abnormally aborted (ex. power-down, reset), not only page data under program but also  
paired page data may be damaged(Table 5).  
44  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
READY/BUSY  
The device has a R/B output that provides a hardware method of indicating the completion of a page program, erase and random  
read completion. The R/B pin is normally high but transitions to low after program or erase command is written to the command regis-  
ter or random read is started after address loading. It returns to high when the internal controller has finished the operation. The pin is  
an open-drain driver thereby allowing two or more R/B outputs to be Or-tied. Because pull-up resistor value is related to tr(R/B) and  
current drain during busy(ibusy) , an appropriate value can be obtained with the following reference chart(Fig 20). Its value can be  
determined by the following guidance.  
Rp  
ibusy  
VCC  
Ready Vcc  
2.7V device - VOL : 0.4V, VOH : Vcc-0.4V  
3.3V device - VOL : 0.4V, VOH : 2.4V  
R/B  
VOH  
open drain output  
CL  
VOL  
Busy  
tf  
tr  
GND  
Device  
45  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
Figure 20. Rp vs tr ,tf & Rp vs ibusy  
@ Vcc = 2.7V, Ta = 25°C , CL = 30pF  
2.3  
Ibusy  
200n  
100n  
2m  
1m  
1.1  
60  
120  
90  
tr  
0.55  
2.3  
0.75  
2.3  
30  
2.3  
2K  
2.3  
tf  
4K  
1K  
3K  
Rp(ohm)  
@ Vcc = 3.3V, Ta = 25°C , CL = 50pF  
2.4  
200  
Ibusy  
200n  
100n  
2m  
1m  
150  
0.8  
1.2  
100  
tr  
tf  
0.6  
3.6  
50  
3.6  
2K  
3.6  
3K  
3.6  
4K  
1K  
Rp(ohm)  
Rp value guidance  
VCC(Max.) - VOL(Max.)  
2.5V  
Rp(min, 2.7V part) =  
Rp(min, 3.3V part) =  
=
=
IOL + ΣIL  
3mA + ΣIL  
VCC(Max.) - VOL(Max.)  
3.2V  
IOL + ΣIL  
8mA + ΣIL  
where IL is the sum of the input currents of all devices tied to the R/B pin.  
Rp(max) is determined by maximum permissible limit of tr  
46  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
DATA PROTECTION & POWER UP SEQUENCE  
The device is designed to offer protection from any involuntary program/erase during power-transitions. An internal voltage detector  
disables all functions whenever Vcc is below about 2V. WP pin provides hardware protection and is recommended to be kept at VIL  
during power-up and power-down. A recovery time of minimum 10µs is required before internal circuit gets ready for any command  
sequences as shown in Figure 21. The two step command sequence for program/erase provides additional software protection.  
Figure 21. AC Waveforms for Power Transition  
2.7V device : ~ 2.0V  
3.3V device : ~ 2.5V  
2.7V device : ~ 2.0V  
3.3V device : ~ 2.5V  
VCC  
High  
WP  
WE  
10µs  
47  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
2KB PROGRAM OPERATION TIMING GUIDE  
K9GAG08X0M is designed also to support the program operation with 2KByte data to offer the backward compatibility to the control-  
ler which uses the NAND with 2KByte page. The command sequences are as follows.  
Figure A-1. (2KB X 2) Program Operation  
tDBSY  
tPROG  
R/B  
80h  
11h  
80h  
Address & Data Input  
10h  
70h  
I/O0~7  
Address & Data Input  
Note  
Col Add1,2 & Row Add 1,2,3  
2112 Byte Data  
Col Add1,2 & Row Add 1,2,3  
2112 Byte Data  
A0 ~ A12 : Valid  
A13 ~ A19 : Fixed ’Low’  
A0 ~ A12 : Valid  
A13 ~ A19 : Vaild  
A20  
: Valid  
A20  
: Must be same with the previous  
A21 ~ A31 : Fixed ’Low’  
A21 ~ A31 : Valid  
Note: Any command between 11h and 81h is prohibited except 70h/F1h and FFh.  
Figure A-2. (2KB X 2) Copy-Back Program Operation  
tR  
R/B  
Add.(5Cycles)  
Data Output  
00h  
35h  
I/Ox  
Col. Add.1,2 & Row Add.1,2,3  
Source Address  
1
tDBSY  
tPROG  
R/B  
I/Ox  
Add.(5Cycles)  
11h  
10h  
85h  
Data  
Add.(5Cycles)  
Data  
85h  
Col. Add.1,2 & Row Add.1,2,3  
Destination Address  
Col. Add.1,2 & Row Add.1,2,3  
Destination Address  
1
A0 ~ A12 : Valid  
A13 ~ A19 : Valid  
A0 ~ A12 : Valid  
A13 ~ A19 : Fixed ’Low’  
A20  
: Must be same with the previous  
A20  
: Valid  
A21 ~ A31 : Valid  
A21 ~ A31 : Fixed ’Low’  
Note: 1. Copy-Back Program operation is allowed only within the same memory plane.  
2. Any command between 11h and 85h is prohibited except 70h/F1h and FFh.  
48  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
Figure A-3. (2KB X 2) Copy-Back Program Operation with Random Data Input  
tR  
R/B  
Add.(5Cycles)  
Data Output  
00h  
35h  
I/Ox  
Col. Add.1,2 & Row Add.1,2,3  
Source Address  
1
tDBSY  
R/B  
I/Ox  
Add.(5Cycles)  
11h  
Data  
85h  
Data  
Add.(2Cycles)  
Col. Add.1,2  
85h  
Note3  
Col. Add.1,2 & Row Add.1,2,3  
Destination Address  
2
1
A0 ~ A12 : Valid  
A13 ~ A19 : Fixed ’Low’  
A20  
: Valid  
A21 ~ A31 : Fixed ’Low’  
tPROG  
R/B  
Add.(5Cycles)  
10h  
Data  
85h  
Data  
Add.(2Cycles)  
Col. Add.1,2  
I/Ox  
85h  
Col. Add.1,2 & Row Add.1,2,3  
Destination Address  
2
A0 ~ A12 : Valid  
A13 ~ A19 : Valid  
A20  
: Must be same with the previous  
A21 ~ A31 : Valid  
Note: 1. Copy-Back Program operation is allowed only within the same memory plane.  
2. Any command between 11h and 85h is prohibited except 70h/F1h and FFh.  
49  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
TWO-PLANE PAGE PROGRAM OPERATION USING 4KB BUFFER RAM  
K9GAG08X0M consists of 4KB pages and can support Two-Plane program operation. The internal RAM requirement for a controller  
is 8KB, but for those controllers which support less than 8KB RAM, the following sequence can be used for Two-Plane program oper-  
ation.  
Plane0  
Plane1  
(1) : Two-Plane Read for Copy Back  
(2) : Random Data Out On Plane 0 (Up to 4224Byte)  
(3) : Random Data In On Plane 0 (Up to 4224Byte)  
(4) : Random Data Out On Plane 1 (Up to 4224Byte)  
(5) : Random Data In On Plane 1 (Up to 4224Byte)  
(6): Two-Plane Program for Copy Back  
Source page  
Source page  
Target page  
Target page  
(1)  
(6)  
(1)  
(6)  
4KByte  
4KByte  
Data Field  
(2)  
Data Field  
(4)  
Spare Field  
Spare Field  
(5)  
(3)  
Figure A-4. 2-Plane Copy-Back Program Operation with Random Data Input  
tR  
R/B  
Add(3 Cycle)  
Add(3 Cycle)  
I/OX  
60h  
60h  
35h  
Add(5 Cycle)  
Add(2 Cycle)  
00h  
05h  
E0h  
DOUT  
Row Add.1,2,3  
Row Add.1,2,3  
A13 ~ A19 : Valid  
Col. Add. 1,2 & Row Add.1,2,3  
Col. Add.1,2  
Up to 4224Byte  
A13 ~ A19 : Fixed ’Low’  
A20 : Fixed ’Low’  
A21 ~ A31 : Fixed ’Low’  
A0 ~ A12 : Valid  
A0 ~ A12 : Fixed ’Low’  
A13 ~ A19 : Fixed ’Low’  
A20  
: Fixed ’High’  
1
A21 ~ A31 : Valid  
A20  
: Fixed ’Low’  
A21 ~ A31 : Fixed ’Low’  
tDBSY  
R/B  
I/Ox  
Add(5 Cycle)  
Add(2 Cycle)  
00h  
05h  
E0h  
DOUT  
Up to 4224Byte  
2
Add(5 Cycle)  
Add(2 Cycle)  
Col. Add.1,2  
85h  
DIN  
85h  
DIN  
11h  
Col. Add.1,2 & Row Add.1,2,3  
Col. Add. 1,2 & Row Add.1,2,3  
Col. Add.1,2  
Destination Address  
A0 ~ A12 : Valid  
A0 ~ A12 : Valid  
A0 ~ A12 : Fixed ’Low’  
A13 ~ A19 : Fixed ’Low’  
1
A13 ~ A19 : Fixed ’Low’  
A20  
: Fixed ’High’  
A20  
: Fixed ’Low’  
A21 ~ A31 : Fixed ’Low’  
A21 ~ A31 : Fixed ’Low’  
tPROG  
R/B  
I/Ox  
Add(5 Cycle)  
Add(2 Cycle)  
Col. Add.1,2  
70h/F1h  
81h  
DIN  
85h  
DIN  
10h  
Col. Add.1,2 & Row Add.1,2,3  
Destination Address  
2
A0 ~ A12 : Valid  
A13 ~ A19 : Valid  
A20  
: Fixed ’High’  
A21 ~ A31 : Valid  
Note: 1. Copy-Back Program operation is allowed only within the same memory plane.  
50  
Preliminary  
FLASH MEMORY  
K9GAG08B0M  
K9GAG08U0M K9LBG08U1M  
WP AC TIMING GUIDE  
Enabling WP during erase and program busy is prohibited. The erase and program operations are enabled and disabled as follows:  
Figure B-1. Program Operation  
1. Enable Mode  
WE  
I/O  
80h  
10h  
WP  
R/B  
tww(min.100ns)  
2. Disable Mode  
WE  
I/O  
80h  
10h  
WP  
R/B  
tww(min.100ns)  
Figure B-2. Erase Operation  
1. Enable Mode  
WE  
I/O  
60h  
D0h  
WP  
R/B  
tww(min.100ns)  
2. Disable Mode  
WE  
I/O  
60h  
D0h  
WP  
R/B  
tww(min.100ns)  
51  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY