K9K4G16Q0M-PCB0 [SAMSUNG]

Flash, 256MX16, 30ns, PDSO48,;
K9K4G16Q0M-PCB0
型号: K9K4G16Q0M-PCB0
厂家: SAMSUNG    SAMSUNG
描述:

Flash, 256MX16, 30ns, PDSO48,

光电二极管
文件: 总38页 (文件大小:599K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
Document Title  
512M x 8 Bit / 256M x 16 Bit NAND Flash Memory  
Revision History  
Revision No History  
Draft Date  
Feb. 19. 2003  
Mar. 31. 2003  
Apr. 9. 2003  
Remark  
Advance  
0.0  
0.1  
0.2  
1. Initial issue  
1. Add two-K9K4GXXU0M-YCB0/YIB0 Stacked Package  
Preliminary  
Preliminary  
1. The 3rd Byte ID after 90h ID read command is don’t cared.  
The 5th Byte ID after 90h ID read command is deleted.  
0.3  
1. The K9W8G16U1M-YCB0,YIB0,PCB0,PIB0 is deleted in line up.  
2. Note is added.  
Apr. 30. 2003  
Preliminary  
(VIL can undershoot to -0.4V and VIH can overshoot to VCC +0.4V for  
durations of 20 ns or less.)  
3. Pb-free Package is added.  
K9K4G08Q0M-PCB0,PIB0  
K9K4G08U0M-PCB0,PIB0  
K9K4G16U0M-PCB0,PIB0  
K9K4G16Q0M-PCB0,PIB0  
K9W8G08U1M-PCB0,PIB0  
Preliminary  
0.4  
0.5  
1. Added Addressing method for program operation.  
Jan. 27. 2004  
May.31. 2004  
1. The tADL(Address to Data Loading Time) is added.  
- tADL Minimum 100ns  
- tADL is the time from the WE rising edge of final address cycle  
to the WE rising edge of first data cycle at program operation.  
2. Added addressing method for program operation  
3. PKG(TSOP1) Dimension Change  
The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the  
right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions about device. If you  
have any questions, please contact the SAMSUNG branch office near your office.  
1
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
512M x 8 Bit / 256M x 16 Bit NAND Flash Memory  
PRODUCT LIST  
Part Number  
K9K4G08Q0M-Y  
K9K4G16Q0M-Y  
K9XXG08UXM-Y  
K9K4G16U0M-Y  
Vcc Range  
Organization  
PKG Type  
X8  
X16  
X8  
1.70 ~ 1.95V  
TSOP1  
2.7 ~ 3.6V  
X16  
FEATURES  
· Voltage Supply  
· Fast Write Cycle Time  
-1.8V device(K9K4GXXQ0M): 1.70V~1.95V  
-3.3V device(K9XXGXXUXM): 2.7 V ~3.6 V  
- Program time : 300ms(Typ.)  
- Block Erase Time : 2ms(Typ.)  
· Organization  
- Memory Cell Array  
· Command/Address/Data Multiplexed I/O Port  
· Hardware Data Protection  
-X8 device(K9XXG08XXM) : (512M + 16,384K)bit x 8bit  
-X16 device(K9XXG16XXM) : (256M + 8,192K)bit x 16bit  
- Data Register  
-X8 device(K9XXG08XXM): (2K + 64)bit x8bit  
-X16 device(K9XXG16XXM): (1K + 32)bit x16bit  
- Cache Register  
-X8 device(K9XXG08XXM) : (2K + 64)bit x8bit  
-X16 device(K9XXG16XXM) : (1K + 32)bit x16bit  
· Automatic Program and Erase  
- Program/Erase Lockout During Power Transitions  
· Reliable CMOS Floating-Gate Technology  
- Endurance : 100K Program/Erase Cycles  
- Data Retention : 10 Years  
· Command Register Operation  
· Cache Program Operation for High Performance Program  
· Power-On Auto-Read Operation  
· Intelligent Copy-Back Operation  
· Unique ID for Copyright Protection  
· Package :  
- Page Program  
-X8 device(K9XXG08XXM) : (2K + 64)Byte  
-X16 device(K9XXG16XXM) : (1K + 32)Word  
- Block Erase  
-X8 device(K9XXG08XXM) : (128K + 4K)Byte  
-X16 device(K9XXG16XXM) : (64K + 2K)Word  
· Page Read Operation  
- K9XXGXXXXM-YCB0/YIB0  
48 - Pin TSOP I (12 x 20 / 0.5 mm pitch)  
- K9W8G08U1M-YCB0/YIB0 : Two K9K4G08U0M stacked.  
48 - Pin TSOP I (12 x 20 / 0.5 mm pitch)  
- K9XXGXXXXM-PCB0/PIB0  
48 - Pin TSOP I (12 x 20 / 0.5 mm pitch)  
- K9W8G08U1M-PCB0/PIB0 : Two K9K4G08U0M stacked.  
48 - Pin TSOP I (12 x 20 / 0.5 mm pitch)  
- Page Size  
- X8 device(K9XXG08XXM) : 2K-Byte  
- X16 device(K9XXG16XXM) : 1K-Word  
- Random Read : 25ms(Max.)  
- Serial Access : 50ns(Min.)  
30ns(Min., K9XXG08UXM only)  
GENERAL DESCRIPTION  
Offered in 512Mx8bit or 256Mx16bit, the K9XXGXXXXM is 4G bit with spare 128M bit capacity. Its NAND cell provides the most  
cost-effective solution for the solid state mass storage market. A program operation can be performed in typical 300ms on the 2112-  
byte(X8 device) or 1056-word(X16 device) page and an erase operation can be performed in typical 2ms on a 128K-byte(X8 device)  
or 64K-word(X16 device) block. Data in the data page can be read out at 50ns cycle time per byte(30ns, only X8 3.3v device) or  
word(X16 device). The I/O pins serve as the ports for address and data input/output as well as command input. The on-chip write  
controller automates all program and erase functions including pulse repetition, where required, and internal verification and margin-  
ing of data. Even the write-intensive systems can take advantage of the K9XXGXXXXM¢s extended reliability of 100K program/erase  
cycles by providing ECC(Error Correcting Code) with real time mapping-out algorithm. The K9XXGXXXXM is an optimum solution for  
large nonvolatile storage applications such as solid state file storage and other portable applications requiring non-volatility. An ultra  
high density solution having two 4Gb stacked with two chip selects is also available in standard TSOPI package.  
2
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
PIN CONFIGURATION (TSOP1)  
K9K4GXXXXM-YCB0,PCB0/YIB0,PIB0  
X16 X8  
X8  
X16  
N.C  
N.C  
N.C  
N.C  
I/O7  
I/O6  
I/O5  
I/O4  
N.C  
N.C  
PRE  
Vcc  
Vss  
N.C  
N.C  
N.C  
I/O3  
I/O2  
I/O1  
I/O0  
N.C  
N.C  
N.C  
N.C  
Vss  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
R/B  
RE  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
R/B  
RE  
1
2
I/O15  
I/O7  
I/O14  
I/O6  
I/O13  
I/O5  
I/O12  
I/O4  
N.C  
3
4
5
6
7
8
CE  
CE  
9
N.C  
N.C  
Vcc  
Vss  
N.C  
N.C  
CLE  
ALE  
WE  
WP  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
Vcc  
Vss  
N.C  
N.C  
CLE  
ALE  
WE  
WP  
N.C  
N.C  
N.C  
N.C  
N.C  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
48-pin TSOP1  
Standard Type  
12mm x 20mm  
PRE  
Vcc  
N.C  
N.C  
N.C  
I/O11  
I/O3  
I/O10  
I/O2  
I/O9  
I/O1  
I/O8  
I/O0  
Vss  
PACKAGE DIMENSIONS  
48-PIN LEAD/LEAD FREE PLASTIC THIN SMALL OUT-LINE PACKAGE TYPE(I)  
48 - TSOP1 - 1220AF  
Unit :mm/Inch  
20.00±0.20  
0.787±0.008  
#1  
#48  
#24  
#25  
1.00±0.05  
0.039±0.002  
0.05  
0.002  
MIN  
1.20  
0.047  
MAX  
18.40±0.10  
0.724±0.004  
0~8°  
0.45~0.75  
0.018~0.030  
0.50  
0.020  
(
)
3
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
PIN CONFIGURATION (TSOP1)  
K9W8G08U1M-YCB0,PCB0/YIB0,PIB0  
N.C  
N.C  
N.C  
N.C  
I/O7  
I/O6  
I/O5  
I/O4  
N.C  
N.C  
PRE  
Vcc  
Vss  
N.C  
N.C  
N.C  
I/O3  
I/O2  
I/O1  
I/O0  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
N.C  
R/B2  
R/B1  
RE  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
3
4
5
6
7
8
CE1  
CE2  
N.C  
Vcc  
Vss  
N.C  
N.C  
CLE  
ALE  
WE  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
48-pin TSOP1  
Standard Type  
12mm x 20mm  
WP  
N.C  
N.C  
N.C  
N.C  
N.C  
PACKAGE DIMENSIONS  
48-PIN LEAD/LEAD FREE PLASTIC THIN SMALL OUT-LINE PACKAGE TYPE(I)  
48 - TSOP1 - 1220AF  
Unit :mm/Inch  
20.00±0.20  
0.787±0.008  
#1  
#48  
#24  
#25  
1.00±0.05  
0.039±0.002  
0.02  
0.002  
MIN  
1.20  
0.047  
MAX  
18.40±0.10  
0.724±0.004  
0~8°  
0.45~0.75  
0.018~0.030  
0.50  
0.020  
(
)
4
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
PIN DESCRIPTION  
Pin Name  
Pin Function  
DATA INPUTS/OUTPUTS  
I/O0 ~ I/O7  
(K9XXG08XXM)  
I/O0 ~ I/O15  
The I/O pins are used to input command, address and data, and to output data during read operations. The I/  
O pins float to high-z when the chip is deselected or when the outputs are disabled.  
I/O8 ~ I/O15 are used only in X16 organization device. Since command input and address input are x8 oper-  
ation, I/O8 ~ I/O15 are not used to input command & address. I/O8 ~ I/O15 are used only for data input and  
output.  
(K9K4G16X0M)  
COMMAND LATCH ENABLE  
CLE  
ALE  
The CLE input controls the activating path for commands sent to the command register. When active high,  
commands are latched into the command register through the I/O ports on the rising edge of the WE signal.  
ADDRESS LATCH ENABLE  
The ALE input controls the activating path for address to the internal address registers. Addresses are  
latched on the rising edge of WE with ALE high.  
CHIP ENABLE  
The CE / CE1 input is the device selection control. When the device is in the Busy state, CE / CE1 high is  
ignored, and the device does not return to standby mode in program or erase operation. Regarding CE /  
CE1 control during read operation, refer to ’Page read’ section of Device operation .  
CE / CE1  
CHIP ENABLE  
The CE2 input enables the second K9K4GXXU0M  
CE2  
RE  
READ ENABLE  
The RE input is the serial data-out control, and when active drives the data onto the I/O bus. Data is valid  
tREA after the falling edge of RE which also increments the internal column address counter by one.  
WRITE ENABLE  
WE  
WP  
The WE input controls writes to the I/O port. Commands, address and data are latched on the rising edge of  
the WE pulse.  
WRITE PROTECT  
The WP pin provides inadvertent write/erase protection during power transitions. The internal high voltage  
generator is reset when the WP pin is active low.  
READY/BUSY OUTPUT  
The R/B / R/B1 output indicates the status of the device operation. When low, it indicates that a program,  
erase or random read operation is in process and returns to high state upon completion. It is an open drain  
output and does not float to high-z condition when the chip is deselected or when outputs are disabled.  
R/B1/ R/B2  
PRE  
POWER-ON READ ENABLE  
The PRE controls auto read operation executed during power-on. The power-on auto-read is enabled when  
PRE pin is tied to Vcc.  
POWER  
Vcc  
Vss  
N.C  
VCC is the power supply for device.  
GROUND  
NO CONNECTION  
Lead is not internally connected.  
NOTE: Connect all VCC and VSS pins of each device to common power supply outputs.  
Do not leave VCC or VSS disconnected.  
5
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
Figure 1-1. K9XXG08XXM (X8) Functional Block Diagram  
VCC  
VSS  
4096M + 128M Bit  
X-Buffers  
Latches  
& Decoders  
A12 - A29  
A0 - A11  
NAND Flash  
ARRAY  
(2048 + 64)Byte x 262144  
Data Register & S/A  
Y-Buffers  
Latches  
& Decoders  
Cache Register  
Y-Gating  
Command  
Command  
Register  
VCC  
VSS  
I/O Buffers & Latches  
Global Buffers  
CE  
RE  
WE  
Control Logic  
& High Voltage  
Generator  
I/0 0  
Output  
Driver  
I/0 7  
CLE ALE PRE  
WP  
Figure 2-1. K9XXG08XXM (X8) Array Organization  
1 Block = 64 Pages  
(128K + 4k) Byte  
1 Page = (2K + 64)Bytes  
1 Block = (2K + 64)B x 64 Pages  
= (128K + 4K) Bytes  
1 Device = (2K+64)B x 64Pages x 4096 Blocks  
= 4224Mbits  
256K Pages  
(=4,096 Blocks)  
8 bit  
2K Bytes  
64 Bytes  
64 Bytes  
I/O 0 ~ I/O 7  
Page Register  
2K Bytes  
I/O 0  
A0  
I/O 1  
A1  
I/O 2  
I/O 3  
A3  
I/O 4  
A4  
I/O 5  
A5  
I/O 6  
A6  
I/O 7  
A7  
Column Address  
Column Address  
Row Address  
1st Cycle  
2nd Cycle  
3rd Cycle  
4th Cycle  
5th Cycle  
A2  
A10  
A14  
A22  
*L  
A8  
A9  
A11  
A15  
A23  
*L  
*L  
*L  
*L  
*L  
A12  
A20  
A28  
A13  
A21  
A29  
A16  
A24  
*L  
A17  
A25  
*L  
A18  
A26  
*L  
A19  
A27  
*L  
Row Address  
Row Address  
NOTE : Column Address : Starting Address of the Register.  
* L must be set to "Low".  
* The device ignores any additional input of address cycles than reguired.  
6
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
Figure 1-2. K9XXG16XXM (X16) Functional Block Diagram  
VCC  
VSS  
4096M + 128M Bit  
X-Buffers  
Latches  
& Decoders  
A11 - A28  
A0 - A10  
NAND Flash  
ARRAY  
(1024 + 32)Word x 262144  
Data Register & S/A  
Y-Buffers  
Latches  
& Decoders  
Cache Register  
Y-Gating  
Command  
Command  
Register  
VCC  
VSS  
I/O Buffers & Latches  
Global Buffers  
CE  
RE  
WE  
Control Logic  
& High Voltage  
Generator  
I/0 0  
Output  
Driver  
I/0 15  
CLE ALE PRE  
WP  
Figure 2-2. K9XXG16XXM (X16) Array Organization  
1 Block = 64 Pages  
(64K + 2k) Word  
1 Page = (1K + 32)Words  
1 Block = (1K + 32)Word x 64 Pages  
= (64K + 2K) Words  
1 Device = (1K+32)Word x 64Pages x 4096 Blocks  
= 4224 Mbits  
256K Pages  
(=4,096 Blocks)  
16 bit  
1K Words  
32 Words  
32 Words  
I/O 0 ~ I/O 15  
Page Register  
1K Words  
I/O 0  
A0  
I/O 1  
I/O 2  
A2  
I/O 3  
I/O 4  
A4  
I/O 5  
A5  
I/O 6  
A6  
I/O 7  
A7  
I/O8 ~ 15  
Column Address  
Column Address  
Row Address  
1st Cycle  
2nd Cycle  
3rd Cycle  
4th Cycle  
5th Cycle  
A1  
A9  
A3  
*L  
*L  
*L  
*L  
*L  
*L  
A8  
A10  
A13  
A21  
*L  
*L  
*L  
*L  
*L  
A11  
A19  
A27  
A12  
A20  
A28  
A14  
A22  
*L  
A15  
A23  
*L  
A16  
A24  
*L  
A17  
A25  
*L  
A18  
A26  
*L  
Row Address  
Row Address  
NOTE : Column Address : Starting Address of the Register.  
* L must be set to "Low".  
* The device ignores any additional input of address cycles than reguired.  
7
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
Product Introduction  
The K9XXGXXXXM is a 4224Mbit (4,429,185,024 bit) memory organized as 262,144 rows(pages) by 2112x8(X8 device) or  
1056x16(X16 device) columns. Spare 64(X8) or 32(X16) columns are located from column address of 2048~2111(X8 device) or  
1024~1055(X16 device). A 2112-byte(X8 device) or 1056-word(X16 device) data register and a 2112-byte(X8 device) or 1056-  
word(X16 device) cache register are serially connected to each other. Those serially connected registers are connected to memory  
cell arrays for accommodating data transfer between the I/O buffers and memory cells during page read and page program opera-  
tions. The memory array is made up of 32 cells that are serially connected to form a NAND structure. Each of the 32 cells resides in a  
different page. A block consists of two NAND structured strings. A NAND structure consists of 32 cells. Total 1081344 NAND cells  
reside in a block. The program and read operations are executed on a page basis, while the erase operation is executed on a block  
basis. The memory array consists of 4096 separately erasable 128K-byte(X8 device) or 64K-word(X16 device) blocks. It indicates  
that the bit by bit erase operation is prohibited on the K9XXGXXXXM.  
The K9XXGXXXXM has addresses multiplexed into 8 I/Os(X16 device case : lower 8 I/Os). This scheme dramatically reduces pin  
counts and allows system upgrades to future densities by maintaining consistency in system board design. Command, address and  
data are all written through I/O's by bringing WE to low while CE is low. Those are latched on the rising edge of WE. Command Latch  
Enable(CLE) and Address Latch Enable(ALE) are used to multiplex command and address respectively, via the I/O pins. Some com-  
mands require one bus cycle. For example, Reset Command, Status Read Command, etc require just one cycle bus. Some other  
commands, like page read and block erase and page program, require two cycles: one cycle for setup and the other cycle for execu-  
tion. The 512M byte(X8 device) or 256M word(X16 device) physical space requires 30(X8) or 29(X16) addresses, thereby requiring  
five cycles for addressing: 2 cycles of column address, 3 cycles of row address, in that order. Page Read and Page Program need the  
same five address cycles following the required command input. In Block Erase operation, however, only the three row address  
cycles are used. Device operations are selected by writing specific commands into the command register. Table 1 defines the specific  
commands of the K9XXGXXXXM.  
The device provides cache program in a block. It is possible to write data into the cache registers while data stored in data registers  
are being programmed into memory cells in cache program mode. The program performace may be dramatically improved by cache  
program when there are lots of pages of data to be programmed.  
The device embodies power-on auto-read feature which enables serial access of data of the 1st page without command and address  
input after power-on.  
In addition to the enhanced architecture and interface, the device incorporates copy-back program feature from one page to another  
page without need for transporting the data to and from the external buffer memory. Since the time-consuming serial access and  
data-input cycles are removed, system performance for solid-state disk application is significantly increased.  
Table 1. Command Sets  
Function  
1st. Cycle  
00h  
2nd. Cycle  
Acceptable Command during Busy  
Read  
30h  
35h  
-
Read for Copy Back  
Read ID  
00h  
90h  
Reset  
FFh  
80h  
-
O
Page Program  
Cache Program  
Copy-Back Program  
Block Erase  
10h  
15h  
10h  
D0h  
-
80h  
85h  
60h  
Random Data Input*  
Random Data Output*  
Read Status  
85h  
05h  
E0h  
70h  
O
NOTE : 1. Random Data Input/Output can be executed in a page.  
Caution : Any undefined command inputs are prohibited except for above command set of Table 1.  
8
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
ABSOLUTE MAXIMUM RATINGS  
Rating  
K9K4GXXQ0M(1.8V) K9XXGXXUXM(3.3V)  
Parameter  
Symbol  
Unit  
V
VIN/OUT  
VCC  
-0.6 to + 2.45  
-0.2 to + 2.45  
-0.6 to + 4.6  
-0.6 to + 4.6  
Voltage on any pin relative to VSS  
K9XXGXXUXM-XCB0  
Temperature Under Bias  
-10 to +125  
-40 to +125  
TBIAS  
°C  
K9XXGXXUXM-XIB0  
K9XXGXXUXM-XCB0  
Storage Temperature  
TSTG  
Ios  
-65 to +150  
5
°C  
K9XXGXXUXM-XIB0  
Short Circuit Current  
mA  
NOTE :  
1. Minimum DC voltage is -0.6V on input/output pins. During transitions, this level may undershoot to -2.0V for periods <30ns.  
Maximum DC voltage on input/output pins is VCC,+0.3V which, during transitions, may overshoot to VCC+2.0V for periods <20ns.  
2. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions  
as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
RECOMMENDED OPERATING CONDITIONS  
(Voltage reference to GND, K9XXGXXUXM-XCB0 :TA=0 to 70°C, K9XXGXXUXM-XIB0:TA=-40 to 85°C)  
K9K4GXXQ0M(1.8V)  
K9XXGXXUXM(3.3V)  
Parameter  
Symbol  
Unit  
Min  
1.70  
0
Typ.  
1.8  
0
Max  
1.95  
0
Min  
2.7  
0
Typ.  
3.3  
0
Max  
3.6  
0
Supply Voltage  
Supply Voltage  
VCC  
VSS  
V
V
DC AND OPERATING CHARACTERISTICS(Recommended operating conditions otherwise noted.)  
K9K4GXXQ0M(1.8V)  
K9XXGXXUXM(3.3V)  
Unit  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Page Read with  
Serial Access  
tRC=50ns, CE=VIL  
IOUT=0mA  
Operat-  
ing  
ICC1  
-
10  
20  
-
15  
30  
Current Program  
ICC2  
ICC3  
ISB1  
-
-
-
-
-
10  
10  
-
20  
20  
1
-
-
-
15  
15  
-
30  
30  
1
mA  
Erase  
Stand-by Current(TTL)  
CE=VIH, WP=PRE=0V/VCC  
CE=VCC-0.2,  
Stand-by Current(CMOS)  
ISB2  
-
20  
100  
-
20  
100  
WP=PRE=0V/VCC  
mA  
Input Leakage Current  
Output Leakage Current  
Input High Voltage  
ILI  
VIN=0 to Vcc(max)  
-
-
-
-
-
-
±20  
±20  
-
-
-
-
-
-
±20  
±20  
ILO  
VOUT=0 to Vcc(max)  
VIH*  
VIL*  
-
-
0.8xVcc  
-0.3  
VCC+0.3 0.8xVcc  
VCC+0.3  
0.2xVcc  
Input Low Voltage, All inputs  
0.2xVcc  
-0.3  
K9K4GXXQ0M :IOH=-100mA  
K9XXGXXUXM :IOH=-400mA  
V
Output High Voltage Level  
Output Low Voltage Level  
VOH  
VOL  
Vcc-0.1  
-
-
-
2.4  
-
-
-
0.4  
-
K9K4GXXQ0M :IOL=100uA  
K9XXGXXUXM :IOL=2.1mA  
-
0.1  
-
-
K9K4GXXQ0M :VOL=0.1V  
K9XXGXXUXM :VOL=0.4V  
Output Low Current(R/B)  
IOL(R/B)  
3
4
8
10  
mA  
NOTE : VIL can undershoot to -0.4V and VIH can overshoot to VCC +0.4V for durations of 20 ns or less.  
9
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
VALID BLOCK  
Parameter  
Symbol  
NVB  
Min  
4016  
8032*  
Max  
4096  
8192*  
Unit  
K9K4GXXX0M  
K9W8G08U1M  
Valid Block Number  
Valid Block Number  
Blocks  
Blocks  
NVB  
NOTE :  
1. The device may include invalid blocks when first shipped. Additional invalid blocks may develop while being used. The number of valid blocks is pre-  
sented with both cases of invalid blocks considered. Invalid blocks are defined as blocks that contain one or more bad bits. Do not erase or pro-  
gram factory-marked bad blocks. Refer to the attached technical notes for appropriate management of invalid blocks.  
2. The 1st block, which is placed on 00h block address, is guaranteed to be a valid block, does not require Error Correction up to 1K program/erase  
cycles.  
* : Each K9K4G08U0M chip in the K9W8G08U1M has Maximum 80 invalid blocks.  
AC TEST CONDITION  
(K9XXGXXUXM-XCB0 :TA=0 to 70°C, K9XXGXXUXM-XIB0:TA=-40 to 85°C  
K9K4GXXQ0M : Vcc=1.70V~1.95V , K9XXGXXUXM : Vcc=2.7V~3.6V unless otherwise noted)  
Parameter  
K9K4GXXQ0M  
0V to Vcc  
5ns  
K9XXGXXUXM  
0V to Vcc  
5ns  
Input Pulse Levels  
Input Rise and Fall Times  
Input and Output Timing Levels  
Vcc/2  
Vcc/2  
K9K4GXXQ0M:Output Load (Vcc:1.8V +/-10%)  
K9XXGXXUXM:Output Load (Vcc:3.0V +/-10%)  
1 TTL GATE and CL=30pF  
1 TTL GATE and CL=50pF  
CAPACITANCE(TA=25°C, VCC=1.8V/3.3V, f=1.0MHz)  
Max  
K9XXGXXXXM K9W8G08U1M  
40  
40  
Item  
Symbol  
Test Condition  
Unit  
Input/Output Capacitance  
Input Capacitance  
CI/O  
CIN  
VIL=0V  
VIN=0V  
20  
20  
pF  
pF  
NOTE : Capacitance is periodically sampled and not 100% tested.  
MODE SELECTION  
CLE  
H
L
ALE  
L
CE  
L
WE  
RE  
H
WP  
PRE  
Mode  
Command Input  
X
X
Read Mode  
Write Mode  
H
L
H
X
X
Address Input(5clock)  
Command Input  
H
L
L
L
H
H
X
H
L
H
H
X
Address Input(5clock)  
L
L
L
H
H
X
Data Input  
L
L
L
H
X
X
X
X
X
X
X
Data Output  
X
X
X
X
X
X
H
H
X
X
X
X
X
X
During Read(Busy)  
During Program(Busy)  
During Erase(Busy)  
Write Protect  
X
X
H
X
X
X
X
H
L
X(1)  
X
X
X
(2)  
(2)  
X
Stand-by  
0V/VCC  
0V/VCC  
NOTE : 1. X can be VIL or VIH.  
2. WP and PRE should be biased to CMOS high or CMOS low for standby.  
10  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
Program / Erase Characteristics  
Parameter  
Symbol  
tPROG  
Min  
Typ  
Max  
700  
700  
4
Unit  
ms  
Program Time  
-
300  
Dummy Busy Time for Cache Program  
tCBSY  
3
-
ms  
Main Array  
Spare Array  
-
-
-
cycles  
cycles  
ms  
Number of Partial Program Cycles  
in the Same Page  
Nop  
-
4
Block Erase Time  
tBERS  
2
3
NOTE : 1. Max. time of tCBSY depends on timing between internal program completion and data in  
AC Timing Characteristics for Command / Address / Data Input  
K9K4G16U0M(3.3V)  
K9K4GXXQ0M(1.8V)  
K9XXG08UXM(3.3V)  
Parameter  
Symbol  
Unit  
Min  
25  
10  
35  
10  
25  
25  
10  
20  
10  
45  
15  
100  
Max  
Min  
10  
5
Max  
CLE setup Time  
CLE Hold Time  
CE setup Time  
CE Hold Time  
tCLS  
tCLH  
tCS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
15  
5
tCH  
WE Pulse Width  
ALE setup Time  
ALE Hold Time  
Data setup Time  
Data Hold Time  
tWP  
tALS  
tALH  
tDS  
15  
10  
5
10  
5
tDH  
Write Cycle Time  
tWC  
tWH  
tADL  
30  
10  
100  
WE High Hold Time  
ALE to Data Loading Time  
NOTES : tADL is the time from the WE rising edge of final address cycle to the WE rising edge of first data cycle.  
11  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
AC Characteristics for Operation  
K9K4G16U0M(3.3V)  
K9K4GXXQ0M(1.8V)  
K9XXG08UXM(3.3V)  
Unit  
Parameter  
Symbol  
Min  
-
Max  
Min  
-
Max  
Data Transfer from Cell to Register  
ALE to RE Delay  
tR  
25  
25  
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tAR  
10  
10  
20  
25  
-
-
10  
10  
20  
15  
-
-
CLE to RE Delay  
tCLR  
tRR  
-
-
Ready to RE Low  
-
-
RE Pulse Width  
tRP  
-
-
WE High to Busy  
tWB  
tRC  
100  
100  
Read Cycle Time  
50  
-
-
30  
-
-
RE Access Time  
tREA  
tCEA  
tRHZ  
tCHZ  
tOH  
30  
18  
CE Access Time  
-
45  
-
23  
RE High to Output Hi-Z  
CE High to Output Hi-Z  
RE or CE High to Output hold  
RE High Hold Time  
-
30  
-
30  
-
20  
-
20  
15  
15  
0
-
15  
10  
0
-
tREH  
tIR  
-
-
Output Hi-Z to RE Low  
WE High to RE Low  
-
-
tWHR  
tRST  
60  
-
-
60  
-
-
Device Resetting Time(Read/Program/Erase)  
5/10/500(1)  
5/10/500(1)  
NOTE: 1. If reset command(FFh) is written at Ready state, the device goes into Busy for maximum 5us.  
12  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
NAND Flash Technical Notes  
Invalid Block(s)  
Invalid blocks are defined as blocks that contain one or more invalid bits whose reliability is not guaranteed by Samsung. The infor-  
mation regarding the invalid block(s) is so called as the invalid block information. Devices with invalid block(s) have the same quality  
level as devices with all valid blocks and have the same AC and DC characteristics. An invalid block(s) does not affect the perfor-  
mance of valid block(s) because it is isolated from the bit line and the common source line by a select transistor. The system design  
must be able to mask out the invalid block(s) via address mapping. The 1st block, which is placed on 00h block address, is guaran-  
teed to be a valid block, does not require Error Correction up to 1K program/erase cycles.  
Identifying Invalid Block(s)  
All device locations are erased(FFh for X8, FFFFh for X16) except locations where the invalid block(s) information is written prior to  
shipping. The invalid block(s) status is defined by the 1st byte(X8 device) or 1st word(X16 device) in the spare area. Samsung makes  
sure that either the 1st or 2nd page of every invalid block has non-FFh(X8) or non-FFFFh(X16) data at the column address of  
2048(X8 device) or 1024(X16 device). Since the invalid block information is also erasable in most cases, it is impossible to recover  
the information once it has been erased. Therefore, the system must be able to recognize the invalid block(s) based on the original  
invalid block information and create the invalid block table via the following suggested flow chart(Figure 3). Any intentional erasure of  
the original invalid block information is prohibited.  
Start  
Set Block Address = 0  
Increment Block Address  
Check "FFh( or FFFFh)" at the column address  
2048(X8 device) or 1024(X16 device)  
of the 1st and 2nd page in the block  
*
No  
Check "FFh  
or FFFFh" ?  
Create (or update)  
Invalid Block(s) Table  
Yes  
No  
Last Block ?  
Yes  
End  
Figure 3. Flow chart to create invalid block table.  
13  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
NAND Flash Technical Notes (Continued)  
Error in write or read operation  
Within its life time, additional invalid blocks may develop with NAND Flash memory. Refer to the qualification report for the actual  
data.The following possible failure modes should be considered to implement a highly reliable system. In the case of status read fail-  
ure after erase or program, block replacement should be done. Because program status fail during a page program does not affect  
the data of the other pages in the same block, block replacement can be executed with a page-sized buffer by finding an erased  
empty block and reprogramming the current target data and copying the rest of the replaced block.To improve the efficiency of mem-  
ory space, it is recommended that the read or verification failure due to single bit error be reclaimed by ECC without any block  
replacement. The said additional block failure rate does not include those reclaimed blocks.  
Failure Mode  
Detection and Countermeasure sequence  
Erase Failure  
Status Read after Erase --> Block Replacement  
Status Read after Program --> Block Replacement  
Read back ( Verify after Program) --> Block Replacement  
or ECC Correction  
Write  
Read  
Program Failure  
Single Bit Failure  
Verify ECC -> ECC Correction  
: Error Correcting Code --> Hamming Code etc.  
Example) 1bit correction & 2bit detection  
ECC  
Program Flow Chart  
If ECC is used, this verification  
operation is not needed.  
Start  
Write 80h  
Write 00h  
Write Address  
Write 30h  
Write Address  
Write Data  
Write 10h  
Wait for tR Time  
*
Fail  
Read Status Register  
Program Error  
Verify Data  
No  
Pass  
I/O 6 = 1 ?  
or R/B = 1 ?  
Program Completed  
Yes  
*
No  
: If program operation results in an error, map out  
the block including the page in error and copy the  
target data to another block.  
Program Error  
I/O 0 = 0 ?  
*
Yes  
14  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
NAND Flash Technical Notes (Continued)  
Erase Flow Chart  
Read Flow Chart  
Start  
Write 00h  
Start  
Write 60h  
Write Block Address  
Write Address  
Write 30h  
Write D0h  
Read Data  
Read Status Register  
ECC Generation  
No  
I/O 6 = 1 ?  
or R/B = 1 ?  
No  
Verify ECC  
Reclaim the Error  
Yes  
*
No  
Yes  
Erase Error  
I/O 0 = 0 ?  
Page Read Completed  
Yes  
Erase Completed  
: If erase operation results in an error, map out  
the failing block and replace it with another block.  
*
Block Replacement  
Block A  
1st  
{
(n-1)th  
1
nth  
an error occurs.  
(page)  
Buffer memory of the controller.  
Block B  
1st  
2
{
(n-1)th  
nth  
(page)  
* Step1  
When an error happens in the nth page of the Block ’A’ during erase or program operation.  
* Step2  
Copy the data in the 1st ~ (n-1)th page to the same location of another free block. (Block ’B’)  
* Step3  
Then, copy the nth page data of the Block ’A’ in the buffer memory to the nth page of the Block ’B’.  
* Step4  
Do not erase or program to Block ’A’ by creating an ’invalid Block’ table or other appropriate scheme.  
15  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
NAND Flash Technical Notes (Continued)  
Addressing for program operation  
Within a block, the pages must be programmed consecutively from the LSB (least significant bit) page of the block to MSB (most sig-  
nificant bit) pages of the block. Random page address programming is prohibited.  
(64)  
(64)  
Page 63  
Page 31  
Page 63  
Page 31  
:
:
(1)  
:
(32)  
:
(3)  
(2)  
(1)  
Page 2  
Page 1  
Page 0  
(3)  
(32)  
(2)  
Page 2  
Page 1  
Page 0  
Data register  
Data register  
From the LSB page to MSB page  
DATA IN: Data (1)  
Data (64)  
Ex.) Random page program (Prohibition)  
DATA IN: Data (1)  
Data (64)  
16  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
System Interface Using CE don’t-care.  
For an easier system interface, CE may be inactive during the data-loading or serial access as shown below. The internal  
2112byte(X8 device) or 1056word(X16 device) data registers are utilized as separate buffers for this operation and the system  
design gets more flexible. In addition, for voice or audio applications which use slow cycle time on the order of u-seconds, de-activat-  
ing CE during the data-loading and serial access would provide significant savings in power consumption.  
Figure 4. Program Operation with CE don’t-care.  
CLE  
CE don’t-care  
CE  
WE  
ALE  
I/Ox  
80h  
Address(5Cycles)  
Data Input  
Data Input  
10h  
tCH  
tCEA  
tCS  
CE  
RE  
CE  
tREA  
tWP  
WE  
out  
I/O0~7  
Figure 5. Read Operation with CE don’t-care.  
CLE  
CE  
CE don’t-care  
RE  
ALE  
tR  
R/B  
WE  
I/Ox  
Data Output(serial access)  
00h  
Address(5Cycle)  
30h  
17  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
NOTE  
I/O  
DATA  
ADDRESS  
Device  
I/Ox  
Data In/Out  
~2112byte  
~1056word  
Col. Add1  
A0~A7  
Col. Add2  
A8~A11  
A8~A10  
Row Add1  
A12~A19  
A11~A18  
Row Add2  
A20~A27  
A19~A26  
Row Add3  
A28~A29  
A27~A28  
K9K4G08XXM(X8)  
K9K4G16XXM(X16)  
I/O 0 ~ I/O 7  
I/O 0 ~ I/O 15  
A0~A7  
Command Latch Cycle  
CLE  
tCLH  
tCLS  
tCS  
tCH  
CE  
tWP  
WE  
tALS  
tALH  
ALE  
tDH  
tDS  
I/Ox  
Command  
K9K4G16X0M : I/O8~15 must be set to "0"  
Address Latch Cycle  
tCLS  
CLE  
tCS  
tWC  
tWC  
tWC  
tWC  
CE  
tWP  
tWP  
tWP  
tWP  
WE  
tWH  
tALH  
tWH  
tWH  
tALH  
tWH  
tALS tALH  
tALS  
tALH  
tALS  
tALS  
tALH  
tDH  
tALS  
ALE  
I/Ox  
tDH  
tDH  
tDH  
tDH  
tDS  
tDS  
tDS  
tDS  
tDS  
Col. Add2  
Row Add1  
Col. Add1  
Row Add2  
Row Add3  
K9K4G16X0M : I/O8~15 must be set to "0"  
18  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
Input Data Latch Cycle  
tCLH  
CLE  
tCH  
CE  
tWC  
ALE  
tALS  
tWP  
tWP  
tWP  
WE  
tWH  
tDH  
tDH  
tDH  
tDS  
tDS  
tDS  
I/Ox  
DIN final*  
DIN 0  
DIN 1  
NOTES : DIN final means 2112(X8) or 1056(X16)  
Serial Access Cycle after Read(CLE=L, WE=H, ALE=L)  
tCEA  
CE  
tCHZ*  
tOH  
tREH  
tREA  
tREA  
tREA  
RE  
tRHZ*  
tRHZ*  
tOH  
I/Ox  
Dout  
Dout  
Dout  
tRC  
tRR  
R/B  
NOTES : Transition is measured ±200mV from steady state voltage with load.  
This parameter is sampled and not 100% tested.  
19  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
Status Read Cycle  
tCLR  
CLE  
tCLS  
tCS  
tCLH  
CE  
tCH  
tWP  
WE  
tCEA  
tCHZ*  
tOH  
tWHR  
RE  
tRHZ*  
tOH  
tDH  
tREA  
tDS  
tIR*  
I/Ox  
Status Output  
70h  
K9K4G16X0M : I/O8~15 must be set to "0"  
20  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
Read Operation  
tCLR  
CLE  
CE  
tWC  
WE  
ALE  
RE  
tWB  
tAR  
tRHZ  
tR  
tRC  
tRR  
Col. Add2 Row Add1 Row Add2  
00h  
Col. Add1  
30h  
Dout N  
Dout N+1  
Dout M  
Row Add3  
I/Ox  
R/B  
Column Address  
Row Address  
Busy  
Read Operation(Intercepted by CE)  
CLE  
CE  
WE  
ALE  
RE  
tWB  
tCHZ  
tOH  
tAR  
tR  
tRC  
tRR  
Row Add1 Row Add2 Row Add3  
Dout N+2  
00h  
Col. Add1 Col. Add2  
30h  
Dout N  
Dout N+1  
I/Ox  
R/B  
Row Address  
Column Address  
Busy  
21  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
22  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
Page Program Operation  
CLE  
CE  
tWC  
tWC  
tWC  
WE  
tPROG  
tWB  
tADL  
ALE  
RE  
Din  
N
Din  
M
Co.l Add1 Col. Add2 Row Add1 Row Add2 Row Add3  
80h  
I/Ox  
10h  
70h  
I/O0  
SerialData  
Input Command  
Program  
Command  
1 up to m Byte  
Serial Input  
Read Status  
Command  
Column Address  
Row Address  
R/B  
I/O  
0
=0 Successful Program  
X8 device : m = 2112byte  
X16 device : m = 1056word  
I/O0  
=1 Error in Program  
NOTES : tADL is the time from the WE rising edge of final address cycle to the WE rising edge of first data cycle.  
23  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
»
» »  
»
» »  
»
24  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
»
» »  
»
25  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
»
» »  
»
»
» »  
»
26  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
BLOCK ERASE OPERATION  
CLE  
CE  
tWC  
WE  
tBERS  
tWB  
ALE  
RE  
I/Ox  
Row Add1 Row Add2 Row Add3  
60h  
D0h  
70h  
I/O 0  
Row Address  
Busy  
R/B  
Auto Block Erase  
Setup Command  
Erase Command  
I/O  
0
=0 Successful Erase  
Read Status I/O  
Command  
0=1 Error in Erase  
27  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
Read ID Operation  
CLE  
CE  
WE  
tAR  
ALE  
RE  
tREA  
Device  
Code*  
I/Ox  
4th cyc.*  
00h  
ECh  
XXh  
90h  
Read ID Command  
Maker Code Device Code  
Address. 1cycle  
Device  
Device Code*(2nd Cycle)  
4th Cycle*  
K9K4G08Q0M  
K9K4G08U0M  
K9K4G16Q0M  
K9K4G16U0M  
K9W8G08U1M  
ACh  
DCh  
BCh  
CCh  
15h  
15h  
55h  
55h  
Same as each K9K4G08U0M in it  
ID Defintition Table  
90 ID : Access command = 90H  
Description  
1st Byte  
2nd Byte  
3rd Byte  
4th Byte  
Maker Code  
Device Code  
Don’t care  
Page Size, Block Size, Spare Size, Organization  
28  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
4th ID Data  
Description  
1KB  
I/O7  
I/O6  
I/O5 I/O4  
I/O3  
I/O2  
I/O1 I/O0  
0
0
1
1
0
1
0
1
Page Size  
2KB  
(w/o redundant area )  
Reserved  
Reserved  
64KB  
0
0
1
1
0
1
0
1
Blcok Size  
(w/o redundant area )  
128KB  
256KB  
Reserved  
Redundant Area Size  
( byte/512byte)  
8
16  
0
1
x8  
x16  
0
1
Organization  
50ns / 30ns  
25ns  
Reserved  
Reserved  
0
1
0
1
0
0
1
1
Serial AccessMinimum  
29  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
Device Operation  
PAGE READ  
Upon initial device power up, the device defaults to Read mode. This operation is also initiated by writing 00h-30h to the command  
register along with five address cycles. In two consecutive read operations, the second one doesn’t need 00h command, which five  
address cycles and 30h command initiates that operation. Once the command is latched, it does not need to be written for the follow-  
ing page read operation. Two types of operations are available : random read, serial page read .  
The random read mode is enabled when the page address is changed. The 2112 bytes(X8 device) or 1056 words(X16 device) of  
data within the selected page are transferred to the data registers in less than 25ms(tR). The system controller can detect the comple-  
tion of this data transfer(tR) by analyzing the output of R/B pin. Once the data in a page is loaded into the data registers, they may be  
read out in 50ns(30ns in KXXG08UXM only) cycle time by sequentially pulsing RE. The repetitive high to low transitions of the RE  
clock make the device output the data starting from the selected column address up to the last column address.  
The device may output random data in a page instead of the consecutive sequential data by writing random data output command.  
The column address of next data, which is going to be out, may be changed to the address which follows random data output com-  
mand. Random data output can be operated multiple times regardless of how many times it is done in a page.  
Figure 6. Read Operation  
CLE  
CE  
WE  
ALE  
tR  
R/B  
RE  
I/Ox  
00h  
Address(5Cycle)  
30h  
Data Output(Serial Access)  
Col Add1,2 & Row Add1,2,3  
Data Field  
Spare Field  
30  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
Figure 7. Random Data Output In a Page  
tR  
R/B  
RE  
Address  
5Cycles  
Address  
2Cycles  
Data Output  
Data Output  
E0h  
I/Ox  
00h  
30h  
05h  
Col Add1,2 & Row Add1,2,3  
Data Field  
Data Field  
Spare Field  
Spare Field  
PAGE PROGRAM  
The device is programmed basically on a page basis, but it does allow multiple partial page programing of a word or consecutive  
bytes up to 2112(X8 device) or words up to 1056(X16 device), in a single page program cycle. The number of consecutive partial  
page programming operation within the same page without an intervening erase operation must not exceed 4 times for main array(X8  
device:1time/512byte, X16 device:1time/256word) and 4 times for spare array(X8 device:1time/16byte, X16 device:1time/8word). The  
addressing should be done in sequential order in a block. A page program cycle consists of a serial data loading period in which up to  
2112bytes(X8 device) or 1056words(X16 device) of data may be loaded into the data register, followed by a non-volatile program-  
ming period where the loaded data is programmed into the appropriate cell.  
The serial data loading period begins by inputting the Serial Data Input command(80h), followed by the five cycle address inputs and  
then serial data loading. The words other than those to be programmed do not need to be loaded. The device supports random data  
input in a page. The column address for the next data, which will be entered, may be changed to the address which follows random  
data input command(85h). Random data input may be operated multiple times regardless of how many times it is done in a page.  
The Page Program confirm command(10h) initiates the programming process. Writing 10h alone without previously entering the  
serial data will not initiate the programming process. The internal write state controller automatically executes the algorithms and tim-  
ings necessary for program and verify, thereby freeing the system controller for other tasks. Once the program process starts, the  
Read Status Register command may be entered to read the status register. The system controller can detect the completion of a pro-  
gram cycle by monitoring the R/B output, or the Status bit(I/O 6) Page Program is complete, the Write Status Bit(I/O 0) may be  
checked(Figure 8). The internal write verify detects only errors for "1"s that are not successfully programmed to "0"s. The command  
register remains in Read Status command mode until another valid command is written to the command register.  
Figure 8. Program & Read Status Operation  
tPROG  
R/B  
"0"  
Pass  
80h  
Address & Data Input  
I/O0  
Fail  
I/Ox  
10h  
70h  
Col Add1,2 & Row Add1,2,3  
Data  
"1"  
31  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
Figure 9. Random Data Input In a Page  
tPROG  
R/B  
"0"  
Pass  
80h  
Address & Data Input  
Address & Data Input  
I/O0  
Fail  
I/Ox  
85h  
10h  
70h  
Col Add1,2  
Data  
Col Add1,2 & Row Add1,2,3  
Data  
"1"  
Cache Program  
Cache Program is an extension of Page Program, which is executed with 2112byte(X8 device) or 1056word(X16 device) data regis-  
ters, and is available only within a block. Since the device has 1 page of cache memory, serial data input may be executed while data  
stored in data register are programmed into memory cell.  
After writing the first set of data up to 2112byte(X8 device) or 1056word(X16 device) into the selected cache registers, Cache Pro-  
gram command (15h) instead of actual Page Program (10h) is inputted to make cache registers free and to start internal program  
operation. To transfer data from cache registers to data registers, the device remains in Busy state for a short period of time(tCBSY)  
and has its cache registers ready for the next data-input while the internal programming gets started with the data loaded into data  
registers. Read Status command (70h) may be issued to find out when cache registers become ready by polling the Cache-Busy sta-  
tus bit(I/O 6). Pass/fail status of only the previouse page is available upon the return to Ready state. When the next set of data is  
inputted with the Cache Program command, tCBSY is affected by the progress of pending internal programming. The programming of  
the cache registers is initiated only when the pending program cycle is finished and the data registers are available for the transfer of  
data from cache registers. The status bit(I/O5) for internal Ready/Busy may be polled to identify the completion of internal program-  
ming. If the system monitors the progress of programming only with R/B, the last page of the target programming sequence must be  
progammed with actual Page Program command (10h).  
Figure 10. Cache Program (available only within a block)  
tPROG  
tCBSY  
tCBSY  
tCBSY  
R/B  
Address &  
Data Input  
Address &  
Data Input  
Address &  
Data Input*  
Address &  
Data Input  
80h  
70h  
10h  
80h  
15h  
80h  
80h  
15h  
15h  
Col Add1,2 & Row Add1,2,3  
Data  
Col Add1,2 & Row Add1,2,3  
Data  
Col Add1,2 & Row Add1,2,3  
Data  
Col Add1,2 & Row Add1,2,3  
Data  
32  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
NOTE : Since programming the last page does not employ caching, the program time has to be that of Page Program. However, if the  
previous program cycle with the cache data has not finished, the actual program cycle of the last page is initiated only after comple-  
tion of the previous cycle, which can be expressed as the following formula.  
tPROG= Program time for the last page+ Program time for the ( last -1 )th page  
- (Program command cycle time + Last page data loading time)  
Copy-Back Program  
The copy-back program is configured to quickly and efficiently rewrite data stored in one page without utilizing an external memory.  
Since the time-consuming cycles of serial access and re-loading cycles are removed, the system performance is improved. The ben-  
efit is especially obvious when a portion of a block is updated and the rest of the block also need to be copied to the newly assigned  
free block. The operation for performing a copy-back program is a sequential execution of page-read without serial access and copy-  
ing-program with the address of destination page. A read operation with "35h" command and the address of the source page moves  
the whole 2112byte(X8 device) or 1056word(X16 device) data into the internal data buffer. As soon as the device returns to Ready  
state, Page-Copy Data-input command (85h) with the address cycles of destination page followed may be written. The Program Con-  
firm command (10h) is required to actually begin the programming operation. Copy-Back Program operation is allowed only within the  
same memory plane. Once the Copy-Back Program is finished, any additional partial page programming into the copied pages is pro-  
hibited before erase. The MSB(A28 in K9K4G16X0M, A29 in K9XXG08XXM) must be the same between source and target page dur-  
ing copy-back program.Data input cycle for modifying a portion or multiple distant portions of the source page is allowed as shown in  
Figure 11. "When there is a program-failure at Copy-Back operation, error is reported by pass/fail status. But if the soure page has a  
bit error for charge loss, accumulated copy-back operations could also accumulate bit errors. For this reason, two bit ECC is  
recommended for copy-back operation. "  
Figure 11. Page Copy-Back program Operation  
tR  
tPROG  
R/B  
I/Ox  
Add.(5Cycles)  
Pass  
00h  
35h  
Add.(5Cycles)  
10h  
I/O0  
Fail  
85h  
70h  
Col. Add1,2 & Row Add1,2,3  
Destination Address  
Col. Add1,2 & Row Add1,2,3  
Source Address  
Figure 12. Page Copy-Back program Operation with Random Data Input  
tPROG  
tR  
R/B  
Add.(5Cycles)  
Add.(2Cycles)  
Col Add1,2  
I/Ox  
35h  
Add.(5Cycles)  
70h  
00h  
85h  
Data  
85h  
Data  
10h  
Col. Add1,2 & Row Add1,2,3  
Source Address  
Col. Add1,2 & Row Add1,2,3  
Destination Address  
There is no limitation for the number of repetition.  
33  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
BLOCK ERASE  
The Erase operation is done on a block basis. Block address loading is accomplished in three cycles initiated by an Erase Setup  
command(60h). Only address A18 to A29(X8) or A17 to A28(X16) is valid while A12 to A17(X8) or A11 to A16(X16) is ignored. The Erase  
Confirm command(D0h) following the block address loading initiates the internal erasing process. This two-step sequence of setup  
followed by execution command ensures that memory contents are not accidentally erased due to external noise conditions.  
At the rising edge of WE after the erase confirm command input, the internal write controller handles erase and erase-verify. When  
the erase operation is completed, the Write Status Bit(I/O 0) may be checked. Figure 13 details the sequence.  
Figure 13. Block Erase Operation  
tBERS  
R/B  
"0"  
Pass  
60h  
I/O0  
Fail  
70h  
Address Input(3Cycle)  
I/Ox  
D0h  
"1"  
Block Add. : A12 ~ A29 (X8)  
or A11 ~ A28 (X16)  
READ STATUS  
The device contains a Status Register which may be read to find out whether program or erase operation is completed, and whether  
the program or erase operation is completed successfully. After writing 70h command to the command register, a read cycle outputs  
the content of the Status Register to the I/O pins on the falling edge of CE or RE, whichever occurs last. This two line control allows  
the system to poll the progress of each device in multiple memory connections even when R/B pins are common-wired. RE or CE  
does not need to be toggled for updated status. Refer to table 2 for specific Status Register definitions. The command register  
remains in Status Read mode until further commands are issued to it. Therefore, if the status register is read during a random read  
cycle, the read command(00h) should be given before starting read cycles.  
Table2. Read Staus Register Definition  
I/O No.  
I/O 0  
Page Program  
Pass/Fail  
Block Erase  
Pass/Fail  
Not use  
Cache Prorgam  
Pass/Fail(N)  
Pass/Fail(N-1)  
Not use  
Read  
Not use  
Definition  
Pass : "0"  
Fail : "1"  
Fail : "1"  
I/O 1  
Not use  
Not use  
Pass : "0"  
I/O 2  
Not use  
Not use  
Not use  
Don’t -cared  
Don’t -cared  
Don’t -cared  
Busy : "0"  
I/O 3  
Not Use  
Not Use  
Not Use  
Not Use  
I/O 4  
Not Use  
Not Use  
Not Use  
Not Use  
I/O 5  
Ready/Busy  
Ready/Busy  
Write Protect  
Ready/Busy  
Ready/Busy  
Write Protect  
True Ready/Busy  
Ready/Busy  
Write Protect  
Ready/Busy  
Ready/Busy  
Write Protect  
Ready : "1"  
Ready : "1"  
Not Protected  
I/O 6  
Busy : "0"  
I/O 7  
Protected : "0"  
I/O 8~15  
(X16 device  
only)  
Not use  
Not use  
Not use  
Not use  
Don’t -care  
NOTE : 1. True Ready/Busy represents internal program operation status which is being executed in cache program mode.  
2. I/Os defined ’Not use’ are recommended to be masked out when Read Status is being executed.  
34  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
Read ID  
The device contains a product identification mode, initiated by writing 90h to the command register, followed by an address input of  
00h. Five read cycles sequentially output the manufacturer code(ECh), and the device code and XXh, 4th cycle ID respectively. The  
command register remains in Read ID mode until further commands are issued to it. Figure 14 shows the operation sequence.  
Figure 14. Read ID Operation  
tCLR  
CLE  
CE  
tCEA  
WE  
ALE  
RE  
tAR1  
tWHR  
Device  
Code*  
tREA  
I/OX  
90h  
00h  
Address. 1cycle  
ECh  
XXh  
4th Cyc.*  
Maker code  
Device code  
Device  
Device Code*(2nd Cycle)  
4th Cycle*  
15h  
K9K4G08Q0M  
K9K4G08U0M  
K9K4G16Q0M  
K9K4G16U0M  
K9W8G08U1M  
ACh  
DCh  
BCh  
CCh  
15h  
55h  
55h  
Same as each K9K4G08U0M in it  
RESET  
The device offers a reset feature, executed by writing FFh to the command register. When the device is in Busy state during random  
read, program or erase mode, the reset operation will abort these operations. The contents of memory cells being altered are no  
longer valid, as the data will be partially programmed or erased. The command register is cleared to wait for the next command, and  
the Status Register is cleared to value C0h when WP is high. Refer to table 3 for device status after reset operation. If the device is  
already in reset state a new reset command will be accepted by the command register. The R/B pin transitions to low for tRST after  
the Reset command is written. Refer to Figure 15 below.  
Figure 15. RESET Operation  
tRST  
R/B  
I/OX  
FFh  
Table3. Device Status  
After Power-up  
After Reset  
PRE status  
High  
First page data access is ready  
Low  
Waiting for next command  
Operation Mode  
00h command is latched  
35  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
Power-On Auto-Read  
The device is designed to offer automatic reading of the first page without command and address input sequence during power-on.  
An internal voltage detector enables auto-page read functions when Vcc reaches about 1.8V. PRE pin controls activation of auto-  
page read function. Auto-page read function is enabled only when PRE pin is tied to Vcc. Serial access may be done after power-on  
without latency. Power-On Auto Read mode is available only on 3.3V device(K9XXGXXUXM).  
Figure 16. Power-On Auto-Read (3.3V device only)  
~ 1.8V  
VCC  
CLE  
CE  
WE  
ALE  
PRE  
R/B  
tR  
RE  
I/OX  
1st  
2nd  
3rd  
....  
n th  
36  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
READY/BUSY  
The device has a R/B output that provides a hardware method of indicating the completion of a page program, erase and random  
read completion. The R/B pin is normally high but transitions to low after program or erase command is written to the command regis-  
ter or random read is started after address loading. It returns to high when the internal controller has finished the operation. The pin is  
an open-drain driver thereby allowing two or more R/B outputs to be Or-tied. Because pull-up resistor value is related to tr(R/B) and  
current drain during busy(ibusy) , an appropriate value can be obtained with the following reference chart(Fig 17). Its value can be  
determined by the following guidance.  
Rp  
ibusy  
VCC  
1.8V device - VOL : 0.1V, VOH : VccQ-0.1V  
3.3V device - VOL : 0.4V, VOH : 2.4V  
Ready Vcc  
R/B  
open drain output  
VOH  
CL  
VOL  
Busy  
tf  
tr  
GND  
Device  
Figure 17. Rp vs tr ,tf & Rp vs ibusy  
@ Vcc = 1.8V, Ta = 25°C , CL = 30pF  
@ Vcc = 3.3V, Ta = 25°C , CL = 50pF  
200  
2.4  
Ibusy  
Ibusy  
300n  
3m  
150n  
3m  
150  
1.2  
1.7  
200n  
100n  
2m  
1m  
100n  
50n  
100  
0.8  
2m  
1m  
120  
0.85  
60  
90  
tr  
tr  
30  
50  
1.8  
0.57  
1.7  
0.6  
1.8  
0.43  
1.7  
1.8  
2K  
1.7  
2K  
1.8  
tf  
tf  
1.7  
4K  
1K  
3K  
4K  
1K  
3K  
Rp(ohm)  
Rp(ohm)  
Rp value guidance  
VCC(Max.) - VOL(Max.)  
1.85V  
Rp(min, 1.8V part) =  
=
=
IOL + SIL  
3mA + SIL  
VCC(Max.) - VOL(Max.)  
3.2V  
Rp(min, 3.3V part) =  
IOL + SIL  
8mA + SIL  
where IL is the sum of the input currents of all devices tied to the R/B pin.  
Rp(max) is determined by maximum permissible limit of tr  
37  
K9W8G08U1M  
K9K4G08Q0M K9K4G16Q0M  
K9K4G08U0M K9K4G16U0M  
FLASH MEMORY  
Data Protection & Power up sequence  
The device is designed to offer protection from any involuntary program/erase during power-transitions. An internal voltage detector  
disables all functions whenever Vcc is below about 1.1V(1.8V device) or 2V(3.3V device). WP pin provides hardware protection and  
is recommended to be kept at VIL during power-up and power-down. A recovery time of minimum 10ms is required before internal cir-  
cuit gets ready for any command sequences as shown in Figure 18. The two step command sequence for program/erase provides  
additional software protection.  
Figure 18. AC Waveforms for Power Transition  
1.8V device : ~ 1.5V  
3.3V device : ~ 2.5V  
1.8V device : ~ 1.5V  
3.3V device : ~ 2.5V  
VCC  
High  
WP  
WE  
10ms  
38  

相关型号:

K9K4G16Q0M-PIB0

Flash, 256MX16, 30ns, PDSO48,
SAMSUNG

K9K4G16Q0M-PIB00

Flash, 256MX16, 30ns, PDSO48, 12 X 20 MM, 0.50 MM PITCH, PLASTIC, TSOP1-48
SAMSUNG

K9K4G16Q0M-YCB00

Flash, 256MX16, 30ns, PDSO48, 12 X 20 MM, 0.50 MM PITCH, PLASTIC, TSOP1-48
SAMSUNG

K9K4G16Q0M-YIB00

Flash, 256MX16, 30ns, PDSO48, 12 X 20 MM, 0.50 MM PITCH, PLASTIC, TSOP1-48
SAMSUNG

K9K4G16U0M

512M x 8 Bit / 256M x 16 Bit NAND Flash Memory
SAMSUNG

K9K4G16U0M-PCB0

Flash, 256MX16, 30ns, PDSO48,
SAMSUNG

K9K4G16U0M-YCB0

Flash, 256MX16, 30ns, PDSO48,
SAMSUNG

K9K4G16U0M-YIB0

Flash, 256MX16, 30ns, PDSO48,
SAMSUNG

K9K4G16U0M-YIB00

Flash, 256MX16, 30ns, PDSO48, 12 X 20 MM, 0.50 MM PITCH, PLASTIC, TSOP1-48
SAMSUNG

K9K5608U0M-YCB0

Flash, 32MX8, 35ns, PDSO48, 12 X 20 MM, 0.50 MM PITCH, TSOP1-48
SAMSUNG

K9K8G08U0A

1G x 8 Bit / 2G x 8 Bit NAND Flash Memory
SAMSUNG

K9K8G08U0A-P

1G x 8 Bit / 2G x 8 Bit NAND Flash Memory
SAMSUNG