KFH1G16Q2M-DID [SAMSUNG]

FLASH MEMORY; FL灰内存
KFH1G16Q2M-DID
型号: KFH1G16Q2M-DID
厂家: SAMSUNG    SAMSUNG
描述:

FLASH MEMORY
FL灰内存

文件: 总93页 (文件大小:1219K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
OneNAND SPECIFICATION  
Density  
Part No.  
VCC(core & IO)  
1.8V(1.7V~1.95V)  
2.65V(2.4V~2.9V)  
3.3V(2.7V~3.6V)  
1.8V(1.7V~1.95V)  
Temperature  
PKG  
512Mb  
KFG1216Q2M-DEB  
KFG1216D2M-DEB  
KFG1216U2M-DIB  
KFH1G16Q2M-DEB  
Extended  
Extended  
Industrial  
Extended  
63FBGA(LF)  
63FBGA(LF)  
63FBGA(LF)  
N/A  
1Gb  
Version: Ver. 1.4  
Date: June 15th, 2005  
1
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.  
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,  
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,  
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL  
INFORMATION IN THIS DOCUMENT IS PROVIDED  
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar  
applications where Product failure could result in loss of life or personal or physical harm, or any military or  
defense application, or any governmental procurement to which special terms or provisions may apply.  
OneNAND‚ is a trademark of Samsung Electronics Company, Ltd. Other names and brands may be claimed as the property of their  
rightful owners.  
Copyright © 2005, Samsung Electronics Company, Ltd  
2
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Document Title  
OneNAND  
Revision History  
Revision No. History  
Draft Date  
Remark  
0.0  
Initial issue.  
Jan. 07, 2004  
Preliminary  
0.0.1  
1. Add the "Invalid block management" and "Error management in read and Jan. 29, 2004  
write operation"  
Preliminary  
2. Add the restriction in addressing for program operation.  
3. Add the asynchronous write and latched asynchronous write mode timing  
diagram.  
4.Define new parameters in asynchronous write mode.  
-tCH1 : 10ns, tCH2 : 0ns  
0.0.2  
0.0.3  
0.1  
1. Add the dual operation diagram.  
2. Add the block replacement diagram  
Jan. 30, 2004  
Feb. 03, 2004  
Feb.11, 2004  
Preliminary  
Preliminary  
Preliminary  
1. Edit the block replacement diagram  
2. Add the 3.3V product.  
1. Excluded Cache Program Operation  
2. Added the descriptions for below operations  
-. Reset  
-. Write Protection  
-. Burst Read Latency  
-. Dual Operation  
-. Invalid block definition and Identification method  
-. Error in write or read operation  
-. ECC  
3. Revised program sequence  
4. Some AC parameters are changed.  
tACH : 9ns-->7ns, tCES : 7ns-->9ns, tAAVDS : 5ns-->7ns  
tDS : 30ns-->10ns, tDH : 0ns-->4ns  
5. Define new AC parameter.  
tAWES(Address hold time in AVD low case of asynchronous write mode)  
Min. 0ns  
0.1.1  
1. Correct an errata  
Mar.9, 2004  
Preliminary  
Ball pitch of package is corrected.  
0.5mm --> 0.8mm  
2. Edit the timing diagram of burst read wrap around.(Figure 23,24)  
1. The specification of 2.7V device is added.  
0.2  
0.3  
Mar. 22, 2004  
Mar. 31, 2004  
Preliminary  
Preliminary  
1. The specification of 3.3V device is deleted.  
2. Correct some typos.  
The attached datasheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right  
to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions about device. If you have  
any questions, please contact the SAMSUNG branch office near you.  
3
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Document Title  
OneNAND  
Revision History  
Revision No. History  
Draft Date  
Remark  
0.4  
1. Corrected the errata  
June 22, 2004  
Preliminary  
2. Added spare assignment information in detail  
3. Added NAND array memory map  
4. Added manufacturer ID for CS as 00ECh  
5. Added stepping ID for CS in version ID register  
6. Divided default status of interrupt status register by Warm,Hot reset and  
Cold reset  
7. Revised Load operation flow chart  
8. Revised Program operation flow chart  
9. Deleted DBS setting step in Copy-back operation  
10. Added OTP description  
11. Revised OTP Load and Program flow chart  
12. Added INT guidance  
13. ECC description is revised  
14. Added Data Protection Scheme during Power-down  
15. Added DC/AC parameters  
1.0  
1. Deleted 2.7V product  
August 5, 2004  
Final  
2. Added 2.65V product  
3. Added 3.3V product and industrial temperature in 3.3V product  
4. Deleted Unlock/Lock BootRAM command  
5. Added DBS setting step in Copy-back operation  
6. Added 2.65V/3.3V DC parameters  
7. Revised tCES from 9ns to 7ns  
8. Deleted tOEH in asynchronous read operation  
9. Revised NOP from 4 times per each main and spare in a page to 2 times  
per sector  
10. Revised Write Protection status description  
11. Added DDP selection and operation guidance  
12. Added 1Gb DDP device ID  
13. Added INT bit status in Cold Reset operation  
14. Moved Interrupt register setting before inputting command in all flow  
charts  
15. Revised Dual operation diagrams  
16. Added and revised the asynchronous read operation timing diagram  
17. Revised the asynchronous write operation timing diagram  
18. Added the tREADY parameter in Hot Reset operation  
1.1  
1.2  
1. Revised standby current for DDP  
August 26, 2004  
October 26, 2004  
Final  
1. Corrected DDP device ID  
2. Excluded Commercial Temperature range  
3. Revised Cold Reset timing diagram  
4. Added CE and RDY in Warm Reset diagram  
5. Excluded Write while Load and Read while Program operation  
6. Revised Extended Temperature minimum value from -25 to -30  
7. Revised typical tOTP, tLOCK from 300us to 600us  
8. Revised max tOTP, tLOCK from 600us to 1000us  
9. Revised Icc4, Icc5 test condition  
10. Added Endurance and Data Retention  
The attached datasheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right  
to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions about device. If you have  
any questions, please contact the SAMSUNG branch office near you.  
4
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Document Title  
OneNAND  
Revision History  
Revision No. History  
Draft Date  
Remark  
1.3  
1. Deleted Manufacturer ID for ES  
Dec. 16, 2004  
Final  
2. Excluded bit error case in Load operation  
3. Revised tWEA value from max to min  
4. Revised tRD1 typical value from 35us to 40us  
5. Revised tRD2 typical value from 75us to 85us  
6. Added technical note for OneNAND boot sequence  
7. Revised Asycnchronous Read timing diagram for CE don’t care mode  
8. Revised Asynchronous Write timing diagram for CE don’t care mode  
9. Revised Load operation timing diagram for CE don’t care mode  
1. Added Copyright Notice in the beginning  
2. Corrected Errata  
Jun. 15, 2005  
1.4  
3. Updated Icc2, Icc4, Icc5, Icc6 and ISB  
4. Revised INT pin description  
5. Changed default of Manufacturer ID Register with 00ECh  
6. Removed "or erase case, refer to the table 3" from descriptions of WB, EB  
7. Added OTP erase case NOTE  
8. Revised case definitions of Interrupt Status Register  
9. Added a NOTE to Command register  
10. Added ECClogSector Information table  
11. Removed ’data unit based data handling’ from description of Device  
Operation  
12. Revised description on Warm/Hot/NAND Flash Core Reset  
13. Revised Warm Reset Timing  
14. Revised description for 4-, 8-, 16-, 32-Word Linear Burst Mode  
15. Revised OTP operation description  
16. Restored earlier text for OTP Programming  
17. Added supplemental explanation for ECC Operation  
18. Replaced "read" with "load" in ECC bypass  
19. Removed redundant sentance from ECC Bypass Operation  
20. Added technical note for INT pin connection guide  
The attached datasheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right  
to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions about device. If you have  
any questions, please contact the SAMSUNG branch office near you.  
5
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
1. FEATURES  
Architecture  
Design Technology: 0.12um  
Voltage Supply  
- 1.8V device(KFG1216Q2M) : 1.7V~1.95V  
- 2.65V device(KFG1216D2M) : 2.4V~2.9V  
- 3.3V device(KFG1216U2M) : 2.7V~3.6V  
Organization  
- Host Interface:16bit  
Internal BufferRAM(5K Bytes)  
- 1KB for BootRAM, 4KB for DataRAM  
NAND Array  
- Page Size : (2K+64)bytes  
- Block Size : (128K+4K)bytes  
Performance  
Host Interface type  
- Synchronous Burst Read  
: Clock Frequency: up to 54MHz  
: Linear Burst - 4, 8, 16, 32 words with wrap-around  
: Continuous Sequential Burst(1K words)  
- Asynchronous Random Read  
: Access time of 76ns  
- Asynchronous Random Write  
Programmable Read latency  
Multiple Sector Read  
- Read multiple sectors by Sector Count Register(up to 4 sectors)  
Reset Mode  
- Cold Reset / Warm Reset / Hot Reset / NAND Flash Reset  
Power dissipation (typical values)  
- Standby current : 10uA@1.8V, 20uA@2.65V/3.3V for single, 20uA@1.8V, 40uA@2.65V/3.3V for DDP  
- Synchronous Burst Read current(54MHz) : 12mA@1.8V device, 20mA@2.65V/3.3V device  
- Load current : 20mA@1.8V device, 25mA@2.65V/3.3V device  
- Program current: 20mA@1.8V device, 25mA@2.65V/3.3V device  
- Erase current: 15mA@1.8V device, 20mA@2.65V/3.3V device  
Reliable CMOS Floating-Gate Technology  
- Endurance : 100K Program/Erase Cycles  
- Data Retention : 10 Years  
Hardware Features  
Voltage detector generating internal reset signal from Vcc  
Hardware reset input (RP)  
Data Protection  
- Write Protection for BootRAM  
- Write Protection mode for NAND Flash Array  
- Write protection during power-up  
- Write protection during power-down  
User-controlled One Time Programmable(OTP) area  
Internal 2bit EDC / 1bit ECC  
Internal Bootloader supports Booting Solution in system  
Software Features  
Handshaking Feature  
- INT pin: Indicates Ready / Busy of OneNAND  
- Polling method: Provides a software method of detecting the Ready / Busy status of OneNAND  
Detailed chip information by ID register  
Packaging  
Package  
- 63ball, 9.5mm x 12mm x max 1.0mmt , 0.8mm ball pitch FBGA  
6
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
2. GENERAL DESCRIPTION  
OneNAND is a single-die chip with standard NOR Flash interface using NAND Flash Array. This device is comprised of logic and  
NAND Flash Array and 5KB internal BufferRAM. 1KB BootRAM is used for reserving bootcode, and 4KB DataRAM is used for buff-  
ering data. The operating clock frequency is up to 54MHz. This device is X16 interface with Host, and has the speed of ~76ns random  
access time. Actually, it is accessible with minimum 4clock latency(host-driven clock for synchronous read), but this device adopts the  
appropriate wait cycles by programmable read latency. OneNAND provides the multiple sector read operation by assigning the num-  
ber of sectors to be read in the sector counter register. The device includes one block sized OTP(One Time Programmable), which  
can be used to increase system security or to provide identification capabilities.  
7
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
3. PIN DESCRIPTION  
Pin Name  
Type  
Nameand Description  
Host Interface  
Address Inputs  
A15~A0  
I
- Inputs for addresses during read operation, which are for addressing  
BufferRAM & Register.  
Data Inputs/Outputs  
- Inputs data during program and commands during all operations, outputs data during memory array/  
register read cycles.  
DQ15~DQ0  
I/O  
Data pins float to high-impedance when the chip is deselected or outputs are disabled.  
Interrupt  
Notifying Host when a command has completed. It is open drain output with internal resistor(~50kohms).  
After power-up, it is at hi-z condition. Once IOBE is set to 1, it does not float to hi-z condition even when  
the chip is deselected or when outputs are disabled.  
INT  
O
Ready  
RDY  
CLK  
WE  
O
I
Indicates data valid in synchronous read modes and is activated while CE is low  
Clock  
CLK synchronizes the device to the system bus frequency in synchronous read mode.  
The first rising edge of CLK in conjunction with AVD low latches address input.  
Write Enable  
I
WE controls writes to the bufferRAM and registers. Datas are latched on the WE pulse’s rising edge  
Address Valid Detect  
Indicates valid address presence on address inputs. During asynchronous read operation, all addresses  
are latched on AVD’s rising edge, and during synchronous read operation, all addresses are latched on  
CLK’s rising edge while AVD is held low for one clock cycle.  
AVD  
I
I
> Low : for asynchronous mode, indicates valid address ;for burst mode,  
causes starting address to be latched on rising edge on CLK  
> High : device ignores address inputs  
Reset Pin  
RP  
CE  
When low, RP resets internal operation of OneNAND. RP status is don’t care during power-up  
and bootloading.  
Chip Enable  
I
I
CE-low activates internal control logic, and CE-high deselects the device, places it in standby state,  
and places A/DQ in Hi-Z  
Output Enable  
OE  
OE-low enables the device’s output data buffers during a read cycle.  
Power Supply  
VCC-Core/Vcc  
Power for OneNAND Core  
This is the power supply for OneNAND Core.  
Power for OneNAND I/O  
VCC-IO/Vccq  
This is the power supply for OneNAND I/O  
Vcc-IO is internally connected to Vcc-Core, thus should be connected to the same power supply.  
VSS  
Ground for OneNAND  
etc.  
Do Not Use  
DNU  
NC  
Leave it disconnected. These pins are used for testing.  
No Connection  
Lead is not internally connected.  
NOTE:  
Do not leave power supply(VCC, VSS) disconnected.  
8
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
4. PIN CONFIGURATION  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
OE  
VSS  
DQ9  
DQ3  
DQ5  
NC  
WE  
RP  
DQ14  
DQ1  
DQ11  
DQ0  
DQ2  
AVD  
A1  
DQ13  
VCC  
Core  
DQ12  
DQ7  
DQ8  
DQ4  
A12  
VCC  
IO  
DQ10  
A15  
DQ15  
DQ6  
A9  
CLK  
A14  
CE  
NC  
A7  
NC  
A2  
A13  
A11  
A10  
A3  
A8  
INT  
A0  
A4  
A6  
A5  
NC  
RDY  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
(TOP VIEW, Balls Facing Down)  
63ball FBGA OneNAND Chip  
63ball, 9.5mm x 12mm x max 1.0mmt , 0.8mm ball pitch FBGA  
9
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
DEFINITIONS  
B (capital letter)  
W (capital letter)  
b (lower-case letter)  
ECC  
Byte, 8bits  
Word, 16bits  
Bit  
Error Correction Code  
Calculated ECC  
Written ECC  
BufferRAM  
BootRAM  
ECC which has been calculated during load or program access  
ECC which has been stored as data in the NAND Flash Array or in the BufferRAM  
On-chip Internal Buffer consisting of BootRAM and DataRAM  
A 1KB portion of the BufferRAM reserved for Bootcode buffering  
A 4KB portion of the BufferRAM reserved for Data buffering  
DataRAM  
Memory  
NAND Flash array which is embedded on OneNAND  
Partial unit of page, of which size is 512B for main area and 16B for spare area data.  
It is the minimum Load/Program/Copy-Back program unit while one~four sector opera-  
tion is available  
Sector  
Possible data unit to be read from memory to BufferRAM or to be programmed to mem-  
ory.  
-
528B of which 512B is in main area and 16B in spare area  
Data unit  
- 1056B of which 1024B is in main area and 32B in spare area  
- 1584B of which 1536B is in main area and 48B in spare area  
- 2112B of which 2048B is in main area and 64B in spare area  
10  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
5. BLOCK DIAGRAM  
DQ15~DQ0  
BufferRAM  
Bootloader  
A15~A0  
CLK  
BootRAM  
StateMachine  
CE  
OE  
DataRAM  
NAND Flash  
Array  
WE  
RP  
Error  
Correction  
Logic  
AVD  
INT  
Internal Registers  
(Address/Command/Configuration  
/Status Registers)  
RDY  
OTP  
(One Block)  
- Host Interface  
- BufferRAM(BootRAM, DataRAM)  
- Command and status registers  
- State Machine (Bootloader is included)  
- Error Correction Logic  
- Memory(NAND Flash Array, OTP)  
NOTE:  
1) At cold reset, bootloader copies boot code(1K byte size) from NAND Flash Array to BootRAM.  
Figure 1. Internal Block Diagram  
11  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Main area data  
(512B)  
Spare area data  
(16B)  
Page:2KB+64B  
BootRAM 0  
BootRAM 1  
Sector  
BootRAM  
Sector(main area):512B  
DataRAM 0_0  
DataRAM 0_1  
DataRAM 0_2  
DataRAM 0_3  
Block:  
64pages  
128KB+4KB  
DataRAM 0  
Sector(spare area):16B  
Main area data  
(512B)  
Spare area data  
(16B)  
DataRAM 1_0  
DataRAM 1_1  
DataRAM 1_2  
DataRAM 1_3  
DataRAM 1  
(BufferRAM)  
(NAND array)  
Figure 2. BufferRAM and NAND array structure  
Spare Spare Spare Spare  
Main area Main area Main area Main area area area area area  
256W  
256W  
256W  
256W  
8W  
8W  
8W  
8W  
ECCm ECCm ECCm ECCs ECCs  
FFh  
2nd  
(Note3)  
Note1 Note1 Note2 Note2 Note2 Note3 Note3 Note3  
Note4 Note4  
1st  
2nd  
3rd  
1st  
LSB  
LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB  
1st W 2nd 3rd W 4th W 5th W 6th W 7th W 8th W  
MSB  
W
NOTE:  
1) The 1st word of spare area in 1st and 2nd page of every invalid block is reserved for the invalid block information by manufacturer.  
Please refer to page 64 about the details.  
2) These words are managed by internal ECC logic. So it is recommended that the important data like LSN(Logical Sector Number)  
are written.  
3) These words are reserved for the future purpose by manufacturer. These words will be dedicated to internal logic.  
4) These words are for free usage.  
5) The 5th, 6th and 7th words are dedicated to internal ECC logic. So these words are only readable. The other words are program-  
mable by command.  
6) ECCm 1st, ECCm 2nd, ECCm 3rd: ECC code for Main area data  
7) ECCs 1st, ECCs 2nd: ECC code for 2nd and 3rd word of spare area.  
Figure 3. Spare area of NAND array assignment  
12  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
6.1 ADDRESS MAP For OneNAND  
Address  
(word order)  
Address  
(byte order)  
Size  
(total 128KB)  
Division  
Usage  
Description  
Main area  
(64KB)  
0000h~00FFh  
0100h~01FFh  
0200h~02FFh  
0300h~03FFh  
0400h~04FFh  
0500h~05FFh  
0600h~06FFh  
0700h~07FFh  
0800h~08FFh  
0900h~09FFh  
0A00h~7FFFh  
8000h~8007h  
8008h~800Fh  
8010h~8017h  
8018h~801Fh  
8020h~8027h  
8028h~802Fh  
8030h~8037h  
8038h~803Fh  
8040h~8047h  
8048h~804Fh  
8050h~8FFFh  
00000h~001FEh  
00200h~003FEh  
00400h~005FEh  
00600h~007FEh  
00800h~009FEh  
00A00h~00BFEh  
00C00h~00DFEh  
00E00h~00FFEh  
01000h~011FEh  
01200h~013FEh  
01400h~0FFFEh  
10000h~1000Eh  
10010h~1001Eh  
10020h~1002Eh  
10030h~1003Eh  
10040h~1004Eh  
10050h~1005Eh  
10060h~1006Eh  
10070h~1007Eh  
10080h~1008Eh  
10090h~1009Eh  
100A0h~11FFEh  
512B  
BootM 0  
BootM 1  
BootRAM Main sector0  
BootRAM Main sector1  
1KB  
512B  
512B  
512B  
512B  
512B  
512B  
512B  
512B  
512B  
59KB  
16B  
DataM 0_0  
DataM 0_1  
DataM 0_2  
DataM 0_3  
DataM 1_0  
DataM 1_1  
DataM 1_2  
DataM 1_3  
Reserved  
BootS 0  
DataRAM Main page0/sector0  
DataRAM Main page0/sector1  
DataRAM Main page0/sector2  
DataRAM Main page0/sector3  
DataRAM Main page1/sector0  
DataRAM Main page1/sector1  
DataRAM Main page1/sector2  
DataRAM Main page1/sector3  
Reserved  
4KB  
59KB  
32B  
Spare area  
(8KB)  
BootRAM Spare sector0  
16B  
BootS 1  
BootRAM Spare sector1  
16B  
DataS 0_0  
DataS 0_1  
DataS 0_2  
DataS 0_3  
DataS 1_0  
DataS 1_1  
DataS 1_2  
DataS 1_3  
Reserved  
DataRAM Spare page0/sector0  
DataRAM Spare page0/sector1  
DataRAM Spare page0/sector2  
DataRAM Spare page0/sector3  
DataRAM Spare page1/sector0  
DataRAM Spare page1/sector1  
DataRAM Spare page1/sector2  
DataRAM Spare page1/sector3  
Reserved  
16B  
16B  
16B  
128B  
16B  
16B  
16B  
16B  
8032B  
8032B  
24KB  
Reserved  
(24KB)  
9000h~BFFFh  
C000h~CFFFh  
D000h~EFFFh  
F000h~FFFFh  
12000h~17FFEh  
18000h~19FFEh  
1A000h~1DFFEh  
1E000h~1FFFEh  
24KB  
8KB  
Reserved  
Reserved  
Reserved  
Registers  
Reserved  
Reserved  
Reserved  
Registers  
Reserved  
(8KB)  
8KB  
16KB  
8KB  
Reserved  
(16KB)  
16KB  
8KB  
Registers  
(8KB)  
NOTE 1) Data output is unknown while host reads a register bit of reserved area  
13  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
6.2 ADDRESS MAP For OneNAND NAND Array (word order)  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block0  
Block1  
0000h  
0001h  
0002h  
0003h  
0004h  
0005h  
0006h  
0007h  
0008h  
0009h  
000Ah  
000Bh  
000Ch  
000Dh  
000Eh  
000Fh  
0010h  
0011h  
0012h  
0013h  
0014h  
0015h  
0016h  
0017h  
0018h  
0019h  
001Ah  
001Bh  
001Ch  
001Dh  
001Eh  
001Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block32  
Block33  
Block34  
Block35  
Block36  
Block37  
Block38  
Block39  
Block40  
Block41  
Block42  
Block43  
Block44  
Block45  
Block46  
Block47  
Block48  
Block49  
Block50  
Block51  
Block52  
Block53  
Block54  
Block55  
Block56  
Block57  
Block58  
Block59  
Block60  
Block61  
Block62  
Block63  
0020h  
0021h  
0022h  
0023h  
0024h  
0025h  
0026h  
0027h  
0028h  
0029h  
002Ah  
002Bh  
002Ch  
002Dh  
002Eh  
002Fh  
0030h  
0031h  
0032h  
0033h  
0034h  
0035h  
0036h  
0037h  
0038h  
0039h  
003Ah  
003Bh  
003Ch  
003Dh  
003Eh  
003Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block2  
Block3  
Block4  
Block5  
Block6  
Block7  
Block8  
Block9  
Block10  
Block11  
Block12  
Block13  
Block14  
Block15  
Block16  
Block17  
Block18  
Block19  
Block20  
Block21  
Block22  
Block23  
Block24  
Block25  
Block26  
Block27  
Block28  
Block29  
Block30  
Block31  
14  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block64  
Block65  
Block66  
Block67  
Block68  
Block69  
Block70  
Block71  
Block72  
Block73  
Block74  
Block75  
Block76  
Block77  
Block78  
Block79  
Block80  
Block81  
Block82  
Block83  
Block84  
Block85  
Block86  
Block87  
Block88  
Block89  
Block90  
Block91  
Block92  
Block93  
Block94  
Block95  
0040h  
0041h  
0042h  
0043h  
0044h  
0045h  
0046h  
0047h  
0048h  
0049h  
004Ah  
004Bh  
004Ch  
004Dh  
004Eh  
004Fh  
0050h  
0051h  
0052h  
0053h  
0054h  
0055h  
0056h  
0057h  
0058h  
0059h  
005Ah  
005Bh  
005Ch  
005Dh  
005Eh  
005Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block96  
Block97  
0060h  
0061h  
0062h  
0063h  
0064h  
0065h  
0066h  
0067h  
0068h  
0069h  
006Ah  
006Bh  
006Ch  
006Dh  
006Eh  
006Fh  
0070h  
0071h  
0072h  
0073h  
0074h  
0075h  
0076h  
0077h  
0078h  
0079h  
007Ah  
007Bh  
007Ch  
007Dh  
007Eh  
007Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block98  
Block99  
Block100  
Block101  
Block102  
Block103  
Block104  
Block105  
Block106  
Block107  
Block108  
Block109  
Block110  
Block111  
Block112  
Block113  
Block114  
Block115  
Block116  
Block117  
Block118  
Block119  
Block120  
Block121  
Block122  
Block123  
Block124  
Block125  
Block126  
Block127  
15  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block128  
Block129  
Block130  
Block131  
Block132  
Block133  
Block134  
Block135  
Block136  
Block137  
Block138  
Block139  
Block140  
Block141  
Block142  
Block143  
Block144  
Block145  
Block146  
Block147  
Block148  
Block149  
Block150  
Block151  
Block152  
Block153  
Block154  
Block155  
Block156  
Block157  
Block158  
Block159  
0080h  
0081h  
0082h  
0083h  
0084h  
0085h  
0086h  
0087h  
0088h  
0089h  
008Ah  
008Bh  
008Ch  
008Dh  
008Eh  
008Fh  
0090h  
0091h  
0092h  
0093h  
0094h  
0095h  
0096h  
0097h  
0098h  
0099h  
009Ah  
009Bh  
009Ch  
009Dh  
009Eh  
009Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block160  
Block161  
Block162  
Block163  
Block164  
Block165  
Block166  
Block167  
Block168  
Block169  
Block170  
Block171  
Block172  
Block173  
Block174  
Block175  
Block176  
Block177  
Block178  
Block179  
Block180  
Block181  
Block182  
Block183  
Block184  
Block185  
Block186  
Block187  
Block188  
Block189  
Block190  
Block191  
00A0h  
00A1h  
00A2h  
00A3h  
00A4h  
00A5h  
00A6h  
00A7h  
00A8h  
00A9h  
00AAh  
00ABh  
00ACh  
00ADh  
00AEh  
00AFh  
00B0h  
00B1h  
00B2h  
00B3h  
00B4h  
00B5h  
00B6h  
00B7h  
00B8h  
00B9h  
00BAh  
00BBh  
00BCh  
00BDh  
00BEh  
00BFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
16  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block192  
Block193  
Block194  
Block195  
Block196  
Block197  
Block198  
Block199  
Block200  
Block201  
Block202  
Block203  
Block204  
Block205  
Block206  
Block207  
Block208  
Block209  
Block210  
Block211  
Block212  
Block213  
Block214  
Block215  
Block216  
Block217  
Block218  
Block219  
Block220  
Block221  
Block222  
Block223  
00C0h  
00C1h  
00C2h  
00C3h  
00C4h  
00C5h  
00C6h  
00C7h  
00C8h  
00C9h  
00CAh  
00CBh  
00CCh  
00CDh  
00CEh  
00CFh  
00D0h  
00D1h  
00D2h  
00D3h  
00D4h  
00D5h  
00D6h  
00D7h  
00D8h  
00D9h  
00DAh  
00DBh  
00DCh  
00DDh  
00DEh  
00DFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block224  
Block225  
Block226  
Block227  
Block228  
Block229  
Block230  
Block231  
Block232  
Block233  
Block234  
Block235  
Block236  
Block237  
Block238  
Block239  
Block240  
Block241  
Block242  
Block243  
Block244  
Block245  
Block246  
Block247  
Block248  
Block249  
Block250  
Block251  
Block252  
Block253  
Block254  
Block255  
00E0h  
00E1h  
00E2h  
00E3h  
00E4h  
00E5h  
00E6h  
00E7h  
00E8h  
00E9h  
00EAh  
00EBh  
00ECh  
00EDh  
00EEh  
00EFh  
00F0h  
00F1h  
00F2h  
00F3h  
00F4h  
00F5h  
00F6h  
00F7h  
00F8h  
00F9h  
00FAh  
00FBh  
00FCh  
00FDh  
00FEh  
00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
17  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block256  
Block257  
Block258  
Block259  
Block260  
Block261  
Block262  
Block263  
Block264  
Block265  
Block266  
Block267  
Block268  
Block269  
Block270  
Block271  
Block272  
Block273  
Block274  
Block275  
Block276  
Block277  
Block278  
Block279  
Block280  
Block281  
Block282  
Block283  
Block284  
Block285  
Block286  
Block287  
0100h  
0101h  
0102h  
0103h  
0104h  
0105h  
0106h  
0107h  
0108h  
0109h  
010Ah  
010Bh  
010Ch  
010Dh  
010Eh  
010Fh  
0110h  
0111h  
0112h  
0113h  
0114h  
0115h  
0116h  
0117h  
0118h  
0119h  
011Ah  
011Bh  
011Ch  
011Dh  
011Eh  
011Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block288  
Block289  
Block290  
Block291  
Block292  
Block293  
Block294  
Block295  
Block296  
Block297  
Block298  
Block299  
Block300  
Block301  
Block302  
Block303  
Block304  
Block305  
Block306  
Block307  
Block308  
Block309  
Block310  
Block311  
Block312  
Block313  
Block314  
Block315  
Block316  
Block317  
Block318  
Block319  
0120h  
0121h  
0122h  
0123h  
0124h  
0125h  
0126h  
0127h  
0128h  
0129h  
012Ah  
012Bh  
012Ch  
012Dh  
012Eh  
012Fh  
0130h  
0131h  
0132h  
0133h  
0134h  
0135h  
0136h  
0137h  
0138h  
0139h  
013Ah  
013Bh  
013Ch  
013Dh  
013Eh  
013Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
18  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block320  
Block321  
Block322  
Block323  
Block324  
Block325  
Block326  
Block327  
Block328  
Block329  
Block330  
Block331  
Block332  
Block333  
Block334  
Block335  
Block336  
Block337  
Block338  
Block339  
Block340  
Block341  
Block342  
Block343  
Block344  
Block345  
Block346  
Block347  
Block348  
Block349  
Block350  
Block351  
0140h  
0141h  
0142h  
0143h  
0144h  
0145h  
0146h  
0147h  
0148h  
0149h  
014Ah  
014Bh  
014Ch  
014Dh  
014Eh  
014Fh  
0150h  
0151h  
0152h  
0153h  
0154h  
0155h  
0156h  
0157h  
0158h  
0159h  
015Ah  
015Bh  
015Ch  
015Dh  
015Eh  
015Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block352  
Block353  
Block354  
Block355  
Block356  
Block357  
Block358  
Block359  
Block360  
Block361  
Block362  
Block363  
Block364  
Block365  
Block366  
Block367  
Block368  
Block369  
Block370  
Block371  
Block372  
Block373  
Block374  
Block375  
Block376  
Block377  
Block378  
Block379  
Block380  
Block381  
Block382  
Block383  
0160h  
0161h  
0162h  
0163h  
0164h  
0165h  
0166h  
0167h  
0168h  
0169h  
016Ah  
016Bh  
016Ch  
016Dh  
016Eh  
016Fh  
0170h  
0171h  
0172h  
0173h  
0174h  
0175h  
0176h  
0177h  
0178h  
0179h  
017Ah  
017Bh  
017Ch  
017Dh  
017Eh  
017Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
19  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block384  
Block385  
Block386  
Block387  
Block388  
Block389  
Block390  
Block391  
Block392  
Block393  
Block394  
Block395  
Block396  
Block397  
Block398  
Block399  
Block400  
Block401  
Block402  
Block403  
Block404  
Block405  
Block406  
Block407  
Block408  
Block409  
Block410  
Block411  
Block412  
Block413  
Block414  
Block415  
0180h  
0181h  
0182h  
0183h  
0184h  
0185h  
0186h  
0187h  
0188h  
0189h  
018Ah  
018Bh  
018Ch  
018Dh  
018Eh  
018Fh  
0190h  
0191h  
0192h  
0193h  
0194h  
0195h  
0196h  
0197h  
0198h  
0199h  
019Ah  
019Bh  
019Ch  
019Dh  
019Eh  
019Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block416  
Block417  
Block418  
Block419  
Block420  
Block421  
Block422  
Block423  
Block424  
Block425  
Block426  
Block427  
Block428  
Block429  
Block430  
Block431  
Block432  
Block433  
Block434  
Block435  
Block436  
Block437  
Block438  
Block439  
Block440  
Block441  
Block442  
Block443  
Block444  
Block445  
Block446  
Block447  
01A0h  
01A1h  
01A2h  
01A3h  
01A4h  
01A5h  
01A6h  
01A7h  
01A8h  
01A9h  
01AAh  
01ABh  
01ACh  
01ADh  
01AEh  
01AFh  
01B0h  
01B1h  
01B2h  
01B3h  
01B4h  
01B5h  
01B6h  
01B7h  
01B8h  
01B9h  
01BAh  
01BBh  
01BCh  
01BDh  
01BEh  
01BFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
20  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block448  
Block449  
Block450  
Block451  
Block452  
Block453  
Block454  
Block455  
Block456  
Block457  
Block458  
Block459  
Block460  
Block461  
Block462  
Block463  
Block464  
Block465  
Block466  
Block467  
Block468  
Block469  
Block470  
Block471  
Block472  
Block473  
Block474  
Block475  
Block476  
Block477  
Block478  
Block479  
01C0h  
01C1h  
01C2h  
01C3h  
01C4h  
01C5h  
01C6h  
01C7h  
01C8h  
01C9h  
01CAh  
01CBh  
01CCh  
01CDh  
01CEh  
01CFh  
01D0h  
01D1h  
01D2h  
01D3h  
01D4h  
01D5h  
01D6h  
01D7h  
01D8h  
01D9h  
01DAh  
01DBh  
01DCh  
01DDh  
01DEh  
01DFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block480  
Block481  
Block482  
Block483  
Block484  
Block485  
Block486  
Block487  
Block488  
Block489  
Block490  
Block491  
Block492  
Block493  
Block494  
Block495  
Block496  
Block497  
Block498  
Block499  
Block500  
Block501  
Block502  
Block503  
Block504  
Block505  
Block506  
Block507  
Block508  
Block509  
Block510  
Block511  
01E0h  
01E1h  
01E2h  
01E3h  
01E4h  
01E5h  
01E6h  
01E7h  
01E8h  
01E9h  
01EAh  
01EBh  
01ECh  
01EDh  
01EEh  
01EFh  
01F0h  
01F1h  
01F2h  
01F3h  
01F4h  
01F5h  
01F6h  
01F7h  
01F8h  
01F9h  
01FAh  
01FBh  
01FCh  
01FDh  
01FEh  
01FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
21  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Detailed information of Address Map (word order)  
BootRAM(Main area)  
-0000h~01FFh: 2(sector) x 512byte(NAND main area) = 1KB  
0000h~00FFh(512B)  
BootM 0  
0100h~01FFh(512B)  
BootM 1  
(sector 0 of page 0)  
(sector 1 of page 0)  
DataRAM(Main area)  
-0200h~09FFh: 8(sector) x 512byte(NAND main area) = 4KB  
0200h~02FFh(512B)  
DataM 0_0  
0300h~03FFh(512B)  
DataM 0_1  
0400h~04FFh(512B)  
0500h~05FFh(512B)  
DataM 0_3  
DataM 0_2  
(sector 0 of page 0)  
(sector 1 of page 0)  
(sector 2 of page 0)  
(sector 3 of page 0)  
0600h~06FFh(512B)  
DataM 1_0  
0700h~07FFh(512B)  
DataM 1_1  
0800h~08FFh(512B)  
DataM 1_2  
0900h~09FFh(512B)  
DataM 1_3  
(sector 0 of page 1)  
(sector 1 of page 1)  
(sector 2 of page 1)  
(sector 3 of page 1)  
BootRAM(Spare area)  
-8000h~800Fh: 2(sector) x 16byte(NAND spare area) = 32B  
8000h~8007h(16B)  
BootS 0  
8008h~800Fh(16B)  
BootS 1  
(sector 0 of page 0)  
(sector 1 of page 0)  
DataRAM(Spare area)  
-8010h~804Fh: 8(sector) x 16byte(NAND spare area) = 128B  
8010h~8017h(16B)  
DataS 0_0  
8018h~801Fh(16B)  
DataS 0_1  
8020h~8027h(16B)  
8028h~802Fh(16B)  
DataS 0_3  
DataS 0_2  
(sector 0 of page 0)  
(sector 1 of page 0)  
(sector 2 of page 0)  
(sector 3 of page 0)  
8030h~8037h(16B)  
DataS 1_0  
8038h~803Fh(16B)  
DataS 1_1  
8040h~8047h(16B)  
DataS 1_2  
8048h~804Fh(16B)  
DataS 1_3  
(sector 0 of page 1)  
(sector 1 of page 1)  
(sector 2 of page 1)  
(sector 3 of page 1)  
*NAND Flash array consists of 2KB page size and 128KB block size.  
22  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Spare area assignment  
Equivalent to 1word of NAND Flash  
Word  
Address Address  
Byte  
Buf.  
F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0
BootS 0  
8000h  
8001h  
8002h  
8003h  
8004h  
8005h  
8006h  
8007h  
8008h  
8009h  
800Ah  
800Bh  
800Ch  
800Dh  
800Eh  
800Fh  
8010h  
8011h  
8012h  
8013h  
8014h  
8015h  
8016h  
8017h  
8018h  
8019h  
801Ah  
801Bh  
801Ch  
801Dh  
801Eh  
801Fh  
10000h  
10002h  
10004h  
10006h  
10008h  
1000Ah  
1000Ch  
1000Eh  
10010h  
10012h  
10014h  
10016h  
10018h  
1001Ah  
1001Ch  
1001Eh  
10020h  
10022h  
10024h  
10026h  
10028h  
1002Ah  
1002Ch  
1002Eh  
10030h  
10032h  
10034h  
10036h  
10038h  
1003Ah  
1003Ch  
1003Eh  
BI  
Managed by Internal ECC logic  
Reserved for the future use  
Managed by Internal ECC logic  
Reserved for the current and future use  
ECC Code for Main area data (2nd)  
ECC Code for Spare area data (1st)  
FFh(Reserved for the future use)  
ECC Code for Main area data (1st)  
ECC Code for Main area data (3rd)  
ECC Code for Spare area data (2nd)  
Free Usage  
BI  
BootS 1  
Managed by Internal ECC logic  
Reserved for the future use Managed by Internal ECC logic  
Reserved for the current and future use  
ECC Code for Main area data (2nd)  
ECC Code for Main area data (1st)  
ECC Code for Main area data (3rd)  
ECC Code for Spare area data (2nd)  
ECC Code for Spare area data (1st)  
FFh(Reserved for the future use)  
Free Usage  
BI  
DataS  
0_0  
Managed by Internal ECC logic  
Reserved for the future use Managed by Internal ECC logic  
Reserved for the current and future use  
ECC Code for Main area data (2nd)  
ECC Code for Main area data (1st)  
ECC Code for Main area data (3rd)  
ECC Code for Spare area data (2nd)  
ECC Code for Spare area data (1st)  
FFh(Reserved for the future use)  
Free Usage  
BI  
DataS  
0_1  
Managed by Internal ECC logic  
Reserved for the future use Managed by Internal ECC logic  
Reserved for the current and future use  
ECC Code for Main area data (2nd)  
ECC Code for Main area data (1st)  
ECC Code for Main area data (3rd)  
ECC Code for Spare area data (2nd)  
ECC Code for Spare area data (1st)  
FFh(Reserved for the future use)  
Free Usage  
23  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Equivalent to 1word of NAND Flash  
Word  
Address Address  
Byte  
Buf.  
F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0
DataS 0_2  
8020h  
8021h  
8022h  
8023h  
8024h  
8025h  
8026h  
8027h  
8028h  
8029h  
802Ah  
802Bh  
802Ch  
802Dh  
802Eh  
802Fh  
8030h  
8031h  
8032h  
8033h  
8034h  
8035h  
8036h  
8037h  
8038h  
8039h  
803Ah  
803Bh  
803Ch  
803Dh  
803Eh  
803Fh  
8040h  
8041h  
8042h  
8043h  
8044h  
8045h  
8046h  
8047h  
10040h  
10042h  
10044h  
10046h  
10048h  
1004Ah  
1004Ch  
1004Eh  
10050h  
10052h  
10054h  
10056h  
10058h  
1005Ah  
1005Ch  
1005Eh  
10060h  
10062h  
10064h  
10066h  
10068h  
1006Ah  
1006Ch  
1006Eh  
10070h  
10072h  
10074h  
10076h  
10078h  
1007Ah  
1007Ch  
1007Eh  
10080h  
10082h  
10084h  
10086h  
10088h  
1008Ah  
1008Ch  
1008Eh  
BI  
Managed by Internal ECC logic  
Reserved for the future use  
Managed by Internal ECC logic  
Reserved for the current and future use  
ECC Code for Main area data (2nd)  
ECC Code for Spare area data (1st)  
FFh(Reserved for the future use)  
ECC Code for Main area data (1st)  
ECC Code for Main area data (3rd)  
ECC Code for Spare area data (2nd)  
Free Usage  
BI  
DataS 0_3  
DataS 1_0  
DataS 1_1  
DataS 1_2  
Managed by Internal ECC logic  
Reserved for the future use Managed by Internal ECC logic  
Reserved for the current and future use  
ECC Code for Main area data (2nd)  
ECC Code for Main area data (1st)  
ECC Code for Main area data (3rd)  
ECC Code for Spare area data (2nd)  
ECC Code for Spare area data (1st)  
FFh(Reserved for the future use)  
Free Usage  
BI  
Managed by Internal ECC logic  
Reserved for the future use Managed by Internal ECC logic  
Reserved for the current and future use  
ECC Code for Main area data (2nd)  
ECC Code for Main area data (1st)  
ECC Code for Main area data (3rd)  
ECC Code for Spare area data (2nd)  
ECC Code for Spare area data (1st)  
FFh(Reserved for the future use)  
Free Usage  
BI  
Managed by Internal ECC logic  
Reserved for the future use Managed by Internal ECC logic  
Reserved for the current and future use  
ECC Code for Main area data (2nd)  
ECC Code for Main area data (1st)  
ECC Code for Main area data (3rd)  
ECC Code for Spare area data (2nd)  
ECC Code for Spare area data (1st)  
FFh(Reserved for the future use)  
Free Usage  
BI  
Managed by Internal ECC logic  
Reserved for the future use Managed by Internal ECC logic  
Reserved for the current and future use  
ECC Code for Main area data (2nd)  
ECC Code for Main area data (1st)  
ECC Code for Main area data (3rd)  
ECC Code for Spare area data (2nd)  
ECC Code for Spare area data (1st)  
FFh(Reserved for the future use)  
Free Usage  
24  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Equivalent to 1word of NAND Flash  
Word  
Address Address  
Byte  
Buf.  
F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0
DataS 1_3 8048h  
8049h  
10090h  
10092h  
10094h  
10096h  
10098h  
1009Ah  
1009Ch  
1009Eh  
BI  
Managed by Internal ECC logic  
804Ah  
Reserved for the future use  
Managed by Internal ECC logic  
804Bh  
Reserved for the current and future use  
804Ch  
ECC Code for Main area data (2nd)  
ECC Code for Spare area data (1st)  
FFh(Reserved for the future use)  
ECC Code for Main area data (1st)  
ECC Code for Main area data (3rd)  
ECC Code for Spare area data (2nd)  
804Dh  
804Eh  
804Fh  
Free Usage  
NOTE:  
- BI: Bad block Information  
>Host can use complete spare area except BI and ECC code area. For example,  
Host can write data to Spare area buffer except for the area controlled by ECC logic at program operation.  
>In case of ’with ECC’ mode, OneNAND automatically generates ECC code for both main and spare data of memory during program operation  
but does not update ECC code to spare bufferRAM during load operation.  
>When loading/programming spare area, spare area BufferRAM address(BSA) and BufferRAM sector count(BSC) is chosen via Start buffer register  
as it is.  
25  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
7. Detailed address map for registers  
Address  
(word order)  
Address  
(byte order)  
Host  
Access  
Name  
Description  
F000h  
F001h  
F002h  
F003h  
F004h  
1E000h  
1E002h  
1E004h  
1E006h  
1E008h  
Manufacturer ID  
Device ID  
R
R
R
R
R
Manufacturer identification  
Device identification  
Version identification  
Data buffer size  
Version ID  
Data Buffer size  
Boot Buffer size  
Boot buffer size  
Amount of  
buffers  
F005h  
1E00Ah  
R
Amount of data/boot buffers  
F006h  
1E00Ch  
Technology  
Reserved  
R
-
Info about technology used for OneNAND  
Reserved for user  
F007h~F0FFh  
1E00Eh~1E1FEh  
Chip address for selection of NAND  
Core in DDP & Block address  
F100h  
1E200h  
Start address 1  
R/W  
F101h  
F102h  
1E202h  
1E204h  
Start address 2  
Start address 3  
R/W  
R/W  
Chip address for selection of BufferRAM in DDP  
Destination Block address for Copy back program  
Destination Page & Sector address for Copy  
back program  
F103h  
1E206h  
Start address 4  
R/W  
F104h  
F105h  
1E208h  
1E20Ah  
Start address 5  
Start address 6  
Start address 7  
Start address 8  
Reserved  
-
N/A  
-
N/A  
F106h  
1E20Ch  
-
R/W  
-
N/A  
F107h  
1E20Eh  
NAND Flash Page & Sector address  
Reserved for user  
F108h~F1FFh  
1E210h~1E3FEh  
Buffer Number for the page data transfer to/from the  
OneNAND and the start Buffer Address  
The meaning is with which buffer to start and how many  
buffers to use for the data transfer  
F200h  
1E400h  
Start Buffer  
R/W  
F201h~F207h  
F208h~F21Fh  
F220h  
1E402h~1E40Eh  
1E410h~1E43Eh  
1E440h  
Reserved  
Reserved  
Command  
-
-
Reserved for user  
Reserved for vendor specific purposes  
Host control and OneNAND operation commands  
R/W  
System  
Configuration 1  
F221h  
F222h  
1E442h  
1E444h  
R, R/W OneNAND and Host Interface Configuration  
System  
Configuration 2  
-
N/A  
F223h~F22Fh  
F230h~F23Fh  
F240h  
1E446h~1E45Eh  
1E460h~1E47Eh  
1E480h  
Reserved  
Reserved  
-
Reserved for user  
-
R
Reserved for vendor specific purposes  
Controller Status and result of OneNAND operation  
OneNAND Command Completion Interrupt Status  
Reserved for user  
Controller Status  
Interrupt  
F241h  
1E482h  
R/W  
-
F242h~F24Bh  
1E484h~1E496h  
Reserved  
Start  
Block Address  
Start OneNAND block address to unlock in Write  
Protection mode  
F24Ch  
F24Dh  
1E498h  
1E49Ah  
R/W  
R/W  
End  
Block Address  
End OneNAND block address to unlock in Write  
Protection mode  
Write Protection  
Status  
Current OneNAND Write Protection status  
(unlocked/locked/tight-locked)  
F24Eh  
1E49Ch  
R
-
F24Fh~FEFFh  
1E49Eh~1FDFEh  
Reserved  
Reserved for user  
26  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Address  
(word order)  
Address  
(byte order)  
Host  
Access  
Name  
Description  
ECC Status  
Register  
FF00h  
FF01h  
FF02h  
FF03h  
FF04h  
FF05h  
FF06h  
FF07h  
1FE00h  
1FE02h  
1FE04h  
1FE06h  
1FE08h  
1FE0Ah  
1FE0Ch  
1FE0Eh  
R
R
R
R
R
R
R
R
ECC status of sector  
ECC Result of  
main area data  
ECC error position of Main area data error for first  
selected Sector  
ECC Result of  
spare area data  
ECC error position of Spare area data error for first  
selected Sector  
ECC Result of  
main area data  
ECC error position of Main area data error for second  
selected Sector  
ECC Result of  
spare area data  
ECC error position of Spare area data error for second  
selected Sector  
ECC Result of  
main area data  
ECC error position of Main area data error for third  
selected Sector  
ECC Result of  
spare area data  
ECC error position of Spare area data error for third  
selected Sector  
ECC Result of  
main area data  
ECC error position of Main area data error for fourth  
selected Sector  
ECC Result of  
spare area data  
ECC error position of Spare area data error for fourth  
selected Sector  
FF08h  
1FE10h  
R
-
FF09h~FFFFh  
1FE12h~1FFFEh  
Reserved  
Reserved for vendor specific purposes  
27  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
7.1 Manufacturer ID Register (R): F000h, default=00ECh  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
5
4
4
3
2
1
0
ManufID  
ManufID (Manufacturer ID): manufacturer identification, 00ECh for Samsung Electronics Corp.  
7.2 Device ID Register (R): F001h, default=refer to Table1  
15  
14  
13  
12  
11  
10  
9
8
7
6
3
2
1
0
DeviceID  
DeviceID (Device ID): Device Identification,  
Table 1.  
Device  
DeviceID[15:0]  
0024h  
KFG1216Q2M  
KFG1216D2M  
KFG1216U2M  
KFH1G16Q2M  
KFH1G16D2M  
KFH1G16U2M  
0025h  
0025h  
0024h  
0025h  
0025h  
7.3 Version ID Register (R): F002h  
: N/A  
28  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
7.4 Data Buffer size Register(R): F003h, default=0800h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DataBufSize  
DataBufSize: total data buffer size in words in the memory interface  
Equals two buffers of 1024 words each(2x1024=2N, N=11)  
7.5 Boot Buffer size Register (R): F004h, default=0200h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BootBufSize  
BootBufSize: total boot buffer size in words in the memory interface  
(512 words=29, N=9)  
7.6 Amount of Buffers Register (R): F005h, default=0201h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DataBufAmount  
BootBufAmount  
DataBufAmount: the amount of data buffer=2(2N, N=1)  
BootBufAmount: the amount of boot buffer=1(2N, N=0)  
7.7 Technology Register (R): F006h, default=0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Tech  
Tech: technology information, what technology is used for the memory  
Tech  
0000h  
Technology  
NAND SLC  
NAND MLC  
Reserved  
0001h  
0002h-FFFFh  
29  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
7.8 Start Address1 Register (R/W): F100h, default=0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DFS  
Reserved(000000)  
FBA  
DFS (Device Flash Core Select): it selects Flash Core in two Flash Core of DDP  
FBA (NAND Flash Block Address): NAND Flash block address which will be loaded or programmed or erased.  
Device  
1Gb DDP  
512Mb  
Number of Block  
FBA  
1024  
512  
DFS[15] & FBA[8:0]  
FBA[8:0]  
7.9 Start Address2 Register (R/W): F101h, default=0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DBS  
Reserved(000000000000000)  
DBS (Device BufferRAM Select): it selects BufferRAM in two BufferRAM of DDP  
CHIP 1  
Comp  
DBS  
SRAM  
BUFFER  
Comp  
DFS  
FLASH  
CORE  
CE  
DDP_OPT  
GND  
INT  
CE  
INT  
CHIP 2  
VDD  
DDP_OPT  
INT  
CE  
SRAM  
DBS  
BUFFER  
Comp  
Comp  
DFS  
FLASH  
CORE  
Figure 4. Chip selection method in DDP  
7.10 Start Address3 Register (R/W): F102h, default=0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
2
1
1
0
0
Reserved(0000000)  
FCBA  
FCBA (NAND Flash Copy Back Block Address): NAND Flash destination block address which will be copy back programmed.  
7.11 Start Address4 Register (R/W): F103h, default=0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
Reserved(00000000)  
FCPA  
FCSA  
FCPA (NAND Flash Copy Back Page Address): NAND Flash destination page address in a block for copy back program operation.  
FCPA(default value) = 000000  
FCPA range : 000000~111111, 6bits for 64 pages  
FCSA (NAND Flash Copy Back Sector Address): NAND Flash destination sector address in a page for copy back program operation.  
FCSA(default value) = 00  
FCSA range : 00~11, 2bits for 4 sectors  
30  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
7.12 Start Address5 Register: F104h  
: N/A  
7.13 Start Address6 Register: F105h  
: N/A  
7.14 Start Address7 Register: F106h  
: N/A  
7.15 Start Address8 Register (R/W): F107h, default=0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved (00000000)  
FPA  
FSA  
FPA (NAND Flash Page Address): NAND Flash start page address in a block for page load or copy back program or program operation.  
FPA(default value)=000000  
FPA range: 000000~111111 , 6bits for 64 pages  
FSA (Flash Sector Address): NAND Flash start sector address in a page for read or copy back program or program operation.  
FSA(default value) = 00  
FSA range : 00~11, 2bits for 4 sectors  
7.16 Start Buffer Register (R/W): F200h, default=0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000)  
BSA  
Reserved(000000)  
BSC  
BSC (BufferRAM Sector Count): this field specifies the number of sectors to be read or programmed or copy back programmed.  
Its maximum count is 4 sectors at 00(default value)value. For a single sector access, it should be programmed as value 01.  
However internal RAM buffer reached to 11vaule(max value), it count up to 00 value to satisfy BSC value.  
For example1) If BSA=1010, BSC=11, then selected BufferRAM are ’1010 ->1011 ->1000’  
There is restriction in BootRAM case.  
For example2) If BSA=0000, BSC should be 01 or 10.  
If BSA=0001, BSC should be 01.  
BSA (BufferRAM Sector Address): It is the place where data is placed and specifies the sector 0~3 in the internal BootRAM and DataRAM  
BSA[3] is the selection bit between BootRAM and DataRAM  
BSA[2] is the selection bit between DataRAM0 and DataRAM1  
BSA[1:0] are the selection bits for sectors in a BufferRAM  
While one of BootRAM or DataRAM0 interfaces with memory, the other RAM is inaccessible.  
Main area data  
Spare area data  
BSA  
0000  
0001  
BootRAM 0  
BootRAM 1  
Sector: (512 + 16)byte  
BootRAM  
DataRAM 0_0  
DataRAM 0_1  
DataRAM 0_2  
DataRAM 0_3  
1000  
1001  
1010  
1011  
DataRAM0  
BSC  
01  
Number of Sectors  
1 sector  
DataRAM 1_0  
DataRAM 1_1  
DataRAM 1_2  
DataRAM 1_3  
1100  
1101  
1110  
1111  
10  
2 sector  
DataRAM1  
11  
3 sector  
00  
4 sector  
31  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
7.17 Command Register (R/W): F220h, default=0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Command  
Command: operation of the memory interface  
Acceptable  
command  
CMD  
Operation  
during busy  
0000h  
0013h  
Load single/multiple sector data unit into buffer  
Load single/multiple spare sector into buffer  
00F0h, 00F3h  
00F0h, 00F3h  
0080h  
Program single/multiple sector data unit from buffer  
Program single/multiple spare area sector from buffer  
Copy back program  
00F0h, 00F3h  
001Ah  
00F0h, 00F3h  
001Bh  
00F0h, 00F3h  
0023h  
Unlock NAND array block(s) from start block address to end block address  
Lock all NAND array block(s)  
-
002Ah  
-
002Ch  
Lock-tight all locked block(s)  
-
0094h  
Block Erase  
00F0h, 00F3h  
00F0h  
Reset NAND Flash Core  
-
Reset OneNAND 1)  
OTP Access  
00F3h  
-
0075h - 0065h  
00F0h, 00F3h  
NOTE:  
1)’Reset OneNAND’(=Hot reset) command makes the registers(except RDYpol, INTpol, IOBE bits) and NAND Flash core into default state as the warm  
reset(=reset by RP pin).  
This R/W register describes the operation of the OneNAND interface.  
Note that all commands should be issued right after INT is turned from ready state to busy state. (i.e. right after 0 is written to INT register.) After any  
command is issued and the corresponding operation is completed, INT goes back to ready state. (00F0h and 00F3h may be accepted during busy state  
of some operations. Refer to the rightmost column of the command register table above.)  
32  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
7.18 System Configuration 1 Register (R, R/W): F221h, default=40C0h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R
RDY  
pol  
INT  
pol  
IOB  
E
BW  
PS  
RM  
BRL  
BL  
ECC  
Reserved(0000)  
RM (Read Mode): this field specifies the selection between asynchronous read mode and synchronous read mode  
RM  
0
Read Mode  
Asynchronous read(default)  
Synchronous read  
1
BRL (Burst Read Latency): this field specifies the initial access latency in the burst read transfer.  
BRL  
000  
001  
010  
011  
100  
101  
110  
111  
Latency Cycles  
8(N/A)  
9(N/A)  
10(N/A)  
3(N/A)  
4(default, min.)  
5
6
7
BL (Burst Length): this field specifies the size of burst length during Sync. burst read. Wrap around and linear burst.  
BL  
000  
Burst Length(Main)  
Burst Length(Spare)  
Continuous(default)  
4 words  
001  
010  
8 words  
011  
16 words  
100  
32 words  
N/A  
101~111  
Reserved  
ECC: Error Correction Operation,  
0=with correction(default), 1=without correction(by-passed)  
RDYpol: RDY signal polarity  
0=low for ready, 1=high for ready((default)  
INTpol: INT pin polarity  
0=low for Interrupt pending , 1=high for Interrupt pending (default)  
INTpol  
INT bit of Interrupt Status Register  
INT Pin output  
0
1
0
0
1
0
IOBE: I/O buffer enable for INT and RDY signals, INT and RDY outputs are HighZ at power-up, bit 7 and 6 become valid after IOBE is set to1.  
IOBE can be reset only by Cold reset or by writing 0 to bit 5 of System Configuration 1 register.  
0=disable(default), 1=enable  
BWPS: boot buffer write protect status,  
0=locked(default)  
33  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
7.19 System Configuration 2 Register : F222h  
: N/A  
7.22 Controller Status Register (R): F240h, default=0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserv Reserv  
ed(0) ed(0)  
TO  
(0)  
CB  
FC  
RB  
WB  
EB  
WRc  
RSTB  
Reserved(000000)  
CB(Controller Busy) : this bit shows the overall internal status of OneNAND  
0=ready, 1=busy  
FC (Fault Check): this bit shows whether host loads data from NAND Flash array into locked BootRAM or programs/erases locked block of  
NAND Flash array or put invalid command into the device.  
FC  
0
Fault Check Result  
No fault  
1
Fault  
WRc (Current Sector/Page Write Result): this bit shows current sector/page Program/Copy Back Program/Erase result of flash memory.  
Current Sector/Page Program/CopyBack.  
WRc  
Program/Erase Result  
0
1
Pass  
Fail  
TO (Time Out): time out for load/program/copy back program/erase  
0=no time out(fixed)  
RB(Read Busy) : this bit shows the Load operation status  
0=ready(default), 1=busy  
WB(Write Busy) : this bit shows the Program operation status  
0=ready(default), 1=busy  
EB(Erase Busy) : this bit shows the Erase operation status  
0=ready(default), 1=busy  
RSTB(Reset Busy) : this bit shows the Reset operation status  
0=ready(default), 1=busy  
34  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
table 2. Controller Status Register output for modes.  
Controller Status Register [15:0]  
WRc Reserved(0) PRp RSTB Reserved(0)  
Mode  
CB  
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
FC  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
RB  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
WB  
0
EB  
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
TO  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Load Ongoing  
Program Ongoing  
Erase Ongoing  
Reset Ongoing  
Load OK  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
000000  
000000  
000000  
000000  
000000  
000000  
000000  
000000  
000000  
000000  
000000  
000000  
000000  
000000  
000000  
000000  
1
0
0
0
Program OK  
Erase OK  
0
0
Load Fail1)  
Program Fail  
Erase Fail  
0
0
0
Load Reset2)  
Program Reset  
Erase Reset  
0
0
0
Program Lock  
0
Erase Lock  
0
Load Lock(Buffer Lock)  
0
OTP Program  
Fail(Lock)  
0
1
0
0
0
0
0
0
0
000000  
0
OTP Program Fail  
Invalid Command  
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
000000  
000000  
0
0
NOTE: 1. ERm and/or ERs bits in ECC status register at Load Fail case is 10. (2bits error - uncorrectable)  
2. ERm and ERs bits in ECC status register at Load Reset case are 00. (No error)  
3. OTP Erase does not update the register and the previous value is kept.  
35  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
7.23 Interrupt Status Register (R/W): F241h, default=8080h(after Cold reset),8010h(after Warm/Hot reset)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
INT  
Reserved(0000000)  
RI  
WI  
EI  
RSTI  
Reserved(0000)  
Bit  
Address  
Bit Name  
Default State  
Cold Warm/Hot  
Valid  
States  
Function  
15  
INT(interrupt): the master interrupt bit  
- Set to ’1’ of itself when one or more of RI, WI, EI and  
1
1
0
Interrupt Off  
0->1  
Interrupt Pending  
RSTI is set to ’1’, or Unlock(0023h), Lock(002Ah), Lock-  
tight(002Ch) or OTP access(0075h - 0065h) operation is  
completed.  
- Cleared to ’0’ when by writing ’0’ to this bit or by  
reset(Cold/Warm/Hot reset).  
’0’ in this bit means that INT pin is low status.  
(This INT bit is directly wired to the INT pin on the chip.  
INT pin goes low upon writing ’0’ to this bit when  
INTpol is high and goes high upon writing ’0’ to this  
bit when INTpol is low. )  
7
6
5
4
RI(Read Interrupt):  
1
0
0
0
0
0
0
1
0
Interrupt Off  
- Set to ’1’ of itself at the completion of Load Operation  
(0000h, 0013h, or boot is done.)  
- Cleared to ’0’ when by writing ’0’ to this bit or by reset  
(Cold/Warm/Hot reset).  
0->1  
Interrupt Pending  
WI(Write Interrupt):  
0
Interrupt Off  
- Set to ’1’ of itself at the completion of Program Operation  
(0080h, 001Ah, or 001Bh)  
- Cleared to ’0’ when by writing ’0’ to this bit or by reset  
(Cold/Warm/Hot reset).  
0->1  
Interrupt Pending  
EI(Erase Interrupt):  
0
Interrupt Off  
- Set to ’1’ of itself at the completion of Erase Operation  
(0094h)  
- Cleared to ’0’ when by writing ’0’ to this bit or by reset  
(Cold/Warm/Hot reset).  
0->1  
Interrupt Pending  
RSTI(Reset Interrupt):  
0
Interrupt Off  
- Set to ’1’ of itself at the completion of Reset Operation  
(00F0h, 00F3h, or warm reset is released.)  
0->1  
Interrupt Pending  
- Cleared to ’0’ when by writing ’0’ to this bit.  
7.24 Start Block Address (R/W): F24Ch, default=0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
Reserved(0000000)  
SBA  
SBA (Start Block Address): Start NAND Flash block address to unlock in Write Protection mode, which preceeds ’Unlock block command’.  
7.25 End Block Address (R/W): F24Dh, default=0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Reserved(0000000)  
EBA  
EBA (End Block Address): End NAND Flash block address to unlock in Write Protection mode, which preceeds ’Unlock block command’. EBA should be  
equal to or larger than SBA.  
Device  
Number of Block  
SBA/EBA  
512Mb  
512  
[8:0]  
36  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
7.26 NAND Flash Write Protection Status (R): F24Eh, default=0002h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000000000000)  
US  
LS  
LTS  
US (Unlocked Status): ’1’ value of this bit specifies that there is unlocked block in NAND Flash.  
LS (Locked Status): ’1’ value of this bit specifies that there is locked block in NAND Flash.  
LTS (Lock-tighten Status): ’1’ value of this bit specifies that ’Locked block(s)’ is lock-tighten.  
7.27 ECC Status Register(R): FF00h, default=0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ERm3  
ERs3  
ERm2  
ERs2  
ERm1  
ERs1  
ERm0  
ERs0  
ERm (ECC Error for Main area data) & ERs (ECC Error for Spare area data)  
ERm0/1/2/3 is for first/second/third/fourth selected sector main of BufferRAM, ERs0/1/2/3 is for first/second/third/fourth selected sector spare of BufferRAM.  
ERm and ERs show the number of error in a sector as a result of ECC check at the load operation.  
ERm and ERs bits are updated in boot loading operation, too.  
ERm, ERs  
ECC Status  
No Error  
00  
01  
10  
11  
1-bit error(correctable)  
2-bit error(uncorrectable)1)  
Reserved  
NOTE:  
1. 3bits or more error detection is not supported.  
7.28 ECC Result of first selected Sector Main area data Register (R): FF01h, default=0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000)  
ECCposWord0  
ECCposIO0  
7.29 ECC Result of first selected Sector Spare area data Register (R): FF02h, default=0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000000000)  
ECClogSector0  
ECCposIO0  
7.30 ECC Result of second selected Sector Main area data Register (R): FF03h, default=0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000)  
ECCposWord1  
ECCposIO1  
7.31 ECC Result of second selected Sector Spare area data Register (R): FF04h, default=0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000000000)  
ECClogSector1  
ECCposIO1  
7.32 ECC Result of third selected Sector Main area data Register (R): FF05h, default=0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000)  
ECCposWord2  
ECCposIO2  
37  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
7.33 ECC Result of third selected Sector Spare area data Register (R): FF06h, default=0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000000000)  
ECClogSector2  
ECCposIO2  
7.34 ECC Result of fourth selected Sector Main area data Register (R): FF07h, default=0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000)  
ECCposWord3  
ECCposIO3  
7.35 ECC Result of fourth selected Sector Spare area data Register (R): FF08h, default=0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000000000)  
ECClogSector3  
ECCposIO3  
NOTE:  
1. ECCposWord: ECC error position address that selects one of Main area data(256words)  
2. ECCposIO: ECC error position address which selects one of sixteen DQs (DQ 0~DQ 15).  
3. ECClogSector: ECC error position address that selects one of the 2nd word and LSB of the 3rd word of spare area. Refer to the below table.  
ECClogSector Information [5:4]  
ECClogSector  
Error Position  
2nd word  
00  
01  
3rd word  
10, 11  
Reserved  
38  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
8 Device Operation  
The device supports both a limited command based and a register based interface for performing operations on the device, reading  
device ID, writing data to buffer etc. The command based interface is active in the boot partition, i.e. commands can only be written  
with a boot area address. Boot area data is only returned if no command has been issued prior to the read.  
8.1 Command based operation  
The entire address range, except for the boot area, can be used for the data buffer. All commands are written to the boot partition. Writes outside the  
boot partition are treated as normal writes to the buffers or registers. The command consists of one or more cycles depending on the command. After  
completion of the command the device starts its execution. Writing incorrect information which include address and data or writing an improper command  
will terminate the previous command sequence and make the device go to the ready status. The defined valid command sequences are stated in Table3.  
Table 3. Command Sequences  
Command Definition  
Cycles  
1st cycle  
2nd cycle  
DP1)  
Data  
DP  
Add  
Data  
Add  
Read Data from Buffer  
1
Write Data to Buffer  
Reset OneNAND  
1
1
2
2
Data  
Add  
Data  
BP2)  
Data  
Add  
00F0h  
BP  
BP  
Load Data into Buffer3)  
Read Identification Data 6)  
0000h4)  
XXXXh5)  
Data  
Data  
Add  
00E0h  
BP  
Data  
0090h  
NOTE:  
1) DP(Data Partition) : DataRAM Area  
2) BP(Boot Partition) : BootRAM Area [0000h ~ 01FFh, 8000h ~ 800Fh). It is locked after power-up.  
3) Load Data into Buffer operation is available within a block(128KB)  
4) Load 2KB unit into DataRAM0. Current Start address(FPA) is automatically incremented by 2KB unit after the load.  
5) 0000h -> Data is Manufacturer ID  
0001h -> Data is Device ID  
6) WE toggling can terminate ’Read Identification Data’ operation.  
8.1.1 Read Data from Buffer  
Buffer can be read by addressing a read to a wanted buffer area  
8.1.2 Write Data to Buffer  
Buffer can be written by addressing a write to a wanted buffer area  
8.1.3 Reset OneNAND  
Reset command is given by writing 00F0h to the boot partition address. Reset will return all default values into the device.  
8.1.4 Load Data into Buffer  
Load Data into Buffer command is a two-cycle command. Two sequential designated command activates this operation. Sequentially writing 00E0h and  
0000h to the boot partition [0000h~01FFh, 8000h~800Fh] will load one page to DataRAM0. This operation refers to FBA and FPA. FSA, BSA, and BSC  
are not considered. At the end of this operation, FPA will be automatically increased by 1. So continuous issue of this command will sequentially load  
data in next page to DataRAM0. This page address increment is restricted within a block. The default value of FBA and FPA is 0. Therefore, initial issue  
of this command after power on will load the first page of memory, which is usually boot code.  
8.1.5 Read Identification Data  
Read Identification Data command consists of two cycles. It gives out the devices identification data according to the given address. The first cycle is  
0090h to the boot partition address and second cycle is read from the addresses specified in Table5.  
39  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Table 4. Identification data description  
Address  
Data Out  
0000h  
0001h  
Manufacturer ID  
Device ID  
00ECh  
refer to table 1  
Device Bus Operations  
Operation  
Standby  
CE  
H
OE  
X
WE  
ADD0~15 DQ0~15  
RP  
CLK  
X
AVD  
X
X
X
X
X
High-Z  
High-Z  
H
L
Warm Reset  
X
X
X
X
Asynchronous Write  
Asynchronous Read  
Load Initial Burst Address  
Burst Read  
L
L
H
L
L
H
H
H
H
X
Add. In  
Data In  
Data Out  
X
H
H
H
H
H
L
L
L
Add. In  
L
H
L
Add. In  
Burst Data  
Out  
L
X
X
X
X
X
X
Terminate Burst Read  
Cycle  
H
X
X
X
High-Z  
High-Z  
X
X
Terminate Burst Read  
Cycle via RP  
Terminate Current Burst  
Read Cycle and Start  
New Burst Read Cycle  
H
H
Add. In  
High-Z  
H
Note : L=VIL (Low), H=VIH (High), X=Don’t Care.  
40  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Reset Mode  
Cold Reset  
At system power-up, the voltage detector in the device detects the rising edge of Vcc and releases internal power-up reset signal  
which triggers bootcode loading. Bootcode loading means that the boot loader in the device copies designated sized data(1KB) from  
the beginning of memory to the BootRAM.  
POR triggering level  
System Power  
1)  
Bootcode - copy done  
OneNAND  
Operation  
Sleep  
Bootcode copy  
2)  
Idle  
RP  
High-Z  
INT  
3)  
INT bit  
0 (default)  
1
IOBE bit  
0 (default)  
1 (default)  
1
INTpol bit  
Note: 1) Bootcode copy operation starts 400us later than POR activation.  
The system power should reach Vcc after POR triggering level(typ. 1.5V) within 400us for valid boot code data.  
2) 1K bytes Bootcode copy takes 70us(estimated) from sector0 and sector1/page0/block0 of NAND Flash array to BootRAM.  
Host can read Bootcode in BootRAM(1K bytes) after Bootcode copy completion.  
3) INT register goes ‘Low’ to ‘High’ on the condition of ‘Bootcode-copy done’ and RP rising edge.  
If RP goes ‘Low’ to ‘High’ before ‘Bootcode-copy done’, INT register goes to ‘Low’ to ‘High’ as soon as ‘Bootcode-copy done’  
Figure 5. Cold Reset Timings  
41  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Warm Reset  
Warm reset means that the host resets the device by RP pin, and then the device logic stops all current operation and executes inter-  
nal reset operation(Note 1) synchronized with the falling edge of RP and resets current NAND Flash core operation synchronized with  
the rising edge of RP. The device logic will not be reset in case RP pulses shorter than 200ns, but the device guarantees the logic  
reset operation in case RP pulse is longer than 200ns. NAND Flash core reset will abort current NAND Flash Core operation. The  
contents of memory cells being altered are no longer valid as the data will be partially programmed or erased. Warm reset has no  
effect on contents of BootRAM and DataRAM.  
CE, OE  
RP  
initiated by RP low  
Operation or Idle internal reset operation NAND Flash core reset Idle Operation Operation or Idle  
initiated by RP high  
OneNAND  
Operation  
INT  
High-Z  
High-Z  
High-Z  
RDY  
Figure 6. Warm Reset Timings  
42  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Hot Reset  
Hot reset means that the host resets the device by reset command(Note 2), and then the device logic stops all current operation and  
executes internal reset operation(Note 1) , and resets current NAND Flash core operation. Hot reset has no effect on contents of  
BootRAM and DataRAM.  
AVD  
BP(Note 3)  
or F220h  
A0~A15  
00F0h  
or 00F3h  
DQ0~DQ15  
CE  
WE  
INT  
High-Z  
RDY  
OneNAND  
Operation  
Idle  
Operation or Idle  
OneNAND reset  
Figure 7. Hot Reset Timings  
NOTE:  
1. Internal reset operation means that the device initializes internal registers and makes output signals go to default status and bufferRAM data are kept  
unchanged after Warm/Hot reset operations.  
2. Reset command : Command based reset or Register based reset  
3. BP(Boot Partition) : BootRAM area[0000h~01FFh, 8000h~800Fh]  
43  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
NAND Flash Core Reset  
Host can reset NAND Flash Core operation by NAND Flash Core reset command. NAND Flash Core Reset will abort the current  
NAND Flash core operation. During a NAND Flash Core Reset, the content of memory cellls being altered is no longer valid as the  
data will be partially programmed or erased. NAND Flash Core Reset has an effect on neither contents of BootRAM and DataRAM  
nor register values.  
AVD  
F220h  
A0~A15  
DQ0~DQ15  
CE  
00F0h  
WE  
INT  
High-Z  
RDY  
OneNAND  
Operation  
Idle  
Operation or Idle  
NAND Flash Core reset  
Figure 8. NAND Flash Core Reset Timings  
44  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Table 7. Internal Register reset  
Hot  
Reset  
(00F3h) (BP-F0)  
Hot  
Reset  
Warn Reset  
(RP)  
NAND Flash  
Reset(00F0h)  
Internal Registers  
Default Cold Reset  
F000h Manufacturer ID Register (R)  
00ECh  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
F001h Device ID Register (R)  
N/A  
N/A  
Note3  
001Eh  
0800h  
0200h  
0201h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
40C0h  
0000h  
-
F002h Version ID Register (rR): 54MHz  
F003h Data Buffer size Register (R)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
F004h Boot Buffer size Register (R)  
N/A  
N/A  
N/A  
F005h Amount of Buffers Register (R)  
F006h Technology Register (R)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
F100h Start Address1 Register (R/W): DFS, FBA  
F101h Start Address2 Register (R/W): DBS  
F102h Start Address3 Register (R/W): FCBA  
F103h Start Address4 Register (R/W): FCPA, FCSA  
F107h Start Address5 Register (R/W): FPA, FSA  
F200h Start Buffer Register (R/W): BSA, BSC  
F220h Command Register (R/W)  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
40C0h  
0000h  
8080h  
0000h  
0000h  
0002h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
O (Note1)  
0000h  
8010h  
0000h  
0000h  
0002h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
O (Note1)  
0000h  
8010h  
N/A  
F221h System Configuration 1 Register (R/W)  
F240h Controller Status Register (R)  
F241h Interrupt Status Register (R/W)  
F24Ch Start Block Address (R/W)  
0000h  
0000h  
0002h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
F24Dh End Block Address (R/W)  
N/A  
F24Eh NAND Flash Write Protection Status (R)  
FF00h ECC Status Register (R) (Note2)  
FF01h ECC Result of Sector 0 Main area data Register(R)  
N/A  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
ECC Result of Sector 0 Spare area data Register (R)  
ECC Result of Sector 1 Main area data Register(R)  
ECC Result of Sector 1 Spare area data Register (R)  
ECC Result of Sector 2 Main area data Register(R)  
ECC Result of Sector 2 Spare area data Register (R)  
ECC Result of Sector 3 Main area data Register(R)  
ECC Result of Sector 3 Spare area data Register (R)  
FF02h  
FF03h  
FF04h  
FF05h  
FF06h  
FF07h  
FF08h  
NOTE: 1) RDYpol, INTpol, and IOBE are reset by Cold reset. The other bits are reset by Cold/Warm/Hot reset.  
2) ECC Status Register & ECC Result Registers are reset when any command is issued.  
3) Refer to table 1  
45  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Write Protection  
Write Protection for BootRAM  
At system power-up, the voltage detector in the device detects the rising edge of Vcc and releases the internal power-up reset signal  
which triggers bootcode loading. And the designated size data(1KB) is copied from the beginning of the memory to the BootRAM.  
After the bootcode loading is completed, the BootRAM is always locked to protect the significant boot code from the accidental write.  
Write Protection for NAND Flash array  
Write Protection Modes  
The device offers both hardware and software write protection features for NAND Flash array. The software write protection feature is  
used by writing Lock command or Lock-tight command to command register;The 002Ah or 002Ch command is written into F220h  
register. And the hardware write protection feature is used by executing cold or warm reset. The default state is locked, and all NAND  
Flash array goes to locked state after cold or warm reset.  
Write Protection Commands  
The instant secured block protects code and data by allowing blocks to be locked or lock-tighten. The write protection scheme offers  
two levels of protection. The first allows software-only control of write protection(useful for frequently changed data blocks), while the  
second requires hardware interaction before locking can be changed(protects infrequently changed code blocks).  
The followings summarize the locking functionality  
> All blocks power-up in a locked state. Unlock commands can unlock these blocks.  
>The lock-tight command makes locked block(s) lock-tighten block(s). And lock-tight state can be returned to lock state only  
when cold or warm reset is asserted.  
> Lock-tighten blocks offer the user an additional level of write protection beyond that of a regular locked block.  
Lock-tighten block can’t have it’s state changed by software, it can be changed by warm reset or cold reset.  
> Unlock start and end block address are reflected immediately to the device only when the unlock command is issued, and  
NAND Flash write protection status register is also updated at that time.  
> Unlocked blocks can be programmed or erased.  
> Only one consecutive area can be released to unlock state from lock state, i.e unlocking multi area is not available.  
> Partial block lock (a range) is not available, i.e lock operation is only available for all blocks.  
Write Protection Status  
The device current Write Protection status can be read in NAND Flash Write Protection Status Register(F24Eh). There are three bits  
- US, LS, LTS -, which are not cleared by hot reset. These Write Protection status registers are updated when Write Protection com-  
mand is entered.  
The followings summarize locking status.  
example1)  
In default, [2:0] values are 010.  
-> If host executes unlock block operation, then [2:0] values turn to 110.  
-> If host executes lock-tight block operation, then [2:0] values turn to 101.  
example2)  
If host executes lock block operation, then [2:0] values turn to 010.  
-> If host executes lock-tight block operation, then [2:0] values turn to 001.  
-> If cold or warm reset is entered, then [2:0] values turn to 010.  
46  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
RP pin: High  
&
Start block address End block address  
+Unlock block Command (Note 1)  
Lock  
unlock  
RP pin: High  
&
RP pin: High  
&
Lock  
Start block address End block address  
+Unlock block Command  
Lock block Command  
or  
Cold reset or  
Warm reset  
Lock  
Power On  
RP pin: High  
&
Cold reset or  
Warm reset  
Lock-tight block Command  
Lock  
unlock  
Lock  
RP pin: High  
&
Lock-tight  
Lock-tight  
unlock  
Lock-tight block Command  
Lock-tight  
NOTE:  
1. Unlock range(from Start block address to End block address) can be modified by unlock command sequence(Start block address+End block address).  
Figure 9. State diagram of NAND Flash Write Protection  
47  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Locked  
> Command Sequence : Lock block command(002Ah)  
> All blocks default to locked after Cold reset or Warm reset  
> Partial block lock (a range) is not available ; Lock block operation  
is only available for all blocks  
> Unlocked blocks can be locked by using the Lock block  
command and a lock block’s status can be changed to  
unlock or lock-tight using the appropriate software commands  
Unlocked  
> Command Sequence :  
Start block address+End block address+Unlock block command  
(0023h)  
> Unlocked block can be programmed or erased  
> An unlocked block’s status can be changed to the locked or  
lock-tighten state using the appropriate software command  
> Only one sequential area can be released to unlock state from  
lock state ; Unlocking multi area is not available  
Lock-tighten  
> Command Sequence : Lock-tight block command(002Ch)  
> Lock-tighten blocks offer the user an additional level of write  
protection beyond that of a regular lock block. A block that  
is lock-tighten cannot have it’s state change by software,  
only by Cold or Warm reset.  
> Only locked blocks can be lock-tighten by Lock-tight command.  
> Lock-tighten blocks revert to the locked state at Cold or Warm  
reset  
> Lock-tighten area does not change with any command;  
when new unlock command is issued including the lock-tighten  
area, new unlocked command is ignored.  
Figure 10. Operations of NAND Flash Write Protection  
48  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Load Operation  
The load operation is initiated by setting up the start address from which the data is to be loaded. The load command is issued in  
order to initiate the load. The device transfers the data from NAND Flash array into the BufferRAM. The ECC is checked and any  
detected and corrected error is reported in the status response as well as any unrecoverable error. When the BufferRAM has been  
filled an interrupt is issued to the host in order to read the contents of the BufferRAM. The read from the BufferRAM consist of asyn-  
chronous read mode or synchronous read mode. The status information related to the BufferRAM fill operation can be checked by  
the host if required.  
The device provides dual data buffer memory architecture. The device is capable of data-read operation from one data buffer and  
data-load operation to the other data buffer simultaneously. Refer to the information for more details in "Read while Load operation".  
Start  
Write ’DFS*, FBA’ of Flash  
Add: F100h DQ=FBA  
Write ’FPA, FSA’ of Flash  
Add: F107h DQ=FPA, FSA  
Write ’BSA, BSC’ of DataRAM  
Add: F200h DQ=BSA, BSC  
Select DataRAM for DDP  
Add: F101h DQ=DBS  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Write ’Load’ Command  
Add: F220h  
DQ=0000h or 0013h  
Wait for INT register  
low to high transition  
Add: F241h DQ[15]=INT  
Host reads data from  
DataRAM  
Read completed  
* DBS, DFS is for DDP  
Figure 11. Load operation flow-chart  
49  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Read Operation  
The device has two read configurations ; Asynchronous read and Synchronous burst read.  
The initial state machine makes the device to be automatically entered into asynchronous read mode to prevent the memory content  
from spurious altering upon device power up or after a hardware reset. No commands are required to retrieve data in asynchronous  
mode. The synchronous mode will be enabled by setting RM bit of System configuration1 register to Synchronous read mode.  
Asynchronous Read Mode (RM = 0)  
For the asynchronous read mode a valid address should be asserted on ADD0-ADD15, while driving AVD and CE to VIL. WE  
should remain at VIH . The data will appear on ADD15-ADD0. Address access time (tAA) is equal to the delay from valid addresses to  
valid output data. The chip enable access time(tCE) is the delay from the falling edge of CE to valid data at the outputs. The output  
enable access time(tOE) is the delay from the falling edge of OE to valid data at the output.  
Synchronous (Burst) Read Mode (RM = 1)  
The device is capable of continuous linear burst operation and linear burst operation of a preset length. For the burst mode, the host  
should determine how many clock cycles are desired for the initial word(tIAA) of each burst access using BRL bit of System configura-  
tion 1 register. The registers also can be read during burst read mode by using AVD signal with a address. To initiate the synchro-  
nous read again, a new address during CE low toggle is needed after the host has completed status reads or the device has  
completed the program or erase operation.  
Continuous Linear Burst Read  
The initial word is output tIAA after the rising edge of the first CLK cycle. Subsequent words are output tBA after the rising edge of each  
successive clock cycle, which automatically increments the internal address counter. The RDY output indicates this condition to the  
system by pulsing low. The device will continue to output sequential burst data, wrapping around after it reaches the designated loca-  
tion(See Figure 12 for address map information) until the system asserts CE high, RP low or AVD low in conjunction with a new  
address. The cold/warm/hot reset or asserting CE high or WE low pulse terminate the burst read operation.  
If the device is accessed synchronously while it is set to asynchronous read mode, it is possible to read out the first data  
without problems.  
Division  
Add.map(word order)  
0000h~01FFh  
0200h~05FFh  
0600h~09FFh  
0A00h~7FFFh  
8000H~800Fh  
8010h~802Fh  
8030h~804Fh  
8050h~8FFFh  
9000h~EFFFh  
F000h~FFFFh  
BootM(0.5Kw)  
BufM 0(1Kw)  
BufM 1(1Kw)  
Reserved Main  
BootS(16w)  
Buffer0  
Not Support  
Not Support  
Buffer1  
N/A Reg.  
Not Support  
Buffer0  
Buffer1  
N/A Reg.  
Reg.  
BufS 0(32w)  
BufS 1(32w)  
Reserved Spare  
Reserved Reg.  
Register(4Kw)  
* Reserved area is not available on Synchronous read  
Figure 12. The boundary of synchronous read  
50  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
4-, 8-,16-, 32- Word Linear Burst Read  
As well as the Continuous Linear Burst Mode, there are four(4 & 8 & 16 & 32 word) (Note1) linear wrap-around mode, in which a fixed  
number of words are read from consecutive addresses. When the last word in the burst mode is reached, assert /CE and /OE high to  
terminate the operation. In these modes, the start address for burst read can be any address of address map.  
(Note 1) 32 word linear burst read isn’t available on spare area BufferRAM  
Table 6. Burst Address Sequences  
Burst Address Sequence(Decimal)  
Start  
Addr.  
Continuous Burst  
0-1-2-3-4-5-6...  
1-2-3-4-5-6-7...  
2-3-4-5-6-7-8...  
4-word Burst  
0-1-2-3-0...  
1-2-3-0-1...  
2-3-0-1-2...  
8-word Burst  
16-word Burst  
32-word Burst  
0
1
2
0-1-2-3-4-5-6-7-0...  
1-2-3-4-5-6-7-0-1...  
2-3-4-5-6-7-0-1-2...  
0-1-2-3-4-....-13-14-15-0... 0-1-2-3-4-....-29-30-31-0...  
1-2-3-4-5-....-14-15-0-1...  
2-3-4-5-6-....-15-0-1-2...  
1-2-3-4-5-....-30-31-0-1...  
2-3-4-5-6-....-31-0-1-2...  
Wrap  
around  
.
.
.
.
.
.
.
.
.
.
.
.
Programmable Burst Read Latency  
The programmable burst read latency feature indicates to the device the number of additional clock cycles that must elapse after  
AVD is driven active before data will be available. Upon power up, the number of total initial access cycles defaults to four clocks. The  
number of total initial access cycles is programmable from four to seven cycles.  
Rising edge of the clock cycle following last read latency  
triggers next burst data  
CE  
CLK  
-1  
5
6
0
1
2
3
4
AVD  
tBA  
Valid  
A0:  
A15  
Address  
DQ0:  
DQ15  
D6  
D7  
D0  
D1  
D2  
D3  
D7  
D0  
tIAA  
tRDYS  
OE  
Hi-Z  
Hi-Z  
tRDYA  
RDY  
Figure 13. Example of 4clock Burst Read Latency  
Handshaking  
The handshaking feature allows the host system to simply monitor the RDY signal from the device to determine when the initial word  
of burst data is ready to be read. To set the number of initial cycle for optimal burst mode, the host should use the programmable  
burst read latency configuration.(See "System Configuration1 Register" for details.) The rising edge of RDY which is derived from 1  
clock ahead of data fetch clock indicates the initial word of valid burst data.  
Output Disable Mode  
When the CE or OE input is at VIH , output from the device is disabled. The outputs are placed in the high impedance state.  
51  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Program Operation  
The device can be programmed in data unit. Programming is writing 0's into the memory array by executing the internal program rou-  
tine. In order to perform the Internal Program Routine, command sequence is necessary. First, host sets the address of the Buffer-  
RAM and the memory location and loads the data to be programmed into the BufferRAM. Second, program command initiates the  
internal program routine. During the execution of the Routine, the host is not required to provide further controls or timings. During the  
Internal Program Routine, commands except reset command written to the device will be ignored.  
Note that a reset during a program operation will cause data corruption at the corresponding location.  
The device provides dual data buffer memory architecture. The device is capable of data-write operation from host to one of data buff-  
ers during program operation from anther data buffer to Flash simultaneously. Refer to the information for more details in "Read while  
Load operation".  
Write 0 to interrupt register  
Start  
Add: F241h DQ=0000h  
Select DataRAM for DDP1)  
Write ’Program’ Command  
Add: F101h DQ=DBS*  
Add: F220h  
DQ=0080h or 001Ah  
Write Data into DataRAM2)  
ADD: DP DQ=Data-in  
Wait for INT register  
low to high transition  
NO  
Data Input  
Add: F241h DQ[15]=INT  
Completed?  
Read Controller  
Status Register  
YES  
Write ’DFS*, FBA’ of Flash  
Add: F100h DQ=DFS*’, FBA  
Add: F240h DQ[10]=WRC  
Write ’FPA, FSA’ of Flash  
Add: F107h DQ=FPA, FSA  
DQ[10]=0?  
YES  
NO  
Program completed  
Program Error  
Write ’BSA, BSC’ of DataRAM  
Add: F200h DQ=BSA, BSC  
: If program operation results in an error, map out  
the block including the page in error and copy the  
target data to another block.  
*
* DBS, DFS is for DDP  
Note 1) This must happen before data input  
2) Data input could be done anywhere between "Start" and "Write Program Command".  
Figure 14. Program operation flow-chart  
52  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Addressing for program operation  
Within a block, the pages must be programmed consecutively from the LSB (least significant bit) page of the block to MSB (most sig-  
nificant bit) pages of the block. Random page address programming is prohibited.  
(64)  
(64)  
Page 63  
Page 31  
Page 63  
Page 31  
:
:
(1)  
:
(32)  
:
(3)  
(2)  
(1)  
Page 2  
Page 1  
Page 0  
(3)  
(32)  
(2)  
Page 2  
Page 1  
Page 0  
Data register  
Data register  
From the LSB page to MSB page  
DATA IN: Data (1)  
Data (64)  
Ex.) Random page program (Prohibition)  
DATA IN: Data (1)  
Data (64)  
53  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Copy-back Program Operation  
The copy-back program is configured to quickly and efficiently rewrite data stored in one page by sector unit(1/2/3/4 sector) without  
utilizing an external memory. Since the time-consuming cycles of serial access and re-loading cycles are removed, the system perfor-  
mance is improved. The benefit is especially obvious when a portion of a block is updated and the rest of the block also need to be  
copied to the newly assigned free block. The operation for performing a copy-back program is a sequential execution of page-read  
without serial access and copying-program with the address of destination page.  
Write ’Copy-back Program’  
command  
Start  
Add: F220h DQ=001Bh  
Write ’DFS*, FBA’ of Flash  
Add: F100h DQ=DFS*, FBA  
Wait for INT register  
low to high transition  
Write ’FPA, FSA’ of Flash  
Add: F107h DQ=FPA, FSA  
Add: F241h DQ[15]=INT  
Read Controller  
Status Register  
Write ’FCBA’ of Flash  
Add: F102h DQ=FCBA  
Add: F240h DQ[10]=WRc  
Write ’FCPA, FCSA’ of Flash  
Add: F103h DQ=FCPA, FCSA  
DQ[10]=0?  
YES  
NO  
Select DataRAM for DDP  
Add: F101h DQ=DBS*  
Copy back completed  
Copy back Error  
Write ’BSA, BSC’ of DataRAM  
Add: F200h DQ=BSA, BSC 1)  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
: If program operation results in an error, map out  
the block including the page in error and copy the  
target data to another block.  
*
* DBS, DFS is for DDP  
Note 1) Selected DataRAM by BSA & BSC is used for Copy back operation, so previous data is overwritten.  
Figure 15. Copy back program operation flow-chart  
54  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Copy-Back Program Operation with Random Data Input  
The Copy-Back Program Operation with Random Data Input in OneNAND consists of 2 phase, Load data into DataRAM, Modify data  
and program into designated page. Data from the source page is saved in one of the on-chip DataRAM buffers and modified by the  
host, then programmed into the destination page.  
As shown in the flow chart, data modification is possible upon completion of load operation. ECC is also available at the end of load  
operation. Therefore, using hardware ECC of OneNAND, accumulation of 1 bit error can be avoided.  
Copy-Back Program Operation with Random Data Input will be effectively utilized at modifying certain bit, byte, word, or sector of  
source page to destination page while it is being copied.  
Start  
NO  
DQ[10]=0?  
YES  
Map Out  
Write ’FBA’ of Flash  
Add: F100h DQ=FBA  
Random Data Input  
Write ’FPA, FSA’ of Flash  
Add: F107h DQ=FPA, FSA  
Add: Random Address in  
Selected DataRAM  
DQ=Data  
Write ’BSA, BSC’ of DataRAM  
Add: F200h DQ=BSA, BSC  
Write ’FBA’ of Flash  
Add: F100h DQ=FBA  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Write ’FPA, FSA’ of Flash  
Add: F107h DQ=FPA, FSA  
Write ’Load’ Command  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Add: F220h  
DQ=0000h or 0013h  
Write ’Program’ Command  
Wait for INT register  
low to high transition  
Add: F220h  
DQ=0080h or 001Ah  
Add: F241h DQ[15]=INT  
Wait for INT register  
low to high transition  
Read Controller  
Status Register  
Add: F241h DQ[15]=INT  
Add: F240h DQ[10]=Error  
Read Controller  
Status Register  
Add: F240h DQ[10]=Error  
DQ[10]=0?  
YES  
NO  
Copy back Error  
Copy back completed  
Figure 16. Copy-Back Program Operation with Random Data Input Flow Chart  
55  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Erase Operation  
The device can be erased in block unit. To erase a block is to write 1s into the desired memory block by executing the Internal Erase  
Routine. In order to perform the Internal Erase Routine, command sequence is necessary. First, host sets the block address of the  
memory location. Second, erase command initiates the internal erase routine. During the execution of the Routine, the host is not  
required to provide further controls or timings. During the Internal erase routine, commands except reset command written to the  
device will be ignored.  
Note that a reset during a erase operation will cause data corruption at the corresponding location.  
Start  
Write ’DFS*, FBA’ of Flash  
Add: F100h DQ=DFS*, FBA  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Write ’Erase’ Command  
Add: F220h DQ=0094h  
Wait for INT register  
low to high transition  
Add: F241h DQ=[15]=INT  
Read Controller  
Status Register  
: If erase operation results in an error, map out  
the failing block and replace it with another block.  
Add: F240h DQ[10]=WRc  
*
DQ[10]=0?  
YES  
NO  
Erase completed  
Erase Error  
* DFS is for DDP  
Figure 17. Erase operation flow-chart  
56  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
OTP Operation  
The device supports one block sized OTP area, which can be read and programmed with the same sequence as normal operation.  
But this OTP block could not be erased. This block is separated from NAND Flash Array, so it could be accessed by OTP Access  
command instead of FBA. If user wants to exit from OTP access mode, Cold, Warm and Hot Reset operation should be done.  
OTP area is one block size(128KB, 64pages) and is divided by two areas. The first area from page 0 to page 9, total 10pages, is  
assigned for user and the second area from page 10 to page 63, total 54pages, are occupied for the device manufacturer. The man-  
ufacturer area is programmed prior to shipping, so this area could not be used by user.  
This block is fully guaranteed to be a valid block.  
OTP Block Page Allocation Information  
Area  
User  
Page  
Use  
0 ~ 9 (10 pages)  
10 ~ 63 (54 pages)  
Designated as user area  
Used by the device manufacturer  
Manufacturer  
Page:2KB+64B  
Sector(main area):512B  
Sector(spare area):16B  
One Block:  
64pages  
128KB+4KB  
Reserved Area :  
54pages  
page 10 to page 63  
User Area :  
10pages  
page 0 to page 9  
Figure 18. OTP area structure and assignment  
57  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
OTP Load(OTP Access+Load NAND)  
OTP area is separated from NAND Flash Array, so it is accessed by OTP Access command instead of FBA. The content of OTP  
could be loaded with the same sequence as normal load operation after being accessed by the command. If user wants to exit from  
OTP access mode, Cold, Warm, Hot or NAND Flash Core Reset operation should be done.  
Start  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Write ’DFS*, FBA’ of Flash1)  
Add: F100h DQ=DFS*’, FBA  
Write ’Load’ Command  
Add: F220h  
DQ=0000h or 0013h  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Wait for INT register  
low to high transition  
Write ’OTP Access’ Command  
Add: F220h DQ=0075h  
Add: F241h DQ[15]=INT  
Write ’OTP Access’ Command  
Add: F220h DQ=0065h  
Host reads data from  
DataRAM  
Wait for INT register  
low to high transition  
OTP Load completed  
Add: F241h DQ[15]=INT  
Do Cold/Warm/Hot  
/NAND Flash Core Reset  
Write ’FPA, FSA’ of Flash1)  
Add: F107h DQ=FPA, FSA  
OTP Exit  
Write ’BSA, BSC’ of DataRAM  
Add: F200h DQ=BSA, BSC  
Select DataRAM for DDP  
Add: F101h DQ=DBS  
* DBS, DFS is for DDP  
Note 1) FBA(NAND Flash Block Address) could be omitted or any address.  
Figure 19. OTP load operation flow-chart  
58  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
OTP Programming(OTP Access+Program NAND)  
OTP area could be programmed with the same sequence as normal program operation after being accessed by the command. But in  
case of OTP area program, OTP area is not a real OTP area but can be programmed more than once. And 2 command sequence is  
used to avoid the accidental write. To avoid the accidental write, FBA should point the unlocked area address among NAND Flash  
Array address map even though OTP area is separated from NAND Flash Array.  
Write ’FBA’ of Flash  
Start  
Add: F100h DQ=FBA3)  
Write ’DFS*, FBA’ of Flash2)  
Add: F100h DQ=DFS*’, FBA  
Write ’FPA, FSA’ of Flash  
Add: F107h DQ=FPA, FSA  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Write ’BSA, BSC’ of DataRAM  
Add: F200h DQ=BSA, BSC  
Write ’OTP Access’ Command  
Add: F220h DQ=0075h  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Write ’OTP Access’ Command  
Add: F220h DQ=0065h  
Write Program command  
Add: F220h  
DQ=0080h or 001Ah  
Wait for INT register  
low to high transition  
Wait for INT register  
low to high transition  
Add: F241h DQ[15]=INT  
Add: F241h DQ[15]=INT  
Select DataRAM for DDP  
Add: F101h DQ=DBS*  
OTP Programming completed  
Write Data into DataRAM1)  
Add: DP DQ=Data-in  
Do Cold/Warm/Hot  
/NAND Flash Core reset  
NO  
Data Input  
Completed?  
OTP Exit  
* DBS, DFS is for DDP  
Note 1) FBA(NAND Flash Block Address) could be any address.  
2) Data input could be done anywhere between "Start" and "Write Program Command".  
3) FBA should point the unlocked area address among NADND Flash Array address map.  
Figure 20. OTP program operation flow-chart  
59  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
60  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
61  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
ECC Operation  
While the device transfers data from BufferRAM to NAND Flash Array Page Buffer for Program Operation, the device hiddenly gener-  
ates ECC(24bits for main area data and 10bits for 2nd and 3rd word data of each sector spare area) and while Load operation, hid-  
denly generates ECC and detects error number and position and corrects 1bit error. ECC is updated by the device automatically.  
After Load Operation, host can know whether there is error or not by reading ’ECC Status Register’(refer to ECC Status Register  
Table). In addition, OneNAND supports 2bit EDC even though it is little probable that 2bit error occurs. Hence, it is not recommeded  
that Host reads ’ECC Status Register’ for checking ECC error because the built-in Error Correction Logic of OneNAND finds out and  
corrects ECC error.  
When the device loads NAND Flash Array main and sprea area data with ECC operation, the device does not place the newly gener-  
ated ECC for main and spare area into the buffer but places ECC which was generated and written in program operation into the  
buffer.  
Ecc operation is done during the boot loading operation.  
ECC Bypass Operation  
ECC bypass operation is set by 9th bit of System Configuration 1 register. In ECC Bypass operation, the device neither generates  
ECC result which indicates error position nor updates ECC code to NAND Flash arrary spare area in program operation(refer to ECC  
Result Register Tables). During Load operation, the on-chip ECC engine does not generate a new ECC internally and the values of  
ECC Status and Result Registers are invalid. Hence, in ECC Bypass operation, the error cannot be detected and corrected by Mux-  
OneNAND itself. ECC Bypass operation is not recommended to host.  
Table 7. ECC Code & Result Status by ECC operation mode  
Program operation  
Load operation  
Operation  
ECC Code Update to NAND ECC Code at BufferRAM Spare ECC Status & Result Update  
1bit Error  
Flash Array Spare Area  
Area  
to Registers  
Pre-written ECC code(1) loaded  
Pre-written code loaded  
ECC operation  
ECC bypass  
Update  
Update  
Correct  
Not update  
Invalid  
Not correct  
NOTE:  
1. Pre-written ECC code : ECC code which is previously written to NAND Flash Spare Area in program operation.  
62  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Data Protection during Power Down  
The device is designed to offer protection from any involuntary program/erase during power-transitions. An internal voltage detector  
disables all functions whenever Vcc is below about 1.3V. RP pin provides hardware protection and is recommended to be kept at VIL  
before power-down.  
VCC  
typ. 1.3V  
0V  
RP  
INT  
NAND Flash Core  
Write Protected  
OneNAND  
Operation  
Idle  
OneNAND Reset  
Figure 21. Data Protection during Power Down  
63  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Technical Notes  
Invalid Block(s)  
Invalid blocks are defined as blocks that contain one or more invalid bits whose reliability is not guaranteed by Samsung. The infor-  
mation regarding the invalid block(s) is so called as the invalid block information. Devices with invalid block(s) have the same quality  
level as devices with all valid blocks and have the same AC and DC characteristics. An invalid block(s) does not affect the perfor-  
mance of valid block(s) because it is isolated from the bit line and the common source line by a select transistor. The system design  
must be able to mask out the invalid block(s) via address mapping. The 1st block, which is placed on 00h block address, is fully guar-  
anteed to be a valid block.  
Identifying Invalid Block(s)  
All device locations are erased(FFFFh) except locations where the invalid block(s) information is written prior to shipping. The invalid  
block(s) status is defined by the 1st word in the spare area. Samsung makes sure that either the 1st or 2nd page of every invalid  
block has non-FFFFh data at the 1st word of sector0 spare area. Since the invalid block information is also erasable in most cases, it  
is impossible to recover the information once it has been erased. Therefore, the system must be able to recognize the invalid  
block(s) based on the original invalid block information and create the invalid block table via the following suggested flow chart. Any  
intentional erasure of the original invalid block information is prohibited.  
Start  
Set Block Address = 0  
Increment Block Address  
Check "FFFFh" at the 1st word  
of sector0 spare area at the 1st  
*
and 2nd page in the block  
No  
No  
Check "  
Create (or update)  
Invalid Block(s) Table  
FFFFh" ?  
Yes  
Last Block ?  
Yes  
End  
Figure 22. Flow chart to create invalid block table.  
64  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Technical Notes (Continued)  
Error in write or load operation  
Within its life time, additional invalid blocks may develop with the device. Refer to the qualification report for the actual data.The fol-  
lowing possible failure modes should be considered to implement a highly reliable system. In the case of status read failure after  
erase or program, block replacement should be done. Because program status fail during a page program does not affect the data of  
the other pages in the same block, block replacement can be executed with a page-sized buffer by finding an erased empty block and  
reprogramming the current target data and copying the rest of the replaced block.  
Failure Mode  
Erase Failure  
Detection and Countermeasure sequence  
Status Read after Erase --> Block Replacement  
Status Read after Program --> Block Replacement  
Error Correction by ECC mode of the device  
Write  
Load  
Program Failure  
Single Bit Failure  
Block Replacement  
Block A  
1st  
1
{
(n-1)th  
nth  
an error occurs.  
Data Buffer0 of the device  
(page)  
1
Data Buffer1 of the device  
Block B  
(assuming maintain the nth page data)  
1st  
2
{
(n-1)th  
nth  
(page)  
When an error happens in the nth page of the Block ’A’ during program operation.  
* Step1  
Then, copy the data in the 1st ~ (n-1)th page to the same location of the Block ’B’ via data buffer0.  
* Step2  
Copy the nth page data of the Block ’A’ in the data buffer1 to the nth page of another free block. (Block ’B’)  
Do not further erase or program Block ’A’ but create an ’invalid Block’ table or other appropriate scheme.  
65  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Technical Notes (Continued)  
OneNAND DDP Technical Note  
DDP Chip Selection Register  
OneNAND DDP configuration does not require additional pins. NAND Flash Block Address is consecutive between LSB and MSB  
chips. As seen in the figure below, the LSB Block Address ends at 01FFh(Block 511) and the MSB Block Address begins at  
1000h(Block 512). The Device Flash Core Select (DFS) of Start Address 1 Register and the Device BufferRAM Select (DBS) of Start  
Address 2 Register are used to select the desired LSB or MSB Flash Core and BufferRAM in the DDP.  
Start Address Register1  
LSB Chip  
Block 0  
0000h  
Block 1  
Block 510  
Block 511  
01FFh  
MSB Chip  
Block 512  
1000h  
Block 513  
Block 1022  
Block 1023  
11FFh  
Figure 23. Flash Block Address Map in DDP  
Start Address1 Register (R/W): F100h, default=0000h  
This Read/Write register is used to select the Flash Core of the LSB or MSB device (DFS).  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DFS  
Reserved(000000)  
FBA  
DFS (Device Flash Core Select): it selects Flash Core in two Flash Core of DDP  
FBA (NAND Flash Block Address): NAND Flash block address which will be read or programmed or erased.  
Chip  
Start Address1 Register  
0000h ~ 01FFh  
Block Number  
LSB Chip  
MSB Chip  
Block0 ~ Block511  
1000h ~ 11FFh  
Block512 ~ Block1023  
Start Address2 Register (R/W): F101h, default=0000h  
This Read/Write register is used to select the BufferRAM of the LSB or MSB device (DBS).  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DBS  
Reserved(000000000000000)  
DBS (Device BufferRAM Select): it selects BufferRAM in two BufferRAM of DDP  
66  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Technical Notes (Continued)  
DDP Chip Selection Operation  
Flash Core Array Selection for Unlock Operation  
The LSB and MSB Flash Cores in a OneNAND DDP configuration power-up in a locked state and must be unlocked before opera-  
tion. Set DFS and DBS = "0" to select the LSB Chip or "1" to select the MSB chip, then issue Unlock Command Sequence: Start block  
address+End block address+Unlock block command (0023h).  
Note that the LSB and MSB chips must each be unlocked. The default state for Device BufferRAM Select (DBS) and Device Flash  
Core Select (DFS) = "0", which selects the LSB chip. For more information on lock operations.  
. LSB Chip Case  
Unlock  
Unlock  
Flash Array is locked at Power up  
Set DBS=0 to select BufferRAM of LSB chip  
Set DBS=1 to select BufferRAM of MSB chip  
Set DFS=0 to select BufferRAM of LSB chip  
Set DFS=1 to select BufferRAM of MSB chip  
. MSB Chip Case  
Flash Array is locked at Power up  
BufferRAM Selection for Read/Write Operation  
The LSB and MSB chip BufferRAMs operate independently. Select the desired LSB or MSB chip and then execute a BufferRAM  
Read/Write operation. The default state for Device BufferRAM Select (DBS) and Device Flash Core Select (DFS) = "0", which selects  
the LSB chip.  
For more information on read/write operations.  
. LSB Chip Case  
Set DBS=0 to select BufferRAM of LSB chip  
BufferRAM Read/Write  
BufferRAM Read/Write  
. MSB Chip Case  
Set DBS=1 to select BufferRAM of MSB chip  
BufferRAM and Flash Core Selection for Load/Program/Erase/Copy-back/Cache Program/Write Protect Operation  
The LSB and MSB chip BufferRAMs operate independently. Select the desired LSB or MSB chip and then execute a BufferRAM  
Read/Write operation. The default state for Device BufferRAM Select (DBS) and Device Flash Core Select (DFS) = "0", which selects  
the LSB chip.  
For more information on read/write operations.  
. LSB Chip Case  
Load/Program/Erase/Copy-back  
Cache Program/Write Protection Commands  
Set DFS=0 to select BufferRAM of LSB chip  
Set DFS=1 to select BufferRAM of MSB chip  
Set DBS=0 to select BufferRAM of LSB chip  
. MSB Chip Case  
Load/Program/Erase/Copy-back  
Cache Program/Write Protection Commands  
Set DBS=1 to select BufferRAM of MSB chip  
67  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Technical Notes (Continued)  
Boot Sequence  
One of the best features OneNAND has is that it can be a booting device itself since it contains an internally built-in boot loader  
despite the fact that its core architecture is based on NAND Flash. Thus, OneNAND does not make any additional booting device  
necessary for a system, which imposes extra cost or area overhead on the overall system.  
As the system power is turned on, the boot code originally stored in NAND Flash Arrary is moved to BootRAM automatically and then  
fetched by CPU through the same interface as SRAM’s or NOR Flash’s if the size of the boot code is less than 1KB. If its size is larger  
than 1KB and less than or equal to 3KB, only 1KB of it can be moved to BootRAM automatically and fetched by CPU, and the rest of  
it can be loaded into one of the DataRAMs whose size is 2KB by Load Command and CPU can take it from the DataRAM after finish-  
ing the code-fetching job for BootRAM. If its size is larger than 3KB, the 1KB portion of it can be moved to BootRAM automatically  
and fetched by CPU, and its remaining part can be moved to DRAM through two DataRAMs using dual buffering and taken by CPU  
to reduce CPU fetch time.  
A typical boot scheme usually used to boot the system with OneNAND is explained at Figure 24 and Figure 25. In this boot scheme,  
boot code is comprised of BL1, where BL stands for Boot Loader, BL2, and BL3. Moreover, the size of the boot code is larger than  
3KB (the 3rd case above). BL1 is called primary boot loader in other words. Here is the table of detailed explanations about the func-  
tion of each boot loader in this specific boot scheme.  
Boot Loaders in OneNAND  
Boot Loader  
BL1  
Description  
Moves BL2 from NAND Flash Array to DRAM through two DataRAMs using dual buffering  
Moves OS image (or BL3 optionally) from NAND Flash Array to DRAM through two DataRams using dual buffering  
Moves or writes the image through USB interface  
BL2  
BL3 (Optional)  
NAND Flash Array of OneNAND is divided into the partitions as described at Figure 24 to show where each component of code is  
located and how much portion of the overall NAND Flash Array each one occupies. In addition, the boot sequence is listed below and  
depicted at Figure 25.  
Boot Sequence :  
1. Power is on  
BL1 is loaded into BootRAM  
2. BL1 is executed in BootRAM  
BL2 is loaded into DRAM through two DataRams using dual buffering by BL1  
3. BL2 is executed in DRAM  
OS image is loaded into DRAM through two DataRams using dual buffering by BL2  
4. OS is running  
68  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Technical Notes (Continued)  
Block 511  
Reservoir  
Partition 6  
Partition 5  
Sector 0 Sector 1 Sector 2 Sector 3  
File System  
Page 63  
Page 62  
Block 162  
:
:
Os Image  
BL3
Partition 4  
Partition 3  
Block 2  
Block 1  
Block 0  
Page 2  
Page 1  
Page 0  
NBBLL11  
BL2
BL1  
Figure 24. Partition of NAND Flash array  
Reservoir  
File System  
Os Image  
3
Data Ram 1  
Data Ram 0  
Os Image  
BL 2  
Boot Ram(BL 1)  
BL1  
BL2  
2
1
NAND Flash Array  
Internal BufferRAM  
OneNAND  
DRAM  
NOTE:  
and  
can be copied into DRAM through two DataRAMs using dual buffering  
3
2
Figure 25. OneNAND Boot Sequence  
69  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Technical Notes (Continued)  
Methods of Determining Interrupt Status  
There are two methods of determining Interrupt Status on the OneNAND. Using the INT pin or monitoring the Interrupt Status Regis-  
ter Bit.  
The OneNAND INT pin is an output pin function used to notify the Host when a command has been completed. This provides a hard-  
ware method of signaling the completion of a program, erase, or load operation.  
In its normal state, the INT pin is high if the INT polarity bit is default. Before a command is written to the command register, the INT  
bit must be written to '0' so the INT pin transitions to a low state indicating start of the operation. Upon completion of the command  
operation by the OneNAND’s internal controller, INT returns to a high state.  
INT is an open drain output allowing multiple INT outputs to be Or-tied together. INT does not float to a hi-Z condition when the chip is  
deselected or when outputs are disabled. Refer to section 2.8 for additional information about INT.  
INT can be implemented by tying INT to a host GPIO or by continuous polling of the Interrupt status register.  
The INT Pin to a Host General Purpose I/O  
INT can be tied to a Host GPIO to detect the rising edge of INT, signaling the end of a command operation.  
COMMAND  
INT  
This can be configured to operate either synchronously or asynchronously as shown in the diagrams below.  
70  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Technical Notes (Continued)  
Synchronous Mode Using the INT Pin  
When operating synchronously, INT is tied directly to a Host GPIO.  
Host  
OneNAND  
CE  
AVD  
CLK  
RDY  
OE  
CE  
AVD  
CLK  
RDY  
OE  
GPIO  
INT  
Asynchronous Mode Using the INT Pin  
When configured to operate in an asynchronous mode, /CE and /AVD of the OneNAND are tied to /CE of the Host. CLK is tied to the  
Host Vss (Ground). /RDY is tied to a no-connect. /OE of the OneNAND and Host are tied together and INT is tied to a GPIO.  
Host  
CE  
OneNAND  
CE  
AVD  
CLK  
RDY  
OE  
Vss  
N.C  
OE  
GPIO  
INT  
Polling the Interrupt Register Status Bit  
An alternate method of determining the end of an operation is to continuously monitor the Interrupt Status Register Bit instead of  
using the INT pin.  
Command  
INT  
This can be configured in either a synchronous mode or an asynchronous mode.  
71  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Technical Notes (Continued)  
Synchronous Mode Using Interrupt Status Register Bit Polling  
When operating synchronously, /CE, /AVD, CLK, /RDY, /OE, and DQ pins on the host and OneNAND are tied together.  
Host  
CE  
OneNAND  
CE  
AVD  
CLK  
RDY  
OE  
AVD  
CLK  
RDY  
OE  
DQ  
DQ  
Asynchronous Mode Using Interrupt Status Register Bit Polling  
When configured to operate in an asynchronous mode, /CE and /AVD of the OneNAND are tied to /CE of the Host. CLK is tied to the  
Host Vss (Ground). /RDY is tied to a no-connect. /OE and DQ of the OneNAND and Host are tied together.  
Host  
CE  
OneNAND  
CE  
AVD  
CLK  
RDY  
OE  
Vss  
N.C  
OE  
DQ  
DQ  
72  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Technical Notes (Continued)  
Determing Rp Value  
Because the pull-up resistor value is related to tr(INT), an appropriate value can be obtained by the following reference charts.  
INT pol = ’High’  
Internal Vcc  
Rp  
~50k ohm  
INT  
Ready Vcc  
VOH  
VOL  
Vss  
Busy State  
tf  
tr  
@ Vcc = 1.8V, Ta = 25°C , CL = 30pF  
5.420  
2.431  
1.75  
2.142  
0.045  
Ibusy  
0.18  
1.788  
0.06  
0.09  
0.7727  
1.345  
0.089  
0.036  
3.77  
tr[us]  
0.000  
3.77  
1K  
3.77  
10K  
3.77  
20K  
3.77  
3.77  
40K  
tf[ns]  
30K  
Open(100K)  
50K  
Rp(ohm)  
73  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Technical Notes (Continued)  
INT pol = ’Low’  
Internal Vcc  
INT  
Rp  
~50k ohm  
tf  
tr  
Ready  
Vcc  
VOH  
Busy State  
Vss  
VOL  
@ Vcc = 1.8V, Ta = 25°C , CL = 30pF  
4.05  
1.84  
1.75  
1.623  
0.045  
Ibusy  
0.18  
1.356  
0.06  
0.09  
1.02  
0.586  
0.067  
0.036  
6.49  
tf[us]  
0.000  
6.49  
1K  
6.49  
10K  
6.49  
20K  
6.49  
6.49  
40K  
tr[ns]  
30K  
Open(100K)  
50K  
Rp(ohm)  
74  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Parameter  
Symbol  
Unit  
KFG1216Q2M  
KFH1G16Q2M  
KFG1216D2M  
KFH1G16D2M  
KFG1216U2M  
KFH1G16U2M  
Vcc  
Vcc  
VIN  
-0.5 to + 2.45  
-0.6 to + 4.6  
-0.6 to + 4.6  
-0.6 to + 4.6  
-30 to +125  
-40 to +125  
-65 to +150  
5
Voltage on any pin relative  
to VSS  
V
All Pins  
Extended  
Industrial  
-0.5 to + 2.45  
-0.6 to + 4.6  
-30 to +125  
-30 to +125  
Temperature Under Bias  
Tbias  
°C  
-
-
Storage Temperature  
Tstg  
IOS  
-65 to +150  
-65 to +150  
°C  
Short Circuit Output Current  
5
5
mA  
TA (Extended Temp.)  
TA (Industrial Temp.)  
-30 to + 85  
-
-30 to + 85  
-
-
Operating Temperature  
°C  
-40 to + 85  
NOTES:  
1. Minimum DC voltage is -0.5V on Input/ Output pins. During transitions, this level should not fall to POR level(typ. 1.5V) .  
Maximum DC voltage is Vcc+0.6V on input / output pins which, during transitions, may overshoot to Vcc+2.0V for periods <20ns.  
2. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions  
detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
RECOMMENDED OPERATING CONDITIONS ( Voltage reference to GND )  
1.8V Device  
2.65V Device  
3.3V Device  
Typ.  
Parameter  
Symbol  
Unit  
Min  
1.7  
0
Typ.  
Max  
1.95  
0
Min  
2.4  
0
Typ.  
Max  
2.9  
0
Min  
2.7  
0
Max  
3.6  
0
VCC-Core/  
VCC-IO  
Supply Voltage  
1.8  
0
2.65  
0
3.3  
0
V
V
Supply Voltage  
VSS  
NOTES:  
1. The system power should reach 1.7V after POR triggering level(typ. 1.5V) within 400us.  
2. Vcc-Core should reach the operating voltage level prior to Vcc-IO.  
75  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
DC CHARACTERISTICS  
1.8V device  
2.65V device  
3.3V device  
Sym-  
bol  
Parameter  
Test Conditions  
Unit  
Min Typ Max Min Typ Max Min Typ Max  
Input Leakage Current  
ILI  
VIN=VSS to VCC, VCC=VCCmax - 1.0  
-
-
+ 1.0 - 1.0  
+ 1.0 - 1.0  
-
-
+ 1.0 - 1.0  
+ 1.0 - 1.0  
-
-
+ 1.0 µA  
+ 1.0 µA  
Output Leakage Cur-  
rent  
VOUT=VSS to VCC, VCC=VCCmax  
- 1.0  
ILO  
, CE or OE=VIH(Note 1)  
Active Asynchronous  
Read Current (Note 2)  
ICC1 CE=VIL, OE=VIH  
ICC2 CE=VIL, OE=VIH  
ICC3 CE=VIL, OE=VIH  
-
8
15  
-
10  
20  
-
10  
20  
mA  
54MHz  
1MHz  
-
-
12  
3
20  
4
-
-
20  
4
30  
6
-
-
20  
4
30  
6
mA  
mA  
Active Burst Read  
Current (Note 2)  
Active Write Current  
(Note 2)  
-
-
-
-
8
15  
25  
25  
20  
-
-
-
-
10  
25  
25  
20  
20  
30  
30  
25  
-
-
-
-
10  
25  
25  
20  
20  
30  
30  
25  
mA  
mA  
mA  
mA  
Active Load Current  
(Note 3)  
CE=VIL, OE=VIH, WE=VIH,  
VIN=VIH or VIL  
ICC4  
ICC5  
ICC6  
20  
20  
15  
Active Program Cur-  
rent (Note 3)  
CE=VIL, OE=VIH, WE=VIH,  
VIN=VIH or VIL  
Active Erase Current  
(Note3)  
CE=VIL, OE=VIH, WE=VIH,  
VIN=VIH or VIL  
Single  
DDP  
-
-
10  
20  
-
50  
100  
0.4  
-
-
20  
40  
-
50  
100  
0.4  
-
-
20  
40  
-
50  
100  
0.8  
Standby Current  
ISB CE= RP=VCC ± 0.2V  
µA  
Input Low Voltage  
Input High Voltage  
VIL  
VIH  
-
-
-0.5  
-0.5  
0
V
V
VCCIO  
-0.4  
VCCIO VCCIO  
+0.4 -0.4  
VCCIO 0.7*  
+0.4 VCCIO  
0.7*  
VCCIO  
-
-
-
-
-
-
-
-
-
IOL = 100 µA , VCC=VCCmin ,  
0.22*  
VCCIO  
Output Low Voltage  
VOL  
VOH  
-
0.2  
-
-
0.2  
-
-
V
V
VCCq=VCCqmin  
IOH = -100 µA , VCC=VCCmin , VCCIO  
VCCq=VCCqmin -0.1  
VCCIO  
-0.4  
0.8*V  
CCIO  
Output High Voltage  
-
NOTES:  
1. CE should be VIH for RDY. IOBE should be ’0’ for INT  
2. ICC active for Host access  
3. ICC active while Internal operation is in progress  
76  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
VALID BLOCK  
Parameter  
Symbol  
Min  
Typ.  
Max  
Unit  
Valid Block Number  
NVB  
502  
-
512  
Blocks  
Note :  
1. The device may include invalid blocks when first shipped. Additional invalid blocks may develop while being used. The number of valid blocks is pre-  
sented with both cases of invalid blocks considered. Invalid blocks are defined as blocks that contain one or more bad bits. Do not erase or program  
factory-marked bad blocks.  
2. The 1st block, which is placed on 00h block address, is fully guaranteed to be a valid block.  
CAPACITANCE(TA = 25 °C, VCC = 1.8V/2.65V/3.3V, f = 1.0MHz)  
Single  
DDP  
Unit  
Item  
Symbol  
Test Condition  
Min  
Max  
10  
Min  
Max  
20  
Input Capacitance  
CIN1  
CIN2  
VIN=0V  
VIN=0V  
-
-
-
-
-
-
pF  
pF  
pF  
Control Pin Capacitance  
Output Capacitance  
10  
20  
COUT  
VOUT=0V  
10  
20  
NOTE : Capacitance is periodically sampled and not 100% tested.  
AC TEST CONDITION(VCC = 1.8V/2.65V/3.3V)  
Parameter  
Value  
0V to VCC  
3ns  
Input Pulse Levels  
CLK  
Input Rise and Fall Times  
other inputs  
5ns  
Input and Output Timing Levels  
Output Load  
VCC/2  
CL = 30pF  
Device  
Under  
Test  
VCC  
Input & Output  
VCC/2  
VCC/2  
Test Point  
* CL = 30pF including scope  
and Jig capacitance  
0V  
Input Pulse and Test Point  
Output Load  
77  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
AC CHARACTERISTICS  
Synchronous Burst Read  
KFG1216X2M/KFH1G16X2M  
Parameter  
Symbol  
Unit  
Min  
Max  
Clock  
CLK  
tCLK  
tIAA  
1
54  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Cycle  
18.5  
-
Initial Access Time(at 54MHz)  
Burst Access Time Valid Clock to Output Delay  
AVD Setup Time to CLK  
AVD Hold Time from CLK  
Address Setup Time to CLK  
Address Hold Time from CLK  
Data Hold Time from Next Clock Cycle  
Output Enable to Data  
-
-
88.5  
tBA  
14.5  
tAVDS  
tAVDH  
tACS  
tACH  
tBDH  
tOE  
7
7
7
7
4
-
-
-
-
-
-
20  
20  
1)  
CE Disable to Output High Z  
-
tCEZ  
1)  
OE Disable to Output High Z  
CE Setup Time to CLK  
CLK High or Low Time  
-
17  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOEZ  
tCES  
7
tCLKH/L  
tCLK/3  
-
CLK 2) to RDY valid  
CLK to RDY Setup Time  
RDY Setup Time to CLK  
CE low to RDY valid  
Note  
tRDYO  
-
-
14.5  
14.5  
-
tRDYA  
tRDYS  
tCER  
4
-
15  
1. If OE is disabled before CE is disabled, the output will go to high-z by tOEZ(max. 17ns).  
If CE is disabled before OE is disabled, the output will go to high-z by tCEZ(max. 20ns).  
If CE and OE are disabled at the same time, the output will go to high-z by tOEZ(max. 17ns).  
2. It is the following clock of address fetch clock.  
78  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
SWITCHING WAVEFORMS  
5 cycles for initial access shown.  
BRL=4  
tCLK  
tCES  
tCLKL  
tCLKH  
CE  
tCER  
tCEZ  
CLK  
tAVDS  
tRDYO  
AVD  
tAVDH  
tBDH  
tACS  
tACH  
A0-A15  
tBA  
D0  
DQ0-DQ15  
D6  
D7  
D0  
D1  
D2  
D3  
D7  
tOEZ  
tIAA  
tOE  
OE  
tRDYS  
tRDYA  
Hi-Z  
Hi-Z  
RDY  
Figure 26. 8 Word Linear Burst Mode with Wrap Around  
5 cycles for initial access shown.  
BRL=4  
tCLK  
tCES  
CE  
tCER  
tCEZ  
CLK  
AVD  
tAVDS  
tRDYO  
tAVDH  
tBDH  
tACS  
A0-A15  
tBA  
tACH  
Da+n+1  
tOEZ  
DQ0-DQ15  
Da  
Da+1 Da+2 Da+3 Da+4 Da+5  
Da+n  
tIAA  
tOE  
OE  
tRDYS  
Hi-Z  
Hi-Z  
tRDYA  
RDY  
Figure 27. Continuous Linear Burst Mode with Wrap Around  
NOTE: In order to avoid a bus conflict the OE signal is enabled on the next rising edge after AVD is going high.  
79  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
AC CHARACTERISTICS  
Asynchronous Read  
KFG1216X2M/KFH1G16X2M  
Parameter  
Symbol  
Unit  
Min  
-
Max  
76  
76  
76  
-
Access Time from CE Low  
tCE  
tAA  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Asynchronous Access Time from AVD Low  
Asynchronous Access Time from address valid  
Read Cycle Time  
-
tACC  
tRC  
-
76  
12  
7
AVD Low Time  
tAVDP  
tAAVDS  
tAAVDH  
tOE  
-
Address Setup to rising edge of AVD  
Address Hold from rising edge of AVD  
Output Enable to Output Valid  
WE Disable to AVD Enable  
-
7
-
-
20  
-
tWEA  
tCA  
15  
0
CE Setup to AVD falling edge  
-
CE Disable to Output & RDY High Z1)  
tCEZ  
tOEZ  
-
20  
OE Disable to Output & RDY High Z1)  
-
17  
ns  
NOTE:  
1. If OE is disabled before CE is disabled, the output will go to high-z by tOEZ(max. 17ns).  
If CE is disabled before OE is disabled, the output will go to high-z by tCEZ(max. 20ns).  
If CE and OE are disabled at the same time, the output will go to high-z by tOEZ(max. 17ns).  
These parameters are not tested 100%.  
SWITCHING WAVEFORMS  
Case 1 : Valid Address and AVD Transition occur before CE is driven to Low  
VIL  
CLK  
CE  
tCEZ  
tAVDP  
AVD  
tOE  
OE  
WE  
tCE  
tOEZ  
DQ0-DQ15  
Valid RD  
tAAVDH  
A0-A15  
VA  
Hi-Z  
RDY  
Hi-Z  
NOTE: VA=Valid Read Address, RD=Read Data.  
Figure 28 . Asynchronous Read Mode(AVD toggling)  
80  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Case 2 : AVD Transition occurs after CE is driven to Low and Valid Address Transition occurs before AVD is driven to Low  
VIL  
CLK  
CE  
tCEZ  
tAA  
tAVDP  
AVD  
OE  
tOE  
tWEA  
WE  
tOEZ  
DQ0-DQ15  
Valid RD  
tAAVDH  
A0-A15  
VA  
RDY  
Hi-Z  
Hi-Z  
NOTE: VA=Valid Read Address, RD=Read Data.  
Figure 29. Asynchronous Read Mode(AVD toggling)  
Case 3 : AVD Transition occur after CE is driven to Low and Valid Address Transition occurs after AVD is driven to Low  
VIL  
CLK  
CE  
tCEZ  
tAVDP  
AVD  
tAAVDS  
tOE  
OE  
tWEA  
WE  
tOEZ  
DQ0-DQ15  
Valid RD  
tAAVDH  
tACC  
A0-A15  
VA  
Hi-Z  
RDY  
Hi-Z  
NOTE: VA=Valid Read Address, RD=Read Data.  
Figure 30. Asynchronous Read Mode(AVD toggling)  
81  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Case 4 : AVD is tied to CE  
VIL  
CLK  
tRC  
CE  
OE  
tCEZ  
tOE  
WE  
tCE  
tOEZ  
Valid RD  
DQ0-DQ15  
tACC  
A0-A15  
VA  
Hi-Z  
Hi-Z  
RDY  
NOTE: VA=Valid Read Address, RD=Read Data.  
Figure 31. Asynchronous Read Mode(AVD tied to CE)  
82  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
AC CHARACTERISTICS  
Asynchronous write operation  
KFG1216X2M/KFH1G16X2M  
Parameter  
Symbol  
Unit  
Min  
70  
12  
7
Typ  
Max  
WE Cycle Time  
tWC  
tAVDP  
tAAVDS  
tAWES  
tAAVDH  
tAH  
-
-
-
-
-
-
ns  
ns  
ns  
AVD low pulse width  
Address Setup to rising edge of AVD  
Address Setup to falling edge of WE  
Address Hold to rising edge of AVD  
Address Hold to falling edge of WE  
Data Setup to rising edge of WE  
Data Hold from rising edge of WE  
CE Setup to falling edge of WE  
CE Hold from rising edge of WE  
CE Hold from rising edge of WE  
WE Pulse Width  
0
7
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
10  
4
tDS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
tDH  
tCS  
0
AVD toggled  
tCH1  
0
AVD tied to CE  
tCH2  
10  
40  
30  
15  
15  
tWPL  
tWPH  
tVLWH  
tWEA  
WE Pulse Width High  
AVD Disable to WE Disable  
WE Disable to AVD Enable  
83  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Case 1 : AVD is toggled every write cycle  
VIL  
CLK  
tCS  
tCH1  
CE  
tCS  
tCH1  
tAVDP  
AVD  
tWEA  
tVLWH  
tWPL  
tWPH  
WE  
OE  
tWC  
tAAVDS  
tAAVDH  
VA  
A0-A15  
VA  
tDS  
tDH  
DQ0-DQ15  
RDY  
Valid WD  
Valid WD  
Hi-Z  
Hi-Z  
NOTE: VA=Valid Read Address, WD=Write Data.  
Figure 32. Latched Asynchronous Write Mode(AVD toggling)  
84  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Case 2 : AVD is synchronized with CE  
VIL  
CLK  
tCS  
tCH2  
tCS  
CE  
tCH2  
AVD  
tWPL  
tWPH  
WE  
tWC  
OE  
tAH  
tAWES  
A0-A15  
VA  
VA  
tDS  
tDH  
DQ0-DQ15  
RDY  
Valid WD  
Valid WD  
Hi-Z  
Hi-Z  
NOTE: VA=Valid Read Address, WD=Write Data.  
Figure 33. Asynchronous Write Mode(AVD toggling)  
85  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Case 3 : AVD is tied to CE  
VIL  
CLK  
tCS  
tCH2  
tCS  
CE or AVD  
tCH2  
tWPL  
tWPH  
WE  
OE  
tWC  
tAH  
tAWES  
A0-A15  
VA  
VA  
tDS  
tDH  
DQ0-DQ15  
RDY  
Valid WD  
Valid WD  
Hi-Z  
Hi-Z  
NOTE: VA=Valid Read Address, WD=Write Data.  
Figure 34. Asynchronous Write Mode(AVD tied to CE)  
86  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
AC CHARACTERISTICS  
Reset  
KFG1216U2M/  
KFH1G16X2M  
Parameter  
Symbol  
Unit  
Min Max  
RP & Reset Command Latch(During Load Routines) to INT High (Note)  
RP & Reset Command Latch(During Program Routines) to INT High (Note)  
RP & Reset Command Latch(During Erase Routines) to INT High (Note)  
RP & Reset Command Latch(NOT During Internal Routines) to Read Mode (Note)  
INT High to Read Mode (Note)  
tRST  
tRST  
tRST  
tRST  
tReady  
tRP  
µs  
µs  
µs  
µs  
ns  
ns  
-
10  
20  
500  
10  
-
-
-
-
200  
200  
RP Pulse Width  
-
NOTE: These parameters are tested based on INT bit of interrupt register. Because the time on INT pin is related to the pull-up and  
pull-down resistor value. Please refer to page 73 and 74.  
SWITCHING WAVEFORMS  
Warm Reset  
CE, OE  
RP  
tRP  
tRST  
tReady  
INT bit  
Hot Reset  
AVD  
Ai  
BP or F220h  
00F0h  
or 00F3h  
DQi  
CE  
OE  
WE  
tReady  
tRST  
INT bit  
Figure 35. Reset Timing  
87  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
Performance  
Parameter  
Symbol  
tRD1  
Min  
Typ  
40  
Max  
45  
Unit  
µs  
Sector Load time (Note 1)  
-
-
-
-
-
-
Page Load time (Note 1)  
tRD2  
µs  
85  
100  
720  
750  
1000  
1000  
Sector Program time (Note 1)  
Page Program time (Note 1)  
OTP Access time(Note 1)  
tPGM1  
tPGM2  
tOTP  
µs  
320  
350  
600  
600  
µs  
ns  
Lock/Unlock/Lock-tight time (Note 1)  
tLOCK  
ns  
Number of Partial Program Cycles in the sector  
(Including main and spare area)  
NOP  
-
-
-
2
3
cycles  
ms  
Block Erase time (Note 1)  
1 Block  
tBERS1  
2
NOTES: These parameters are tested based on INT bit of interrupt register. Because the time on INT pin is related to the pull-up and  
pull-down resistor value. Please refer to page 73 and 74.  
88  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
SWITCHING WAVEFORMS  
Load Operations  
Read Command Sequence  
Read Data  
tVLWH  
tAVDP  
AVD  
tWEA  
tAAVDH  
tAAVDS  
A0:A15  
AA  
CA  
SA  
BA  
DQ0-DQ15  
Complete  
Da  
RMA  
RCD  
tDS  
tDH  
CE  
OE  
WE  
tCH1  
tWPL  
tWPH  
tRD  
tCS  
tWC  
VIL  
CLK  
INT  
bit  
Figure 36. Load Operation Timing  
NOTES:  
1. AA = Address of address register  
CA = Address of command register  
RCD = Read Command  
RMA = Address of memory to be read  
BA = Address of BufferRAM to load the data  
BD = Program Data  
SA = Address of status register  
2. “In progress” and “complete” refer to status register  
3. Status reads in this figure is asynchronous read, but status read in synchronous mode is also supported.  
89  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
SWITCHING WAVEFORMS  
Program Operations  
Program Command Sequence (last two cycles)  
Read Status Data  
tVLWH  
tAVDP  
tWEA  
AVD  
tAAVDS  
tAAVDH  
A0:A15  
AA  
BA  
CA  
SA  
SA  
In  
DQ0-DQ15  
Complete  
Progress  
PMA  
BD  
PCD  
tDH  
tDS  
CE  
OE  
WE  
tCH  
tWPL  
tWPH  
tCS  
tPGM  
tWC  
VIL  
CLK  
INT  
bit  
Figure 37 . Program Operation Timing  
NOTES:  
1. AA = Address of address register  
CA = Address of command register  
PCD = Program Command  
PMA = Address of memory to be programmed  
BA = Address of BufferRAM to load the data  
BD = Program Data  
SA = Address of status register  
2. “In progress” and “complete” refer to status register  
3. Status reads in this figure is asynchronous read, but status read in synchronous mode is also supported.  
90  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
SWITCHING WAVEFORMS  
Erase Operation  
Erase Command Sequence (last two cycles)  
Read Status Data  
tVLWH  
tWEA  
tAVDP  
tAAVDS  
AA  
AVD  
tAAVDH  
A0:A15  
CA  
SA  
SA  
In  
Complete  
Progress  
DQ0-DQ15  
CE  
EMA  
ECD  
tDS  
tDH  
tCH  
OE  
tWPL  
WE  
tWPH  
tBERS  
tCS  
tWC  
VIL  
CLK  
INT  
bit  
Figure 38. Block Erase Operations  
NOTES:  
1. AA = Address of address register  
CA = Address of command register  
ECD = Erase Command  
EMA = Address of memory to be erased  
SA = Address of status register  
2. “In progress” and “complete” refer to status register  
3. Status reads in this figure is asynchronous read, but status read in synchronous mode is also supported.  
91  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
OneNAND512 PACKAGE DIMENSIONS  
63-FBGA-9.50x12.00  
Units:millimeters  
#A1 INDEX  
9.50±0.10  
A
0.10 MAX  
9.50±0.10  
0.80x9=7.20  
(Datum A)  
B
6
5
4
3
2
1
#A1  
A
(Datum B)  
B
0.80  
C
D
E
F
G
H
3.60  
0.32±0.05  
0.9±0.10  
BOTTOM VIEW  
TOP VIEW  
63-  
0.45±0.05  
0.20  
M A B  
92  
OneNAND512/OneNAND1GDDP  
FLASH MEMORY  
ORDERING INFORMATION  
K F X XX 1 6 X 2 M - X X B  
Product Line desinator  
Samsung  
B : Include Bad Block  
D : Daisy Sample  
OneNAND Memory  
Device Type  
G : Single Chip  
H : Die Stack  
Operating Temperature Range  
E = Extended Temp. (-30 °C to 85 °C)  
I = Industrial Temp. (-40 °C to 85 °C)  
Density  
12 : 512Mb  
1G : 1Gb  
Package  
D : FBGA(Lead Free)  
Organization  
x16 Organization  
Version  
1st Generation  
Operating Voltage Range  
Q : 1.8V(1.7 V to 1.95V)  
D : 2.65V(2.4 V to 2.9V)  
U : 3.3V(2.7V to 3.6V)  
Page Architecture  
2 : 2KB Page  
93  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY