KFH2G16U2M-DIB5 [SAMSUNG]

FLASH MEMORY(54MHz); 闪存( 54MHz的)
KFH2G16U2M-DIB5
型号: KFH2G16U2M-DIB5
厂家: SAMSUNG    SAMSUNG
描述:

FLASH MEMORY(54MHz)
闪存( 54MHz的)

闪存
文件: 总125页 (文件大小:1658K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
OneNANDTM Specification  
Density  
1Gb  
Part No.  
VCC(core & IO)  
1.8V(1.7V~1.95V)  
1.8V(1.7V~1.95V)  
1.8V(1.7V~1.95V)  
Temperature  
Extended  
PKG  
KFG1G16Q2M-DEB5  
KFH2G16Q2M-DEB5  
KFW4G16Q2M-DEB5  
63FBGA(LF)  
63FBGA(LF)  
63FBGA(LF)  
2Gb  
Extended  
4Gb  
Extended  
Version: Ver. 1.1  
Date: July 20, 2005  
1
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
1.0 INTRODUCTION  
This specification contains information about the Samsung Electronics Company OneNAND‚ Flash memory product family. Section  
1.0 includes a general overview, revision history, and product ordering information.  
Section 2.0 describes the OneNAND device. Section 3.0 provides information about device operation. Electrical specifications and  
timing waveforms are in Sections 4.0 though 6.0. Section 7.0 provides additional application and technical notes pertaining to use of  
the OneNAND. Package dimensions are found in Section 8.0  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.  
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,  
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,  
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL  
INFORMATION IN THIS DOCUMENT IS PROVIDED  
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar  
applications where Product failure could result in loss of life or personal or physical harm, or any military or  
defense application, or any governmental procurement to which special terms or provisions may apply.  
MuxOneNAND‚ is a trademark of Samsung Electronics Company, Ltd. Other names and brands may be claimed as the property of  
their rightful owners.  
Copyright © 2005, Samsung Electronics Company, Ltd  
2
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
1.1  
Revision History  
Document Title  
OneNAND  
Revision History  
Revision No. History  
Draft Date  
Remark  
0.0  
Initial Issue.  
Oct. 26, 2004  
Preliminary  
0.1  
1. Corrected Errata  
Dec. 7, 2004  
Preliminary  
2. Revised cache read flow chart  
3. Revised standby current  
4. Revised spare area description  
5. Added CE don’t care state for Asynch Write, Load, Program, and Block  
Erase timing diagram  
0.2  
0.3  
1. Corrected Errata  
2. Added Copy-back Program Operation With Random Data Input  
3. Pended Active Erase Current  
Dec. 24, 2004  
Jan. 10, 2005  
Preliminary  
Preliminary  
4. Changed tBA from 11ns to 11.5ns  
1. Corrected the errata  
2. Revised typical value of ISB from 50uA to 10uA  
3. Revised maximum value of ISB from 100uA to 50uA  
4. Revised erase current as TBD  
5. Revised maximum value of tCE, tAA and tACC from 70ns to 76ns  
6. Revised Vcc-IO description  
7. Revised Spare Area description  
8. Added extra information on Controller Status Register  
9. Added commands related to Interrupt Status Register bits  
10. Revised Write Protection Status on Chapter 3.4.3  
11. Revised Copy-Back Program Operation description  
12. Added extra information on Multi-Block Erase Operation  
13. Disabled FBA restriction in OTP operation  
14. Revised Cache Read Flow Chart  
15. Added ISB information on DDP  
16. Revised Reset Parameter descriptions  
17. Added RDY information on Warm Reset Timing diagram  
18. Added information on Data Protection Timing During Power Down  
19. Revised Interrupt pin rise and falling slope graph  
20. Added restriction on address register setting on Dual Operations  
21. Added restriction on address register setting on Cache Read Operation  
0.4  
1. Corrected the errata  
Feb. 25, 2005  
Preliminary  
2. Updated DC parameters to RMS values  
3. Added QDP feature  
4. Added Speed Information on Product Number  
5. Revised tOEZ description  
6. Revised OTP register setting restriction  
7. Added ILI, ILO and ISB information on QDP  
8. Added Boot Sequence Infrormation on Technical Notes  
9. Added Cint Information  
0.4.1  
1. Revised OTP Load Operation Flow Chart  
Mar. 2, 2005  
Preliminary  
3
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Revision History  
Revision No. History  
Draft Date  
Remark  
1.0  
1. Corrected the errata  
May. 17, 2005  
Final  
2. Added DFS restriction to Multi Block Erase.  
3. Added Data Protection flow chart.  
4. Removed Cache Read Operation.  
5. Added additional information on command register.  
6. Revised Interrupt status register information.  
7. Added INT pin schematic.  
8. Changed tPGM1 to 205 from 320us, tPGM2 to 220 from 350us.  
9. Revised ECC Bypass description  
10. Revised AC/DC parameters  
11. Revised Reset Parameters and Timing Diagrams.  
1.1  
1. Corrected the errata  
Jul. 20, 2005  
Final  
2. Deleted 2.65V/3.3V Device Descriptions.  
3. Revised Data Protection Flow Chart.  
4. Revised Invalid Block Table Creation Flow Chart.  
5. Revised Multi Block Erase Description  
4
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
1.2  
Flash Product Type Selector  
Samsung offers a variety of Flash solutions including NAND Flash, OneNANDand NOR Flash. Samsung offers Flash products  
both component and a variety of card formats including RS-MMC, MMC, CompactFlash, and SmartMedia.  
To determine which Samsung Flash product solution is best for your application, refer the product selector chart.  
Samsung Flash Products  
Application Requires  
NAND  
OneNAND  
NOR  
Fast Random Read  
Fast Sequential Read  
Fast Write/Program  
Multi Block Erase  
Erase Suspend/Resume  
Copyback  
(Max 64 Blocks)  
(EDC)  
(ECC)  
Lock/Unlock/Lock-Tight  
ECC  
Internal  
External (Hardware/Software)  
X
Scalability  
1.3  
Ordering Information  
K F x x x 1 6 Q 2 M - D E B 5  
Samsung  
OneNAND Memory  
Speed  
5 : 54MHz  
6 : 66MHz  
Device Type  
G : Single Chip  
H : Dual Chip  
W: Quad Chip  
Product Line desinator  
B : Include Bad Block  
D : Daisy Sample  
Density  
1G: 1Gb  
2G: 2Gb  
4G: 4Gb  
Operating Temperature Range  
E = Extended Temp. (-30 °C to 85 °C)  
Package  
D : FBGA(Lead Free)  
Organization  
x16 Organization  
Version  
1st Generation  
Page Architecture  
2 : 2KB Page  
Operating Voltage Range  
Q : 1.8V(1.7 V to 1.95V)  
5
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
1.4  
Architectural Benefits  
OneNAND is a highly integrated non-volatile memory solution based around a NAND Flash memory array.  
The chip integrates system features including:  
A BootRAM and bootloader  
Two independent bi-directional 2KB DataRAM buffers  
A High-Speed x16 Host Interface  
On-chip Error Correction  
On-chip NOR interface controller  
This on-chip integration enables system designers to reduce external system logic and use high-density NAND Flash in applications  
that would otherwise have to use more NOR components.  
OneNAND takes advantage of the higher performance NAND program time, low power, and high density and combines it with the  
synchronous read performance of NOR. The NOR Flash host interface makes OneNAND an ideal solution for applications like G3  
Smart Phones, Camera Phones, and mobile applications that have large, advanced multimedia applications and operating systems,  
but lack a NAND controller.  
When integrated into a Samsung Multi-Chip-Package with Samsung Mobile DDR SDRAM, designers can complete a high-perfor-  
mance, small footprint solution.  
The attached datasheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right  
to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions about device. If you have  
any questions, please contact the SAMSUNG branch office near you.  
6
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
1.5  
Product Features  
Device Architecture  
Design Technology:  
90nm  
Supply Voltage:  
Host Interface:  
1.8V (1.7V ~ 1.95V)  
16 bit  
5KB Internal BufferRAM:  
SLC NAND Array:  
1KB BootRAM, 4KB DataRAM  
(2K+64)B Page Size, (128K+4K)B Block Size  
Device Performance  
Host Interface Type:  
Synchronous Burst Read  
- Up to 54MHz clock frequency  
- Linear Burst 4-, 8-, 16-, 32-words with wrap around  
- Continuous 1K word Sequential Burst  
Asynchronous Random Read  
- 76ns access time  
Asynchronous Random Write  
Latency 3(up to 40MHz), 4, 5, 6, and 7  
Up to 4 sectors using Sector Count Register  
Cold/Warm/Hot/NAND Flash Core Resets  
Up to 64 Blocks  
Programmable Burst Read Latency:  
Multiple Sector Read/Write:  
Multiple Reset Modes:  
Multi Block Erase:  
Low Power Dissipation:  
Typical Power,  
- Standby current :  
10uA @ Single , 20uA @ DDP, 40uA @ QDP  
- Synchronous Burst Read current(54MHz) :  
12mA @ Single, 17mA @ DDP/QDP  
- Load current : 30mA  
- Program current : 25mA  
- Erase current : 20mA  
- Multi Block Erase current : 20mA  
- Endurance : 100K Program/Erase Cycles  
- Data Retention : 10 Years  
System Hardware  
Voltage detector generating internal reset signal from Vcc  
Hardware reset input (RP)  
Data Protection Modes  
- Write Protection for BootRAM  
- Write Protection for NAND Flash Array  
- Write Protection during power-up  
- Write Protection during power-down  
User-controlled One Time Programmable(OTP) area  
Internal 2bit EDC / 1bit ECC  
Internal Bootloader supports Booting Solution in system  
Handshaking Feature  
- INT pin indicates Ready / Busy  
- Polling the interrupt register status bit  
- by ID register  
Detailed chip information  
Packaging  
1G products  
2G DDP products  
4G QDP products  
63ball, 10mm x 13mm x max 1.0mmt, 0.8mm ball pitch FBGA  
63ball, 11mm x 13mm x max 1.2mmt, 0.8mm ball pitch FBGA  
63ball, 11mm x 13mm x max 1.4mmt, 0.8mm ball pitch FBGA  
7
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
1.6  
General Overview  
OneNAND‚ is a monolithic integrated circuit with a NAND Flash array using a NOR Flash interface. This device includes control  
logic, a NAND Flash array, and 5KB of internal BufferRAM. The BufferRAM reserves 1KB for boot code buffering (BootRAM) and 4KB  
for data buffering (DataRAM), split between 2 independent buffers. It has a x16 Host Interface and a random access time speed of  
~76ns.  
The device operates up to a maximum host-driven clock frequency of 54MHz for synchronous reads at Vcc(or Vccq. Refer to chapter  
4.2) with minimum 4-clock latency. Below 40MHz it is accessible with minimum 3-clock latency. Appropriate wait cycles are deter-  
mined by programmable read latency.  
OneNAND provides for multiple sector read operations by assigning the number of sectors to be read in the sector counter  
register. The device includes one block-sized OTP (One Time Programmable) area that can be used to increase system security or  
to provide identification capabilities.  
8
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.0 DEVICE DESCRIPTION  
2.1  
Detailed Product Description  
The OneNAND is an advanced generation, high-performance NAND-based Flash memory.  
It integrates on-chip a single-level-cell (SLC) NAND Flash Array memory with two independent data buffers, boot RAM buffer, a page  
buffer for the Flash array, and a one-time-programmable block.  
The combination of these memory areas enable high-speed pipelining of reads from host, BufferRAM, Page Buffer, and NAND Flash  
Array.  
Clock speeds up to 54MHz with a x16 wide I/O yields a 68MByte/second bandwidth.  
The OneNAND also includes a Boot RAM and boot loader. This enables the device to efficiently load boot code at device startup from  
the NAND Array without the need for off-chip boot device.  
One block of the NAND Array is set aside as an OTP memory area. This area, available to the user, can be configured and locked  
with secured user information.  
On-chip controller interfaces enable the device to operate in systems without NAND Host controllers.  
9
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.2  
Definitions  
B (capital letter)  
Byte, 8bits  
Word, 16bits  
Bit  
W (capital letter)  
b (lower-case letter)  
ECC  
Error Correction Code  
Calculated ECC  
Written ECC  
BufferRAM  
ECC that has been calculated during a load or program access  
ECC that has been stored as data in the NAND Flash array or in the BufferRAM  
On-chip internal buffer consisting of BootRAM and DataRAM  
BootRAM  
A 1KB portion of the BufferRAM reserved for Boot Code buffering  
A 4KB portion of the BufferRAM reserved for Data buffering  
DataRAM  
Part of a Page ; 512B for the main data area and 16B for the spare area.  
It is also the minimum Load/Program/Copy-Back Program unit  
during a 1~4 sector operation is available.  
Sector  
Possible data unit to be read from memory to BufferRAM or to be programmed to memory.  
-
528B of which 512B is in main area and 16B in spare area  
Data unit  
- 1056B of which 1024B is in main area and 32B in spare area  
- 1584B of which 1536B is in main area and 48B in spare area  
- 2112B of which 2048B is in main area and 64B in spare area  
10  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.3  
Pin Configuration  
2.3.1 1Gb Product (KFG1G16Q2M)  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
OE  
VSS  
DQ9  
DQ3  
DQ5  
NC  
WE  
RP  
DQ14  
DQ1  
DQ11  
DQ0  
DQ2  
AVD  
A1  
DQ13  
VCC  
Core  
DQ12  
DQ7  
DQ8  
DQ4  
A12  
VCC  
IO  
DQ10  
A15  
DQ15  
DQ6  
A9  
CLK  
A14  
CE  
NC  
A7  
NC  
A2  
A13  
A11  
A10  
A3  
A8  
INT  
A0  
A4  
A6  
A5  
NC  
RDY  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
(TOP VIEW, Balls Facing Down)  
63ball FBGA OneNAND Chip  
63ball, 10mm x 13mm x max 1.0mmt , 0.8mm ball pitch FBGA  
11  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.3.2 2Gb Product (KFH2G16Q2M)  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
OE  
VSS  
DQ9  
DQ3  
DQ5  
NC  
WE  
RP  
DQ14  
DQ1  
DQ11  
DQ0  
DQ2  
AVD  
A1  
DQ13  
VCC  
Core  
DQ12  
DQ7  
DQ8  
DQ4  
A12  
VCC  
IO  
DQ10  
A15  
DQ15  
DQ6  
A9  
CLK  
A14  
CE  
NC  
A7  
NC  
A2  
A13  
A11  
A10  
A3  
A8  
INT  
A0  
A4  
A6  
A5  
NC  
RDY  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
(TOP VIEW, Balls Facing Down)  
63ball FBGA OneNAND Chip  
63ball, 11mm x 13mm x max 1.2mmt , 0.8mm ball pitch FBGA  
12  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.3.3 4Gb Product (KFW4G16Q2M)  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
OE  
VSS  
DQ9  
DQ3  
DQ5  
NC  
WE  
RP  
DQ14  
DQ1  
DQ11  
DQ0  
DQ2  
AVD  
A1  
DQ13  
VCC  
Core  
DQ12  
DQ7  
DQ8  
DQ4  
A12  
VCC  
IO  
DQ10  
A15  
DQ15  
DQ6  
A9  
CLK  
A14  
CE1  
A13  
NC  
A7  
NC  
A2  
A11  
A10  
A3  
A8  
INT  
A0  
A4  
A6  
A5  
CE2  
RDY  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
(TOP VIEW, Balls Facing Down)  
63ball FBGA OneNAND Chip  
63ball, 11mm x 13mm x max 1.4mmt , 0.8mm ball pitch FBGA  
13  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.4  
Pin Description  
Pin Name  
Type  
Nameand Description  
Host Interface  
Address Inputs  
A15~A0  
I
- Inputs for addresses during read and write operation, which are for addressing  
BufferRAM & Register.  
Data Inputs/Outputs  
- Inputs data during program and commands for all operations, outputs data during memory array/  
register read cycles.  
Data pins float to high-impedance when the chip is deselected or outputs are disabled.  
DQ15~DQ0  
INT  
I/O  
Interrupt  
Notifies the Host when a command is completed. It is open drain output with internal  
resistor(~50kohms). After power-up, it is at hi-z condition. Once IOBE is set to 1,  
it does not float to hi-z condition even when the chip is deselected or when outputs are disabled.  
O
Ready  
RDY  
CLK  
WE  
O
I
Indicates data valid in synchronous read modes and is activated while CE is low  
Clock  
CLK synchronizes the device to the system bus frequency in synchronous read mode.  
The first rising edge of CLK in conjunction with AVD low latches address input.  
Write Enable  
I
WE controls writes to the bufferRAM and registers. Datas are latched on the WE pulse’s rising edge  
Address Valid Detect  
Indicates valid address presence on address inputs. During asynchronous read operation, all addresses  
are latched on AVD’s rising edge, and during synchronous read operation, all addresses are latched on  
CLK’s rising edge while AVD is held low for one clock cycle.  
AVD  
RP  
I
> Low : for asynchronous mode, indicates valid address; for burst mode, causes starting address to be  
latched on rising edge on CLK  
> High : device ignores address inputs  
Reset Pin  
I
I
When low, RP resets internal operation of OneNAND. RP status is don’t care during power-up  
and bootloading.  
Chip Enable  
CE-low activates internal control logic, and CE-high deselects the device, places it in standby state,  
and places DQ in Hi-Z.  
The CE input enables device for Single or DDP .  
CE / CE1  
CE2  
The CE1 input enables the first DDP device(KFH2G16Q2M) for QDP(KFW4G16Q2M)  
Chip Enable  
I
I
The CE2 input enables the second DDP device(KFH2G16Q2M) for QDP(KFW4G16Q2M)  
Output Enable  
OE  
OE-low enables the device’s output data buffers during a read cycle.  
Power Supply  
VCC-Core  
/ Vcc  
Power for OneNAND Core  
This is the power supply for OneNAND Core.  
Power for OneNAND I/O  
This is the power supply for OneNAND I/O  
Vcc-IO / Vccq is internally separated from Vcc-Core / Vcc.  
VCC-IO  
/ Vccq  
VSS  
Ground for OneNAND  
etc.  
Do Not Use  
DNU  
NC  
Leave it disconnected. These pins are used for testing.  
No Connection  
Lead is not internally connected.  
NOTE: Do not leave power supply(Vcc-Core/Vcc-IO, VSS) disconnected.  
14  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.5  
Block Diagram  
BufferRAM  
BootRAM  
DQ15~DQ0  
Bootloader  
A15~A0  
CLK  
StateMachine  
CE / CE1  
CE2  
DataRAM0  
DataRAM1  
OE  
NAND Flash  
Array  
WE  
RP  
Error  
Correction  
Logic  
AVD  
INT  
Internal Registers  
(Address/Command/Configuration  
/Status Registers)  
OTP  
RDY  
(One Block)  
2.6  
Memory Array Organization  
The OneNAND architecture integrates several memory areas on a single chip.  
2.6.1  
Internal (NAND Array) Memory Organization  
The on-chip internal memory is a single-level-cell (SLC) NAND array used for data storage and code. The internal memory is divided  
into a main area and a spare area.  
Main Area  
The main area is the primary memory array. This main area is divided into Blocks of 64 Pages. Within a Block, each Page is 2KB and  
is comprised of 4 Sectors. Within a Page, each Sector is 512B and is comprised of 256 Words.  
Spare Area  
The spare area is used for invalid block information and ECC storage. Spare area of internal memory is associated with correspond-  
ing main area of internal memory. Within a Block, each Page has four 16B Sectors of spare area. Each spare area Sector is 8 words.  
15  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Internal Memory Array Information  
Area  
Main  
Block  
128KB  
4KB  
Page  
2KB  
64B  
Sector  
512B  
16B  
Spare  
Internal Memory Array Organization  
Sector  
Main Area  
Spare Area  
512B  
16B  
Page  
Main Area  
Spare Area  
512B Sector0  
512B Sector1  
512B Sector3  
512B Sector2  
16B Sector0  
16B Sector1  
16B Sector2  
16B Sector3  
2KB  
64B  
Block  
Main Area  
Spare Area  
64B Page0  
2KB Page0  
Page 0  
2KB Page63  
128KB  
64B Page63  
4KB  
Page 63  
16  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.6.2 External (BufferRAM) Memory Organization  
The on-chip external memory is comprised of 3 buffers used for Boot Code storage and data buffering.  
The BootRAM is a 1KB buffer that receives Boot Code from the internal memory and makes it available to the host at start up.  
There are two independent 2KB bi-directional data buffers, DataRAM0 and DataRAM1. These dual buffers enable the host to execute  
simultaneous Read-While load, and Write-While-program operations after Boot Up. During Boot Up, the BootRam is used by the host  
to initialize the main memory, and deliver boot code from NAND Flash core to host.  
Internal (Nand Array)  
Memory  
External (BufferRAM)  
Memory  
Boot code (1KB)  
BootRAM (1KB)  
Nand Array  
Host  
DataRAM0 (2KB)  
DataRAM1 (2KB)  
OTP Block  
The external memory is divided into a main area and a spare area. Each buffer is the equivalent size of a Sector.  
The main area data is 512B. The spare area data is 16B.  
External Memory Array Information  
Area  
BootRAM  
1KB+32B  
2
DataRAM0  
2KB+64B  
4
DataRAM1  
2KB+64B  
4
Total Size  
Number of Sectors  
Main  
Spare  
512B  
512B  
512B  
Sector  
16B  
16B  
16B  
17  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
External Memory Array Organization  
Spare area data  
(16B)  
Main area data  
(512B)  
BootRAM 0  
BootRAM  
Sector: (512 + 16) Byte  
BootRAM 1  
DataRAM 0_0  
DataRAM 0_1  
DataRAM0  
DataRAM 0_2  
DataRAM 0_3  
DataRAM 1_0  
DataRAM 1_1  
DataRAM1  
DataRAM 1_2  
DataRAM 1_3  
18  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.7  
Memory Map  
The following tables are the memory maps for the OneNAND.  
2.7.1 Internal (NAND Array) Memory Organization  
The following tables show the Internal Memory address map in word order.  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block0  
Block1  
0000h  
0001h  
0002h  
0003h  
0004h  
0005h  
0006h  
0007h  
0008h  
0009h  
000Ah  
000Bh  
000Ch  
000Dh  
000Eh  
000Fh  
0010h  
0011h  
0012h  
0013h  
0014h  
0015h  
0016h  
0017h  
0018h  
0019h  
001Ah  
001Bh  
001Ch  
001Dh  
001Eh  
001Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block32  
Block33  
Block34  
Block35  
Block36  
Block37  
Block38  
Block39  
Block40  
Block41  
Block42  
Block43  
Block44  
Block45  
Block46  
Block47  
Block48  
Block49  
Block50  
Block51  
Block52  
Block53  
Block54  
Block55  
Block56  
Block57  
Block58  
Block59  
Block60  
Block61  
Block62  
Block63  
0020h  
0021h  
0022h  
0023h  
0024h  
0025h  
0026h  
0027h  
0028h  
0029h  
002Ah  
002Bh  
002Ch  
002Dh  
002Eh  
002Fh  
0030h  
0031h  
0032h  
0033h  
0034h  
0035h  
0036h  
0037h  
0038h  
0039h  
003Ah  
003Bh  
003Ch  
003Dh  
003Eh  
003Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block2  
Block3  
Block4  
Block5  
Block6  
Block7  
Block8  
Block9  
Block10  
Block11  
Block12  
Block13  
Block14  
Block15  
Block16  
Block17  
Block18  
Block19  
Block20  
Block21  
Block22  
Block23  
Block24  
Block25  
Block26  
Block27  
Block28  
Block29  
Block30  
Block31  
19  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block64  
Block65  
Block66  
Block67  
Block68  
Block69  
Block70  
Block71  
Block72  
Block73  
Block74  
Block75  
Block76  
Block77  
Block78  
Block79  
Block80  
Block81  
Block82  
Block83  
Block84  
Block85  
Block86  
Block87  
Block88  
Block89  
Block90  
Block91  
Block92  
Block93  
Block94  
Block95  
0040h  
0041h  
0042h  
0043h  
0044h  
0045h  
0046h  
0047h  
0048h  
0049h  
004Ah  
004Bh  
004Ch  
004Dh  
004Eh  
004Fh  
0050h  
0051h  
0052h  
0053h  
0054h  
0055h  
0056h  
0057h  
0058h  
0059h  
005Ah  
005Bh  
005Ch  
005Dh  
005Eh  
005Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block96  
Block97  
0060h  
0061h  
0062h  
0063h  
0064h  
0065h  
0066h  
0067h  
0068h  
0069h  
006Ah  
006Bh  
006Ch  
006Dh  
006Eh  
006Fh  
0070h  
0071h  
0072h  
0073h  
0074h  
0075h  
0076h  
0077h  
0078h  
0079h  
007Ah  
007Bh  
007Ch  
007Dh  
007Eh  
007Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block98  
Block99  
Block100  
Block101  
Block102  
Block103  
Block104  
Block105  
Block106  
Block107  
Block108  
Block109  
Block110  
Block111  
Block112  
Block113  
Block114  
Block115  
Block116  
Block117  
Block118  
Block119  
Block120  
Block121  
Block122  
Block123  
Block124  
Block125  
Block126  
Block127  
20  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block128  
Block129  
Block130  
Block131  
Block132  
Block133  
Block134  
Block135  
Block136  
Block137  
Block138  
Block139  
Block140  
Block141  
Block142  
Block143  
Block144  
Block145  
Block146  
Block147  
Block148  
Block149  
Block150  
Block151  
Block152  
Block153  
Block154  
Block155  
Block156  
Block157  
Block158  
Block159  
0080h  
0081h  
0082h  
0083h  
0084h  
0085h  
0086h  
0087h  
0088h  
0089h  
008Ah  
008Bh  
008Ch  
008Dh  
008Eh  
008Fh  
0090h  
0091h  
0092h  
0093h  
0094h  
0095h  
0096h  
0097h  
0098h  
0099h  
009Ah  
009Bh  
009Ch  
009Dh  
009Eh  
009Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block160  
Block161  
Block162  
Block163  
Block164  
Block165  
Block166  
Block167  
Block168  
Block169  
Block170  
Block171  
Block172  
Block173  
Block174  
Block175  
Block176  
Block177  
Block178  
Block179  
Block180  
Block181  
Block182  
Block183  
Block184  
Block185  
Block186  
Block187  
Block188  
Block189  
Block190  
Block191  
00A0h  
00A1h  
00A2h  
00A3h  
00A4h  
00A5h  
00A6h  
00A7h  
00A8h  
00A9h  
00AAh  
00ABh  
00ACh  
00ADh  
00AEh  
00AFh  
00B0h  
00B1h  
00B2h  
00B3h  
00B4h  
00B5h  
00B6h  
00B7h  
00B8h  
00B9h  
00BAh  
00BBh  
00BCh  
00BDh  
00BEh  
00BFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
21  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block192  
Block193  
Block194  
Block195  
Block196  
Block197  
Block198  
Block199  
Block200  
Block201  
Block202  
Block203  
Block204  
Block205  
Block206  
Block207  
Block208  
Block209  
Block210  
Block211  
Block212  
Block213  
Block214  
Block215  
Block216  
Block217  
Block218  
Block219  
Block220  
Block221  
Block222  
Block223  
00C0h  
00C1h  
00C2h  
00C3h  
00C4h  
00C5h  
00C6h  
00C7h  
00C8h  
00C9h  
00CAh  
00CBh  
00CCh  
00CDh  
00CEh  
00CFh  
00D0h  
00D1h  
00D2h  
00D3h  
00D4h  
00D5h  
00D6h  
00D7h  
00D8h  
00D9h  
00DAh  
00DBh  
00DCh  
00DDh  
00DEh  
00DFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block224  
Block225  
Block226  
Block227  
Block228  
Block229  
Block230  
Block231  
Block232  
Block233  
Block234  
Block235  
Block236  
Block237  
Block238  
Block239  
Block240  
Block241  
Block242  
Block243  
Block244  
Block245  
Block246  
Block247  
Block248  
Block249  
Block250  
Block251  
Block252  
Block253  
Block254  
Block255  
00E0h  
00E1h  
00E2h  
00E3h  
00E4h  
00E5h  
00E6h  
00E7h  
00E8h  
00E9h  
00EAh  
00EBh  
00ECh  
00EDh  
00EEh  
00EFh  
00F0h  
00F1h  
00F2h  
00F3h  
00F4h  
00F5h  
00F6h  
00F7h  
00F8h  
00F9h  
00FAh  
00FBh  
00FCh  
00FDh  
00FEh  
00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
22  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block256  
Block257  
Block258  
Block259  
Block260  
Block261  
Block262  
Block263  
Block264  
Block265  
Block266  
Block267  
Block268  
Block269  
Block270  
Block271  
Block272  
Block273  
Block274  
Block275  
Block276  
Block277  
Block278  
Block279  
Block280  
Block281  
Block282  
Block283  
Block284  
Block285  
Block286  
Block287  
0100h  
0101h  
0102h  
0103h  
0104h  
0105h  
0106h  
0107h  
0108h  
0109h  
010Ah  
010Bh  
010Ch  
010Dh  
010Eh  
010Fh  
0110h  
0111h  
0112h  
0113h  
0114h  
0115h  
0116h  
0117h  
0118h  
0119h  
011Ah  
011Bh  
011Ch  
011Dh  
011Eh  
011Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block288  
Block289  
Block290  
Block291  
Block292  
Block293  
Block294  
Block295  
Block296  
Block297  
Block298  
Block299  
Block300  
Block301  
Block302  
Block303  
Block304  
Block305  
Block306  
Block307  
Block308  
Block309  
Block310  
Block311  
Block312  
Block313  
Block314  
Block315  
Block316  
Block317  
Block318  
Block319  
0120h  
0121h  
0122h  
0123h  
0124h  
0125h  
0126h  
0127h  
0128h  
0129h  
012Ah  
012Bh  
012Ch  
012Dh  
012Eh  
012Fh  
0130h  
0131h  
0132h  
0133h  
0134h  
0135h  
0136h  
0137h  
0138h  
0139h  
013Ah  
013Bh  
013Ch  
013Dh  
013Eh  
013Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
23  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block320  
Block321  
Block322  
Block323  
Block324  
Block325  
Block326  
Block327  
Block328  
Block329  
Block330  
Block331  
Block332  
Block333  
Block334  
Block335  
Block336  
Block337  
Block338  
Block339  
Block340  
Block341  
Block342  
Block343  
Block344  
Block345  
Block346  
Block347  
Block348  
Block349  
Block350  
Block351  
0140h  
0141h  
0142h  
0143h  
0144h  
0145h  
0146h  
0147h  
0148h  
0149h  
014Ah  
014Bh  
014Ch  
014Dh  
014Eh  
014Fh  
0150h  
0151h  
0152h  
0153h  
0154h  
0155h  
0156h  
0157h  
0158h  
0159h  
015Ah  
015Bh  
015Ch  
015Dh  
015Eh  
015Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block352  
Block353  
Block354  
Block355  
Block356  
Block357  
Block358  
Block359  
Block360  
Block361  
Block362  
Block363  
Block364  
Block365  
Block366  
Block367  
Block368  
Block369  
Block370  
Block371  
Block372  
Block373  
Block374  
Block375  
Block376  
Block377  
Block378  
Block379  
Block380  
Block381  
Block382  
Block383  
0160h  
0161h  
0162h  
0163h  
0164h  
0165h  
0166h  
0167h  
0168h  
0169h  
016Ah  
016Bh  
016Ch  
016Dh  
016Eh  
016Fh  
0170h  
0171h  
0172h  
0173h  
0174h  
0175h  
0176h  
0177h  
0178h  
0179h  
017Ah  
017Bh  
017Ch  
017Dh  
017Eh  
017Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
24  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block384  
Block385  
Block386  
Block387  
Block388  
Block389  
Block390  
Block391  
Block392  
Block393  
Block394  
Block395  
Block396  
Block397  
Block398  
Block399  
Block400  
Block401  
Block402  
Block403  
Block404  
Block405  
Block406  
Block407  
Block408  
Block409  
Block410  
Block411  
Block412  
Block413  
Block414  
Block415  
0180h  
0181h  
0182h  
0183h  
0184h  
0185h  
0186h  
0187h  
0188h  
0189h  
018Ah  
018Bh  
018Ch  
018Dh  
018Eh  
018Fh  
0190h  
0191h  
0192h  
0193h  
0194h  
0195h  
0196h  
0197h  
0198h  
0199h  
019Ah  
019Bh  
019Ch  
019Dh  
019Eh  
019Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block416  
Block417  
Block418  
Block419  
Block420  
Block421  
Block422  
Block423  
Block424  
Block425  
Block426  
Block427  
Block428  
Block429  
Block430  
Block431  
Block432  
Block433  
Block434  
Block435  
Block436  
Block437  
Block438  
Block439  
Block440  
Block441  
Block442  
Block443  
Block444  
Block445  
Block446  
Block447  
01A0h  
01A1h  
01A2h  
01A3h  
01A4h  
01A5h  
01A6h  
01A7h  
01A8h  
01A9h  
01AAh  
01ABh  
01ACh  
01ADh  
01AEh  
01AFh  
01B0h  
01B1h  
01B2h  
01B3h  
01B4h  
01B5h  
01B6h  
01B7h  
01B8h  
01B9h  
01BAh  
01BBh  
01BCh  
01BDh  
01BEh  
01BFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
25  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block448  
Block449  
Block450  
Block451  
Block452  
Block453  
Block454  
Block455  
Block456  
Block457  
Block458  
Block459  
Block460  
Block461  
Block462  
Block463  
Block464  
Block465  
Block466  
Block467  
Block468  
Block469  
Block470  
Block471  
Block472  
Block473  
Block474  
Block475  
Block476  
Block477  
Block478  
Block479  
01C0h  
01C1h  
01C2h  
01C3h  
01C4h  
01C5h  
01C6h  
01C7h  
01C8h  
01C9h  
01CAh  
01CBh  
01CCh  
01CDh  
01CEh  
01CFh  
01D0h  
01D1h  
01D2h  
01D3h  
01D4h  
01D5h  
01D6h  
01D7h  
01D8h  
01D9h  
01DAh  
01DBh  
01DCh  
01DDh  
01DEh  
01DFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block480  
Block481  
Block482  
Block483  
Block484  
Block485  
Block486  
Block487  
Block488  
Block489  
Block490  
Block491  
Block492  
Block493  
Block494  
Block495  
Block496  
Block497  
Block498  
Block499  
Block500  
Block501  
Block502  
Block503  
Block504  
Block505  
Block506  
Block507  
Block508  
Block509  
Block510  
Block511  
01E0h  
01E1h  
01E2h  
01E3h  
01E4h  
01E5h  
01E6h  
01E7h  
01E8h  
01E9h  
01EAh  
01EBh  
01ECh  
01EDh  
01EEh  
01EFh  
01F0h  
01F1h  
01F2h  
01F3h  
01F4h  
01F5h  
01F6h  
01F7h  
01F8h  
01F9h  
01FAh  
01FBh  
01FCh  
01FDh  
01FEh  
01FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
26  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block512  
Block513  
Block514  
Block515  
Block516  
Block517  
Block518  
Block519  
Block520  
Block521  
Block522  
Block523  
Block524  
Block525  
Block526  
Block527  
Block528  
Block529  
Block530  
Block531  
Block532  
Block533  
Block534  
Block535  
Block536  
Block537  
Block538  
Block539  
Block540  
Block541  
Block542  
Block543  
0200h  
0201h  
0202h  
0203h  
0204h  
0205h  
0206h  
0207h  
0208h  
0209h  
020Ah  
020Bh  
020Ch  
020Dh  
020Eh  
020Fh  
0210h  
0211h  
0212h  
0213h  
0214h  
0215h  
0216h  
0217h  
0218h  
0219h  
021Ah  
021Bh  
021Ch  
021Dh  
021Eh  
021Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block544  
Block545  
Block546  
Block547  
Block548  
Block549  
Block550  
Block551  
Block552  
Block553  
Block554  
Block555  
Block556  
Block557  
Block558  
Block559  
Block560  
Block561  
Block562  
Block563  
Block564  
Block565  
Block566  
Block567  
Block568  
Block569  
Block570  
Block571  
Block572  
Block573  
Block574  
Block575  
0220h  
0221h  
0222h  
0223h  
0224h  
0225h  
0226h  
0227h  
0228h  
0229h  
022Ah  
022Bh  
022Ch  
022Dh  
022Eh  
022Fh  
0230h  
0231h  
0232h  
0233h  
0234h  
0235h  
0236h  
0237h  
0238h  
0239h  
023Ah  
023Bh  
023Ch  
023Dh  
023Eh  
023Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
27  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block576  
Block577  
Block578  
Block579  
Block580  
Block581  
Block582  
Block583  
Block584  
Block585  
Block586  
Block587  
Block588  
Block589  
Block590  
Block591  
Block592  
Block593  
Block594  
Block595  
Block596  
Block597  
Block598  
Block599  
Block600  
Block601  
Block602  
Block603  
Block604  
Block605  
Block606  
Block607  
0240h  
0241h  
0242h  
0243h  
0244h  
0245h  
0246h  
0247h  
0248h  
0249h  
024Ah  
024Bh  
024Ch  
024Dh  
024Eh  
024Fh  
0250h  
0251h  
0252h  
0253h  
0254h  
0255h  
0256h  
0257h  
0258h  
0259h  
025Ah  
025Bh  
025Ch  
025Dh  
025Eh  
025Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block608  
Block609  
Block610  
Block611  
Block612  
Block613  
Block614  
Block615  
Block616  
Block617  
Block618  
Block619  
Block620  
Block621  
Block622  
Block623  
Block624  
Block625  
Block626  
Block627  
Block628  
Block629  
Block630  
Block631  
Block632  
Block633  
Block634  
Block635  
Block636  
Block637  
Block638  
Block639  
0260h  
0261h  
0262h  
0263h  
0264h  
0265h  
0266h  
0267h  
0268h  
0269h  
026Ah  
026Bh  
026Ch  
026Dh  
026Eh  
026Fh  
0270h  
0271h  
0272h  
0273h  
0274h  
0275h  
0276h  
0277h  
0278h  
0279h  
027Ah  
027Bh  
027Ch  
027Dh  
027Eh  
027Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
28  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block640  
Block641  
Block642  
Block643  
Block644  
Block645  
Block646  
Block647  
Block648  
Block649  
Block650  
Block651  
Block652  
Block653  
Block654  
Block655  
Block656  
Block657  
Block658  
Block659  
Block660  
Block661  
Block662  
Block663  
Block664  
Block665  
Block666  
Block667  
Block668  
Block669  
Block670  
Block671  
0280h  
0281h  
0282h  
0283h  
0284h  
0285h  
0286h  
0287h  
0288h  
0289h  
028Ah  
028Bh  
028Ch  
028Dh  
028Eh  
028Fh  
0290h  
0291h  
0292h  
0293h  
0294h  
0295h  
0296h  
0297h  
0298h  
0299h  
029Ah  
029Bh  
029Ch  
029Dh  
029Eh  
029Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block672  
Block673  
Block674  
Block675  
Block676  
Block677  
Block678  
Block679  
Block680  
Block681  
Block682  
Block683  
Block684  
Block685  
Block686  
Block687  
Block688  
Block689  
Block690  
Block691  
Block692  
Block693  
Block694  
Block695  
Block696  
Block697  
Block698  
Block699  
Block700  
Block701  
Block702  
Block703  
02A0h  
02A1h  
02A2h  
02A3h  
02A4h  
02A5h  
02A6h  
02A7h  
02A8h  
02A9h  
02AAh  
02ABh  
02ACh  
02ADh  
02AEh  
02AFh  
02B0h  
02B1h  
02B2h  
02B3h  
02B4h  
02B5h  
02B6h  
02B7h  
02B8h  
02B9h  
02BAh  
02BBh  
02BCh  
02BDh  
02BEh  
02BFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
29  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block704  
Block705  
Block706  
Block707  
Block708  
Block709  
Block710  
Block711  
Block712  
Block713  
Block714  
Block715  
Block716  
Block717  
Block718  
Block719  
Block720  
Block721  
Block722  
Block723  
Block724  
Block725  
Block726  
Block727  
Block728  
Block729  
Block730  
Block731  
Block732  
Block733  
Block734  
Block735  
02C0h  
02C1h  
02C2h  
02C3h  
02C4h  
02C5h  
02C6h  
02C7h  
02C8h  
02C9h  
02CAh  
02CBh  
02CCh  
02CDh  
02CEh  
02CFh  
02D0h  
02D1h  
02D2h  
02D3h  
02D4h  
02D5h  
02D6h  
02D7h  
02D8h  
02D9h  
02DAh  
02DBh  
02DCh  
02DDh  
02DEh  
02DFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block736  
Block737  
Block738  
Block739  
Block740  
Block741  
Block742  
Block743  
Block744  
Block745  
Block746  
Block747  
Block748  
Block749  
Block750  
Block751  
Block752  
Block753  
Block754  
Block755  
Block756  
Block757  
Block758  
Block759  
Block760  
Block761  
Block762  
Block763  
Block764  
Block765  
Block766  
Block767  
02E0h  
02E1h  
02E2h  
02E3h  
02E4h  
02E5h  
02E6h  
02E7h  
02E8h  
02E9h  
02EAh  
02EBh  
02ECh  
02EDh  
02EEh  
02EFh  
02F0h  
02F1h  
02F2h  
02F3h  
02F4h  
02F5h  
02F6h  
02F7h  
02F8h  
02F9h  
02FAh  
02FBh  
02FCh  
02FDh  
02FEh  
02FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
30  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block768  
Block769  
Block770  
Block771  
Block772  
Block773  
Block774  
Block775  
Block776  
Block777  
Block778  
Block779  
Block780  
Block781  
Block782  
Block783  
Block784  
Block785  
Block786  
Block787  
Block788  
Block789  
Block790  
Block791  
Block792  
Block793  
Block794  
Block795  
Block796  
Block797  
Block798  
Block799  
0300h  
0301h  
0302h  
0303h  
0304h  
0305h  
0306h  
0307h  
0308h  
0309h  
030Ah  
030Bh  
030Ch  
030Dh  
030Eh  
030Fh  
0310h  
0311h  
0312h  
0313h  
0314h  
0315h  
0316h  
0317h  
0318h  
0319h  
031Ah  
031Bh  
031Ch  
031Dh  
031Eh  
031Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block800  
Block801  
Block802  
Block803  
Block804  
Block805  
Block806  
Block807  
Block808  
Block809  
Block810  
Block811  
Block812  
Block813  
Block814  
Block815  
Block816  
Block817  
Block818  
Block819  
Block820  
Block821  
Block822  
Block823  
Block824  
Block825  
Block826  
Block827  
Block828  
Block829  
Block830  
Block831  
0320h  
0321h  
0322h  
0323h  
0324h  
0325h  
0326h  
0327h  
0328h  
0329h  
032Ah  
032Bh  
032Ch  
032Dh  
032Eh  
032Fh  
0330h  
0331h  
0332h  
0333h  
0334h  
0335h  
0336h  
0337h  
0338h  
0339h  
033Ah  
033Bh  
033Ch  
033Dh  
033Eh  
033Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
31  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block832  
Block833  
Block834  
Block835  
Block836  
Block837  
Block838  
Block839  
Block840  
Block841  
Block842  
Block843  
Block844  
Block845  
Block846  
Block847  
Block848  
Block849  
Block850  
Block851  
Block852  
Block853  
Block854  
Block855  
Block856  
Block857  
Block858  
Block859  
Block860  
Block861  
Block862  
Block863  
0340h  
0341h  
0342h  
0343h  
0344h  
0345h  
0346h  
0347h  
0348h  
0349h  
034Ah  
034Bh  
034Ch  
034Dh  
034Eh  
034Fh  
0350h  
0351h  
0352h  
0353h  
0354h  
0355h  
0356h  
0357h  
0358h  
0359h  
035Ah  
035Bh  
035Ch  
035Dh  
035Eh  
035Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block864  
Block865  
Block866  
Block867  
Block868  
Block869  
Block870  
Block871  
Block872  
Block873  
Block874  
Block875  
Block876  
Block877  
Block878  
Block879  
Block880  
Block881  
Block882  
Block883  
Block884  
Block885  
Block886  
Block887  
Block888  
Block889  
Block890  
Block891  
Block892  
Block893  
Block894  
Block895  
0360h  
0361h  
0362h  
0363h  
0364h  
0365h  
0366h  
0367h  
0368h  
0369h  
036Ah  
036Bh  
036Ch  
036Dh  
036Eh  
036Fh  
0370h  
0371h  
0372h  
0373h  
0374h  
0375h  
0376h  
0377h  
0378h  
0379h  
037Ah  
037Bh  
037Ch  
037Dh  
037Eh  
037Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
32  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block896  
Block897  
Block898  
Block899  
Block900  
Block901  
Block902  
Block903  
Block904  
Block905  
Block906  
Block907  
Block908  
Block909  
Block910  
Block911  
Block912  
Block913  
Block914  
Block915  
Block916  
Block917  
Block918  
Block919  
Block920  
Block921  
Block922  
Block923  
Block924  
Block925  
Block926  
Block927  
0380h  
0381h  
0382h  
0383h  
0384h  
0385h  
0386h  
0387h  
0388h  
0389h  
038Ah  
038Bh  
038Ch  
038Dh  
038Eh  
038Fh  
0390h  
0391h  
0392h  
0393h  
0394h  
0395h  
0396h  
0397h  
0398h  
0399h  
039Ah  
039Bh  
039Ch  
039Dh  
039Eh  
039Fh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block928  
Block929  
Block930  
Block931  
Block932  
Block933  
Block934  
Block935  
Block936  
Block937  
Block938  
Block939  
Block940  
Block941  
Block942  
Block943  
Block944  
Block945  
Block946  
Block947  
Block948  
Block949  
Block950  
Block951  
Block952  
Block953  
Block954  
Block955  
Block956  
Block957  
Block958  
Block959  
03A0h  
03A1h  
03A2h  
03A3h  
03A4h  
03A5h  
03A6h  
03A7h  
03A8h  
03A9h  
03AAh  
03ABh  
03ACh  
03ADh  
03AEh  
03AFh  
03B0h  
03B1h  
03B2h  
03B3h  
03B4h  
03B5h  
03B6h  
03B7h  
03B8h  
03B9h  
03BAh  
03BBh  
03BCh  
03BDh  
03BEh  
03BFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
33  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Page and Sector  
Page and Sector  
Size  
Block  
Block Address  
Size  
Block  
Block Address  
Address  
Address  
Block960  
Block961  
Block962  
Block963  
Block964  
Block965  
Block966  
Block967  
Block968  
Block969  
Block970  
Block971  
Block972  
Block973  
Block974  
Block975  
Block976  
Block977  
Block978  
Block979  
Block980  
Block981  
Block982  
Block983  
Block984  
Block985  
Block986  
Block987  
Block988  
Block989  
Block990  
Block991  
03C0h  
03C1h  
03C2h  
03C3h  
03C4h  
03C5h  
03C6h  
03C7h  
03C8h  
03C9h  
03CAh  
03CBh  
03CCh  
03CDh  
03CEh  
03CFh  
03D0h  
03D1h  
03D2h  
03D3h  
03D4h  
03D5h  
03D6h  
03D7h  
03D8h  
03D9h  
03DAh  
03DBh  
03DCh  
03DDh  
03DEh  
03DFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block992  
Block993  
03E0h  
03E1h  
03E2h  
03E3h  
03E4h  
03E5h  
03E6h  
03E7h  
03E8h  
03E9h  
03EAh  
03EBh  
03ECh  
03EDh  
03EEh  
03EFh  
03F0h  
03F1h  
03F2h  
03F3h  
03F4h  
03F5h  
03F6h  
03F7h  
03F8h  
03F9h  
03FAh  
03FBh  
03FCh  
03FDh  
03FEh  
03FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
0000h~00FFh  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
128KB  
Block994  
Block995  
Block996  
Block997  
Block998  
Block999  
Block1000  
Block1001  
Block1002  
Block1003  
Block1004  
Block1005  
Block1006  
Block1007  
Block1008  
Block1009  
Block1010  
Block1011  
Block1012  
Block1013  
Block1014  
Block1015  
Block1016  
Block1017  
Block1018  
Block1019  
Block1020  
Block1021  
Block1022  
Block1023  
34  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.7.2 Internal Memory Spare Area Assignment  
The figure below shows the assignment of the spare area in the Internal Memory NAND Array.  
Spare Spare Spare Spare  
Main area Main area Main area Main area area area area area  
256W 256W 256W 256W 8W 8W 8W 8W  
ECCm ECCm ECCm ECCs ECCs  
Note1 Note1 Note2 Note2 Note2 Note3 Note3 Note3  
Note3 Note4 Note4  
1st  
2nd  
3rd  
1st  
2nd  
LSB  
MSB  
LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB  
1st W  
2nd  
W
3rd W  
4th W  
5th W  
6th W  
7th W  
8th W  
Spare Area Assignment in the Internal Memory NAND Array Information  
Word  
Byte  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
Note  
Description  
1
1
Invalid Block information in 1st and 2nd page of an invalid block  
2
3
4
2
3
Managed by internal ECC logic for Logical Sector Number data  
Reserved for future use  
Dedicated to internal ECC logic. Read Only.  
ECCm 1st for main area data  
LSB  
MSB  
LSB  
MSB  
LSB  
5
6
Dedicated to internal ECC logic. Read Only.  
ECCm 2nd for main area data  
Dedicated to internal ECC logic. Read Only.  
ECCm 3rd for main area data  
Dedicated to internal ECC logic. Read Only.  
ECCs 1st for 2nd word of spare area data  
Dedicated to internal ECC logic. Read Only.  
ECCs 2nd for 3rd word of spare area data  
7
8
MSB  
LSB  
MSB  
3
4
Reserved for future use  
Available to the user  
35  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.7.3 External Memory (BufferRAM) Address Map  
The following table shows the External Memory address map in Word and Byte Order.  
Note that the data output is unknown while host reads a register bit of reserved area.  
Address  
(word order)  
Address  
(byte order)  
Size  
(total 128KB)  
Division  
Usage  
Description  
Main area  
(64KB)  
0000h~00FFh 00000h~001FEh  
0100h~01FFh 00200h~003FEh  
0200h~02FFh 00400h~005FEh  
0300h~03FFh 00600h~007FEh  
0400h~04FFh 00800h~009FEh  
0500h~05FFh 00A00h~00BFEh  
0600h~06FFh 00C00h~00DFEh  
0700h~07FFh 00E00h~00FFEh  
0800h~08FFh 01000h~011FEh  
0900h~09FFh 01200h~013FEh  
0A00h~7FFFh 01400h~0FFFEh  
512B  
512B  
512B  
512B  
512B  
512B  
512B  
512B  
512B  
512B  
59K  
BootM 0  
BootM 1  
BootRAM Main sector0  
BootRAM Main sector1  
1KB  
4KB  
R
DataM 0_0  
DataM 0_1  
DataM 0_2  
DataM 0_3  
DataM 1_0  
DataM 1_1  
DataM 1_2  
DataM 1_3  
Reserved  
BootS 0  
DataRAM Main page0/sector0  
DataRAM Main page0/sector1  
DataRAM Main page0/sector2  
DataRAM Main page0/sector3  
DataRAM Main page1/sector0  
DataRAM Main page1/sector1  
DataRAM Main page1/sector2  
DataRAM Main page1/sector3  
Reserved  
R/W  
59K  
32B  
-
Spare area 8000h~8007h 10000h~1000Eh  
(8KB)  
16B  
BootRAM Spare sector0  
R
8008h~800Fh 10010h~1001Eh  
16B  
BootS 1  
BootRAM Spare sector1  
8010h~8017h 10020h~1002Eh  
8018h~801Fh 10030h~1003Eh  
8020h~8027h 10040h~1004Eh  
8028h~802Fh 10050h~1005Eh  
8030h~8037h 10060h~1006Eh  
8038h~803Fh 10070h~1007Eh  
8040h~8047h 10080h~1008Eh  
8048h~804Fh 10090h~1009Eh  
16B  
DataS 0_0  
DataS 0_1  
DataS 0_2  
DataS 0_3  
DataS 1_0  
DataS 1_1  
DataS 1_2  
DataS 1_3  
Reserved  
DataRAM Spare page0/sector0  
DataRAM Spare page0/sector1  
DataRAM Spare page0/sector2  
DataRAM Spare page0/sector3  
DataRAM Spare page1/sector0  
DataRAM Spare page1/sector1  
DataRAM Spare page1/sector2  
DataRAM Spare page1/sector3  
Reserved  
16B  
16B  
16B  
128B  
R/W  
16B  
16B  
16B  
16B  
8050h~8FFFh 100A0h~11FFEh 8032B  
8032B  
24KB  
-
-
Reserved  
(24KB)  
9000h~BFFFh 12000h~17FFEh  
C000h~CFFFh 18000h~19FFEh  
24KB  
8KB  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Registers  
Reserved  
(8KB)  
8KB  
16KB  
8KB  
-
-
Reserved  
(16KB)  
D000h~EFFFh 1A000h~1DFFEh 16KB  
F000h~FFFFh 1E000h~1FFFEh 8KB  
Registers  
(8KB)  
R or R/W Registers  
36  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.7.4 External Memory Detail Map Information  
The tables below show Word Order Address Map information for the BootRAM and DataRAM main and spare areas.  
BootRAM(Main area)  
-0000h~01FFh: 2(sector) x 512byte(NAND main area) = 1KB  
0000h~00FFh(512B)  
BootM 0  
0100h~01FFh(512B)  
BootM 1  
(sector 0 of page 0)  
(sector 1 of page 0)  
DataRAM(Main area)  
-0200h~09FFh: 8(sector) x 512byte(NAND main area) = 4KB  
0200h~02FFh(512B)  
DataM 0_0  
0300h~03FFh(512B)  
DataM 0_1  
0400h~04FFh(512B)  
0500h~05FFh(512B)  
DataM 0_3  
DataM 0_2  
(sector 0 of page 0)  
(sector 1 of page 0)  
(sector 2 of page 0)  
(sector 3 of page 0)  
0600h~06FFh(512B)  
DataM 1_0  
0700h~07FFh(512B)  
DataM 1_1  
0800h~08FFh(512B)  
DataM 1_2  
0900h~09FFh(512B)  
DataM 1_3  
(sector 0 of page 1)  
(sector 1 of page 1)  
(sector 2 of page 1)  
(sector 3 of page 1)  
BootRAM(Spare area)  
-8000h~800Fh: 2(sector) x 16byte(NAND spare area) = 32B  
8000h~8007h(16B)  
BootS 0  
8008h~800Fh(16B)  
BootS 1  
(sector 0 of page 0)  
(sector 1 of page 0)  
DataRAM(Spare area)  
-8010h~804Fh: 8(sector) x 16byte(NAND spare area) = 128B  
8010h~8017h(16B)  
DataS 0_0  
8018h~801Fh(16B)  
DataS 0_1  
8020h~8027h(16B)  
8028h~802Fh(16B)  
DataS 0_3  
DataS 0_2  
(sector 0 of page 0)  
(sector 1 of page 0)  
(sector 2 of page 0)  
(sector 3 of page 0)  
8030h~8037h(16B)  
DataS 1_0  
8038h~803Fh(16B)  
DataS 1_1  
8040h~8047h(16B)  
DataS 1_2  
8048h~804Fh(16B)  
DataS 1_3  
(sector 0 of page 1)  
(sector 1 of page 1)  
(sector 2 of page 1)  
(sector 3 of page 1)  
*NAND Flash array consists of 2KB page size and 128KB block size.  
37  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.7.5 External Memory Spare Area Assignment  
Equivalent to 1word of NAND Flash  
Word  
Address Address  
Byte  
Buf.  
F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0
BootS 0  
8000h  
8001h  
8002h  
8003h  
8004h  
8005h  
8006h  
8007h  
8008h  
8009h  
800Ah  
800Bh  
800Ch  
800Dh  
800Eh  
800Fh  
8010h  
8011h  
8012h  
8013h  
8014h  
8015h  
8016h  
8017h  
8018h  
8019h  
801Ah  
801Bh  
801Ch  
801Dh  
801Eh  
801Fh  
10000h  
10002h  
10004h  
10006h  
10008h  
1000Ah  
1000Ch  
1000Eh  
10010h  
10012h  
10014h  
10016h  
10018h  
1001Ah  
1001Ch  
1001Eh  
10020h  
10022h  
10024h  
10026h  
10028h  
1002Ah  
1002Ch  
1002Eh  
10030h  
10032h  
10034h  
10036h  
10038h  
1003Ah  
1003Ch  
1003Eh  
BI  
Managed by Internal ECC logic  
Reserved for the future use  
Managed by Internal ECC logic  
Reserved for the current and future use  
ECC Code for Main area data (2nd)  
ECC Code for Spare area data (1st)  
FFh(Reserved for the future use)  
ECC Code for Main area data (1st)  
ECC Code for Main area data (3rd)  
ECC Code for Spare area data (2nd)  
Free Usage  
BI  
BootS 1  
Managed by Internal ECC logic  
Reserved for the future use Managed by Internal ECC logic  
Reserved for the current and future use  
ECC Code for Main area data (2nd)  
ECC Code for Main area data (1st)  
ECC Code for Main area data (3rd)  
ECC Code for Spare area data (2nd)  
ECC Code for Spare area data (1st)  
FFh(Reserved for the future use)  
Free Usage  
BI  
DataS  
0_0  
Managed by Internal ECC logic  
Reserved for the future use Managed by Internal ECC logic  
Reserved for the current and future use  
ECC Code for Main area data (2nd)  
ECC Code for Main area data (1st)  
ECC Code for Main area data (3rd)  
ECC Code for Spare area data (2nd)  
ECC Code for Spare area data (1st)  
FFh(Reserved for the future use)  
Free Usage  
BI  
DataS  
0_1  
Managed by Internal ECC logic  
Reserved for the future use Managed by Internal ECC logic  
Reserved for the current and future use  
ECC Code for Main area data (2nd)  
ECC Code for Main area data (1st)  
ECC Code for Main area data (3rd)  
ECC Code for Spare area data (2nd)  
ECC Code for Spare area data (1st)  
FFh(Reserved for the future use)  
Free Usage  
38  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Word  
Address Address  
Byte  
Buf.  
F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0
DataS 0_2  
8020h  
8021h  
8022h  
8023h  
8024h  
8025h  
8026h  
8027h  
8028h  
8029h  
802Ah  
802Bh  
802Ch  
802Dh  
802Eh  
802Fh  
8030h  
8031h  
8032h  
8033h  
8034h  
8035h  
8036h  
8037h  
8038h  
8039h  
803Ah  
803Bh  
803Ch  
803Dh  
803Eh  
803Fh  
8040h  
8041h  
8042h  
8043h  
8044h  
8045h  
8046h  
8047h  
10040h  
10042h  
10044h  
10046h  
10048h  
1004Ah  
1004Ch  
1004Eh  
10050h  
10052h  
10054h  
10056h  
10058h  
1005Ah  
1005Ch  
1005Eh  
10060h  
10062h  
10064h  
10066h  
10068h  
1006Ah  
1006Ch  
1006Eh  
10070h  
10072h  
10074h  
10076h  
10078h  
1007Ah  
1007Ch  
1007Eh  
10080h  
10082h  
10084h  
10086h  
10088h  
1008Ah  
1008Ch  
1008Eh  
BI  
Managed by Internal ECC logic  
Reserved for the future use  
Managed by Internal ECC logic  
Reserved for the current and future use  
ECC Code for Main area data (2nd)  
ECC Code for Spare area data (1st)  
Reserved for the future use  
ECC Code for Main area data (1st)  
ECC Code for Main area data (3rd)  
ECC Code for Spare area data (2nd)  
Free Usage  
BI  
DataS 0_3  
DataS 1_0  
DataS 1_1  
DataS 1_2  
Managed by Internal ECC logic  
Reserved for the future use Managed by Internal ECC logic  
Reserved for the current and future use  
ECC Code for Main area data (2nd)  
ECC Code for Main area data (1st)  
ECC Code for Main area data (3rd)  
ECC Code for Spare area data (2nd)  
ECC Code for Spare area data (1st)  
Reserved for the future use  
Free Usage  
BI  
Managed by Internal ECC logic  
Reserved for the future use Managed by Internal ECC logic  
Reserved for the current and future use  
ECC Code for Main area data (2nd)  
ECC Code for Main area data (1st)  
ECC Code for Main area data (3rd)  
ECC Code for Spare area data (2nd)  
ECC Code for Spare area data (1st)  
Reserved for the future use  
Free Usage  
BI  
Managed by Internal ECC logic  
Reserved for the future use Managed by Internal ECC logic  
Reserved for the current and future use  
ECC Code for Main area data (2nd)  
ECC Code for Main area data (1st)  
ECC Code for Main area data (3rd)  
ECC Code for Spare area data (2nd)  
ECC Code for Spare area data (1st)  
Reserved for the future use  
Free Usage  
BI  
Managed by Internal ECC logic  
Reserved for the future use Managed by Internal ECC logic  
Reserved for the current and future use  
ECC Code for Main area data (2nd)  
ECC Code for Main area data (1st)  
ECC Code for Main area data (3rd)  
ECC Code for Spare area data (2nd)  
ECC Code for Spare area data (1st)  
Reserved for the future use  
Free Usage  
39  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Equivalent to 1word of NAND Flash  
Word  
Address Address  
Byte  
Buf.  
F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0
DataS 1_3 8048h  
8049h  
10090h  
10092h  
10094h  
10096h  
10098h  
1009Ah  
1009Ch  
1009Eh  
BI  
Managed by Internal ECC logic  
804Ah  
Reserved for the future use  
Managed by Internal ECC logic  
804Bh  
Reserved for the current and future use  
804Ch  
ECC Code for Main area data (2nd)  
ECC Code for Spare area data (1st)  
Reserved for the future use  
ECC Code for Main area data (1st)  
ECC Code for Main area data (3rd)  
ECC Code for Spare area data (2nd)  
804Dh  
804Eh  
804Fh  
Free Usage  
NOTE:  
- BI: Bad block Information  
>Host can use complete spare area except BI and ECC code area. For example,  
Host can write data to Spare area buffer except for the area controlled by ECC logic at program operation.  
>In case of ’with ECC’ mode, OneNAND automatically generates ECC code for both main and spare data of memory during program operation,  
but does not update ECC code to spare bufferRAM during load operation.  
>When loading/programming spare area, spare area BufferRAM address(BSA) and BufferRAM sector count(BSC) is chosen via Start buffer register  
as it is.  
40  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.8  
Registers  
Section 2.8 of this specification provides information about the OneNAND1G registers.  
2.8.1 Register Address Map  
This map describes the register addresses, register name, register description, and host accessibility.  
Address  
(word order)  
Address  
(byte order)  
Host  
Access  
Name  
Description  
Manufacturer identification  
F000h  
F001h  
F002h  
F003h  
F004h  
1E000h  
1E002h  
1E004h  
1E006h  
1E008h  
Manufacturer ID  
Device ID  
R
R
R
R
R
Device identification  
N/A  
Version ID  
Data Buffer size  
Boot Buffer size  
Data buffer size  
Boot buffer size  
Amount of  
buffers  
F005h  
1E00Ah  
R
Amount of data/boot buffers  
F006h  
1E00Ch  
Technology  
Reserved  
R
-
Info about technology  
Reserved for user  
F007h~F0FFh  
1E00Eh~1E1FEh  
Chip address for selection of NAND  
Core in DDP & Block address  
F100h  
1E200h  
Start address 1  
R/W  
F101h  
F102h  
1E202h  
1E204h  
Start address 2  
Start address 3  
R/W  
R/W  
Chip address for selection of BufferRAM in DDP  
Destination Block address for Copy back program  
Destination Page & Sector address for Copy  
back program  
F103h  
1E206h  
Start address 4  
R/W  
F104h  
F105h  
1E208h  
1E20Ah  
Start address 5  
Start address 6  
Start address 7  
Start address 8  
Reserved  
-
N/A  
-
N/A  
F106h  
1E20Ch  
-
R/W  
-
N/A  
F107h  
1E20Eh  
NAND Flash Page & Sector address  
Reserved for user  
F108h~F1FFh  
1E210h~1E3FEh  
Buffer Number for the page data transfer to/from the  
memory and the start Buffer Address  
The meaning is with which buffer to start and how many  
buffers to use for the data transfer  
F200h  
1E400h  
Start Buffer  
R/W  
F201h~F207h  
F208h~F21Fh  
F220h  
1E402h~1E40Eh  
1E410h~1E43Eh  
1E440h  
Reserved  
Reserved  
Command  
-
-
Reserved for user  
Reserved for vendor specific purposes  
Host control and memory operation commands  
R/W  
System  
Configuration 1  
F221h  
F222h  
1E442h  
1E444h  
R, R/W Memory and Host Interface Configuration  
System  
Configuration 2  
-
N/A  
F223h~F22Fh  
F230h~F23Fh  
F240h  
1E446h~1E45Eh  
1E460h~1E47Eh  
1E480h  
Reserved  
Reserved  
-
Reserved for user  
-
R
Reserved for vendor specific purposes  
Controller Status and result of memory operation  
Memory Command Completion Interrupt Status  
Reserved for user  
Controller Status  
Interrupt  
F241h  
1E482h  
R/W  
-
F242h~F24Bh  
1E484h~1E496h  
Reserved  
Start  
Block Address  
F24Ch  
1E498h  
R/W  
Start memory block address in Write Protection mode  
41  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Address  
(word order)  
Address  
(byte order)  
Host  
Access  
Name  
Description  
F24Dh  
F24Eh  
1E49Ah  
1E49Ch  
Reserved  
R/W  
Reserved for user  
Write Protection  
Status  
Current memory Write Protection status  
(unlocked/locked/tight-locked)  
R
-
F24Fh~FEFFh  
FF00h  
1E49Eh~1FDFEh  
1FE00h  
Reserved  
Reserved for user  
ECC Status  
Register  
R
ECC status of sector  
ECC Result of  
main area data  
ECC error position of Main area data error for first  
selected Sector  
FF01h  
FF02h  
FF03h  
FF04h  
FF05h  
FF06h  
FF07h  
1FE02h  
1FE04h  
1FE06h  
1FE08h  
1FE0Ah  
1FE0Ch  
1FE0Eh  
R
R
R
R
R
R
R
ECC Result of  
spare area data  
ECC error position of Spare area data error for first  
selected Sector  
ECC Result of  
main area data  
ECC error position of Main area data error for second  
selected Sector  
ECC Result of  
spare area data  
ECC error position of Spare area data error for second  
selected Sector  
ECC Result of  
main area data  
ECC error position of Main area data error for third  
selected Sector  
ECC Result of  
spare area data  
ECC error position of Spare area data error for third  
selected Sector  
ECC Result of  
main area data  
ECC error position of Main area data error for fourth  
selected Sector  
ECC Result of  
spare area data  
ECC error position of Spare area data error for fourth  
selected Sector  
FF08h  
1FE10h  
R
-
FF09h~FFFFh  
1FE12h~1FFFEh  
Reserved  
Reserved for vendor specific purposes  
2.8.2 Manufacturer ID Register F000h (R)  
This Read register describes the manufacturer's identification.  
Samsung Electronics Company manufacturer's ID is 00ECh.  
F000h, default = 00ECh  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ManufID  
42  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.8.3 Device ID Register F001h (R)  
This Read register describes the device.  
F001h, see table for default.  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DeviceID  
Device Identification  
Device Identification  
Description  
DeviceID [1:0] Vcc  
DeviceID [2] Muxed/Demuxed  
DeviceID [3] Single/DPP  
DeviceID [6:4] Density  
00 = 1.8V, 01 = 2.65V/3.3V, 10/11 = reserved  
0 = Muxed, 1 = Demuxed  
0 = Single, 1 = DDP  
000 = 128Mb, 001 = 256Mb, 010 = 512Mb, 011 = 1Gb, 100 = 2Gb, 101=4Gb  
Device ID Default  
Device  
DeviceID[15:0]  
0034h  
KFG1G16Q2M  
KFH2G16Q2M  
KFW4G16Q2M  
004Ch  
004Ch1)  
Note1) Due to KFW4G16Q2M is QDP with dual KFH2G16Q2M, Device ID[15:0] is same as KFH2G16Q2M  
43  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.8.4 Version ID Register F002h  
This register is reserved for manufacturer  
2.8.5 Data Buffer Size Register F003h (R)  
This Read register describes the size of the Data Buffer.  
F003h, default = 0800h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DataBufSize  
Data Buffer Size Information  
Version Identification  
Description  
Total data buffer size in Words equal to 2 buffers of 1024 Words each  
(2 x 1024 = 211) in the memory interface  
DataBufSize  
2.8.6 Boot Buffer Size Register F004h (R)  
This Read register describes the size of the Boot Buffer.  
F004h, default = 0200h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BootBufSize  
Register Information  
Description  
Total boot buffer size in Words equal to 1 buffer of 512 Words  
(1 x 512 = 29) in the memory interface  
BootBufSize  
44  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.8.7 Number of Buffers Register F005h (R)  
This Read register describes the number of each Buffer.  
F005h, default = 0201h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DataBufAmount  
BootBufAmount  
Number of Buffers Information  
Register Information  
DataBufAmount  
Description  
The number of data buffers = 2 (2N, N=1)  
The number of boot buffers = 1 (2N, N=0)  
BootBufAmount  
2.8.8 Technology Register F006h (R)  
This Read register describes the internal NAND array technology.  
F006h, default = 0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Tech  
Technology Information  
Technology  
NAND SLC  
NAND MLC  
Reserved  
Register Setting  
0000h  
0001h  
0002h ~ FFFFh  
45  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.8.9 Start Address1 Register F100h (R/W)  
This Read/Write register describes the NAND Flash block address which will be loaded, programmed, or erased.  
F100h, default = 0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DFS  
Reserved(00000)  
FBA  
Device  
Number of Block  
FBA  
2Gb DDP  
1Gb  
2048  
1024  
DFS[15] & FBA[9:0]  
FBA[9:0]  
Start Address1 Information  
Register Information  
Description  
NAND Flash Block Address  
Flash Core of DDP (Device Flash Core Select)  
FBA  
DFS  
2.8.10 Start Address2 Register F101h (R/W)  
This Read/Write register describes the BufferRAM of DDP (Device BufferRAM Select)  
F101h, default = 0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DBS  
Reserved(000000000000000)  
Start Address2 Information  
Register Information  
Description  
DBS  
BufferRAM of DDP (Device BufferRAM Select)  
CHIP 1  
Comp  
Comp  
SRAM  
DBS  
BUFFER  
DFS  
CE  
FLASH  
CORE  
DDP_OPT  
GND  
INT  
CE  
INT  
CHIP 2  
VDD  
DDP_OPT  
INT  
CE  
SRAM  
DBS  
BUFFER  
Comp  
Comp  
DFS  
FLASH  
CORE  
46  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.8.11 Start Address3 Register F102h (R/W)  
This Read/Write register describes the NAND Flash destination block address which will be copy back programmed.  
F102h, default = 0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(000000)  
FCBA  
Device  
Number of Block  
FBA  
1Gb  
1024  
FCBA[9:0]  
Start Address3 Information  
Register Information  
Description  
NAND Flash Copy Back Block Address  
FCBA  
2.8.12 Start Address4 Register F103h (R/W)  
This Read/Write register describes the NAND Flash destination page address in a block and the NAND Flash destination sector  
address in a page for copy back programming.  
F103h, default = 0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(00000000)  
FCPA  
FCSA  
Start Address4 Information  
Item  
Description  
Default Value  
Range  
NAND Flash Copy Back Page  
Address  
000000 ~ 111111,  
6 bits for 64 pages  
FCPA  
000000  
NAND Flash Copy Back Sector  
Address  
00 ~ 11,  
2 bits for 4 sectors  
FCSA  
00  
47  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.8.13 Start Address5 Register F104h  
This register is reserved for future use.  
2.8.14 Start Address6 Register F105h  
This register is reserved for future use.  
2.8.15 Start Address7 Register F106h  
This register is reserved for future use.  
2.8.16 Start Address8 Register F107h (R/W)  
This Read/Write register describes the NAND Flash start page address in a block for a page load, copy back program, or program  
operation and the NAND Flash start sector address in a page for a load, copy back program, or program operation.  
F107h, default = 0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved (00000000)  
FPA  
FSA  
Start Address8 Information  
Item  
Description  
Default Value  
Range  
000000 ~ 111111,  
6 bits for 64 pages  
FPA  
NAND Flash Page Address  
NAND Flash Sector Address  
000000  
00 ~ 11,  
2 bits for 4 sectors  
FSA  
00  
48  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.8.17 Start Buffer Register F200h (R/W)  
This Read/Write register describes the BufferRAM Sector Count (BSC) and BufferRAM Sector Address (BSA).  
The BufferRAM Sector Count (BSC) field specifies the number of sectors to be loaded, programmed, or copy back programmed. At  
00 value (the default value), thenumber of sector is "4". If the internal RAM buffer reaches its maximum value of 11, it will count up to  
0 value to meet the BSC value. For example, if BSA = 1101, BSC = 00, then the selected BufferRAM will count up from '1101 →  
1110 1111 1100'.  
The BufferRAM Sector Address (BSA) is the sector 0~3 address in the internal BootRAM and DataRAM where data is placed.  
F200h, default = 0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000)  
BSA  
Reserved(000000)  
BSC  
Start Buffer Register Information  
Item  
Description  
BSA[3]  
BSA[2]  
Selection bit between BootRAM and DataRAM  
Selection bit between DataRAM0 and DataRAM1  
Selection bit between Sector0 and Sector1 in the internal BootRAM  
Selection bit between Sector0 to Sector3 in the internal DataRAM  
BSA[1:0]  
Spare area data  
16B  
Main area data  
512B  
BSA  
0000  
0001  
BootRAM 0  
BootRAM 1  
Sector: (512 + 16) Byte  
BootRAM  
DataRAM 0_0  
DataRAM 0_1  
DataRAM 0_2  
DataRAM 0_3  
1000  
1001  
1010  
1011  
DataRAM0  
BSC  
01  
Number of Sectors  
1 sector  
DataRAM 1_0  
DataRAM 1_1  
DataRAM 1_2  
DataRAM 1_3  
1100  
1101  
1110  
1111  
10  
2 sector  
DataRAM1  
11  
3 sector  
00  
4 sector  
49  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.8.18 Command Register F220h (R/W)  
This Read/Write register describes the operation of the MuxOneNAND interface.  
Note that all commands should be issued right after INT is turned from ready state to busy state. (i.e. right after 0 is written to INT reg-  
ister.) After any command is issued and the corresponding operation is completed, INT goes back to ready state. (00F0h and 00F3h  
may be accepted during busy state of some operations. Refer to the rightmost column of the command register table below.)  
F220h, default = 0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Command  
Acceptable  
command  
CMD  
Operation  
during busy  
0000h  
0013h  
0080h  
001Ah  
001Bh  
0023h  
002Ah  
002Ch  
0071h  
0094h  
0095h  
00B0h  
0030h  
00F0h  
00F3h  
0065h  
Load single/multiple sector data unit into buffer  
Load single/multiple spare sector into buffer  
00F0h, 00F3h  
00F0h, 00F3h  
00F0h, 00F3h  
00F0h, 00F3h  
00F0h, 00F3h  
-
Program single/multiple sector data unit from buffer1)  
Program single/multiple spare data unit from buffer  
Copy back Program operation  
Unlock NAND array a block  
Lock NAND array a block  
Lock-tight NAND array a block  
Erase Verify Read  
-
00F0h, 00F3h  
Block Erase  
00F0h, 00F3h  
Multi-Block Erase  
00F0h, 00F3h  
Erase Suspend  
-
Erase Resume  
00F0h, 00F3h  
Reset NAND Flash Core  
-
Reset OneNAND 2)  
OTP Access  
-
00F0h, 00F3h  
NOTE:  
1) 0080h programs both main and spare area, while 001Ah programs only spare area. Refer to chapter 5.8 for NOP limits in issuing these commands.  
When using 0080h and 001Ah command, Read-only part in spare area must be masked by FF. (Refer to chapter 2.7.2)  
2) ’Reset OneNAND’(=Hot reset) command makes the registers and NAND Flash core into default state as the warm reset(=reset by RP pin).  
50  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.8.19 System Configuration 1 Register F221h (R, R/W)  
This Read/Write register describes the system configuration.  
F221h, default = 40C0h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R
RDY  
pol  
INT  
pol  
RDY  
Conf  
RM  
BRL  
BL  
ECC  
IOBE  
Reserved(000)  
BWPS  
Read Mode (RM)  
RM  
Read Mode  
0
1
Asynchronous read(default)  
Synchronous read  
Read Mode Information[15]  
Item  
Definition  
Description  
Selects between asynchronous read mode and  
synchronous read mode  
RM  
Read Mode  
Burst Read Latency (BRL)  
BRL  
000  
001  
010  
011  
100  
101  
110  
111  
Latency Cycles  
8(N/A)  
9(N/A)  
10(N/A)  
3(up to 40MHz)  
4(default, min.)  
5
6
7
Burst Read Latency (BRL) Information[14:12]  
Item  
Definition  
Description  
Specifies the access latency in the burst read  
transfer for the initial access  
BRL  
Burst Read Latency  
51  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Burst Length (BL)  
BL  
000  
Burst Length(Main)  
Burst Length(Spare)  
Continuous(default)  
4 words  
001  
010  
8 words  
011  
16 words  
100  
32 words  
N/A  
101~111  
Reserved  
Burst Length (BL) Information[11:9]  
Item  
Definition  
Description  
Specifies the size of the burst length during a synchronous  
read, wrap around and linear burst read  
BL  
Burst Length  
Error Correction Code (ECC) Information[8]  
Item  
Definition  
Description  
0 = with correction (default)  
1 = without correction (bypassed)  
ECC  
Error Correction Code Operation  
RDY Polarity (RDYpol) Information[7]  
Item  
Definition  
Description  
1 = high for ready (default)  
0 = low for ready  
RDYpol  
RDY signal polarity  
INT Polarity (INTpol) Information[6]  
INTpol  
INT bit of Interrupt Status Register  
INT Pin output  
0 (busy)  
1 (ready)  
0 (busy)  
1 (ready)  
High  
Low  
Low  
High  
0
1 (default)  
52  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
I/O Buffer Enable (IOBE)  
IOBE is the I/O Buffer Enable for the INT and RDY signals. At startup, INT and RDY outputs are High-Z. Bits 6 and 7 become valid  
after IOBE is set to "1". IOBE can be reset by a Cold Reset or by writing "0" to bit 5 of System Configuration1 Register.  
I/O Buffer Enable Information[5]  
Item  
Definition  
Description  
I/O Buffer Enable for INT and  
RDY signals  
0 = disable (default)  
1 = enable  
IOBE  
RDY Configuration (RDY conf)  
RDY Configuration Information[4]  
Item  
Definition  
Description  
0=active one clock before valid data(default)  
1=active with valid data  
RDY conf  
RDY configuration  
Boot Buffer Write Protect Status (BWPS)  
Boot Buffer Write Protect Status Information[0]  
Item  
Definition  
Description  
BWPS  
Boot Buffer Write Protect Status  
0 = locked (fixed)  
53  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.8.20 System Configuration 2 Register F222h  
This register is reserved for future use.  
2.8.21 Controller Status Register F240h (R)  
This Read register shows the overall internal status of the OneNAND and the controller.  
F240h, default = 0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserv  
ed(0)  
TO  
(0)  
OnGo Lock  
Load  
Prog Erase Error  
Sus  
RSTB OTPL  
Reserved(000000)  
OnGo  
This bit shows the overall internal status of the OneNAND device.  
OnGo Information[15]  
Item  
Definition  
Internal Device Status  
Description  
0 = ready  
1 = busy  
OnGo  
Lock  
This bit shows whether the host is loading data from the NAND Flash array into the locked BootRAM or whether the host is perform-  
ing a program/erase of a locked block of the NAND Flash array.  
Lock Information[14]  
Lock  
Locked/Unlocked Check Result  
0
1
Unlocked  
Locked  
Load  
This bit shows the Load Operation status.  
Load Information[13]  
Item  
Definition  
Load Operation status  
Description  
0 = ready (default)  
1 = busy or error (see controller status output modes)  
Load  
54  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Program  
This bit shows the Program Operation status.  
Program Information[12]  
Item  
Definition  
Description  
0 = ready (default)  
1 = busy or error (see controller status output modes)  
Prog  
Program Operation status  
Erase  
This bit shows the Erase Operation status.  
Erase Information[11]  
Item  
Definition  
Erase Operation status  
Description  
0 = ready (default)  
1 = busy or error (see controller status output modes)  
Erase  
Error  
This bit shows the overall Error status, including Load Reset, Program Reset, and Erase Reset status.  
Error Information[10]  
Current Sector/Page Load/Program/CopyBack. Program/  
Error  
Erase Result and Invalid Command Input  
0
1
Pass  
Fail  
Erase Suspend (Sus)  
This bit shows the Erase Suspend status.  
Sus Information[9]  
Sus  
Erase Suspend Status  
0
Erase Resume(Default)  
Erase Suspend, Program Ongoing(Susp.), Load Ongoing(Susp.),  
Program Fail(Susp.), Load Fail(Susp.), Invalid Command(Susp.)  
1
55  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Reset / Busy (RSTB)  
This bit shows the Reset Operation status.  
RSTB Information[7]  
Item  
Definition  
Description  
0 = ready (default)  
1 = busy (see controller status output modes)  
RSTB  
Reset Operation Status  
OTP Lock Status (OTPL)  
This bit shows whether the OTP block is locked or unlocked. Locking the OTP has the effect of a 'write-protect' to guard against  
accidental re-programming of data stored in the OTP block.  
The OTPL status bit is automatically updated at power-on.  
OTP Lock Information[6]  
OTPL  
OTP Locked/Unlocked Status  
OTP Block Unlock Status(Default)  
0
1
OTP Block Lock Status(Disable OTP Program/Erase)  
Time Out (TO)  
This bit determines if there is a time out for load, program, copy back program, and erase operations. It is fixed at 'no time out'.  
TO Information[0]  
Item  
Definition  
Description  
TO  
Time Out  
0 = no time out  
56  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Controller Status Register Output Modes  
Controller Status Register [15:0]  
[11] [10] [9] [8]  
Prog Erase Error Sus Reserved(0) RSTB OTPL Reserved(0) TO  
Mode  
[15]  
[14]  
[13]  
[12]  
[7]  
[6]  
[5:1]  
[0]  
OnGo Lock Load  
Load Ongoing  
Program Ongoing  
Erase Ongoing  
Reset Ongoing  
1
1
1
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0/1  
0/1  
0/1  
0/1  
00000  
00000  
00000  
00000  
0
0
0
0
Multi-Block Erase  
Ongoing  
1
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0/1  
0/1  
00000  
00000  
0
0
Erase Verify Read  
Ongoing  
Load OK  
Program OK  
Erase OK  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0/1  
0/1  
0/1  
00000  
00000  
00000  
0
0
0
Erase Verify Read  
OK3)  
0
0
0
0
0
0
0
0
0
0/1  
00000  
0
Load Fail1)  
Program Fail  
Erase Fail  
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0/1  
0/1  
0/1  
00000  
00000  
00000  
0
0
0
Erase Verify Read  
Fail3)  
0
0
0
0
1
1
0
0
0
0/1  
00000  
0
Load Reset2)  
Program Reset  
Erase Reset  
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
1
1
1
0
1
1
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
00000  
00000  
00000  
00000  
00000  
00000  
0
0
0
0
0
0
Erase Suspend  
Program Lock  
Erase Lock  
Load Lock(Buffer  
Lock)  
0
0
1
1
1
0
0
1
0
0
1
1
0
0
0
0
0
0
0/1  
1
00000  
00000  
0
0
OTP Program  
Fail(Lock)  
OTP Program Fail  
OTP Erase Fail  
0
0
0
1
0
0
1
0
0
1
1
1
0
0
0
0
0
0
0
00000  
00000  
0
0
0/1  
Program Ongo-  
ing(Susp.)  
1
0
0
1
1
0
1
0
0
0/1  
00000  
0
Load Ongoing(Susp.)  
Program Fail(Susp.)  
Load Fail(Susp.)  
1
0
0
0
0
0
0
0
1
0
1
0
0
1
0
0
1
1
1
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0/1  
0/1  
0/1  
0/1  
00000  
00000  
00000  
00000  
0
0
0
0
Invalid Command  
Invalid Com-  
mand(Susp.)  
0
0
0
0
1
1
1
0
0
0/1  
00000  
0
NOTE:  
1. ERm and/or ERs bits in ECC status register at Load Fail case is 10. (2bits error - uncorrectable)  
2. ERm and ERs bits in ECC status register at Load Reset case are 00. (No error)  
3. Multi Block Erase status should be checked by Erase Verify Read operation.  
57  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.8.22 Interrupt Status Register F241h (R/W)  
This Read/Write register shows status of the OneNAND interrupts.  
F241h, defaults = 8080h after Cold Reset; 8010h after Warm/Hot Reset  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
INT  
Reserved(0000000)  
RI  
WI  
EI  
RSTI  
Reserved(0000)  
Interrupt (INT)  
This is the master interrupt bit. The INT bit is wired directly to the INT pin on the chip. Upon writing '0' to the INT bit, the INT pin goes  
low if INTpol is high and goes high if INTpol is low.  
INT Interrupt [15]  
Default State  
Valid  
State  
Interrupt  
Function  
Status  
Conditions  
Cold  
Warm/hot  
1
1
0
off  
One or more of RI, WI, RSTI and EI is set to ’1’,  
or 0065h, 0023h, 0071h, 002A and 002C com-  
mands are completed  
sets itself to ’1’  
clears to ’0’  
Pending  
01  
’0’ is written to this bit, or  
Cold/Warm/Hot reset is being performed  
off  
10  
Read Interrupt (RI)  
This is the Read interrupt bit.  
RI Interrupt [7]  
Status  
Default State  
Valid  
State  
Interrupt  
Function  
Conditions  
Cold  
Warm/hot  
1
0
0
off  
At the completion of an Load Operation  
(0000h, 0013h, Load Data into Buffer,  
or boot is done)  
sets itself to ’1’  
clears to ’0’  
01  
Pending  
’0’ is written to this bit, or  
Cold/Warm/Hot reset is being performed  
off  
10  
Write Interrupt (WI)  
This is the Write interrupt bit.  
WI Interrupt [6]  
Status  
Default State  
Valid  
State  
Interrupt  
Function  
Conditions  
Cold  
Warm/hot  
0
0
0
off  
At the completion of an Program Operation  
(0080h, 001Ah, 001Bh)  
sets itself to ’1’  
clears to ’0’  
Pending  
01  
’0’ is written to this bit, or  
Cold/Warm/Hot reset is being performed  
off  
10  
58  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Erase Interrupt (EI)  
This is the Erase interrupt bit.  
EI Interrupt [5]  
Default State  
Valid  
State  
Interrupt  
Function  
Status  
Conditions  
Cold  
Warm/hot  
0
0
0
off  
At the completion of an Erase Operation  
(0094h, 0095h, 0030h)  
sets itself to ’1’  
clears to ’0’  
01  
Pending  
’0’ is written to this bit, or  
Cold/Warm/Hot reset is being performed  
10  
off  
Reset Interrupt (RSTI)  
This is the Reset interrupt bit.  
RSTI Interrupt [4]  
Status  
Default State  
Valid  
State  
Interrupt  
Function  
Conditions  
Cold  
Warm/hot  
0
1
0
off  
Pending  
off  
At the completion of an Reset Operation  
(00B0h, 00F0h, 00F3h or  
sets itself to ’1’  
clears to ’0’  
01  
10  
warm reset is released)  
’0’ is written to this bit  
2.8.23 Start Block Address Register F24Ch (R/W)  
This Read/Write register shows the NAND Flash block address in the Write Protection mode. Setting this register precedes a 'Lock  
Block' command, 'Unlock Block' command, or ’Lock-Tight' Command.  
F24Ch, default = 0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000000)  
SBA  
Device  
Number of Block  
SBA  
1Gb  
1024  
[9:0]  
SBA Information[9:0]  
Item  
Definition  
Description  
Precedes Lock Block, Unlock Block, or Lock-Tight commands  
SBA  
Start Block Address  
59  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.8.24 End Block Address Register F24Dh  
This register is reserved for future use.  
2.8.25 NAND Flash Write Protection Status Register F24Eh (R)  
This Read register shows the Write Protection Status of the NAND Flash memory array.  
To read the write protection status, FBA has to be set before reading the register.  
F24Eh, default = 0002h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000000000000)  
US  
LS  
LTS  
Write Protection Status Information[2:0]  
Item  
US  
Bit  
2
Definition  
Unlocked Status  
Locked Status  
Description  
1 = current NAND Flash block is unlocked  
1 = current NAND Flash block is locked  
1 = current NAND Flash block is locked-tight  
LS  
1
LTS  
0
Locked-Tight Status  
2.8.26 ECC Status Register FF00h (R)  
This Read register shows the Error Correction Status. The OneNAND can detect 1- or 2-bit errors and correct 1-bit errors. 3-bit or  
more error detection and correction is not supported.  
ECC can be performed on the NAND Flash main and spare memory areas. The ECC status register can also show the number of  
errors in a sector as a result of an ECC check in during a load operation. ECC status bits are also updated during a boot loading oper-  
ation.  
FF00h, default = 0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ERm3  
ERs3  
ERm2  
ERs2  
ERm1  
ERs1  
ERm0  
ERs0  
Error Status  
ERm, ERs  
ECC Status  
No Error  
00  
01  
10  
11  
1-bit error(correctable)  
2 bits error (uncorrectable)  
Reserved  
60  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
ECC Information[15:0]  
Item  
Definition  
Description  
Status of errors in the 1st selected sector of the main BufferRAM  
as a result of an ECC check during a load operation.  
Also updated during a Bootload operation.  
1st selected sector of  
the main BufferRAM  
ERm0  
Status of errors in the 2nd selected sector of the main BufferRAM  
as a result of an ECC check during a load operation.  
Also updated during a Bootload operation.  
2nd selected sector of  
the main BufferRAM  
ERm1  
ERm2  
ERm3  
ERs0  
ERs1  
ERs2  
ERs3  
Status of errors in the 3rd selected sector of the main BufferRAM  
as a result of an ECC check during a load operation.  
Also updated during a Bootload operation.  
3rd selected sector of  
the main BufferRAM  
Status of errors in the 4th selected sector of the main BufferRAM  
as a result of an ECC check during a load operation.  
Also updated during a Bootload operation.  
4th selected sector of  
the main BufferRAM  
Status of errors in the 1st selected sector of the spare BufferRAM  
as a result of an ECC check during a load operation.  
Also updated during a Bootload operation.  
1st selected sector of  
the spare BufferRAM  
Status of errors in the 2nd selected sector of the spare BufferRAM  
as a result of an ECC check during a load operation.  
Also updated during a Bootload operation.  
2nd selected sector of  
the spare BufferRAM  
Status of errors in the 3rd selected sector of the spare BufferRAM  
as a result of an ECC check during a load operation.  
Also updated during a Bootload operation.  
3rd selected sector of  
the spare BufferRAM  
Status of errors in the 4th selected sector of the spare BufferRAM  
as a result of an ECC check during a load operation.  
Also updated during a Bootload operation.  
4th selected sector of  
the spare BufferRAM  
2.8.27 ECC Result of 1st Selected Sector, Main Area Data  
Register FF01h (R)  
This Read register shows the Error Correction result for the 1st selected sector of the main area data. ECCposWord0 is the error  
position address in the Main Area data of 256 words. ECCposIO0 is the error position address which selects 1 of 16 DQs.  
ECCposWord0 and ECCposIO0 are also updated at boot loading.  
FF01h, default = 0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000)  
ECCposWord0  
ECCposIO0  
2.8.28 ECC Result of 1st Selected Sector, Spare Area Data  
Register FF02h (R)  
This Read register shows the Error Correction result for the 1st selected sector of the spare area data. ECClogSector0 is the error  
position address for 1.5 words of 2nd and 3rd words in the spare area. ECCposIO0 is the error position address which selects 1 of 16  
DQs. ECClogSector0 and ECCposIO0 are also updated at boot loading.  
FF02h, default = 0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000000000)  
ECClogSector0  
ECCposIO0  
61  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.8.29 ECC Result of 2nd Selected Sector, Main Area Data  
Register FF03h (R)  
This Read register shows the Error Correction result for the 2nd selected sector of the main area data. ECCposWord1 is the error  
position address in the Main Area data of 256 words. ECCposIO1 is the error position address which selects 1 of 16 DQs.  
ECCposWord1 and ECCposIO1 are also updated at boot loading.  
FF03h, default = 0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000)  
ECCposWord1  
ECCposIO1  
2.8.30 ECC Result of 2nd Selected Sector, Spare Area Data  
Register FF04h (R)  
This Read register shows the Error Correction result for the 2nd selected sector of the spare area data. ECClogSector1 is the error  
position address for 1.5 words of 2nd and 3rd words in the spare area. ECCposIO1 is the error position address which selects 1 of 16  
DQs. ECClogSector1 and ECCposIO1 are also updated at boot loading.  
FF04h, default = 0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000000000)  
ECClogSector1  
ECCposIO1  
2.8.31 ECC Result of 3rd Selected Sector, Main Area Data  
Register FF05h (R)  
This Read register shows the Error Correction result for the 3rd selected sector of the main area data. ECCposWord2 is the error  
position address in the Main Area data of 256 words. ECCposIO2 is the error position address which selects 1 of 16 DQs.  
ECCposWord2 and ECCposIO2 are also updated at boot loading.  
FF05h, default = 0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000)  
ECCposWord2  
ECCposIO2  
2.8.32 ECC Result of 3rd Selected Sector, Spare Area Data  
Register FF06h (R)  
This Read register shows the Error Correction result for the 3rd selected sector of the spare area data. ECClogSector2 is the error  
position address for 1.5 words of 2nd and 3rd words in the spare area. ECCposIO2 is the error position address which selects 1 of 16  
DQs. ECClogSector2 and ECCposIO2 are also updated at boot loading.  
FF06h, default = 0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000000000)  
ECClogSector2  
ECCposIO2  
62  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
2.8.33 ECC Result of 4th Selected Sector, Main Area Data  
Register FF07h (R)  
This Read register shows the Error Correction result for the 4th selected sector of the main area data. ECCposWord3 is the error  
position address in the Main Area data of 256 words. ECCposIO3 is the error position address which selects 1 of 16 DQs.  
ECCposWord3 and ECCposIO3 are also updated at boot loading.  
FF07h, default = 0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000)  
ECCposWord3  
ECCposIO3  
2.8.34 ECC Result of 4th Selected Sector, Spare Area Data  
Register FF08h (R)  
This Read register shows the Error Correction result for the 4th selected sector of the spare area data. ECClogSector3 is the error  
position address for 1.5 words of 2nd and 3rd words in the spare area. ECCposIO3 is the error position address which selects 1 of 16  
DQs. ECClogSector3 and ECCposIO3 are also updated at boot loading.  
FF08h, default = 0000h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Reserved(0000000000)  
ECClogSector3  
ECCposIO3  
ECC Log Sector  
ECClogSector0~ECClogSector3 indicates the error position in the 2nd word and LSB of 3rd word in the spare area.  
Refer to note 2 in chapter 2.7.2  
ECClogSector Information [5:4]  
ECClogSector  
Error Position  
2nd word  
00  
01  
3rd word  
10, 11  
Reserved  
63  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.0 DEVICE OPERATION  
This section of the datasheet discusses the operation of the OneNAND device. It is followed by AC/DC  
Characteristics and Timing Diagrams which may be consulted for further information.  
The OneNAND supports either a command-based or a register-based interface for performing operations on the device including  
reading device ID, writing data to buffer etc.  
3.1  
Command Based Operation  
The command-based interface is active in the boot partition. Commands can only be written with a boot area address. Boot area data  
is only returned if no command has been issued prior to the read.  
The entire address range, except for the boot area, can be used for the data buffer. All commands are written to the boot partition.  
Writes outside the boot partition are treated as normal writes to the buffers or registers.  
The command consists of one or more cycles depending on the command. After completion of the command the device starts its exe-  
cution. Writing incorrect information including address and data to the boot partition or writing an improper command will terminate  
the previous command sequence and make the device enter the ready status.  
The defined valid command based sequences are stated in Command Sequences Table.  
Command Sequences  
Command Definition  
Cycles  
1st cycle  
2nd cycle  
DP1)  
Data  
DP  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Add  
Data  
Read Data from Buffer  
1
Write Data to Buffer  
Reset OneNAND  
1
1
2
2
Data  
BP2)  
00F0h  
BP  
BP  
Load Data into Buffer3)  
Read Identification Data 6)  
0000h4)  
XXXXh5)  
Data  
00E0h  
BP  
0090h  
NOTE:  
1) DP(Data Partition) : DataRAM Area  
2) BP(Boot Partition) : BootRAM Area [0000h ~ 01FFh, 8000h ~ 800Fh].  
3) Load Data into Buffer operation is available within a block(128KB)  
4) Load 2KB unit into DataRAM0. Current Start address(FPA) is automatically incremented by 2KB unit after the load.  
5) 0000h -> Data is Manufacturer ID  
0001h -> Data is Device ID  
0002h -> Current Block Write Protection Status  
6) WE toggling can terminate ’Read Identification Data’ operation.  
64  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.1.1 Reading Data From Buffer  
The buffer memory can be read by addressing a Read to the desired buffer area.  
3.1.2 Writing Data to Buffer  
The buffer memory can be written to by addressing a Write to a desired buffer area.  
3.1.3 Reset OneNAND Command  
The Reset command is given by writing 00F0h to the boot partition address. Reset will return all default values into the device.  
3.1.4 Load Data Into Buffer Command  
Load Data into Buffer command is a two-cycle command. Two sequential designated command activates this operation. Sequentially  
writing 00E0h and 0000h to the boot partition [0000h~01FFh, 8000h~800Fh] will load one page to DataRAM0. This operation refers  
to FBA and FPA. FSA, BSA, and BSC are not considered.  
At the end of this operation, FPA will be automatically increased by 1. So continuous issue of this command will sequentially load data  
in next page to DataRAM0. This page address increment is restricted within a block.  
The default value of FBA and FPA is 0. Therefore, initial issue of this command after power on will load the first page of memory,  
which is usually boot code.  
3.1.5 Read Identification Data Command  
The Read Identification Data command consists of two cycles. It gives out the devices identification data according to the given  
address. The first cycle is 0090h to the boot partition address and second cycle is read from the addresses specified in Identification  
Data Description Table.  
Identification Data Description  
Address  
0000h  
0001h  
0002h  
Data Out  
Manufacturer ID : 00ECh  
Device ID : refer to chapter 2.8.3  
Current Block Write Protection Status 1)  
Note 1) To read the write protection status, FBA has to be set before issuing this command.  
65  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.2  
Device Bus Operation  
The device bus operations are shown in the table below.  
Operation  
Standby  
CE  
H
OE  
X
WE  
X
ADD0~15 DQ0~15  
RP  
H
CLK  
X
AVD  
X
X
X
High-Z  
High-Z  
Data In  
Warm Reset  
X
X
X
L
X
X
Asynchronous Write  
L
H
L
Add. In  
H
L
X
Asynchronous Read  
Load Initial Burst Read  
Burst Read  
L
L
L
L
H
L
H
H
H
Add. In  
Add. In  
X
Data Out  
X
H
H
H
L
or L  
Burst Data  
Out  
X
Terminate Burst Read  
Cycle  
H
X
X
X
H
X
X
X
High-Z  
High-Z  
H
L
X
X
X
X
Terminate Burst Read  
Cycle via RP  
Terminate Current Burst  
Read Cycle and Start  
New Burst Read Cycle  
H
H
Add In  
High-Z  
H
Note : L=VIL (Low), H=VIH (High), X=Don’t Care.  
66  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.3  
Reset Mode Operation  
The One NAND has 4 reset modes: Cold/Warm/Hot Reset, and NAND Flash Array Reset. Section 3.3 discusses the operation of  
these reset modes.  
The Register Reset Table shows the which registers are affected by the various types or Reset operations.  
Internal Register Reset Table  
Hot  
Reset  
(00F3h) (BP-F0)  
Hot  
Reset  
NAND Flash  
Core Reset  
(00F0h)  
Warm Reset  
(RP)  
Internal Registers  
Default Cold Reset  
F000h Manufacturer ID Register (R)  
F001h Device ID Register (R): OneNAND  
F002h Version ID Register (R): N/A  
00ECh  
(Note 3)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
F003h Data Buffer size Register (R)  
0800h  
0200h  
0201h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
40C0h  
0000h  
-
N/A  
N/A  
N/A  
F004h Boot Buffer size Register (R)  
N/A  
N/A  
N/A  
F005h Amount of Buffers Register (R)  
F006h Technology Register (R)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
F100h Start Address1 Register (R/W): FBA  
F101h Start Address2 Register (R/W): DBS  
F102h Start Address3 Register (R/W): FCBA  
F103h Start Address4 Register (R/W): FCPA, FCSA  
F107h Start Address8 Register (R/W): FPA, FSA  
F200h Start Buffer Register (R/W): BSA, BSC  
F220h Command Register (R/W)  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
40C0h  
0000h  
8080h  
0000h  
N/A  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
(Note1)  
0000h  
8010h  
0000h  
N/A  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
(Note1)  
0000h  
8010h  
N/A  
F221h System Configuration 1 Register (R/W)  
F240h Controller Status Register (R)  
F241h Interrupt Status Register (R/W)  
F24Ch Start Block Address (R/W)  
0000h  
N/A  
F24Dh End Block Address: N/A  
N/A  
F24Eh NAND Flash Write Protection Status (R)  
FF00h ECC Status Register (R) (Note2)  
0002h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0002h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0002h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
N/A  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
0000h  
ECC Result of Sector 0 Main area data Register(R)  
FF02h ECC Result of Sector 0 Spare area data Register (R)  
FF01h  
ECC Result of Sector 1 Main area data Register(R)  
ECC Result of Sector 1 Spare area data Register (R)  
FF03h  
FF04h  
FF05h ECC Result of Sector 2 Main area data Register(R)  
ECC Result of Sector 2 Spare area data Register (R)  
ECC Result of Sector 3 Main area data Register(R)  
FF06h  
FF07h  
FF08h ECC Result of Sector 3 Spare area data Register (R)  
NOTE: 1) RDYpol, INTpol, IOBE is reset by Cold reset. The other bits are reset by Cold/Warm/Hot reset.  
2) ECC Status Register & ECC Result Registers are reset when any command is issued.  
3) Refer to Device ID Register F001h.  
67  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.3.1 Cold Reset Mode Operation  
See Timing Diagram 6.11  
At system power-up, the voltage detector in the device detects the rising edge of Vcc and releases an internal power-up reset signal.  
This triggers bootcode loading. Bootcode loading means that the boot loader in the device copies designated sized data (1KB) from  
the beginning of memory into the BootRAM. This sequence is the Cold Reset of OneNAND.  
The POR(Power On Reset) triggering level is typically 1.5V. Boot code copy operation activates 400us after POR.  
Therefore, the system power should reach 1.7V within 400us from the POR triggering level for bootcode data to be valid.  
It takes approximately 70us to copy 1KB of bootcode. Upon completion of loading into the BootRAM, it is available to be read by the  
host. The INT pin is not available until after IOBE = 1 and IOBE bit can be changed by host.  
3.3.2 Warm Reset Mode Operation  
See Timing Diagrams 6.12  
A Warm Reset means that the host resets the device by using the RP pin. When the a RP low is issued, the device logic stops all cur-  
rent operations and executes internal reset operation and resets current NAND Flash core operation synchronized with the  
falling edge of RP.  
During an Internal Reset Operation, the device initializes internal registers and makes output signals go to default status.  
The BufferRAM data is kept unchanged after Warm/Hot reset operations.  
The device guarantees the logic reset operation in case RP pulse is longer than tRP min. (200ns).  
The device may reset if tRP < tRP min(200ns), but this is not guaranteed.  
Warm reset will abort the current NAND Flash core operation. During a warm reset, the content of memory cells being altered is no  
longer valid as the data will be partially programmed or erased.  
Warm reset has no effect on contents of BootRAM and DataRAM.  
3.3.3 Hot Reset Mode Operation  
See Timing Diagram 6.13  
A Hot Reset means that the host resets the device by Reset command. The reset command can be either Command based or  
Register Based. Upon receiving the Reset command, the device logic stops all current operation and executes an internal reset  
operation and resets the current NAND Flash core operation.  
During an Internal Reset Operation, the device initializes internal registers and makes output signals go to default status. The  
BufferRAM data is kept unchanged after Warm/Hot reset operations.  
Hot Reset will abort the current NAND Flash core operation. During a Hot Reset, the content of memory cells being altered is no  
longer valid as the data will be partially programmed or erased.  
Hot reset has no effect on contents of BootRAM and DataRAM.  
3.3.4 NAND Flash Core Reset Mode Operation  
See Timing Diagram 6.14  
The Host can reset the NAND Flash Core operation by issuing a NAND Flash Core reset command. NAND Flash core reset will  
abort the current NAND Flash core operation. During a NAND Flash core reset, the content of memory cells being altered is no longer  
valid as the data will be partially programmed or erased.  
NAND Flash Core Reset has an effect on neither contents of BootRAM and DataRAM nor register values.  
68  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.4  
Write Protection Operation  
The OneNAND can be write-protected to prevent re-programming or erasure of data.  
The areas of write-protection are the BootRAM, and the NAND Flash Array.  
3.4.1 BootRAM Write Protection Operation  
At system power-up, voltage detector in the device detects the rising edge of Vcc and releases the internal power-up reset signal  
which triggers bootcode loading. And the designated size data(1KB) is copied from the first page of the first block in the NAND flash  
array to the BootRAM.  
After the bootcode loading is completed, the BootRAM is always locked to protect the boot code from the accidental write.  
3.4.2 NAND Flash Array Write Protection Operation  
The device has both hardware and software write protection of the NAND Flash array.  
Hardware Write Protection Operation  
The hardware write protection operation is implemented by executing a Cold or Warm Reset. On power up, the NAND Flash Array is  
in its default, locked state. The entire NAND Flash array goes to a locked state after a Cold or Warm Reset.  
Software Write Protection Operation  
The software write protection operation is implemented by writing a Lock command (002Ah) or a Lock-tight command (002Ch) to  
command register (F220h).  
Lock (002Ah) and Lock-tight (002Ch) commands write protects the block defined in the Start Block Address Register F24Ch.  
3.4.3 NAND Array Write Protection States  
There are three lock states in the NAND Array: unlocked, locked, and locked-tight.  
OneNAND1G supports lock/unlock/lock-tight by one block, so each block should be locked/unlocked/locked-tight individually.  
Write Protection Status  
The current block Write Protection status can be read in NAND Flash Write Protection Status Register(F24Eh). There are three bits -  
US, LS, LTS -, which are not cleared by hot reset. These Write Protection status registers are updated when FBA is set, and when  
Write Protection command is entered.  
The followings summarize locking status.  
example)  
In default, [2:0] values are 010.  
-> If host executes unlock block operation, then [2:0] values turn to 100.  
-> If host executes lock-tight block operation, then [2:0] values turn to 001.  
69  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.4.3.1 Unlocked NAND Array Write Protection State  
An Unlocked block can be programmed or erased. The status of an unlocked block can be changed to locked or locked-tight using  
the appropriate software command. (locked-tight state can be achieved via lock-tight command which follows lock command)  
Only one block can be released from lock state to unlock state with Unlock command and addresses. The unlocked block can be  
changed with new lock command. Therefore, each block has its own lock/unlock/lock-tight state.  
Unlocked  
Unlock Command Sequence:  
Start block address+Unlock block command (0023h)  
3.4.3.2 Locked NAND Array Write Protection State  
A Locked block cannot be programmed or erased. All blocks default to a locked state following a Cold or Warm Reset. Unlocked  
blocks can be changed to locked using the Lock block command. The status of a locked block can be changed to unlocked or  
locked-tight using the appropriate software command.  
Locked  
Lock Command Sequence:  
Start block address+Lock block command (002Ah)  
70  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.4.3.3 Locked-tight NAND Array Write Protection State  
A block that is in a locked-tight state can only be changed to lock state after a Cold or Warm Reset. Unlock and Lock command  
sequences will not affect its state. This is an added level of write protection security.  
A block must first be set to a locked state before it can be changed to locked-tight using the Lock-tight command. locked-tight blocks  
will revert to a locked state following a Cold or Warm Reset.  
Locked-tight  
Lock-Tight Command Sequence:  
Start block address+Lock-tight block command (002Ch)  
3.4.4  
NAND Flash Array Write Protection State Diagram  
Lock  
unlock  
RP pin: High  
RP pin: High  
&
Lock  
&
Start block address  
+Unlock block Command  
Start block address  
Lock block Command  
or  
Cold reset or  
Warm reset  
Lock  
Power On  
RP pin: High  
&
Start block address  
Cold reset or  
Warm reset  
+Lock-tight block Command  
Lock  
Lock-tight  
Lock  
71  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Data Protection Operation Flow Diagram  
Start  
Write ’DFS*, of Flash  
Add: F100h DQ=DFS*  
Write ’SBA’ of Flash  
Add: F24Ch DQ=SBA  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Write ’lock/unlock/lock-tight’  
Command  
Add: F220h  
DQ=002Ah/0023h/002Ch  
Wait for INT register  
low to high transition  
Add: F241h DQ[15]=INT  
Lock/Unlock/Lock-Tight  
completed  
* DFS is for DDP  
Note) Samsung strongly recommends to follow the above flow chart  
72  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.5  
Data Protection During Power Down Operation  
See Timing Diagram 6.15  
The device is designed to offer protection from any involuntary program/erase during power-transitions.  
An internal voltage detector disables all functions whenever Vcc is below POR level, about 1.3V. It is recommended that the RP pin,  
which provides hardware protection, should be kept at VIL before power-down.  
3.6  
Load Operation  
See Timing Diagram 6.8  
The Load operation is initiated by setting up the start address from which the data is to be loaded. The Load command is issued in  
order to initiate the load.  
During a Load operation, the device:  
-Transfers the data from NAND Flash array into the BufferRAM  
-ECC is checked and any detected and corrected error is reported in the status response as well as  
any unrecoverable error.  
Once the BufferRAM has been filled, an interrupt is issued to the host so that the contents of the BufferRAM can be read. The read  
from the BufferRAM can be an asynchronous read mode or synchronous read mode. The status information related to load operation  
can be checked by the host if required.  
The device has a dual data buffer memory architecture (DataRAM0, DataRAM1), each 2KB in size. Each DataRAM buffer has 4  
Sectors. The device is capable of independent and simultaneous data-read operation from one data buffer and data-load operation to  
the other data buffer. Refer to the information for more details in section 3.12.1, "Read-While-Load Operation".  
Load Operation Flow Chart Diagram  
Write ’Load’ Command  
Start  
Add: F220h  
DQ=0000h or 0013h  
Write ’DFS*, FBA’ of Flash  
Add: F100h DQ=FBA  
Wait for INT register  
low to high transition  
Write ’FPA, FSA’ of Flash  
Add: F107h DQ=FPA, FSA  
Add: F241h DQ[15]=INT  
Read Controller  
Status Register  
Write ’BSA, BSC’ of DataRAM  
Add: F200h DQ=BSA, BSC  
Add: F240h DQ[10]=Error  
Select DataRAM for DDP  
Add: F101h DQ=DBS  
NO  
DQ[10]=0?  
YES  
Map Out  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Host reads data from  
DataRAM  
Read completed  
* DBS, DFS is for DDP  
73  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.7  
Read Operation  
See Timing Diagrams 6.1, 6.2, 6.3, 6.4, 6.5 and 6.6  
The device has two read modes; Asynchronous Read and Synchronous Burst Read.  
The initial state machine automatically sets the device into the Asynchronous Read Mode (RM=0) to prevent the  
spurious altering of memory content upon device power up or after a Hardware reset. No commands are required  
to retrieve data in Asynchronous Read Mode.  
The Synchronous Read Mode is enabled by setting RM bit of System Configuration1 Register (F221h) to  
Synchronous Read Mode (RM=1). See Section 2.8.19 for more information about System Configuration1 Register.  
3.7.1 Asynchronous Read Mode Operation (RM=0)  
See Timing Diagrams 6.3, 6.4, 6.5 and 6.6  
In an Asynchronous Read Mode, data is output with respect to a logic input, AVD.  
Output data will appear on DQ15-DQ0 when a valid address is asserted on A15-A0 while driving AVD and CE to VIL. WE is held at  
VIH. The function of the AVD signal is to latch the valid address.  
Address access time from AVD low (tAA) is equal to the delay from valid addresses to valid output data.  
The Chip Enable access time (tCE) is equal to the delay from the falling edge of CE to valid data at the outputs.  
The Output Enable access time (tOE) is the delay from the falling edge of OE to valid data at the output.  
3.7.2 Synchronous Read Mode Operation (RM=1)  
See Timing Diagrams 6.1 and 6.2  
In a Synchronous Read Mode, data is output with respect to a clock input.  
The device is capable of a continuous linear burst operation and a fixed-length linear burst operation of a preset length. Burst  
address sequences for continuous and fixed-length burst operations are shown in the table below.  
Burst Address Sequences  
Burst Address Sequence(Decimal)  
Start  
Addr.  
Continuous Burst  
0-1-2-3-4-5-6...  
1-2-3-4-5-6-7...  
2-3-4-5-6-7-8...  
4-word Burst  
0-1-2-3-0...  
1-2-3-0-1...  
2-3-0-1-2...  
8-word Burst  
16-word Burst  
32-word Burst  
0
1
2
0-1-2-3-4-5-6-7-0...  
1-2-3-4-5-6-7-0-1...  
2-3-4-5-6-7-0-1-2...  
0-1-2-3-4-....-13-14-15-0... 0-1-2-3-4-....-29-30-31-0...  
1-2-3-4-5-....-14-15-0-1...  
2-3-4-5-6-....-15-0-1-2...  
1-2-3-4-5-....-30-31-0-1...  
2-3-4-5-6-....-31-0-1-2...  
Wrap  
around  
.
.
.
.
.
.
.
.
.
.
.
.
In the burst mode, the initial word will be output asynchronously, regardless of BRL. While the following words will be determined by  
BRL value.  
The latency is determined by the host based on the BRL bit setting in the System Configuration 1 Register. The default BRL is 4  
latency cycles. At clock frequencies of 40MHz or lower, latency cycles can be reduced to 3. BRL can be set up to 7 latency cycles.  
The BRL registers can be read during a burst read mode by using the AVD signal with an address.  
74  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.7.2.1 Continuous Linear Burst Read Operation  
See Timing Diagram 6.2  
First Clock Cycle  
The initial word is output at tIAA after the rising edge of the first CLK cycle. The RDY output indicates the initial word is ready to the  
system by pulsing high. If the device is accessed synchronously while it is set to Asynchronous Read Mode, the first data can still be  
read out.  
Subsequent Clock Cycles  
Subsequent words are output (Burst Access Time from Valid Clock to Output) tBA after the rising edge of each successive clock  
cycle, which automatically increments the internal address counter.  
Terminating Burst Read  
The device will continue to output sequential burst data until the system asserts CE high, or RP low, wrapping around until it reaches  
the designated address (see Section 2.7.3 for address map information). Alternately, a Cold/Warm/Hot Reset, asserting CE high, or a  
WE low pulse will terminate the burst read operation.  
Synchronous Read Boundary  
Division  
Add.map(word order)  
0000h~01FFh  
0200h~05FFh  
0600h~09FFh  
0A00h~7FFFh  
8000h~800Fh  
8010h~802Fh  
8030h~804Fh  
8050h~8FFFh  
9000h~EFFFh  
F000h~FFFFh  
BootRAM Main(0.5Kw)  
BufferRAM0 Main(1Kw)  
BufferRAM1 Main(1Kw)  
Reserved Main  
Not Support  
Not Support  
Not Support  
BootRAM Spare(16w)  
BufferRAM0 Spare(32w)  
BufferRAM1 Spare(32w)  
Reserved Spare  
Not Support  
Not Support  
Reserved Register  
Register(4Kw)  
* Reserved area is not available on Synchronous read  
3.7.2.2 4-, 8-, 16-, 32-Word Linear Burst Read Operation  
See Timing Diagram 6.1  
An alternate Burst Read Mode enables a fixed number of words to be read from consecutive address.  
The device supports a burst read from consecutive addresses of 4-, 8-, 16-, and 32-words with a linear-wrap around. When the last  
word in the burst has been reached, assert CE and OE high to terminate the operation.  
In this mode, the start address for the burst read can be any address of the address map with one exception. The device does not  
support a 32-word linear burst read on the spare area of the BufferRAM.  
75  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.7.2.3 Programmable Burst Read Latency Operation  
See Timing Diagrams 6.1 and 6.2  
Upon power up, the number of initial clock cycles from Valid Address (AVD) to initial data defaults to four clocks.  
The number of clock cycles (n) which are inserted after the clock which is latching the address. The host can read the first data with  
the (n+1)th rising edge.  
The number of total initial access cycles is programmable from three to seven cycles. After the number of programmed burst clock  
cycles is reached, the rising edge of the next clock cycle triggers the next burst data.  
Four Clock Burst Read Latency (default condition)  
Rising edge of the clock cycle following last read latency  
triggers next burst data  
CE  
CLK  
-1  
0
1
2
3
4
AVD  
tBA  
Valid  
Address  
A0:  
A15  
DQ0:  
DQ15  
D6  
D7  
D0  
D1  
D2  
D3  
D7  
D0  
tIAA  
tRDYS  
OE  
Hi-Z  
Hi-Z  
tRDYA  
RDY  
3.7.3 Handshaking Operation  
The handshaking feature allows the host system to simply monitor the RDY signal from the device to determine  
when the initial word of burst data is ready to be read.  
To set the number of initial cycles for optimal burst mode, the host should use the programmable burst read latency configuration (see  
Section 2.8.19, "System Configuration1 Register").  
The rising edge of RDY which is derived from one cycle ahead of data fetch clock indicates the initial word of valid burst data.  
76  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.7.4 Output Disable Mode Operation  
When the CE or OE input is at VIH, output from the device is disabled.  
The outputs are placed in the high impedance state.  
3.8  
Program Operation  
See Timing Diagram 6.9  
The Program operation is used to program data from the on-chip BufferRAMs into the NAND FLASH memory array.  
The device has two 2KB data buffers, each 1 Page (2KB + 64B) in size. Each page has 4 sectors of 512B each main area and 16B  
spare area. The device can be programmed in units of 1~4 sectors.  
The architecture of the DataRAMs permits a simultaneous data-write operation from the Host to one of data buffers and a program  
operation from the other data buffer to the NAND Flash Array memory. Refer to Section 3.12.2, "Write While Program Operation", for  
more information.  
Addressing for program operation  
Within a block, the pages must be programmed consecutively from the LSB (least significant bit) page of the block to MSB (most sig-  
nificant bit) pages of the block. Random page address programming is prohibited.  
(64)  
(64)  
Page 63  
Page 31  
Page 63  
Page 31  
:
:
(1)  
:
(32)  
:
(3)  
(2)  
(1)  
Page 2  
Page 1  
Page 0  
(3)  
(32)  
(2)  
Page 2  
Page 1  
Page 0  
Data register  
Data register  
From the LSB page to MSB page  
DATA IN: Data (1)  
Data (64)  
Ex.) Random page program (Prohibition)  
DATA IN: Data (1)  
Data (64)  
77  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Program Operation Flow Diagram  
Write 0 to interrupt register  
Start  
Add: F241h DQ=0000h  
Select DataRAM for DDP1)  
Add: F101h DQ=DBS*  
Write ’Program’ Command  
Add: F220h  
DQ=0080h or 001Ah  
Write Data into DataRAM2)  
ADD: DP DQ=Data-in  
Wait for INT register  
low to high transition  
NO  
Data Input  
Add: F241h DQ[15]=INT  
Completed?  
Read Controller  
Status Register  
YES  
Write ’DFS*, FBA’ of Flash  
Add: F100h DQ=DFS, FBA  
Add: F240h DQ[10]=Error  
Write ’FPA, FSA’ of Flash  
Add: F107h DQ=FPA, FSA  
DQ[10]=0?  
YES  
NO  
Program completed  
Program Error  
Write ’BSA, BSC’ of DataRAM  
Add: F200h DQ=BSA, BSC  
: If program operation results in an error, map out  
the block including the page in error and copy the  
target data to another block.  
*
* DBS, DFS is for DDP  
Note 1) This must happen before data input  
2) Data input could be done anywhere between "Start" and "Write Program Command".  
During the execution of the Internal Program Routine, the host is not required to provide any further controls or  
timings. Furthermore, all commands, except a Reset command, will be ignored. A reset during a program operation will cause data  
corruption at the corresponding location.  
If a program error is detected at the completion of the Internal Program Routine, map out the block, including the page in error, and  
copy the target data to another block. An error is signaled if DQ10 = "1" of Controller Status Register(F240h) .  
Data input from the Host to the DataRAM can be done at any time during the Internal Program Routine after "Start" but before the  
"Write Program Command" is written.  
78  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.9  
Copy-Back Program Operation  
The Copy-Back program is configured to quickly rewrite data stored in one page without utilizing memory other than OneNAND.  
Since the time-consuming cycles of serial access and re-loading cycles are removed, the system performance is improved. The ben-  
efit is especially obvious when a portion of block is updated and the rest of the block also need to be copied to the newly assigned  
free block.  
Data from the source page is saved in one of the on-chip DataRAM buffers and then programmed directly into the destination page.  
The DataRAM overwrites the previous data using the Buffer Sector Address (BSA) and Buffer Sector Count (BSC).  
The Copy-Back Program Operation does this by performing sequential page-reads without a serial access and executing a  
copy-program using the address of the destination page.  
Copy-Back Program Operation Flow Chart  
Write ’Copy-back Program’  
command  
Start  
Add: F220h DQ=001Bh  
Write ’DFS*, FBA’ of Flash  
Add: F100h DQ=DFS*, FBA  
Wait for INT register  
low to high transition  
Write ’FPA, FSA’ of Flash  
Add: F107h DQ=FPA, FSA  
Add: F241h DQ[15]=INT  
Read Controller  
Status Register  
Write ’FCBA’ of Flash  
Add: F102h DQ=FCBA  
Add: F240h DQ[10]=Error  
Write ’FCPA, FCSA’ of Flash  
Add: F103h DQ=FCPA, FCSA  
DQ[10]=0?  
YES  
NO  
Select DataRAM for DDP  
Add: F101h DQ=DBS*  
Copy back completed  
Copy back Error  
Write ’BSA, BSC’ of DataRAM  
Add: F200h DQ=BSA, BSC 1)  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
: If program operation results in an error, map out  
the block including the page in error and copy the  
target data to another block.  
*
* DBS, DFS is for DDP  
Note 1) Selected DataRAM by BSA & BSC is used for Copy back operation, so previous data is overwritten.  
2) FBA, FPA and FSA should be input prior to FCBA, FCPA and FCSA.  
79  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
The Copy-Back steps shown in the flow chart are:  
Data is read from the NAND Array using Flash Block Address (FBA), Flash Page Address (FPA) and  
Flash Sector Address (FSA). FBA, FPA, and FSA identify the source address to read data from NAND Flash array.  
The BufferRAM Sector Count (BSC) and BufferRAM Sector Address (BSA) identifies how many sectors  
and the location of the sectors in DataRAM that are used.  
The destination address in the NAND Array is written using the Flash Copy-Back Block Address (FCBA),  
Flash Copy-Back Page Address (FCPA), and Flash Copy-Back Sector Address (FCSA).  
The Copy-Back Program command is issued to start programming.  
Upon completion of copy-back programming to the destination page address, the Host checks the status  
to see if the operation was successfully completed. If there was an error, map out the block including the  
page in error and copy the target data to another block.  
80  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.9.1 Copy-Back Program Operation with Random Data Input  
The Copy-Back Program Operation with Random Data Input in OneNAND consists of 2 phase, Load data into DataRAM, Modify data  
and program into designated page. Data from the source page is saved in one of the on-chip DataRAM buffers and modified by the  
host, then programmed into the destination page.  
As shown in the flow chart, data modification is possible upon completion of load operation. ECC is also available at the end of load  
operation. Therefore, using hardware ECC of OneNAND, accumulation of 1 bit error can be avoided.  
Copy-Back Program Operation with Random Data Input will be effectively utilized at modifying certain bit, byte, word, or sector of  
source page to destination page while it is being copied.  
Copy-Back Program Operation with Random Data Input Flow Chart  
Start  
NO  
DQ[10]=0?  
YES  
Map Out  
Write ’DFS*, FBA’ of Flash  
Add: F100h DQ=DFS, FBA  
Random Data Input  
Write ’FPA, FSA’ of Flash  
Add: F107h DQ=FPA, FSA  
Add: Random Address in  
Selected DataRAM  
DQ=Data  
Write ’BSA, BSC’ of DataRAM  
Add: F200h DQ=BSA, BSC  
Write ’FBA’ of Flash  
Add: F100h DQ=FBA  
Select DataRAM for DDP  
Add: F101h DQ=DBS  
Write ’FPA, FSA’ of Flash  
Add: F107h DQ=FPA, FSA  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Write ’Load’ Command  
Write ’Program’ Command  
Add: F220h  
DQ=0000h or 0013h  
Add: F220h  
DQ=0080h or 001Ah  
Wait for INT register  
low to high transition  
Wait for INT register  
low to high transition  
Add: F241h DQ[15]=INT  
Add: F241h DQ[15]=INT  
Read Controller  
Status Register  
Read Controller  
Status Register  
Add: F240h DQ[10]=Error  
* DBS, DFS is for DDP  
Add: F240h DQ[10]=Error  
DQ[10]=0?  
YES  
NO  
Copy back Error  
Copy back completed  
81  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.10  
Erase Operation  
There are multiple methods for erasing data in the device including Block Erase and Multi-Block Erase.  
3.10.1 Block Erase Operation  
See Timing Diagram 6.10  
The device can erase one block at a time. To erase a block is to write all 1's into the desired memory block by executing the Internal  
Erase Routine. All previous data is lost.  
Block Erase Operation Flow Chart  
Start  
Write ’DFS*, FBA’ of Flash  
Add: F100h DQ=DFS*, FBA  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Write ’Erase’ Command  
Add: F220h DQ=0094h  
Wait for INT register  
low to high transition  
Add: F241h DQ=[15]=INT  
Read Controller  
Status Register  
Add: F240h DQ[10]=Error  
DQ[10]=0?  
YES  
NO  
Erase completed  
Erase Error  
DFS* is for DDP  
: If erase operation results in an error, map out  
the failing block and replace it with another block.  
*
82  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
In order to perform the Internal Erase Routine, the following command sequence is necessary.  
The Host selects Flash Core of DDP chip.  
The Host sets the block address of the memory location.  
The Erase Command initiates the Internal Erase Routine. During the execution of the Routine, the host is  
not required to provide further controls or timings. During the Internal erase routine, all commands, except  
the Reset command and Erase Suspend Command, written to the device will be ignored.  
A reset during an erase operation will cause data corruption at the corresponding location.  
3.10.2 Multi-Block Erase Operation  
See Timing Diagram 6.10  
Using Multi-Block Erase, the device can erase up to 64 multiple blocks simultaneously.  
Multiple blocks can be erased by issuing a Multi-Block Erase command and writing the block address of the memory location to be  
erased. The final Flash Block Address (FBA) and Block Erase command initiate the internal multi block erase routine. During a  
Multi-Block Erase, the OnGo bit of the Controller Status Register is set to '1'(busy) from the time first block address to be latched is  
written until the actual erase has finished.  
During block address latch sequence, issuing of other commands except Block Erase and Multi Block Erase at INT=High will abort  
the current operation. So to speak, It will cancel the previously latched addresses of Multi Block Erase Operation.  
On the other hand, Other command issue at INT=low will be ignored.  
A reset during an erase operation will cause data corruption at the address location being operated on during the reset.  
Despite a failed block during Multi-Block Erase operation, the device will continue the erase operation until all other specified blocks  
are erased.  
Erase Suspend Command issue during Multi Block Erase Address latch sequence is prohibited.  
Locked Blocks  
If there are locked blocks in the specified range, the Multi-Block Erase operation works as the follows.  
Case 1: All specified blocks except BA(2) will be erased.  
[BA(1)+0095h] + [BA((2), locked))+0095h] + ... + [BA(N-1)+0095h] + [BA(N)+0094h]  
Case 2: Multi-Block Erase Operation is suspended and fails to start if the last Block Erase command is put together with the locked  
block address until right command and address input are issued.  
[BA(1)+0095h] + [BA(2)+0095h] + ... + [BA(N-1)+0095h] + [BA((N), locked))+0094h]  
Case 3: All specified blocks except BA(N) are erased.  
[BA(1)+0095h] + [BA(2)+0095h] + ... + [BA(N-1)+0095h] + [BA((N, locked))+0094h] + [BA(N+1)+0094h]  
83  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.10.3 Multi-Block Erase Verify Read Operation  
After a Multi-Block Erase Operation, verify Erase Operation result of each block with Multi-Block Erase Verify Command combined  
with address of each block.  
If a failed address is identified, it must be managed in firmware.  
Multi Block Erase/ Multi Block Erase Verify Read Flow Chart  
Read Controller  
Status Register  
Write ’FBA’ of Flash  
Add: F100h DQ=FBA  
Start  
Add: F240h DQ[10]=Error  
Write ’DFS1)’, ’FBA’ of Flash  
Add: F100h DQ=DFS, FBA  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
DQ[10]=0?  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
NO  
Write ’Block Erase  
Command’  
YES  
Add: F220h DQ=0094h  
Erase completed  
Write ’Multi Block Erase’  
Command  
Wait for INT register  
low to high transition  
Add: F220h DQ=0095h  
Erase Error  
Add: F241h DQ=[15]=INT  
NO  
Wait for INT register  
low to high transition  
Final Multi Block  
Erase Address?  
Write ’FBA’ of Flash  
Add: F100h DQ=FBA  
Add: F241h DQ=[15]=INT  
YES  
Multi Block Erase completed  
NO  
Final Multi Block  
Erase?  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Multi Block Erase Verify Read  
*DFS is for DDP  
YES  
Write ’Multi Block Erase  
Verify Read Command’  
Add: F220h DQ=0071h  
Wait for INT register  
low to high transition  
Add: F241h DQ=[15]=INT  
Note 1) DFS should be a fixed value, for Multi Block Erase is performed within a single chip.  
84  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.10.4 Erase Suspend / Erase Resume Operation  
The Erase Suspend/Erase Resume Commands interrupt and restart a Block Erase or Multi-Block Erase operation so that user may  
perform another urgent operation on the block that is not being designated by Erase/Multi-Block Erase Operation.  
Erase Suspend During a Block Erase Operation  
When Erase Suspend command is written during a Block Erase or Multi-Block Erase operation, the device requires a maximum of  
500us to suspend erase operation. Erase Suspend Command issue during Block Address latch sequence is prohibited.  
After the erase operation has been suspended, the device is ready for the next operation including a load, program, copy-back  
program, Lock, Unlock, Lock-tight, Hot Reset, NAND Flash Core Reset, Command Based Reset, Multi-Block Erase Read Verify, or  
OTP Access.  
The subsequent operation can be to any block that was NOT being erased.  
A special case arises pertaining Erase Suspend to the OTP. A Reset command is used to exit from the OTP Access mode. If the  
Reset-triggered exit from the OTP Access Mode happens during an Erase Suspend Operation, the erase routine could fail. Therefore  
to exit from the OTP Access Mode without suspending the erase operation stop, a 'NAND Flash Core Reset' command should be  
issued.  
For the duration of the Erase Suspend period the following commands are not accepted:  
Block Erase/Multi-Block Erase/Erase Suspend  
Erase Suspend and Erase Resume Operation Flow Chart  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Start  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Write ’Erase Resume  
Command’  
Add: F220h DQ=0030h  
Write ’Erase Suspend  
Command’ 1)  
Wait for INT register  
low to high transition  
Add: F220h DQ=00B0h  
Add: F241h DQ=[15]=INT  
Wait for INT register  
low to high transition for 500us  
Check Controller Status Register  
in case of Block Erase  
Add: F241h DQ=[15]=INT  
* Another Operation ; Load, Program  
Copy-back Program, OTP Access2),  
Hot Reset, Flash Reset, CMD Reset,  
Multi Block Erase Verify, Lock,  
Lock-tight, Unlock  
Do Multi Block Erase Verify Read  
in case of Multi Block Erase  
Another Operation *  
Note 1) Erase Suspend command input is prohibited during Multi Block Erase address latch period.  
2) If OTP access mode exit happens with Reset operation during Erase Suspend mode,  
Reset operation could hurt the erase operation. So if a user wants to exit from OTP access mode  
without the erase operation stop, Reset NAND Flash Core command should be used.  
85  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Erase Resume  
When the Erase Resume command is executed, the Block Erase will restart. The Erase Resume operation does not actually resume  
the erase, but starts it again from the beginning.  
When an Erase Suspend or Erase Resume command is executed, the addresses are in Don't Care state.  
3.11  
OTP Operation  
On Block of the NAND Flash Array memory is reserved as a One-Time Programmable Block memory area.  
The OTP block can be read, programmed and locked using the same operations as any other NAND Flash Array memory block.  
OTP block cannot be erased.  
OTP block is fully-guaranteed to be a valid block.  
Entering the OTP Block  
The OTP block is separately accessible from the rest of the NAND Flash Array by using the OTP Access command instead of the  
Flash Block Address (FBA).  
Exiting the OTP Block  
To exit the OTP Access Mode, a Cold-, Warm-, Hot-, or NAND Flash Core Reset operation is performed.  
Exiting the OTP Block during an Erase Operation  
If the Reset-triggered exit from the OTP Access Mode happens during an Erase Suspend Operation, the erase  
routine could fail. Therefore to exit from the OTP Access Mode without suspending the erase operation stop, a  
'NAND Flash Core Reset' command should be issued.  
The OTP Block Page Assignments  
OTP area is one block size (128KB+4KB, 64 Pages) and is divided into two areas. The 10-page User Area is available as an OTP  
storage area. The 54-page Manufacturer Area is programmed by the manufacturer prior to shipping the device to the user.  
OTP Block Page Allocation Information  
Area  
User  
Page  
Use  
0 ~ 9 (10 pages)  
10 ~ 63 (54 pages)  
Designated as user area  
Used by the device manufacturer  
Manufacturer  
Note) For DDP and QDP products, One block OTP is available in each chip. i.e. 2 OTP blocks in DDP, 4 OTP blocks in QDP  
86  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
OTP Area Structure  
Page:2KB+64B  
Sector(main area):512B  
Sector(spare area):16B  
One Block:  
64pages  
128KB+4KB  
Manufacturer Area :  
54pages  
page 10 to page 63  
User Area :  
10pages  
page 0 to page 9  
87  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.11.1 OTP Load Operation  
An OTP Load Operation accesses the OTP area and transfers identified content from the OTP to the DataRAM on-chip buffer,  
thus making the OTP contents available to the Host.  
The OTP area is a separate part of the NAND Flash Array memory. It is accessed by issuing OTP Access command(65h) instead of  
a Flash Block Address (FBA) command.  
After being accessed with the OTP Access Command, the contents of OTP memory area are loaded using the same operations  
as a normal load operation to the NAND Flash Array memory (see section 3.6 for more information).  
To exit the OTP access mode following an OTP Load Operation, a Cold-, Warm-, Hot-, or NAND Flash Core Reset operation is performed.  
OTP Read Operation Flow Chart  
Start  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Write ’DFS*, FBA’ of Flash1)  
Add: F100h DQ=DFS*, FBA  
Write ’Load’ Command  
Add: F220h  
DQ=0000h or 0013h  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Wait for INT register  
low to high transition  
Write ’OTP Access’ Command  
Add: F220h DQ=0065h  
Add: F241h DQ[15]=INT  
Wait for INT register  
low to high transition  
Host reads data from  
DataRAM  
Add: F241h DQ[15]=INT  
OTP Reading completed  
Write ’FPA, FSA’ of Flash1)  
Add: F107h DQ=FPA, FSA  
Do Cold/Warm/Hot  
/NAND Flash Core Reset  
Write ’BSA, BSC’ of DataRAM  
Add: F200h DQ=BSA, BSC  
OTP Exit  
Select DataRAM for DDP  
Add: F101h DQ=DBS  
* DBS, DFS is for DDP  
Note 1) FBA(NAND Flash Block Address) could be omitted or any address.  
88  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.11.2 OTP Program Operation  
An OTP Program Operation accesses the OTP area and programs content from the DataRAM on-chip buffer to the designated  
page(s) of the OTP.  
A memory location in the OTP area can be programmed only one time (no erase operation permitted).  
The OTP area is programmed using the same sequence as normal program operation after being accessed by the command (see  
section 3.8 for more information).  
Programming the OTP Area  
Issue the OTP Access Command  
Write data into the DataRAM (data can be input at anytime between the "Start" and "Write Program" commands)  
Issue a Flash Block Address (FBA) which is unlocked area address of NAND Flash Array address map.  
Issue a Write Program command to program the data from the DataRAM into the OTP  
When the OTP programming is complete, do a Cold-, Warm-, Hot-, NAND Flash Core Reset to exit the OTP Access mode.  
89  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
OTP Program Operation Flow Chart  
Start  
Write ’FBA’ of Flash  
Add: F100h DQ=FBA3)  
Write ’DFS*, FBA’ of Flash1)  
Add: F100h DQ=DFS*, FBA  
Write ’FPA, FSA’ of Flash  
Add: F107h DQ=FPA, FSA  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Write ’BSA, BSC’ of DataRAM  
Add: F200h DQ=BSA, BSC  
Write ’OTP Access’ Command  
Add: F220h DQ=0065h  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Wait for INT register  
low to high transition  
Write Program command  
Add: F220h  
DQ=0080h or 001Ah  
Add: F241h DQ[15]=INT  
Automatically  
checked  
Automatically  
updated  
Select DataRAM for DDP  
Add: F101h DQ=DBS*  
NO  
OTPL=0?  
YES  
Write Data into DataRAM2)  
Add: DP DQ=Data-in  
Update Controller  
Status Register  
Wait for INT register  
low to high transition  
Add: F240h  
DQ[14]=1(Lock), DQ[10]=1(Error)  
Add: F241h DQ[15]=INT  
NO  
Data Input  
Completed?  
Wait for INT register  
low to high transition  
Read Controller  
Status Register  
Add: F241h DQ[15]=INT  
Add: F240h DQ[10]=0(Pass)  
Read Controller  
Status Register  
OTP Programming completed  
Add: F240h DQ[10]=1(Error)  
Do Cold/Warm/Hot  
/NAND Flash Core reset  
Do Cold/Warm/Hot  
/NAND Flash Core reset  
OTP Exit  
OTP Exit  
* DBS, DFS is for DDP  
Note 1) FBA(NAND Flash Block Address) could be omitted or any address.  
2) Data input could be done anywhere between "Start" and "Write Program Command".  
3) FBA should point the unlocked area address among NAND Flash Array address map.  
90  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.11.3 OTP Lock Operation  
Even though the OTP area can only be programmed once without erase capability, it can be locked when the device starts up to  
prevent any changes from being made.  
Unlike the main area of the NAND Flash Array memory, once the OTP block is locked, it cannot be unlocked.  
Locking the OTP  
Programming to the OTP area can be prevented by locking the OTP area. Locking the OTP area is accomplished by  
programming XXXCh to 8th word of sector0 of page0 of the spare0 memory area.  
At device power-up, this word location is checked and if XXXCh is found, the OTPL bit of the Controller Status Register is set to "1",  
indicating the OTP is locked. When the Program Operation finds that the status of the OTP is locked, the device updates the Error Bit  
of the Controller Status Register as "1" (fail).  
OTP Lock Operation Steps  
Issue the OTP Access Command  
Fill data to be programmed into DataRAM (data can be input at anytime between the "Start" and "Write Program" commands)  
Write 'XXXCH' data into the 8th word of sector0 of page0 of the spare0 memory area of the DataRAM.  
Issue a Flash Block Address (FBA) which is unlocked area address of NAND Flash Array address map.  
Issue a Program command to program the data from the DataRAM into the OTP  
When the OTP lock is complete, do a Cold Reset to exit the OTP Access mode and update OTP lock bit[6].  
OTP lock bit[6] of the Controller Status Register will be set to "1" and the OTP will be locked.  
91  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
OTP Lock Operation Flow Chart  
Write ’FBA’ of Flash  
Start  
Add: F100h DQ=FBA3)  
Write ’DFS’, ’FBA’ of Flash1)  
Add: F100h DQ=DFS, FBA  
Write ’FPA, FSA’ of Flash  
Add: F107h DQ=0000h  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Write ’BSA, BSC’ of DataRAM  
Add: F200h DQ=0001h  
Write ’OTP Access’ Command  
Add: F220h DQ=0065h  
Write 0 to interrupt register  
Add: F241h DQ=0000h  
Wait for INT register  
low to high transition  
Write Program command  
Add: F220h  
DQ=0080h or 001Ah  
Add: F241h DQ[15]=INT  
Select DataRAM for DDP  
Add: F101h DQ=DBS*  
Wait for INT register  
low to high transition  
Add: F241h DQ[15]=INT  
Write Data into DataRAM2)  
Add: 8th Word  
in spare0/sector0/page0  
DQ=XXXCh  
Do Cold reset  
Automatically  
updated  
Update Controller  
Status Register  
Add: F240h  
DQ[6]=1(OTPL)  
OTP lock completed  
* DBS, DFS is for DDP  
Note 1) FBA(NAND Flash Block Address) could be omitted or any address.  
2) Data input could be done anywhere between "Start" and "Write Program Command".  
3) FBA should point the unlocked area address among NAND Flash Array address map.  
92  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.12  
Dual Operations  
The device has independent dual data buffers on-chip (except during the Boot Load period) that enables higher  
performance read and program operation.  
3.12.1 Read-While-Load Operation  
This operation accelerates the read performance of the device by enabling data to be read out by the host from one DataRAM buffer  
while the other DataRAM buffer is being loaded with data from the NAND Flash Array memory.  
1) Data Load  
2) Data Read  
Data  
Buffer0  
Page A  
3) Data Load  
Data  
Buffer1  
Page B  
2) Data Load  
3) Data Read  
The dual data buffer architecture provides the capability of executing a data-read operation from one of DataRAM buffers during a  
simultaneous data-load operation from Flash to the other buffer. Simultaneous load and read operation to same data buffer is  
prohibited. See sections 3.6 and 3.7 for more information on Load and Read Operations.  
If host sets FBA, FSA, or FPA while loading into designated page, it will fail the internal load operation. Address registers should not  
be updated until internal operation is completed.  
3.12.2 Write-While-Program Operation  
This operation accelerates the programming performance of the device by enabling data to be written by the host into one DataRAM  
buffer while the NAND Flash Array memory is being programmed with data from the other DataRAM buffer.  
1) Data Write  
2) Program  
3) Program  
Data  
Buffer0  
Page A  
Page B  
3) Data Write  
2) Data Write  
Data  
Buffer1  
The dual data buffer architecture provides the capability of executing a data-write operation to one of DataRAM buffers during simul-  
taneous data-program operation to Flash from the other buffer. Simultaneous program and write operation to same data buffer is  
prohibited. See sections 3.8 for more information on Program Operation.  
If host sets FBA, FSA, or FPA while programming into designated page, it will fail the internal program operation. Address registers  
should not be updated until internal operation is completed.  
93  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
94  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
95  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.13  
ECC Operation  
The OneNAND device has on-chip ECC with the capability of detecting 2 bit errors and correcting 1-bit errors in the NAND Flash  
Array memory main and spare areas.  
As the device transfers data from a BufferRAM to the NAND Flash Array memory Page Buffer for Program Operation, the device ini-  
tiates a background operation which generates an Error Correction Code (ECC) of 24bits for each sector main area data and 10bits  
for 2nd and 3rd word data of each sector spare area.  
During a Load operation from the NAND Flash Array memory Page, the on-chip ECC engine generates a new ECC. The 'Load ECC  
result' is compared to the originally 'Program ECC' thus detecting the number and position of errors. Single-bit error is corrected.  
ECC is updated by the device automatically. After a Load Operation, the Host can determine whether there was error by reading the  
'ECC Status Register' (refer to section 2.8.26).  
Error types are divided into 'no error', '1bit correctable error', and '2bit error uncorrectable error'.  
OneNAND supports 2bit EDC even though 2bit error seldom or never occurs. Hence, it is not recommeded for Host to read 'ECC Sta-  
tus Register' for checking ECC error because the built-in Error Correction Logic of OneNAND automatically corrects ECC error.  
When the device reads the NAND Flash Array memory main and spare area data with an ECC operation, the device doesn't place  
the newly generated ECC for main and spare area into the buffer. Instead it places the ECC which was generated and written during  
the program operation into the buffer.  
An ECC operation is also done during the Boot Loading operation.  
3.13.1 ECC Bypass Operation  
In an ECC bypass operation, the device does not generate ECC as a background operation. The result does not indicate error posi-  
tion (refer to the ECC Result Table).  
In a Program Operation the ECC code to NAND Flash Array memory spare area is not updated.  
During a Load operation, the on-chip ECC engine does not generate a new ECC internally. Also the ECC Status & Result to Regis-  
ters are invalid. The error is not corrected and detected by itself, so that ECC bypass operation is not recommended for host.  
ECC bypass operation is set by the 9bit of System Configuration 1 Register (see section 2.8.19)  
ECC Code and ECC Result by ECC Operation  
Program operation  
Load operation  
Operation  
ECC Code Update to NAND ECC Code at BufferRAM Spare ECC Status & Result Update  
1bit Error  
Flash Array Spare Area  
Update  
Area  
to Registers  
Update  
Pre-written ECC code(1) loaded  
Pre-written code loaded  
ECC operation  
ECC bypass  
Correct  
Not update  
Invalid  
Not correct  
NOTE:  
1. Pre-written ECC code : ECC code which is previously written to NAND Flash Spare Area in program operation.  
96  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
3.14  
Invalid Block Operation  
Invalid blocks are defined as blocks in the device's NAND Flash Array memory that contain one or more invalid bits whose reliability  
is not guaranteed by Samsung.  
The information regarding the invalid block(s) is called the Invalid Block Information. Devices with invalid block(s) have the same  
quality level as devices with all valid blocks and have the same AC and DC characteristics.  
An invalid block(s) does not affect the performance of valid block(s) because it is isolated from the bit line and the common source  
line by a select transistor.  
The system design must be able to mask out the invalid block(s) via address mapping. The 1st block, which is placed on 00h block  
address, is always fully guaranteed to be a valid block.  
Due to invalid marking, during load operation for identifying invalid block, a load error may occur.  
3.14.1 Invalid Block Identification Table Operation  
A system must be able to recognize invalid block(s) based on the original invalid block information and create an invalid block table.  
Invalid blocks are identified by erasing all address locations in the NAND Flash Array memory except locations where the invalid  
block(s) information is written prior to shipping.  
An invalid block(s) status is defined by the 1st word in the spare area. Samsung makes sure that either the 1st or 2nd page of every  
invalid block has non-FFFFh data at the 1st word of sector0.  
Since the invalid block information is also erasable in most cases, it is impossible to recover the information once it has been erased.  
Any intentional erase of the original invalid block information is prohibited.  
The following suggested flow chart can be used to create an Invalid Block Table.  
97  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Invalid Block Table Creation Flow Chart  
Start  
Set Block Address = 0  
Increment Block Address  
Check "FFFFh" at the 1st word of sector 0  
of spare area in 1st and 2nd page  
*
No  
No  
Check  
Create (or update)  
Invalid Block(s) Table  
"FFFFh" ?  
Yes  
Last Block ?  
Yes  
End  
3.14.2 Invalid Block Replacement Operation  
Within its life time, additional invalid blocks may develop with NAND Flash Array memory. Refer to the device's qualification report for  
the actual data.  
The following possible failure modes should be considered to implement a highly reliable system.  
In the case of a status read failure after erase or program, a block replacement should be done. Because program status failure  
during a page program does not affect the data of the other pages in the same block, a block replacement can be executed with a  
page-sized buffer by finding an erased empty block and reprogramming the current target data and copying the rest of the replaced  
block.  
Block Failure Modes and Countermeasures  
Failure Mode  
Erase Failure  
Detection and Countermeasure sequence  
Status Read after Erase --> Block Replacement  
Status Read after Program --> Block Replacement  
Error Correction by ECC mode of the device  
Program Failure  
Single Bit Failure in Load Operation  
98  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Referring to the diagram for further illustration, when an error happens in the nth page of block 'A' during program operation, copy  
the data in the 1st ~ (n-1)th page to the same location of block 'B' via data buffer0.  
Then copy the nth page data of block 'A' in the data buffer1 to the nth page of block 'B' or any free block. Do not further erase or  
program block 'A' but instead complete the operation by creating an 'Invalid Block Table' or other appropriate scheme.  
Block Replacement Operation Sequence  
Block A  
1st  
1
{
(n-1)th  
nth  
an error occurs.  
Data Buffer0 of the device  
(page)  
1
Data Buffer1 of the device  
Block B  
(assuming the nth page data is maintained)  
1st  
2
{
(n-1)th  
nth  
(page)  
99  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
4.0 DC CHARACTERISTICS  
4.1  
Absolute Maximum Ratings  
Parameter  
Symbol  
Rating  
-0.5 to + 2.45  
-0.5 to + 2.45  
-30 to +125  
-65 to +150  
5
Unit  
Vcc  
Vcc  
Voltage on any pin relative to VSS  
V
All Pins  
VIN  
Temperature Under Bias  
Extended  
Tbias  
°C  
°C  
Storage Temperature  
Tstg  
IOS  
Short Circuit Output Current  
Recommended Operating Temperature  
mA  
°C  
TA (Extended Temp.)  
-30 to +85  
NOTES:  
1. Minimum DC voltage is -0.5V on Input/ Output pins. During transitions, this level should not fall to POR level(typ. 1.5V). Maximum DC voltage is  
Vcc+0.6V on input / output pins which, during transitions, may overshoot to Vcc+2.0V for periods <20ns.  
2. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions  
detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
4.2  
Operating Conditions  
Voltage reference to GND  
1.8V Device  
Typ.  
Parameter  
Symbol  
Unit  
Min  
1.7  
0
Max  
1.95  
0
VCC-core / Vcc  
VCC- IO / Vccq  
VSS  
1.8  
0
V
V
Supply Voltage  
NOTES:  
1. The system power should reach 1.7V after POR triggering level(typ. 1.5V) within 400us.  
2. Vcc-Core (or Vcc) should reach the operating voltage level prior to or at the same time as Vcc-IO (or Vccq).  
100  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
4.3  
DC Characteristics  
1.8V device  
Unit  
Parameter  
Symbol  
Test Conditions  
Min  
- 1.0  
-2.0  
-4.0  
- 1.0  
-2.0  
-4.0  
Typ  
Max  
+ 1.0  
+ 2.0  
+ 4.0  
+ 1.0  
+ 2.0  
+ 4.0  
Single  
DDP  
-
-
-
-
-
-
Input Leakage Current  
Output Leakage Current  
ILI  
VIN=VSS to VCC, VCC=VCCmax  
µA  
QDP  
Single  
DDP  
VOUT=VSS to VCC, VCC=VCCmax,  
CE or OE=VIH(Note 1)  
ILO  
µA  
QDP  
Active Asynchronous Read Cur-  
rent (Note 2)  
ICC1  
CE=VIL, OE=VIH  
-
8
15  
mA  
54Mhz  
1MHz  
-
-
12  
3
20  
4
mA  
mA  
54Mhz  
(DDP/  
QDP)  
Active Burst Read Current (Note  
2)  
-
-
17  
3
22  
4
mA  
mA  
ICC2  
CE=VIL, OE=VIH  
1MHz  
(DDP/  
QDP)  
Single  
DDP  
-
-
-
-
-
8
15  
20  
40  
30  
25  
mA  
mA  
mA  
mA  
mA  
Active Write Current (Note 2)  
ICC3  
CE=VIL, OE=VIH  
13  
30  
25  
20  
Active Load Current (Note 3)  
Active Program Current (Note 3)  
Active Erase Current (Note 3)  
ICC4  
ICC5  
ICC6  
CE=VIL, OE=VIH, WE=VIH  
CE=VIL, OE=VIH, WE=VIH  
CE=VIL, OE=VIH, WE=VIH  
Multi Block Erase Current (Note  
3)  
ICC7  
CE=VIL, OE=VIH, WE=VIH, 64blocks  
-
20  
25  
mA  
Single  
DDP  
-
10  
20  
40  
-
50  
100  
180  
0.4  
Standby Current  
ISB  
CE= RP=VCC ± 0.2V  
-
-
µA  
QDP  
Input Low Voltage  
VIL  
-
-
-0.5  
V
V
VCCq+0.  
4
Input High Voltage (Note4)  
VIH  
VCCq-0.4  
-
Output Low Voltage  
Output High Voltage  
VOL  
VOH  
IOL = 100 µA , VCC=VCCmin , VCCq=VCCqmin  
IOH = -100 µA , VCC=VCCmin , VCCq=VCCqmin  
-
-
-
0.2  
-
V
V
VCCq-0.1  
Note 1. CE should be VIH for RDY. IOBE should be ’0’ for INT.  
Note 2. Icc active for Host access  
Note 3. ICC active for Internal operation. (without host access)  
Note 4. Vccq is equivalent to Vcc-IO  
101  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
5.0 AC CHARACTERISTICS  
5.1  
AC Test Conditions  
Parameter  
Value  
0V to VCC  
3ns  
Input Pulse Levels  
Input Rise and Fall Times  
CLK  
other inputs  
5ns  
VCC/2  
Input and Output Timing Levels  
Output Load  
CL = 30pF  
Device  
Under  
Test  
VCC  
Input & Output  
Test Point  
VCC/2  
VCC/2  
* CL = 30pF including scope  
and Jig capacitance  
0V  
Input Pulse and Test Point  
Output Load  
5.2  
Device Capacitance  
CAPACITANCE(TA = 25 °C, VCC = 1.8V, f = 1.0MHz)  
Single  
DDP  
QDP  
Unit  
Test Condi-  
Item  
Symbol  
tion  
Min  
Max  
10  
Min  
Max  
20  
Min  
Max  
40  
Input Capacitance  
Control Pin Capacitance  
Output Capacitance  
INT Capacitance  
CIN1  
CIN2  
COUT  
CINT  
VIN=0V  
-
-
-
-
-
-
-
-
-
-
-
-
10  
20  
40  
VIN=0V  
VOUT=0V  
VOUT=0V  
pF  
10  
20  
40  
15  
30  
60  
NOTE : Capacitance is periodically sampled and not 100% tested.  
5.3  
Valid Block Characteristics  
Parameter  
Symbol  
NVB  
Min  
1004  
2008  
4016*  
Typ.  
Max  
Unit  
Valid Block Number (Single)  
Valid Block Number (DDP)  
Valid Block Number (QDP)  
-
-
-
1024  
2048  
4096*  
Blocks  
Blocks  
Blocks  
NVB  
NVB  
NOTES:  
1. The device may include invalid blocks when first shipped. Additional invalid blocks may develop while being used. The number of valid blocks is pre-  
sented with both cases of invalid blocks considered. Invalid blocks are defined as blocks that contain one or more bad bits. Do not erase or program  
factory-marked bad blocks.  
2. The 1st block, which is placed on 00h block address, is fully guaranteed to be a valid block.  
* Each KFG1G16Q2M chip in the KFH2G16Q2M has Maximum 20 invalid blocks.  
102  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
5.4  
AC Characteristics for Synchronous Burst Read  
See Timing Diagrams 6.1 and 6.2  
KFG1G16Q2M/KFH2G16Q2M  
/KFW4G16Q2M  
Parameter  
Symbol  
Unit  
Min  
Max  
Clock  
CLK  
tCLK  
tIAA  
1
54  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Cycle  
18.5  
-
Initial Access Time  
-
-
76  
Burst Access Time Valid Clock to Output Delay  
AVD Setup Time to CLK  
tBA  
14.5  
tAVDS  
tAVDH  
tACS  
tACH  
tBDH  
tOE  
7
7
7
7
4
-
-
-
AVD Hold Time from CLK  
Address Setup Time to CLK  
Address Hold Time from CLK  
Data Hold Time from Next Clock Cycle  
Output Enable to Data  
-
-
-
20  
20  
1)  
CE Disable to Output High Z  
-
tCEZ  
1)  
OE Disable to Output High Z  
CE Setup Time to CLK  
CLK High or Low Time  
-
17  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOEZ  
tCES  
7
tCLKH/L  
tCLK/3  
-
CLK 2) to RDY valid  
tRDYO  
-
-
14.5  
14.5  
-
CLK to RDY Setup Time  
RDY Setup Time to CLK  
CE low to RDY valid  
tRDYA  
tRDYS  
tCER  
4
-
15  
Note  
1. If OE is disabled at the same time or before CE is disabled, the output will go to high-z by tOEZ.  
If CE is disabled at the same time or before OE is disabled, the output will go to high-z by tCEZ.  
If CE and OE are disabled at the same time, the output will go to high-z by tOEZ.  
2. It is the following clock of address fetch clock.  
103  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
5.5  
AC Characteristics for Asynchronous Read  
See Timing Diagrams 6.3, 6.4, 6.5 and 6.6  
KFG1G16Q2M/KFH2G16Q2M  
/KFW4G16Q2M  
Unit  
Parameter  
Symbol  
Min  
-
Max  
76  
76  
76  
-
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Access Time from CE Low  
tCE  
tAA  
Asynchronous Access Time from AVD Low  
Asynchronous Access Time from address valid  
Read Cycle Time  
-
tACC  
tRC  
-
76  
12  
7
AVD Low Time  
tAVDP  
tAAVDS  
tAAVDH  
tOE  
-
Address Setup to rising edge of AVD  
Address Hold from rising edge of AVD  
Output Enable to Output Valid  
WE disable to OE enable  
-
7
-
-
20  
-
tOEH  
tCA  
0
CE Setup to AVD falling edge  
0
-
CE Disable to Output & RDY High Z1)  
tCEZ  
tOEZ  
tWEA  
-
20  
OE Disable to Output High Z1)  
WE Disable to AVD Enable  
-
17  
-
ns  
ns  
15  
NOTE:  
1. If OE is disabled at the same time or before CE is disabled, the output will go to high-z by tOEZ.  
If CE is disabled at the same time or before OE is disabled, the output will go to high-z by tCEZ.  
If CE and OE are disabled at the same time, the output will go to high-z by tOEZ.  
These parameters are not 100% tested.  
5.6  
AC Characteristics for Warm Reset (RP), Hot Reset  
and NAND Flash Core Reset  
See Timing Diagrams 6.12, 6.13 and 6.14  
Parameter  
Symbol  
Min  
Max  
Unit  
tReady1  
(BufferRAM)  
RP & Reset Command Latch to BootRAM Access  
µs  
-
5
tReady2  
(NAND Flash Array)  
RP & Reset Command Latch(During Load Routines) to INT High (Note1)  
RP & Reset Command Latch(During Program Routines) to INT High (Note1)  
RP & Reset Command Latch(During Erase Routines) to INT High (Note1)  
-
-
-
10  
20  
µs  
µs  
µs  
tReady2  
(NAND Flash Array)  
tReady2  
(NAND Flash Array)  
500  
tReady2  
(NAND Flash Array)  
RP & Reset Command Latch(NOT During Internal Routines) to INT High (Note1)  
RP Pulse Width (Note2)  
-
10  
-
µs  
tRP  
200  
ns  
Note  
1. These parameters are tested based on INT bit of interrupt register. Because the time on INT pin is related to the pull-up and pull-down resistor value.  
2. The device may reset if tRP < tRP min(200ns), but this is not guaranteed.  
104  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
5.7  
AC Characteristics for Asynchronous Write/Load/  
Program/Erase Operation  
See Timing Diagrams 6.7, 6.8 and 6.9  
Parameter  
Symbol  
tWC  
Min  
70  
12  
0
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WE Cycle Time  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AVD low pulse width  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Data Hold Time  
tAVDP  
tAWES  
tAH  
30  
25  
0
tDS  
tDH  
tCS  
0
CE Setup Time  
CE Hold Time  
tCH  
10  
40  
30  
15  
15  
WE Pulse Width  
tWPL  
tWPH  
tVLWH  
tWEA  
WE Pulse Width High  
AVD Disable to WE Disable  
WE Disable to AVD Enable  
5.8  
AC Characteristics for Load/Program/Erase  
Performance  
See Timing Diagrams 6.8, 6.9, and 6.10  
Parameter  
Symbol  
tRD1  
Min  
Typ  
23  
Max  
35  
Unit  
µs  
Sector Load time(Note 1)  
Page Load time(Note 1)  
-
-
-
-
-
-
-
-
tRD2  
µs  
30  
45  
Sector Program time(Note 1)  
Page Program time(Note 1)  
OTP Access Time(Note 1)  
tPGM1  
tPGM2  
tOTP  
µs  
205  
220  
500  
500  
400  
2
720  
750  
700  
700  
500  
3
µs  
ns  
ns  
µs  
Lock/Unlock/Lock-tight Time(Note 1)  
Erase Suspend Time(Note 1)  
tLOCK  
tESP  
1 Block  
tERS1  
tERS2  
ms  
ms  
Erase Resume Time(Note 1)  
2~64 Blocks  
4
6
Number of Partial Program Cycles in the sector (Including main and  
spare area)  
NOP  
-
-
2
cycles  
1 Block  
Block Erase time (Note 1)  
tBERS1  
tBERS2  
tRD3  
-
-
-
2
4
3
6
ms  
ms  
µs  
2~64 Blocks  
Multi BlocK Erase Verify Read time(Note 1)  
70  
100  
Note 1) These parameters are tested based on INT bit of interrupt register. Because the time on INT pin is related to the pull-up and pull-down resistor  
value.  
105  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
6.0 TIMING DIAGRAMS  
6.1  
8-Word Linear Burst Mode with Wrap Around  
See AC Characteristics Table 5.4  
5 cycles for initial access shown.  
BRL=4  
tCLK  
tCES  
tCLKL  
tCLKH  
CE  
tCER  
tCEZ  
CLK  
tAVDS  
tRDYO  
AVD  
tAVDH  
tACS  
tBDH  
D2  
A0-A15  
tBA  
tACH  
D0  
DQ0-DQ15  
D6  
D7  
D0  
D1  
D3  
D7  
tOEZ  
tIAA  
tOE  
OE  
tRDYS  
tRDYA  
Hi-Z  
Hi-Z  
RDY  
6.2  
Continuous Linear Burst Mode with Wrap Around  
See AC Characteristics Table 5.4  
5 cycles for initial access shown.  
BRL=4  
tCLK  
tCES  
CE  
tCER  
tCEZ  
CLK  
AVD  
tAVDS  
tACS  
tRDYO  
tAVDH  
tBDH  
A0-A15  
tBA  
tACH  
Da+n+1  
tOEZ  
DQ0-DQ15  
Da  
Da+1 Da+2 Da+3 Da+4 Da+5  
Da+n  
tIAA  
tOE  
OE  
tRDYS  
Hi-Z  
Hi-Z  
tRDYA  
RDY  
106  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
6.3  
Asynchronous Read (VA and AVD Transition Before CE Low)  
See AC Characteristics Table 5.5  
VIL  
CLK  
CE  
tCEZ  
tAVDP  
AVD  
OE  
tOE  
WE  
tCE  
tOEZ  
DQ0-DQ15  
A0-A15  
Valid RD  
tAAVDH  
VA  
Hi-Z  
Hi-Z  
RDY  
NOTE: VA=Valid Read Address, RD=Read Data.  
6.4  
Asynchronous Read (VA and AVD Transition After CE Low)  
See AC Characteristics Table 5.5  
VIL  
CLK  
CE  
tCEZ  
tAA  
tAVDP  
AVD  
OE  
tOE  
tWEA  
WE  
tOEZ  
DQ0-DQ15  
A0-A15  
Valid RD  
tAAVDH  
VA  
Hi-Z  
Hi-Z  
RDY  
NOTE: VA=Valid Read Address, RD=Read Data.  
107  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
6.5  
Asynchronous Read (VA and AVD Transition After CE Low)  
See AC Characteristics Table 5.5  
VIL  
CLK  
CE  
tCEZ  
tAVDP  
AVD  
OE  
tAAVDS  
tOE  
tWEA  
WE  
tOEZ  
DQ0-DQ15  
Valid RD  
tAAVDH  
tACC  
A0-A15  
RDY  
VA  
Hi-Z  
Hi-Z  
NOTE: VA=Valid Read Address, RD=Read Data.  
6.6  
Asynchronous Read (AVD is tied to CE)  
See AC Characteristics Table 5.5  
VIL  
CLK  
CE  
tRC  
tCEZ  
tOE  
OE  
WE  
tCE  
tOEZ  
Valid RD  
DQ0-DQ15  
A0-A15  
tACC  
VA  
Hi-Z  
Hi-Z  
RDY  
NOTE: VA=Valid Read Address, RD=Read Data.  
108  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
6.7  
Asynchronous Write  
See AC Characteristics Table 5.7  
VIL  
CLK  
tCS  
tCH  
tCS  
CE  
tWPL  
tWPH  
WE  
tWC  
OE  
RP  
tAH  
A0-A15  
VA  
VA  
tDS  
tDH  
tAWES  
DQ0-DQ15  
RDY  
Valid WD  
Valid WD  
Hi-Z  
Hi-Z  
NOTE: VA=Valid Read Address, WD=Write Data.  
109  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
6.8  
Load Operation Timing  
See AC Characteristics Tables 5.7 and 5.8  
Load Command Sequence  
Read Data  
tAH  
tAWES  
A0:A15  
AA  
CA  
BA  
BA  
DQ0-DQ15  
Da  
Da+1  
LMA  
LCD  
tDS  
tCH  
tCS  
tDH  
CE  
OE  
WE  
tCH  
tWPL  
tWPH  
tRD  
tCS  
tWC  
VIL  
CLK  
INT  
NOTES:  
1. AA = Address of address register  
CA = Address of command register  
LCD = Load Command  
LMA = Address of memory to be loaded  
BA = Address of BufferRAM to load the data  
BD = Program Data  
SA = Address of status register  
2. “In progress” and “complete” refer to status register  
3. Status reads in this figure is asynchronous read, but status read in synchronous mode is also supported.  
110  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
6.9  
Program Operation Timing  
See AC Characteristics Tables 5.7 and 5.8  
Program Command Sequence (last two cycles)  
Read Status Data  
tAH  
tAWES  
A0:A15  
AA  
BA  
tCS  
CA  
tCS  
SA  
SA  
In  
DQ0-DQ15  
Complete  
Progress  
PMA  
tCH  
PCD  
BD  
tCH  
tDH  
tDS  
CE  
OE  
WE  
tCH  
tWPL  
tWPH  
tCS  
tPGM  
tWC  
VIL  
CLK  
INT  
NOTES:  
1. AA = Address of address register  
CA = Address of command register  
PCD = Program Command  
PMA = Address of memory to be programmed  
BA = Address of BufferRAM to load the data  
BD = Program Data  
SA = Address of status register  
2. “In progress” and “complete” refer to status register  
3. Status reads in this figure is asynchronous read, but status read in synchronous mode is also supported.  
111  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
6.10  
Block Erase Operation Timing  
See AC Characteristics Tables 5.7 and 5.8  
Erase Command Sequence (last two cycles)  
Read Status Data  
tAWES  
tAH  
A0:A15  
AA  
CA  
SA  
SA  
In  
Complete  
Progress  
DQ0-DQ15  
CE  
EMA  
tCH  
ECD  
tDS  
tCS  
tDH  
tCH  
OE  
tWPL  
WE  
tWPH  
tBERS  
tCS  
tWC  
VIL  
CLK  
INT  
NOTES:  
1. AA = Address of address register  
CA = Address of command register  
ECD = Erase Command  
EMA = Address of memory to be erased  
SA = Address of status register  
2. “In progress” and “complete” refer to status register  
3. Status reads in this figure is asynchronous read, but status read in synchronous mode is also supported.  
112  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
6.11  
Cold Reset Timing  
POR triggering level  
System Power  
1)  
Bootcode - copy done  
Idle  
OneNAND  
Operation  
Sleep  
Bootcode copy  
2)  
RP  
High-Z  
INT  
3)  
INT bit  
0 (default)  
1
IOBE bit  
0 (default)  
1 (default)  
1
INTpol bit  
Note: 1) Bootcode copy operation starts 400us later than POR activation.  
The system power should reach Vcc after POR triggering level(typ. 1.5V) within 400us for valid boot code data.  
2) 1K bytes Bootcode copy takes 70us(estimated) from sector0 and sector1/page0/block0 of NAND Flash array to BootRAM.  
Host can read Bootcode in BootRAM(1K bytes) after Bootcode copy completion.  
3) INT register goes ‘Low’ to ‘High’ on the condition of ‘Bootcode-copy done’ and RP rising edge.  
If RP goes ‘Low’ to ‘High’ before ‘Bootcode-copy done’, INT register goes to ‘Low’ to ‘High’ as soon as ‘Bootcode-copy done’  
113  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
6.12  
Warm Reset Timing  
See AC Characteristics Tables 5.6  
CE, OE  
RP  
tRP  
tReady1  
High-Z  
High-Z  
RDY  
tReady2  
INT  
bit  
Operation  
Status  
1)  
2)  
3)  
4)  
1)  
Idle  
Reset Ongoing  
BootRAM Access  
INT Bit Polling  
Idle  
NOTES:  
1. The status which can accept any register based operation(Load, Program, Erase command, etc).  
2. The status where reset is ongoing.  
3. The status allows only BootRAM(BL1) read operation for Boot Sequence.(refer to 7.2.2 Boot Sequence)  
4. To read BL2 of Boot Sequence, Host should wait INT until becomes ready. and then, Host can issue load command.  
(refer to 7.2.2 Boot Sequence, 7.1 Methods of Determing Interrupt status)  
114  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
6.13  
Hot Reset Timing  
AVD  
BP(Note 3)  
or F220h  
A0~A15  
DQ0~DQ15  
CE  
00F0h  
or 00F3h4)  
OE  
WE  
tReady2  
INT  
bit  
High-Z  
RDY  
OneNAND  
Operation  
Idle  
Operation or Idle  
OneNAND reset  
NOTE:  
1. Internal reset operation means that the device initializes internal registers and makes output signals go to default status and bufferRAM data are kept  
unchanged after Warm/Hot reset operations.  
2. Reset command : Command based reset or Register based reset  
3. BP(Boot Partition): BootRAM area [0000h~01FFh, 8000h~800Fh]  
4. 00F0h for BP, and 00F3h for F220h  
115  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
6.14  
NAND Flash Core Reset Timing  
AVD  
F220h  
A0~A15  
DQ0~DQ15  
CE  
00F0h  
OE  
WE  
tReady2  
INT  
bit  
High-Z  
RDY  
OneNAND  
Operation  
Idle  
Operation or Idle  
NAND Flash Core reset  
6.15  
Data Protection Timing During Power Down  
The device is designed to offer protection from any involuntary program/erase during power-transitions. An internal voltage detector  
disables all functions whenever Vcc is below about 1.3V. RP pin provides hardware protection and is recommended to be kept at VIL  
before power-down.  
VCC  
typ. 1.3V  
0V  
RP  
INT  
NAND Write  
Protected  
OneNAND  
Operation  
Idle  
One NAND Reset  
116  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
7.0 TECHNICAL AND APPLICATION NOTES  
From time-to-time supplemental technical information and application notes pertaining to the design and operation of the device in a  
system are included in this section. Contact your Samsung Representative to determine if additional notes are available.  
7.1  
Methods of Determining Interrupt Status  
There are two methods of determining Interrupt Status on the OneNAND. Using the INT pin or monitoring the Interrupt Status Regis-  
ter Bit.  
The OneNAND INT pin is an output pin function used to notify the Host when a command has been completed. This provides a hard-  
ware method of signaling the completion of a program, erase, or load operation.  
In its normal state, the INT pin is high if the INT polarity bit is default. Before a command is written to the command register, the INT  
bit must be written to '0' so the INT pin transitions to a low state indicating start of the operation. Upon completion of the command  
operation by the OneNAND’s internal controller, INT returns to a high state.  
INT is an open drain output allowing multiple INT outputs to be Or-tied together. INT does not float to a hi-Z condition when the chip is  
deselected or when outputs are disabled. Refer to section 2.8 for additional information about INT.  
INT can be implemented by tying INT to a host GPIO or by continuous polling of the Interrupt status register.  
7.1.1 The INT Pin to a Host General Purpose I/O  
INT can be tied to a Host GPIO to detect the rising edge of INT, signaling the end of a command operation.  
COMMAND  
INT  
This can be configured to operate either synchronously or asynchronously as shown in the diagrams below.  
117  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Synchronous Mode Using the INT Pin  
When operating synchronously, INT is tied directly to a Host GPIO.  
Host  
OneNAND  
CE  
AVD  
CLK  
RDY  
OE  
CE  
AVD  
CLK  
RDY  
OE  
GPIO  
INT  
Asynchronous Mode Using the INT Pin  
When configured to operate in an asynchronous mode, CE and AVD of the OneNAND are tied to CE of the Host. CLK is tied to the  
Host Vss (Ground). RDY is tied to a no-connect. OE of the OneNAND and Host are tied together and INT is tied to a GPIO.  
Host  
CE  
OneNAND  
CE  
AVD  
CLK  
RDY  
OE  
Vss  
N.C  
OE  
GPIO  
INT  
7.1.2 Polling the Interrupt Register Status Bit  
An alternate method of determining the end of an operation is to continuously monitor the Interrupt Status Register Bit instead of  
using the INT pin.  
Command  
INT  
This can be configured in either a synchronous mode or an asynchronous mode.  
118  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Synchronous Mode Using Interrupt Status Register Bit Polling  
When operating synchronously, CE, AVD, CLK, RDY, OE, and DQ pins on the host and OneNAND are tied together.  
Host  
CE  
OneNAND  
CE  
AVD  
CLK  
RDY  
OE  
AVD  
CLK  
RDY  
OE  
DQ  
DQ  
Asynchronous Mode Using Interrupt Status Register Bit Polling  
When configured to operate in an asynchronous mode, CE and AVD of the OneNAND are tied to CE of the Host. CLK is tied to the  
Host Vss (Ground). RDY is tied to a no-connect. OE and DQ of the OneNAND and Host are tied together.  
Host  
CE  
OneNAND  
CE  
AVD  
CLK  
RDY  
OE  
Vss  
N.C  
OE  
DQ  
DQ  
119  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
7.1.3 Determining Rp Value  
Because the pull-up resistor value is related to tr(INT) an appropriate value can obtained with the following reference charts.  
INT pol = ’High’  
Ready Vcc  
Internal Vcc  
VOH  
VOL  
Vss  
Rp  
~50k ohm  
Busy State  
tf  
tr  
KFG1G16Q2M @ Vcc = 1.8V, Ta = 25°C , CL = 30pF  
INT  
5.420  
2.431  
2.142  
1.75  
Ibusy  
0.18  
1.788  
0.09  
0.06  
0.7727  
1.345  
0.045  
0.089  
0.036  
tr[us]  
0.000  
3.77  
1K  
3.77  
10K  
3.77  
20K  
3.77  
3.77  
40K  
3.77  
50K  
tf[ns]  
30K  
Open(100K)  
Rp(ohm)  
KFH2G16Q2M @ Vcc = 1.8V, Ta = 25°C , CL = 30pF  
3.785  
3.07  
1.75  
2.807  
Ibusy  
0.18  
2.458  
0.09  
0.06  
1.238  
1.97  
0.045  
0.161  
0.036  
tr[us]  
0.000  
8.73  
1K  
8.73  
10K  
8.73  
20K  
8.73  
8.73  
40K  
8.73  
50K  
tf[ns]  
30K  
Open(100K)  
Rp(ohm)  
KFW4G16Q2M @ Vcc = 1.8V, Ta = 25°C , CL = 30pF  
5.820  
2.805  
2.65  
1.77  
Ibusy  
0.18  
2.427  
0.09  
0.06  
1.461  
2.08  
0.045  
0.232  
0.036  
tr[us]  
0.000  
6.93  
1K  
6.93  
10K  
6.93  
20K  
6.93  
6.93  
40K  
6.93  
50K  
tf[ns]  
30K  
Open(100K)  
Rp(ohm)  
120  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
INT pol = ’Low’  
tf  
tr  
Internal Vcc  
Ready  
Vcc  
Busy State  
VOH  
INT  
Vss  
VOL  
KFG1G16Q2M @ Vcc = 1.8V, Ta = 25°C , CL = 30pF  
Rp  
4.05  
1.84  
1.75  
~50k ohm  
1.623  
Ibusy  
0.18  
1.356  
0.09  
0.06  
0.586  
1.02  
0.045  
0.067  
0.036  
tf[us]  
0.000  
6.49  
1K  
6.49  
10K  
6.49  
20K  
6.49  
6.49  
40K  
6.49  
50K  
tr[ns]  
30K  
Open(100K)  
Rp(ohm)  
KFH2G16Q2M @ Vcc = 1.8V, Ta = 25°C , CL = 30pF  
2.912  
2.356  
2.153  
1.75  
Ibusy  
0.18  
1.883  
0.09  
0.06  
0.944  
1.507  
0.045  
0.122  
0.036  
tf[us]  
0.000  
10.73  
10.73  
10K  
10.73  
20K  
10.73  
10.73  
40K  
10.73  
50K  
tr[ns]  
30K  
Open(100K)  
1K  
Rp(ohm)  
KFW4G16Q2M @ Vcc = 1.8V, Ta = 25°C , CL = 30pF  
4.452  
2.159  
2.038  
1.77  
Ibusy  
0.18  
1.865  
0.09  
0.06  
1.117  
1.596  
0.045  
0.176  
0.036  
tf[us]  
0.000  
7.88  
1K  
7.88  
10K  
7.88  
20K  
7.88  
7.88  
40K  
7.88  
50K  
tr[ns]  
30K  
Open(100K)  
Rp(ohm)  
121  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
7.2  
Boot Sequence  
One of the best features OneNAND has is that it can be a booting device itself since it contains an internally built-in boot loader  
despite the fact that its core architecture is based on NAND Flash. Thus, OneNAND does not make any additional booting device  
necessary for a system, which imposes extra cost or area overhead on the overall system.  
As the system power is turned on, the boot code originally stored in NAND Flash Arrary is moved to BootRAM automatically and then  
fetched by CPU through the same interface as SRAM’s or NOR Flash’s if the size of the boot code is less than 1KB. If its size is larger  
than 1KB and less than or equal to 3KB, only 1KB of it can be moved to BootRAM automatically and fetched by CPU, and the rest of  
it can be loaded into one of the DataRAMs whose size is 2KB by Load Command and CPU can take it from the DataRAM after finish-  
ing the code-fetching job for BootRAM. If its size is larger than 3KB, the 1KB portion of it can be moved to BootRAM automatically  
and fetched by CPU, and its remaining part can be moved to DRAM through two DataRAMs using dual buffering and taken by CPU  
to reduce CPU fetch time.  
A typical boot scheme usually used to boot the system with OneNAND is explained at Patition of NAND Flash Array and OneNAND  
Boot Sequence. In this boot scheme, boot code is comprised of BL1, where BL stands for Boot Loader, BL2, and BL3. Moreover, the  
size of the boot code is larger than 3KB (the 3rd case above). BL1 is called primary boot loader in other words. Here is the table of  
detailed explanations about the function of each boot loader in this specific boot scheme.  
7.2.1  
Boot Loaders in OneNAND  
Boot Loaders in OneNAND  
Boot Loader  
BL1  
Description  
Moves BL2 from NAND Flash Array to DRAM through two DataRAMs using dual buffering  
BL2  
Moves OS image (or BL3 optionally) from NAND Flash Array to DRAM through two DataRams using dual buffering  
Moves or writes the image through USB interface  
BL3 (Optional)  
NAND Flash Array of OneNAND is divided into the partitions as described at Partition of NAND Flash Array to show where each  
component of code is located and how much portion of the overall NAND Flash Array each one occupies. In addition, the boot  
sequence is listed below and depicted at Boot Sequence.  
7.2.2  
Boot Sequence  
Boot Sequence :  
1. Power is on  
BL1 is loaded into BootRAM  
2. BL1 is executed in BootRAM  
BL2 is loaded into DRAM through two DataRams using dual buffering by BL1  
3. BL2 is executed in DRAM  
OS image is loaded into DRAM through two DataRams using dual buffering by BL2  
4. OS is running  
122  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
Block 512  
Reservoir  
Partition 6  
Partition 5  
Sector 0 Sector 1 Sector 2 Sector 3  
File System  
Page 63  
Page 62  
Block 162  
:
:
Os Image  
BL3
Partition 4  
Partition 3  
Block 2  
Block 1  
Block 0  
Page 2  
Page 1  
Page 0  
NBBLL11  
BL2
BL1  
Partition of NAND Flash array  
Reservoir  
File System  
Os Image  
step 3  
Data Ram 1  
Data Ram 0  
Os Image  
BL 2  
Boot Ram(BL 1)  
BL1  
BL2  
step 2  
step 1  
NAND Flash Array  
Internal BufferRAM  
OneNAND  
DRAM  
NOTE:  
Step 2 and Step 3 can be copied into DRAM through two DataRAMs using dual buffering  
OneNAND Boot Sequence  
123  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
8.0 PACKAGE DIMENSIONS  
#A1 INDEX  
10.00±0.10  
0.80x9=7.20  
A
0.10 MAX  
10.00±0.10  
(Datum A)  
B
6
5
4
3
2
1
#A1  
A
B
C
D
E
F
0.80  
(Datum B)  
G
H
3.60  
0.32±0.05  
0.9±0.10  
BOTTOM VIEW  
TOP VIEW  
63-  
0.45±0.05  
0.20  
M A B  
1G product (KFG1G16Q2M)  
#A1 INDEX  
A
11.00±0.10  
0.10 MAX  
(Datum A)  
11.00±0.10  
0.80x9=7.20  
B
6
5
4
3
2
1
#A1  
A
(Datum B)  
B
0.80  
C
D
E
F
G
H
3.60  
0.32±0.05  
1.1±0.10  
BOTTOM VIEW  
TOP VIEW  
63-  
0.45±0.05  
0.20  
M A B  
2G product (KFH2G16Q2M)  
124  
OneNAND4G(KFW4G16Q2M-DEB5)  
OneNAND2G(KFH2G16Q2M-DEB5)  
OneNAND1G(KFG1G16Q2M-DEB5)  
FLASH MEMORY  
#A1 INDEX  
11.00±0.10  
0.80x9=7.20  
A
0.10 MAX  
11.00±0.10  
(Datum A)  
B
6
5
4
3
2
1
#A1  
A
0.80  
(Datum B)  
B
C
D
E
F
G
H
3.60  
0.32±0.05  
1.3±0.10  
BOTTOM VIEW  
TOP VIEW  
63-  
0.45±0.05  
0.20  
M A B  
4G product (KFW4G16Q2M)  
125  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY