KS0119Q2 [SAMSUNG]

Color Signal Encoder, CMOS, PQFP100, 14 X 20 MM, PLASTIC, QFP-100;
KS0119Q2
型号: KS0119Q2
厂家: SAMSUNG    SAMSUNG
描述:

Color Signal Encoder, CMOS, PQFP100, 14 X 20 MM, PLASTIC, QFP-100

编码器 商用集成电路
文件: 总50页 (文件大小:530K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KS0119 Data Sheet  
MULTIMEDIA VIDEO  
VIDEO ENCODER  
The KS0119 combines NTSC encoding with conventional  
RAM-DAC functions so that digitized video or computer  
generated graphics can be displayed on either NTSC or PC  
monitors. There are two data input channels which allow  
mixing. Provision is also made for analog mixing at the  
output. Operation modes can be programmed under host  
control. The KS0119 can be used with other members of the  
Samsung multimedia chip set in a typical desktop  
multimedia environment.  
80 or 100 PQFP  
FEATURES  
ORDERING INFORMATION  
• Accepts true color; high color; color indexed; CCIR  
601 4:4:4, 4:2:2, 4:1:1, or 2:1:1 formatted video  
inputs  
• Supports analog NTSC CVBS, S-VIDEO, or RGB  
display  
• Fully programmable timing generation; supports  
CGA, VGA, SVGA display up to 45 MHz pixel clock  
rate (with 100 pin package)  
Device Package Temp. Range Max. CKV  
KS0119 80-QFP 0° ~ +65°C  
KS0119Q2 100-QFP 0° ~ +65°C  
32 MHz  
45 MHz  
• Accepts up to 2 input channels for digital mixing  
• Operate as slave or master in timing generation  
• Supports alpha, chroma, and window keying for  
digital mixing  
APPLICATIONS  
• PC Video  
• RAM DAC, Gamma Correction  
• YUV DAC for MPEG, JPEG Play Back  
• NTSC Video Encoder  
• Provides an analog RGB mixing function  
• Contains 3 256X8 color palette tables and 3 15X8  
overlay color look up tables  
RELATED PRODUCT  
• Contains 3 10-bit video grade DACs  
• Provides a parallel microprocessor or a 3-wire serial  
interface  
• KS0122 MULTISTANDARD VIDEO DECODER  
• Contains a two way color space converter:  
RGB -> NTSC, YCbCr -> RGB  
• Supports power down mode  
BLOCK DIAGRAM  
RIN,GIN,BIN  
AKY  
CLUT  
3X8X256  
Triple  
Analog  
MUX  
R/CVBS  
G/Y  
B/C  
Overlay  
Triple  
10-bit  
DAC  
Color  
Space  
Input  
Formatter  
CLUT  
P[0:31]  
Mixing  
3X8X15  
Converter  
NTSC  
Processor  
AV  
VBLK  
Interpolator  
HSYN  
VSYN  
CSYN  
Mixing  
Control  
DKY/R  
Timing  
Control  
F2  
MRQST/MODE  
CKP  
Microprocessor  
Interface  
CK27  
CKV  
A[0:3]  
D[0:7]  
CS R/W  
P/S  
PAGE 1 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
PIN ASSIGNMENT  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41  
65  
66  
67  
68  
69  
70  
71  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
R/CVBS  
RIN  
F2  
VBLK  
AV  
G/Y  
GIN  
VSS  
VDD  
P31  
P30  
P29  
P28  
P27  
P26  
P25  
P24  
P23  
P22  
P21  
B/C  
BIN  
AKY  
72 VREF  
73 IREF  
74 COMP  
75 CKV  
KS0119  
76  
77  
78  
79  
80  
VSS  
CK27  
VDD  
DKY/R  
P0  
3
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
1
2
4
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51  
81 NCP  
82 NCP  
NCP  
NCP  
F2  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
83 R/CVBS  
84 RIN  
VBLK  
AV  
85 G/Y  
GIN  
VSS  
VDD  
P31  
P30  
P29  
P28  
P27  
P26  
P25  
P24  
P23  
P22  
P21  
NCP  
NCP  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
B/C  
BIN  
AKY  
VREF  
IREF  
COMP  
CKV  
VSS  
CK27  
VDD  
DKY/R  
P0  
KS0119Q2  
NCP  
NCP  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
PAGE 2 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
TYPICAL APPLICATIONS  
The KS0119 is shown in a VGA overlay application with the KS0122 Multistandard Video Decoder in Figure 1.  
FRAME  
BUFFER  
ENCODER  
KS0119  
VGA Display  
NTSC/PAL Video Input  
TV,VCR,Laser Disc  
S-video or Composite  
MULTI  
MEMORY  
CONTROLLER  
STANDARD  
DECODER  
KS0122  
µP Bus  
Figure 1. VGA Overlay  
Figure 2 shows a video CD playback system using the KS0119 as a video encoder.  
VIDEO CD  
DECODER  
ENCODER  
KS0119  
NTSC Display  
Figure 2. Video CD Playback  
PAGE 3 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
PIN DESCRIPTION  
Pin #  
(80)  
Pin #  
(100)  
Pin Name  
Type  
Description  
VIDEO BUFFER INTERFACE  
P0 - P31 80,1-15, 98,4-18, 23-  
I
Digital video input bus.  
20 - 35  
27,33-43  
F2  
40  
48  
53  
O
Field 2 indicator. Active low signal.  
MRQST 41  
/MODE  
I/O Dual function pin. During power-on, it is an input and its logic state  
determines whether the chip operates in NTSC mode or VGA pass  
through mode. A 4.7 K pull-up resistor sets the chip in VGA pass  
through mode. Otherwise it defaults to NTSC mode. After power-on  
this pin becomes an output and is high during active lines’ sync tip.  
AV  
38  
39  
17  
79  
46  
47  
20  
97  
I/O Active video indicator. Input in slave mode; output in master mode.  
I/O Vertical blank. Input in slave mode; output in master mode.  
VBLK  
CKP  
DKY/R  
O
I
Pixel clock output.  
CMD  
Dual function input pin. Configured by the  
register bit 2. It can  
be used as either digital mixing or hardware RUN input. Please refer  
to the command register description for more detail.  
ANALOG MULTIPLEXER INPUT  
RIN  
GIN  
BIN  
AKY  
66  
68  
70  
71  
84  
86  
88  
89  
I
I
I
I
Analog R input to the analog mixing multiplexer.  
Analog G input to the analog mixing multiplexer.  
Analog B input to the analog mixing multiplexer.  
Analog multiplexer control. A logic ‘0’ connects analog RGB inputs to  
the output pins. A ‘1’ connects DACs’ outputs to the output pins.  
VIDEO OUTPUT PORT  
HSYN  
VSYN  
CSYN  
58  
57  
59  
70  
O
O
Horizontal Sync. Active low, TTL signal for monitor. In the pass  
through mode HSYN is the inverted AV (pin 38).  
69  
Vertical Sync. Active low, TTL signal for monitor. In the pass through  
mode VSYN is the inverted VBLK (pin 39)  
71  
83  
O
O
Composite Sync. Active low, TTL signal for monitor.  
CMD  
bits 5  
R/CVBS 65  
Either an analog R or Composite output, controlled by  
and 1. It can drive a 37.5 load (doubly terminated 75 load).  
CMD  
CMD  
G/Y  
B/C  
67  
69  
85  
87  
O
O
Either an analog G or S-video Y output, controlled by  
1. It can drive a 37.5 load.  
bits 5 and  
bits 5 and  
Either an analog B or S-video C output, controlled by  
1. It can drive a 37.5 load.  
PAGE 4 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
PIN DESCRIPTION (Continued)  
Pin #  
(80)  
Pin #  
(100)  
Pin Name  
Type  
Description  
REFERENCE AND COMPENSATION  
VREF  
72  
90  
I/O Voltage reference. It has an internal voltage reference circuit, but may  
be overridden by an external voltage reference input. A 0.1 µF  
ceramic capacitor is required between this pin and GND.  
IREF  
73  
74  
91  
92  
I
A resistor is connected between this pin and GND to control the DAC  
output current.  
COMP  
I
Compensation capacitor for the DAC internal reference amplifier. A  
0.1 µF ceramic capacitor is required between this pin and VDDA.  
HOST INTERFACE  
P/S  
46  
47  
48  
49  
58  
59  
60  
61  
I
I
I
Microprocessor interface configuration control. Tie to VDD to select  
parallel mode. Tie to VSS to select serial mode.  
CS  
(SFRS)  
Chip select strobe in parallel mode (Frame Sync in serial mode).  
R/W  
(SCLK)  
Read/write in parallel mode (Serial clock in serial mode).  
D7  
I/O Data bus msb in parallel mode (Serial data in serial mode).  
(SDAT)  
D0 - D6  
A0 - A3  
56-50  
45-42  
68-62  
57-54  
I/O Parallel data bus bit 0 to 6.  
I
Address bus for parallel interface.  
CLOCK INPUT  
CKV  
75  
77  
93  
95  
I
I
Clock input used to generate pixel clock for VGA display.  
27 MHz clock input, required for NTSC display.  
CK27  
POWER AND GROUND  
VDD  
16,36,  
60,78  
19,44,72,96 +5V Digital power supply.  
VSS  
18,19,  
37,62,  
63,76  
21,22,45,74, GND Digital ground.  
75,94  
VDDA  
NCP  
NCP  
61,64  
76,80  
+5V Analog power supply.  
N/A  
1-3,28-32,  
49-52,77-  
79,81,82,99,  
100  
-
These pins are directly connected to the die substrate. They are  
intended as heat dissipation points. It is recommended that each  
corner set of NCP pins be connected to as large as possible solid  
metal plane on the PCB component surface side. If electrical connect  
is desired (not required) only connection to VDDA is allowed.  
PAGE 5 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
PIN CROSS REFERENCE (Numerical Order by Pin Number):  
80-PQFP  
Pin #  
1
Pin Name  
P1  
Pin #  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Pin Name  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P31  
VDD  
VSS  
AV  
Pin #  
Pin Name  
Pin #  
Pin Name  
VDDA  
VSS  
41 MRQST/MODE 61  
2
P2  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
A3  
A2  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
3
P3  
VSS  
4
P4  
A1  
VDDA  
R/CVBS  
RIN  
5
P5  
A0  
6
P6  
P/S  
7
P7  
CS(SFRS)  
R/W(SCLK)  
D7(SDAT)  
D6  
G/Y  
8
P8  
GIN  
9
P9  
B/C  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P10  
P11  
P12  
P13  
P14  
P15  
VDD  
CKP  
VSS  
VSS  
P16  
BIN  
D5  
AKY  
D4  
VREF  
IREF  
COMP  
CKV  
D3  
D2  
D1  
D0  
VSS  
VSYN  
HSYN  
CSYN  
VDD  
CK27  
VDD  
VBLK  
F2  
DKY/R  
P0  
PAGE 6 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
PIN CROSS REFERENCE (Continued):  
100-PQFP  
Pin #  
1
Pin Name  
NCP  
NCP  
NCP  
P1  
Pin #  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
Pin Name  
P19  
Pin #  
51  
Pin Name  
NCP  
Pin #  
76  
Pin Name  
VDDA  
NCP  
NCP  
NCP  
VDDA  
NCP  
NCP  
R/CVBS  
RIN  
2
P20  
52  
NCP  
77  
3
NCP  
NCP  
NCP  
NCP  
NCP  
P21  
53 MRQST/MODE 78  
4
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
A3  
A2  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
5
P2  
6
P3  
A1  
7
P4  
A0  
8
P5  
P/S  
9
P6  
P22  
CS(SFRS)  
R/W(SCLK)  
D7(SDAT)  
D6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P7  
P23  
G/Y  
P8  
P24  
GIN  
P9  
P25  
B/C  
P10  
P11  
P12  
P13  
P14  
P15  
VDD  
CKP  
VSS  
VSS  
P16  
P17  
P18  
P26  
D5  
BIN  
P27  
D4  
AKY  
P28  
D3  
VREF  
IREF  
COMP  
CKV  
P29  
D2  
P30  
D1  
P31  
D0  
VDD  
VSS  
AV  
VSYN  
HSYN  
CSYN  
VDD  
VDDA  
VSS  
VSS  
CK27  
VDD  
DKY/R  
P0  
VBLK  
F2  
NCP  
NCP  
NCP  
NCP  
VSS  
PAGE 7 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
1. GENERAL DESCRIPTION  
The KS0119 is a digital NTSC encoder combined with basic RAM-DAC functions. It is designed to be a high  
performance, cost effective NTSC or PC display driver. The chip consists of a two way Color Space Converter,  
which is capable of supporting almost all the popular input formats pertaining to PC video, graphics, or image  
compression/decompression. The chip contains signal processing blocks to enhance image quality and reduce  
artifacts due to sampling. It provides image manipulation facilities such as masking, mixing, hue control, and color  
lookup tables to create special effects. It includes a programmable Timing Generator to generate the  
synchronization signals and color burst for different display monitors.  
1.1. Application  
The KS0119 is a versatile chip, which can be used for many application such as NTSC encoding, YUV DAC, RAM  
DAC, Gamma correction, mixing, and VGA overlay. CK27 must be used for NTSC encoder, whereas CKV must be  
used for the others. It is recommended that the unused clock input pin be tied to a static state.  
1.2. Power On Default  
The KS0119 can be configured for two power-on default states: one for NTSC video encoding and the other for VGA  
overlay application. For the latter the MRQST/MODE pin must be pulled up so the KS0119 defaults to sync pass  
through mode and Channel A is set to support 8-bit pseudo color format after power up. In this mode, the KS0119  
functions as a RAM-DAC. The internal video timing generator is disabled; the horizontal and vertical syncs are delay  
compensated for the video path delay and passed to the sync output pins. The sync pass through mode is  
recommended for VGA overlay application.  
Table 1: Power On Default State  
Power On MRQST/MODE Pin State  
Operations Channel A Input Format SYNCPT Clock Source  
0
1
NTSC encoding 4:2:2 YCbCr  
VGA overlay 8 bit pseudo color  
0
1
CK27  
CKV  
1.3. Operation Mode  
The KS0119 can be configured to operate either in master mode or slave mode. In the master mode the encoder  
uses the parameter stored in the CRT control registers to generate all the video timings and outputs synchronizing  
signals (refer to “VIDEO OPERATIONAL TIMING” on page 18). In the slave mode the encoder synchronize the  
,
internal pixel counter on the falling edge of AV and line counter on the rising edge or VBLK. The sync outputs, HSYN  
SYNCPT  
and VSYN, waveform can be modified if sync pass through is disabled (  
related to the sync generation.  
=0). Table 2 shows the registers  
Table 2: Sync Output Generation  
MASTER  
SLAVE  
MSTR  
=1  
MSTR  
SYNCPT  
MSTR  
SYNCPT  
=0, =0  
Control Registers  
HSYN, VSYN  
=0,  
Pass through  
Inverted AV and VBLK  
=1  
Internally generated  
Active low  
Regenerated  
Active low  
Video Output Port Sync  
Polarity  
VSP HSP  
Input Sync Polarity Control  
CRT Control Registers  
Comments  
N/A  
,
Index Registers 70 - 79h  
Recommend for VGA  
overlay application  
PAGE 8 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
1.4. Power Down Mode  
The KS0119 supports power down mode; the DAC outputs can be put into high impedance state by turning off the  
current source to conserve power.  
1.5. Digital Video Input Format  
The digital video input is a 32 bit port. This port can be used as a single channel or logically divided into two channels:  
A and B. Channel A’s input can be true color, color indexed, or CCIR 601 formats. Channel B’s input is restricted to  
CCIR 601 formats.The supported formats and their bit assignments are shown in Table 3 and Table 4.  
The KS0119 accepts certain input combinations from Channel A and B. However the following rules must be  
observed when both channels are selected (their format registers contain valid numbers):  
1. Channel B’s input is ignored if mixing is not enabled.  
2. If mixing is enabled, channel A is the foreground and will be displayed if the mixing key is false.  
3. In YC/YC mixing, both channels must have the same format (e.g. Channel A’s format is 4:1:1A, Channel B’s  
format must be 4:1:1A. See Table 3 and Table 4).  
PAGE 9 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
Table 3: Channel A Input Format  
FORMAT REGISTER (BIT 7 - 4)  
VALUE  
1
2
3
4
RGB  
15  
5
12  
N
6
9
A
2:1:1 A  
16  
B
4:1:1 A  
12  
C
4:1:1 B  
16  
TYPE  
4:2:2  
16  
# of Bits 24 16 16  
8
Pixel Byte Sequence  
2N +1 2N +1 4N +1 +2 +3 4N +1  
Pixel Bus  
N
N
N
N
N
+2 +3  
Cr0  
P0  
B0 B0 B0 B0  
B1 B1 B1 B1  
B2 B2 B2 B2  
B3 B3 B3 B3  
B4 B4 G0 B4  
B5 G0 G1 G0  
B6 G1 G2 G1  
B7 G2 G3 G2  
G0 G3 G4 G3 OVL0  
G1 G4 G5 G4 OVL1  
G2 G5 R0 R0 OVL2  
G3 R0 R1 R1 OVL3  
G4 R1 R2 R2  
G5 R2 R3 R3  
G6 R3 R4 R4  
G7 R4 R5 TKEY  
R0  
P0 P0 Cb0 Cr0 Cb0 Cr0  
P1 P1 Cb1 Cr1 Cb1 Cr1  
P2 P2 Cb2 Cr2 Cb2 Cr2  
P3 P3 Cb3 Cr3 Cb3 Cr3  
Cb0  
Cb1  
Cb2  
Cb3  
P1  
Cr1  
P2  
Cr2  
P3  
Cr3  
P4  
P4 P4 Cb4 Cr4 Cb4 Cr4 Cr6 Cr4 Cr2 Cr0 Cb4  
P5 P5 Cb5 Cr5 Cb5 Cr5 Cr7 Cr5 Cr3 Cr1 Cb5  
P6 P6 Cb6 Cr6 Cb6 Cr6 Cb6 Cb4 Cb2 Cb0 Cb6  
P7 P7 Cb7 Cr7 Cb7 Cr7 Cb7 Cb5 Cb3 Cb1 Cb7  
Cr4  
P5  
Cr5  
P6  
Cr6  
P7  
Cr7  
P8  
Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0  
Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1  
Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2  
Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3  
Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4  
Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5  
Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6  
Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
PAGE 10 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
Table 4: Channel B Input Format  
FORMAT REGISTER (BIT 3 - 0)  
VALUE  
1
2
3
4
5
6
7
9
TYPE 4:4:4 4:2:2 A  
4:2:2 B  
24  
2:1:1 A  
16  
2:1:1 B  
24  
4:1:1 A  
12  
4:1:1 B  
16  
4:4:4  
24  
# of Bits 24  
Pixel  
16  
Pixel Byte Sequence  
2N +1 2N +1 2N +1 2N +1 4N +1 +2 +3 4N +1  
Bus  
N
+2  
+3  
N
P0  
Cr0  
Cr1  
Cr2  
Cr3  
Cr4  
Cr5  
Cr6  
Cr7  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
Cr0  
Cr1  
Cr2  
Cr3  
Cr4  
Cr5  
Cr6  
Cr7  
Cr0  
Cr1  
Cr2  
Cr3  
Cr4  
Cr5  
Cr6  
Cr7  
Cr0  
Cr1  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
P27  
P28  
P29  
P30  
P31  
Cr2  
Cr3  
Cr4  
Cr5  
Cr6  
Cr7  
Cb0 Cb0 Cr0 Cb0  
Cb1 Cb1 Cr1 Cb1  
Cb2 Cb2 Cr2 Cb2  
Cb3 Cb3 Cr3 Cb3  
Cb4 Cb4 Cr4 Cb4  
Cb5 Cb5 Cr5 Cb5  
Cb6 Cb6 Cr6 Cb6  
Cb7 Cb7 Cr7 Cb7  
Cb0 Cr0 Cb0  
Cb1 Cr1 Cb1  
Cb2 Cr2 Cb2  
Cb3 Cr3 Cb3  
Cb4 Cr4 Cb4  
Cb5 Cr5 Cb5  
Cb6 Cr6 Cb6  
Cb7 Cr7 Cb7  
Cb0  
Cb1  
Cr0  
Cr1  
Cr2  
Cr3  
Cr4  
Cr5  
Cr6  
Cr7  
Cb0  
Cb1  
Cb2  
Cb3  
Cb4  
Cb5  
Cb6  
Cb7  
Y0  
Cb2  
Cb3  
Cr6 Cr4 Cr2 Cr0 Cb4  
Cr7 Cr5 Cr3 Cr1 Cb5  
Cb6 Cb4 Cb2 Cb0 Cb6  
Cb7 Cb5 Cb3 Cb1 Cb7  
Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0  
Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1  
Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2  
Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3  
Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4  
Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5  
Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6  
Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
PAGE 11 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
2. DIGITAL MIXING  
The KS0119 supports digital mixing between the two input channels. Digital mixing is the process of replacing a  
selected area in the foreground (Channel A) with the corresponding area in the background (Channel B) according  
to the output of the keying function. The result is that the foreground objects appear situated in front of the  
background’s. Mixing is an indispensable tool to create special effects, such as animation, picture in picture, and  
video overlay. The ability to select a small area to display can be used to reduce or hide the image download time  
MXCTR  
during presentations. The digital mixing is controlled by the Mixing Control Register (  
05h to 0Dh.  
) and control registers  
Figure 3. Digital Mixer Signal Flow Diagram  
2.1. Mixing Methods  
The KS0119 supports two types of mixing: RGB/YC and YC/YC.  
2.1.1. RGB/YC Mixing  
RGB/YC mixing is automatically selected if channel A’s format is either high color or pseudo color. The process  
simply replaces channel A’s video with Channel B’s when the output of the Keying function is 1.  
2.1.2. YC/YC Mixing  
If channel A’s input is YCbCr formatted (format register value greater than 7), then YC/YC mixing is selected. In YC/  
YC mixing, when the output of the Keying function is 1, the Channel A’s chrominance components are replaced with  
Channel B’s, while the luminance signals are linearly blended according to the equation  
1
8
--  
Yout =  
[ K Ya + (1 – K) Yb]  
Mixing Control  
MXCTR  
). Linear Mixing  
where K is a programmable value, from 0 to 7, stored in the  
preserves the shadows inside the keyed area.  
register (  
2.2. Keying Methods  
The KS0119 supports Window Keying, Index Keying, Chroma Keying, Alpha Keying, External Keying, and certain  
combinations of them. These are described in detail below.  
PAGE 12 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
2.2.1. Index Keying  
If channel A’s input format is 2, 3, 4, 5, or 6, Index Keying can be used for mixing. Channel A’s inputs are first  
TEMPLATE TMPLB TMPLA  
compared with the contents in the two 8 bit  
registers (  
,
). The results are then filtered by  
MASK MSKB MSKA  
the  
registers (  
,
) and ANDed together to generate the key signal. If the input is 8 or 15 bits wide,  
the unused bits are automatically masked out. Figure 4 shows the logic operation involved in Index Keying.  
T
C
H
E
M
P
L
A
N
N
E
L
M
A
S
K
INDEX  
KEY  
A
T
E
A
Figure 4. Index Keying Generation  
2.2.2. Chroma Keying  
If channel A’s input is YCbCr format, Chroma Keying can be used for mixing. A rectangular area is specified in the  
Cb-Cr space (Figure 5). If Channel A’s Cb/Cr values fall within this area, Channel B’s video will be displayed. In this  
TMPLA  
TMPLB  
MSKA  
MSKB  
and specify the lower  
mode,  
and  
specify the lower and upper Cb, respectively, and  
and upper Cr, respectively, in the Cb-Cr space. Note that Cb and Cr are binary offset numbers with 128  
corresponding to zero intensity, 0 and 255 corresponding to maximum intensity.  
Cr  
128,255  
CCIR Color  
Key  
255,128Cb  
128,128  
Figure 5. Cb-Cr Chroma Keying  
2.2.3. Window Keying  
A rectangular key window is specified in X-Y coordinates in the active display area. If window mixing is enabled and  
OUTSD  
Mixing Control  
the  
outside the window. The converse is true if the  
OUTSD  
bit of the  
register is 0, Channel B is displayed inside the window, and Channel A is  
OUTSD  
bit is 1. If both the Chroma and Window Keyings are enabled,  
bit specifies where the Chroma Keying will be applied: 0 inside the window and 1 outside the window.  
the  
The 8 msb’s of the four 10 bit coordinate registers, Window Horizontal Start Address, Window Horizontal End  
WHS WHE WVS  
Address, Window Vertical Start Address and Window Vertical End Address, are stored in the  
,
,
and  
register. The four msb registers are double  
WVE  
register will transfer the four msb registers’  
WVE  
WHV  
registers, respectively, while the 2 lsb bits are stored in the  
WVE  
clocked, and synchronized to the  
write. A write to the  
contents, concatenated with their corresponding lsb’s, to the respective final address registers. Modifying the msb  
PAGE 13 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
WVE  
register without writing to the  
register will have no effect on the final address register. For multiplexed YCbCr  
video inputs, it is recommended that the horizontal window boundaries equal integer multiples of the block size.  
2.2.4. Alpha Keying  
If Channel A’s input is only 15 bits (format 4, RGB 5:5:5), bit 15 of the input can be used as a mixing key.  
2.2.5. External Key  
DKF  
Command  
CMD  
register ( ) configures this pin as an  
Pin DKY/R can be used as a mixing key if the  
external key input.  
bit of the  
PAGE 14 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
3. SIGNAL PROCESSING  
3.1. Y/C Interpolation Filters  
The incoming YCbCr signals are processed by the Interpolation Unit to increase the data rates to 13.5 MHz. (4:4:4  
format). The multiplexed chroma signals are up sampled first, and then pass through either a 6th-order half-band or  
an 8th-order quarter-band filter. The reconstruction filters have flat 0 to 0.6 MHz frequency response as shown in  
Figure 6-(a). The received half-sampled luminance component (MPEG decoder output, 360 samples/line), which  
has a bandwidth less than 3 MHz, after being up sampled, will pass through a 14th-order smooth filter whose  
frequency response characteristic is shown in Figure 6-(b). These filters ensure the preservation of base band  
signals as well as the elimination of attendant high frequency aliasing components due to up sampling.  
HALF-BAND  
QUARTER-BAND  
Frequency (MHz)  
Frequency (MHz)  
(a) Chrominance  
(b) Luminance  
Figure 6. Interpolation Filter Characteristics  
3.2. Band-limit Filter  
The NTSC Encoder Unit consists of a 4 MHz luminance low pass filter and two equal bandwidth 1.2 MHz  
chrominance low pass filters. The functions of these filters are to limit the frequency contents of the computer  
generated image, to reduce the cross-luminance/chrominance distortion due to the mixing processes, and to  
enhance the resolutions.The digital filters are designed to have faster roll-off than the analog counterparts so that  
the quantization noise, which is monotonic decreasing along the frequency axis, are removed as soon as they pass  
the band of interest. Figure 7 shows the overall filter characteristics (interpolation cascaded with band-limit) for X:1:1  
and X:2:2 formatted data. Also shown in Figure 8 are the luminance band-limit characteristics with and without the  
chroma filter.  
At the filters’ outputs, each pixel is represented by 3 10-bit numbers, which are maintained until the DAC inputs.  
Hence the block effects due to the limited quantization levels are reduced.  
PAGE 15 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
X:2:2 INPUT  
X:1:1 INPUT  
Frequency (MHz)  
Figure 7. Chrominance Filter Characteristics  
WITHOUT CHROMA  
FILTER  
WITH CHROMA  
FILTER  
Frequency (MHz)  
Figure 8. Luminance Band-limit Filter Characteristics  
3.3. SINC (Sinx/x) Function Effect  
The digital-to-analog converter exhibits a high frequency roll-off SINC filter characteristic owing to the zeroth order  
sample and hold process. The roll-off is a function of the DAC’s conversion rate. The NTSC Encoder Unit also  
incorporates a 6th-order interpolation filter to raise the data rate to 27 MHz. The roll-off at 4 MHz is reduced from  
-1 dB (sampled at 13.5 MHz) to -0.2 dB. The up sampling also pushes the high frequency “image” beyond 23 MHz,  
greatly reducing the analog reconstruction filter requirement at the DAC’s outputs.  
PAGE 16 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
4. SIGNAL MANIPULATION FUNCTIONS  
The NTSC Encoder Unit provides the facilities for the user to control the contrast, hue, color killer and the vertical  
Command Register B CMDB  
Hue Control  
HUE  
register( ).  
blanking period by programming the  
(
) and  
4.1. Hue Control  
°
The chromaticity can be changed by modifying the modulation angle. The entire 360 hue range is divided into 264  
HUE  
equal units. To move the hue angle by k units the congruent 83*k MOD 264 should be loaded into the  
register  
register until a write to  
register must be loaded first followed  
register. The following examples show the value to be programmed into the HUE register  
CMDB HUE Hue Control  
and bit 7 of  
CMDB  
register. The  
register occurs. Therefore, when changing the hue angle, the  
CMDB  
register will not be transferred to the final  
HUE  
the  
by a write to the  
for +5 and -5 degree hue angle:  
Examples:  
+5 degree Hue angle  
5
--------  
360  
k =  
× 264 = 3  
HUE = mod(k 83, 264) = mod(249, 264) = 249  
-5 degree Hue angle  
355  
360  
--------  
k =  
× 264 = 260  
HUE = mod(260 83, 264) = mod(264 81 + 196, 264) = 196  
4.2. Chroma Trap Filter  
CMDB  
The luminance path includes a Chroma Trap filter. When this filter is enabled (  
is reduced to 2.8 MHz, resulting in a softer picture.  
[4] = 1), the effective bandwidth  
4.3. Color Killer  
CMDB  
When bit 3 of the  
black and white.  
register is set to 1, the chroma data will be removed and the picture will be displayed as  
4.4. Vertical Blanking  
Normally, line 1 to line 9 in field 1 and the second half of line 263 to 272 in field 2 are blanked automatically. However,  
CMDB  
VBLK  
register.  
if bit 2 of  
register is 1, the blanking period is extended to the line specified in the  
PAGE 17 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
5. VIDEO OPERATIONAL TIMING  
The KS0119 can operate in either slave or master mode. In slave mode, the chip uses two external input signals,  
active video (AV) and vertical blank (VBLK), to synchronize the internal operation. In master mode, however, the  
chip outputs these two signals. The chip generates two additional signals: Memory Transfer Request (MRQST) and  
field two indicator (F2), which can be used to simplify the interface to an external frame buffer controller. Figure 9  
shows the timing waveform for the NTSC output mode.  
FIRST FIELD  
525  
1
2
3
4
5
6
7
8
9
10  
11  
20  
21  
CVBS  
AV  
VBLK  
F2  
MRQST(BLKALL=0)  
MRQST(BLKALL=1)  
SECOND FIELD  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
283  
284  
CVBS  
AV  
VBLK  
F2  
MRQST(BLKALL=0)  
MRQST(BLKALL=1)  
Figure 9. NTSC Output Timing  
In Master mode, the timing shown in Figure 10 is maintained among AV, VBLK, and F2, where n is the leading pixel  
number (see Figure 12 for more detail). In Slave mode, the two inputs AV and VBLK must meet the timing  
requirement as shown in Figure 11 in order for the Encoder to obtain the correct field information.  
AV  
n
VBLK  
F2  
Figure 10. Master Mode AV, VBLK, and F2 Timing  
AV  
4 PCK(min)  
4 PCK(min)  
400 PCK(max)  
VBLK  
F2  
Figure 11. Slave Mode AV and VBLK Timing Requirement  
PAGE 18 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
5.1. Horizontal Timing  
Each scan line contains hn pixels as shown in Figure 12. Of the hn pixels, only (hn - hblk) pixels are displayed. The  
AV signal is used to indicate the active portion of the horizontal scan line. The Horizontal Blank portion actually  
consists of three parts: Horizontal Front Porch, Horizontal Sync, and Horizontal Back Porch. The KS0119 outputs  
the Horizontal Sync signal to the display monitor.  
In Master mode, the NTSC Encoder generates the AV signal. AV can be used by the external frame buffer to control  
the pixel read out. Because of the memory access latency associated with the external memory subsystem, AV  
should lead the pixel data by n pixel clocks. This is done by controlling the hav parameter. All horizontal timing  
parameters are programmable and Table 5 contains the information on how to calculate the line timing control  
register values for both NTSC and RGB displays.  
CVBS  
hfp  
hsyn  
hblk  
n
hn  
hav  
AV  
hn  
Figure 12. Horizontal Timing  
Table 5: Line Timing Register Values  
Register  
HFP  
Parameter  
Horizontal Front Porch  
Horizontal Sync Tip  
Horizontal Blanking  
Number of Pixels per Line  
End of Active Video  
NTSC Value RGB Value  
11  
184*  
135  
Thfp + 1  
Thsyn + 1  
Thblk - 3  
Thn - 2  
HSYN  
HBLK  
HN  
856  
HAV  
854 - n  
Thn - 4 - n  
*: This number is not used to control the Horizontal Sync Tip in NTSC mode.  
5.2. Vertical Timing  
Each field contains the active line and vertical blank portions. The vertical blank portion is further divided into Vertical  
Front Porch, Verical Sync, and Vertical Back Porch.There are four parameters that control the vertical timing: VFP,  
VSYN, VBLK, and VN. They are specified in terms of lines. Figure 13 shows the timing related to the four  
parameters. For NTSC output, these parameters are fixed and the power on default values should be used.  
BLKALL  
Command Register  
VBLK  
is set to 1, the value will be used instead. Table 6  
However, if the  
bit in the  
provides information on how to program these parameters.  
PAGE 19 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
In Master mode, the NTSC Encoder outputs the VBLK signal. This signal can be used to synchronize the external  
frame buffer controller’s line counter. In Slave mode, VBLK is an input and is used to synchronize the chip’s internal  
operation.  
vfp  
VERTICAL  
SYNC  
vsyn  
vn  
VERTICAL  
BLANKING  
vblk  
Figure 13. Vertical Timing  
.
Table 6: Frame Timing Register Value  
Register  
VFP  
Parameter  
Vertical Front Porch  
Vertical Sync Tip  
Value  
Tvfp - 1.  
Tvsyn - 1.  
Tvblk - 1.  
Tvn - 1.  
VSYN  
VBLK  
VN  
Vertical Blanking  
Number of Lines per Frame  
5.3. MRQST/MODE and F2  
MRQST/MODE is output during AV low for the active lines. This signal can be used to transfer video data from  
DRAM to shift registers in the VRAM. F2 can be used by the external frame buffer controller for interlaced display.  
PAGE 20 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
6. COLOR PALETTE RAM, OVERLAY LOOKUP TABLE, AND PIXEL MASK REGISTER  
The KS0119 contains a Color Palette RAM, an Overlay Lookup Table, and a Pixel Mask Register. They can be  
accessed through the host interface.  
6.1. Accessing the Color Palette RAM  
The Color Palette RAM is organized as 3 256x8 arrays. From the programmer’s point of view, there are 256 entries;  
each entry has 3 bytes. To write to the Color Palette RAM, the entry offset is written to the Color Palette Write Index  
register, then three bytes, in the order of R, G, and B, are written to the Color Palette Data register. If consecutive  
entries are to be written, only the first offset address needs to be written to the Color Palette Write Index register. It  
is important to note that writing to the Color Palette Data register should always consist of multiples of three bytes.  
Unpredictable result will occur if this is not strictly followed.  
Reading the Color Palette RAM is similar to writing the Color Palette RAM except the entry offset is written to the  
Color Palette Read Index register.  
The Color Palette RAM is located at the center of the RGB path. There is no bypass path. Consequently, for 24-bit  
true color inputs even though the translations are not required the Color Palette RAM still needs to be loaded.  
6.2. 6-Bit Color Palette Mode  
Command Register  
The KS0119 also supports 6-bit color palette mode. When this mode is selected by setting  
bit  
3 to 0, only the 6 LSB’s for each color entry are loaded into the corresponding color palette register. Internally, the  
6 LSB’s are shifted to the MSB positions with the 2 LSB’s padded with 0’s. When reading from the palette RAM, the  
two MSB’s must be ignored.  
6.3. High Color and Pseudo Color Input Lookup Address.  
The high color and pseudo color inputs pass through a formatter, which expands the inputs to a full 24 bits according  
to Table 7. For inputs with R, G, and B components less than 8 bits, the LSB’s are padded with 0’s. The outputs of  
the formatter, after passing through the pixel mask filter, become the color palette table addresses.  
Table 7: RGB Input Formatter Conversion Table  
Video Input  
<msb..lsb>  
Color Lookup Table Input  
<msb..lsb>  
Mode  
Byte 2  
Byte 1  
G<7:0>  
Byte 0  
1
2
3
4
R<7:0>:G<7:0>:B<7:0>  
R<4:0>:G<5:0>:B<4:0>  
R<5:0>:G<5:0>:B<3:0>  
R<4:0>:G<4:0>:B<4:0>  
R<7:0>  
R<4:0>000  
R<5:0>00  
R<4:0>000  
P<7:0>  
B<7:0>  
B<4:0>000  
B<3:0>0000  
B<4:0>000  
P<7:0>  
G<5:0>00  
G<5:0>00  
G<4:0>000  
P<7:0>  
5 and 6 P<7:0>  
6.4. Overlay Lookup Table  
Four overlay input bits address the Overlay Lookup Table. If the overlay input is non-zero, overlay data will be  
displayed. The Overlay Look Up Table contains 15 entries, and each entry has three bytes, in the order of R, G, and  
B. The entry offset starts from 1 instead of 0. The access method for the Overlay Lookup Table is the same as that  
for the Color Palette RAM.  
PAGE 21 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
6.5. Pixel Mask Register  
The Pixel Mask Register is used to filter the pixel data coming out from the RGB Input Formatter. Each R, G, B pixel  
byte is bit-wise ANDed with the pixel mask register. Special effects can be created by selectively masking out certain  
bits. This register needs to be initialized after power up.  
PAGE 22 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
7. DAC AND EXTERNAL RECONSTRUCTION FILTER  
The three DACs on the chip are identical; they are video grade 10 bit current DACs. Figure 14 shows a typical  
configuration for the DAC portion of the chip. RREF is connected to IREF to adjust the DAC output full scale. The  
DAC output is designed to drive a doubly terminated 75 load. A 105 resistor connected to RREF can be used to  
set the output voltage peak to the RS-170A standard of 1 V. The built-in voltage reference has a large variation due  
to manufacturing technology limitations. For precise control of the DAC, an external voltage reference can be used.  
A variable resistor may also be used for RREF to adjust the full scale DAC output current. The recommended analog  
filter circuit and its characteristic are shown in Figure 15 and Figure 16, respectively.  
Analog Power Plane  
CCOMP  
KS0119  
RBIAS  
1.2V  
-
VREF  
IREF  
+
1.235V  
GIN  
G/Y  
CVREF  
LPF  
DAC  
To 75Display  
AKY  
RREF  
Only one DAC output is shown  
with the optional 1.235V  
external voltage reference and  
RBIAS  
Analog Ground Plane  
Figure 14. DAC Reference Circuit and Termination  
2.0µH 1.3µH  
75Ω  
100pF  
300pF  
100pF  
Figure 15. DAC Output Analog Reconstruction Filter  
Frequency (Mhz)  
Figure 16. DAC Output Analog Reconstruction Filter Response  
PAGE 23 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
8. HOST INTERFACE  
The KS0119 contains a conventional parallel microprocessor interface and a proprietary serial interface. The  
parallel microprocessor interface consists of 11 pins, some of which are shared by the three pin serial bus. The logic  
sense of the P/S control pin defines the host interface mode, parallel or serial. Three of the interface pins serve a  
dual purpose depending upon the mode selected. The CS, R/W, and D7 pins in parallel mode become SFRS,  
SCLK, and SDAT pins in serial mode, respectively.  
8.1. Microprocessor Address Map  
The KS0119 contains three groups of registers. The first group is the control registers. The control registers are used  
for feature/option selection. The second group is the color palette RAM. The third group is the overlay color look up  
table. Table 8 shows the microprocessor address map for the KS0119.  
Table 8: Microprocessor Address Map  
Address  
Description  
(Hex)  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
Color Palette Write Index  
Color Palette Data  
Pixel Mask Register  
Color Palette Read Index  
Overlay CLUT Write Index  
Overlay CLUT Data  
Reserved  
Overlay CLUT Read Index  
Control Register Index  
Control Register Data  
8.2. Transfer Mode  
Both the read and write cycles require that the index be written to the KS0119 first. The index is written to location  
ADDR = 08. The index is the internal address location for each register. The internal address is indicated by the  
register number associated with each register. Once the index is written, the selected register can have data read  
from or written to location ADDR = 09. Non-sequential internal registers are accessed individually by writing an  
index and then reading or writing one byte of data. Sequential locations can be accessed by writing the index for the  
first register and then reading or writing multiple bytes of data. The index auto-increments internally by one for each  
successive byte of data accessed while ADDE = 09. This mode is useful when initializing the device or when  
accessing word wide or blocks of registers.  
The color palette and overlay CLUT operate in a similar fashion, except that separate index locations exist for read  
and write operations. The color palette write index is written to ADDR=00, and palette data is written to ADDR=01.  
For read operation, the index is written to ADDR=03. The color palette and overlay exhibit the same auto-increment  
capability as the control registers. This simplifies loading the color palette.  
8.3. Serial Host Interface  
The serial interface is selected by connecting the P/S pin to ground. This interface uses three signals: SFRS, SDAT,  
PAGE 24 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
and SCLK. The SFRS indicates a valid data transfer. Serial data is carried through the SDAT and clocked in or out  
with the SCLK. The data protocol sends each byte as msb first.  
8.3.1. Serial Host Write/Read to KS0119  
Each data transfer cycle is called a frame. A valid frame is indicated by a HIGH on the SFRS signal. A frame  
consists at least three bytes: the first byte contains a 7-bit slave device ID and a R/W bit (bit assignment shown in  
Figure 17); the second byte indicates the internal address of register the data transfer is intended for (see Table 8);  
and the third and consequent byte(s) are the data to be transferred to/from the register. If the data transfer is to/  
from the index register, three bytes are needed each frame. Since the KS0119 features an auto index increment  
function, consecutive data transfer to/from the data registers can be completed within the same frame.  
msb  
R/W  
lsb  
1
0
0
0
0
0
1
slave device ID  
Figure 17. KS0119 Device ID and R/W  
Figure 18 shows an example of a write to the index register. Each bit is latched into the device by the rising edge of  
the SCLK. A write to the data register is similar to a write to the index register except the second byte is 01h and  
the third and so on byte(s) are the data to be written (Figure 19). When the data is read from the device, the  
KS0119 outputs each bit is after the falling edge of the SCLK.  
SFRS  
SCLK  
SDAT  
08h  
0
device ID  
index  
Figure 18. Serial Host Write to Index Register  
SFRS  
SCLK  
SDAT  
0
data  
data  
device ID  
09h  
Figure 19. Serial Host Write to Data Register  
PAGE 25 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
8.4. Parallel Host Interface  
Figure 20 shows the timing relation for a parallel read cycle. Figure 21 shows the timing for a parallel write cycle.  
The address ADDR and read/write R/W are stable before the CS signal is lowered. Data written to the KS0119 must  
be stable before CS goes high. Data is read from the KS0119 when CS is low.  
CS  
W
R
R
R/W  
ADDR  
D[0:7]  
INDEX  
DATA 1  
DATA 2  
Figure 20. Parallel Host Interface Read Cycle  
CS  
W
W
W
R/W  
ADDR  
D[0:7]  
DATA 2  
INDEX  
DATA 1  
Figure 21. Parallel Host Interface Write Cycle  
PAGE 26 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
9. DETAILED CONTROL REGISTER DESCRIPTION  
This section contains the detailed description of the control registers. The control registers can be categorized into  
three functional groups: indexes 60h to 63h are general control registers; indexes 64h to 6Dh are mixing control  
registers; indexes 70h to 79h are CRT control registers. Table 9 is a register summary, followed by the individual  
register description. Default values are noted with an asterisk (*) after the value description.  
Table 9: Control Registers  
Index Mnemonic  
Default  
12h/A2h  
90h/60h  
02h  
Description  
Command Register  
60h  
61h  
62h  
63h  
64h  
65h  
66h  
67h  
68h  
69h  
6Ah  
6Bh  
6Ch  
6Dh  
70h  
71h  
72h  
73h  
74h  
75h  
76h  
77h  
78h  
79h  
CMD  
FMT  
Input Format  
CMDB  
HUE  
Second Command Register  
Chroma Phase Offset Bits 7..0  
Mixing Control  
00h  
MXCTR  
WHS  
WHE  
WVS  
WVE  
WHV  
TMPLA  
TMPLB  
MSKA  
MSKB  
HAVN  
HAV  
00h  
00h  
Window Row Start Address  
Window Row End Address  
Window Column Start Address  
Window Column End Address  
Window Overflow Address(lsbs)  
Chroma Key TMPLATE Byte 0  
Chroma Key TMPLATE Byte 1  
Chroma Key MASK Byte 0  
Chroma Key MASK Byte 1  
HN and HAV Overflow Bits  
Master Mode’s AVout Lead Control  
Number of Pixels per Line  
Horizontal Front Porch  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
33h/B3h  
54h  
HN  
58h  
HFP  
0Bh  
HSYN  
HBLK  
VN  
B8h  
End of Horizontal Sync  
87h  
End of Horizontal Blanking  
Number of Lines per Field  
Vertical Front Porch  
00h  
VFP  
83h  
VSYN  
VBLK  
06h  
End of Vertical Sync  
14h  
End of Vertical Blanking  
Some registers have two default values. The first number is for MRQST/MOED pin pulled  
low. The second number is for MRQST/MODE pin pulled high.  
Note:  
PAGE 27 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
Command Register  
Index Mnemonic  
bit 7  
RUN  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
MSTR  
RGB  
CKSL  
8/6*  
DKF  
CVBS  
YC  
60h  
CMD  
RUN  
Software RUN control. The internal state machine is controlled by the logically ORed  
software and hardware RUN inputs.  
1
0
Software run enable.  
Software run disable.  
The logic state of the MRQST/MODE is latched into this bit during power-on.  
Timing generation Master/Slave mode select.  
MSTR  
RGB  
1
0
Master.  
Slave.*  
Analog output format select.  
1
0
RGB.  
Composite and Super video.  
The logic state of the MRQST/MODE is latched into this bit during power-on.  
Clock input and output control.  
CKSL  
/
1
0
CK27 is selected, and pixel clock CKP’s rate is f(CK27) 2.  
CKV is selected as the source, and CKP has the same rate as the clock input.  
The inverted logic state of the MRQST/MODE is latched into this bit during power-on.  
8/6 bit palette select.  
8/6*  
1
0
8 bit palette.  
6 bit palette.*  
DKF  
CVBS  
YC  
DKY/R pin configuration control.  
1
0
DKY/R is input key for digital mixing.  
DKY/R is hardware RUN input.*  
If bit 5 of this register is 0 this bit controls R/CVBS DAC.  
1
0
R/CVBS DAC is on.*  
R/CVBS DAC is in the power down state.  
If bit 5 of this register is 0 this bit controls G/Y and B/C DACs.  
1
0
G/Y and B/C DACs are on.  
G/Y and B/C DACs are in power down state.*  
PAGE 28 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
Input Format Register  
Index  
61h  
Mnemonic  
FMT  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
FMTA2  
FMTA1  
FMTA0  
FMTB3  
FMTB2  
FMTB1  
FMTB0  
FMTA3  
FMTA  
FMTB  
Channel A input format. See Table 3 for supported format on Channel A.  
The power-on default is 6 if there is an external pull-up resistor on the MRQST/MODE pin,  
or 9 otherwise.  
Channel B input format. See Table 4 for supported format on Channel B.  
Command Register B  
Index  
62h  
Mnemonic  
CMDB  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
HUE8  
VSP  
HSP  
CTRAP  
MONO  
BLKALL  
SLT1  
SLT0  
VSP  
Vertical sync input (VBLK) polarity control.  
1
vertical sync input is active low.  
vertical sync input is active high.*  
0
HSP  
Horizontal sync input (AV) polarity control.  
1
0
horizontal sync input is active high.  
horizontal sync input is active low.*  
CTRAP  
Chroma trap filter control. When enabled, the high frequency luminance signals near the  
color subcarrier are filtered out. This function is available for NTSC output only.  
1
0
enables filtering.  
disables filtering.*  
MONO  
Color Killer control. When enabled, the chrominance signal is suppressed. This function is  
available for NTSC output only.  
1
0
Color Killer enable.  
Color Killer disable.*  
VBLK  
When set, the output from line 1 to the line set by the register is blanked.  
These two bits control the assertion of the MRQST signal.  
BLKALL  
SLT[1:0]  
00  
MRQST is asserted for the active lines whose line numbers are greater than or  
VBLK  
equal to the value contained in the  
register.  
01  
10  
11  
MRQST is always asserted.  
MRQST is not asserted during the vertical blanking period.*  
Reserved. Do not use.  
PAGE 29 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
Hue Control Register  
Index  
Mnemonic  
bit 7  
bit 6  
VSP  
bit 5  
HSP  
bit 4  
CTRAP  
HUE4  
bit 3  
MONO  
HUE3  
bit 2  
BLKALL  
HUE2  
bit 1  
SLT1  
HUE1  
bit 0  
SLT0  
HUE0  
62h  
63h  
CMDB  
HUE  
HUE8  
HUE7  
HUE6  
HUE5  
HUE[8:0]  
Hue control. To have a phase shift of k divisions, the 9 bit register should be loaded with the  
value <83*k> MOD 264. Each division is equal to 360/264 degrees. Hue can be adjusted  
only for NTSC output mode.  
Mixing Control Register  
Index  
64h  
Mnemonic  
MXCTR  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
MXEN  
CMEN  
AMEN  
WMEN  
OUTSD  
K2  
K1  
K0  
DIGITAL MIXING  
” section for additional  
This register controls the digital mixing function. Please see the “  
information.  
MXEN  
CMEN  
AMEN  
WMEN  
OUTSD  
K[2:0]  
Master mixing control.  
1
0
mixing is allowed.  
no mixing is allowed.*  
Index or chroma mixing control.  
1
0
Index or Chroma Mixing enable.  
Index or Chroma Mixing disable.*  
Alpha mixing control.  
1
0
Alpha Mixing enable.  
Alpha Mixing disable.*  
Window mixing control.  
1
0
Window Mixing enable.  
Window Mixing disable.*  
Channel B inside/outside mixing window control.  
1
0
Channel B is outside the Mixing Window.  
Channel B is inside the Mixing Window.*  
During linear blend mixing, these bits set the luminance attenuation factors for Channel A  
and Channel B. For Channel A, the attenuation factor is K/8, and for Channel B, the  
attenuation factor is 1-K/8, where K = K[2:0].  
PAGE 30 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
Window Horizontal Start Address  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
WHS8  
WHS0  
WHS7  
WHE1  
WHS6  
WHE0  
WHS5  
WVS1  
WHS4  
WVS0  
WHS3  
WVE1  
WHS2  
WVE0  
65h  
69h  
WHS  
WHV  
WHS9  
WHS1  
WHS[9:0]  
This 10-bit register contains the horizontal pixel start location for the Mixing Window.  
Window Horizontal End Address  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
WHE8  
WHS0  
WHE7  
WHE1  
WHE6  
WHE0  
WHE5  
WVS1  
WHE4  
WVS0  
WHE3  
WVE1  
WHE2  
WVE0  
66h  
69h  
WHE  
WHV  
WHE9  
WHS1  
WHE[9:0]  
This 10-bit register contains the horizontal pixel end location for the Mixing Window.  
Window Vertical Start Address  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
WVS8  
WHS0  
WVS7  
WHE1  
WVS6  
WHE0  
WVS5  
WVS1  
WVS4  
WVS0  
WVS3  
WVE1  
WVS2  
WVE0  
67h  
69h  
WVS  
WHV  
WVS9  
WHS1  
WVS[9:0]  
This 10-bit register contains the vertical line start number for the Mixing Window.  
PAGE 31 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
Window Vertical End Address  
Index  
Mnemonic  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
WVE8  
WHS0  
WVE7  
WHE1  
WVE6  
WHE0  
WVE5  
WVS1  
WVE4  
WVS0  
WVE3  
WVE1  
WVE2  
WVE0  
68h  
69h  
WVE  
WHV  
WVE9  
WHS1  
WVE[9:0]  
This 10-bit register contains the vertical line end number for the Mixing Window.  
Chroma Key TEMPLATE Byte 0 (A)  
Index  
6Ah  
Mnemonic  
TMPLA  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMPLA  
7
TMPLA  
6
TMPLA  
5
TMPLA  
4
TMPLA  
3
TMPLA  
2
TMPLA  
1
TMPLA  
0
TEMPLATE  
TMPLA[7:0]  
For RGB Index Keying, this register is the lower byte of the  
register. For CbCr  
Digital  
Chroma Keying, this register contains the lower limit of the Cb key. See the section “  
Mixing  
” for a more detailed description of this register.  
Chroma Key TEMPLATE Byte 1 (B)  
Index  
6Bh  
Mnemonic  
TMPLB  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMPLB  
7
TMPLB  
6
TMPLB  
5
TMPLB  
4
TMPLB  
3
TMPLB  
2
TMPLB  
1
TMPLB  
0
TEMPLATE  
TMPLB[7:0]  
For RGB Index Keying, this register is the higher byte of the  
register. For CbCr  
Digital  
Chroma keying, this register contains the upper limit of the Cb key. See the section “  
Mixing  
” for a more detailed description of this register.  
PAGE 32 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
Chroma Key MASK Byte 0 (A)  
Index  
6Ch  
Mnemonic  
MSKA  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
MSKA7  
MSKA6  
MSKA5  
MSKA4  
MSKA3  
MSKA2  
MSKA1  
MSKA0  
MASK  
register. For CbCr Chroma  
MSKA[7:0]  
For RGB Index Keying, this is the lower byte of the  
Digital Mixing  
Keying, this register contains the lower limit of the Cr key. See the section “  
for more detail.  
Chroma Key MASK Byte 1 (B)  
Index  
6Dh  
Mnemonic  
MSKB  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
MSKB1  
bit 0  
MSKB7  
MSKB6  
MSKB5  
MSKB4  
MSKB3  
MSKB2  
MSKB0  
MASK  
MSKB[7:0]  
For RGB index keying, this is the upper byte of the  
register. For CbCr keying, this  
Digital Mixing  
register sets the upper limit of the Cr key. See the section “  
” for more detail.  
Master Mode’s AVout Lead Control  
Index  
Mnemonic  
bit 7  
bit 6  
HN10  
HAV6  
bit 5  
HN9  
bit 4  
HN8  
bit 3  
0
bit 2  
HAV10  
HAV2  
bit 1  
bit 0  
HAV8  
HAV0  
HAV9  
HAV1  
70h  
71h  
HAVN  
HAV  
SYNCPT  
HAV7  
HAV5  
HAV4  
HAV3  
SYNCPT  
Sync pass through.  
1
HSYN and VSYN are the delayed outputs of AV and VBLK, respectively.  
HSYN and VSYN are internally generated.  
0
The logic state of the MRQST/MODE is latched into this bit during power-on.  
HAV[10:0]  
In Master Mode, this 11-bit register defines the AVout lead control timing. In Slave Mode,  
Horizontal Timing  
this register has no effect. See the section “  
” for detail.  
PAGE 33 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
Number of Pixels per Line  
Index  
Mnemonic  
bit 7  
bit 6  
HN10  
HN6  
bit 5  
HN9  
HN5  
bit 4  
HN8  
HN4  
bit 3  
0
bit 2  
HAV10  
HN2  
bit 1  
HAV9  
HN1  
bit 0  
HAV8  
HN0  
70h  
72h  
HAVN  
HN  
SYNCPT  
HN7  
HN3  
HN[10:0]  
This 11-bit register controls the total number of pixels per line, which is equal to  
HN[10:0]+2.  
Horizontal Front Porch  
Index  
73h  
Mnemonic  
HFP  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
HFP7  
HFP6  
HFP5  
HFPB4  
HFP3  
HFP2  
HFP1  
HFP0  
HFP[7:0]  
This register controls the horizontal front porch timing in number of pixels, which is equal to  
HFP[7:0]-1.  
Horizontal Sync End  
Index  
74h  
Mnemonic  
HSYN  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
HSYN7  
HSYN6  
HSYN5  
HSYN4  
HSYN3  
HSYN2  
HSYN1  
HSYN0  
HSYN[7:0]  
This register controls the horizontal sync end timing in number of pixels, which is equal to  
HSYN[7:0]-1.  
Horizontal Blanking End  
Index  
75h  
Mnemonic  
HBLK  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
HBLK7  
HBLK6  
HBLK5  
HBLK4  
HBLK3  
HBLK2  
HBLK1  
HBLK0  
HBLK[7:0]  
This register controls the horizontal blanking end timing in number of pixels, which is equal  
to HBLK[7:0]+3.  
PAGE 34 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
Number of Lines per Field  
Index  
Mnemonic  
bit 7  
bit 6  
VN6  
VN8  
bit 5  
VN5  
bit 4  
VN4  
bit 3  
VN3  
bit 2  
VN2  
bit 1  
VN1  
bit 0  
VN0  
76h  
77h  
VN  
VN7  
VN9  
VFP  
VFP5  
VFP4  
VFP3  
VFP2  
VFP1  
VFP0  
VN[9:0]  
This 10-bit register controls the total number of lines per field, which is equal to VN[9:0]+1.  
Vertical Front Porch  
Index  
77h  
Mnemonic  
VFP  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
VFP5  
VFP4  
VFP3  
VFP2  
VFP1  
VFP0  
VN9  
VN8  
VFP[5:0]  
This 6-bit register controls the vertical front porch in number of lines, which is equal to  
VFP[5:0]+1.  
Vertical Sync End  
Index  
78h  
Mnemonic  
VSYN  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
VSYN5  
VSYN4  
VSYN3  
VSYN2  
VSYN1  
VSYN0  
VSYN7  
VSYN6  
VSYN[7:0]  
This register controls the end of vertical sync in number of lines, which is equal to  
VSYN[7:0]+1.  
Vertical Blanking End  
Index  
79h  
Mnemonic  
VBLK  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
VBLK5  
VBLK4  
VBLK3  
VBLK2  
VBLK1  
VBLK0  
VBLK7  
VBLK6  
VBLK[7:0]  
This register has three functions:  
1. It controls the vertical blank timing for VGA monitors, and for NTSC monitors if the  
BLKALL Command  
bit is set in the  
register.  
2. It defines line zero of the active display.  
3. In conjunction with slt[1:0] it controls for which lines the MRQST signal will be asserted  
for NTSC monitors.  
PAGE 35 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Characteristics  
Supply voltage (measured to GND)  
Digital input voltage  
Symbol  
VDD  
VI  
Value  
Unit  
-0.5 to +7.0  
0.5 to (VDD+0.5)  
-10 to +100  
-60 to +150  
150  
V
V
Ambient operating temperature range  
Storage temperature range  
Ta  
°C  
°C  
°C  
°C  
°C  
Tstg  
Tj  
Junction temperature  
Soldering temperature (5 sec., 1/4” from pin)  
Vapor phase soldering (1 min.)  
Tsol  
Tvsol  
300  
220  
Notes: 1. Absolute maximum ratings are limiting values applied individually, while all other parameters are within  
specified operating conditions.  
2. Functional operation under any of these conditions is not implied.  
3. Applied voltage must be current limited to a specified range.  
RECOMMENDED OPERATING CONDITIONS  
Characteristics  
Supply voltage  
Symbol  
VDD  
Min  
Typ  
Max  
Unit  
V
4.75  
5
5.25  
Reference voltage  
Internal  
External  
Vref  
V
1.235  
1.235  
Reference current  
Iref  
RL  
Ta  
11.56  
37.5  
mA  
Analog output load  
Ambient operating temperature range  
0
70  
°C  
PAGE 36 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
DC ELECTRICAL CHARACTERISTICS  
Characteristics  
Digital input high voltage  
Symbol  
VIH  
Min  
2.0  
Typ  
Max  
Unit  
V
VDD+0.5  
Digital input low voltage  
VIL  
GND-0.5  
0.8  
1
V
Digital input high current(VIN=2.4V)  
Digital input low current(VIN=0.4V)  
Digital input capacitance(f=1MHz,VIN=2.4V)  
Digital output high voltage(IOH=-400µA)  
Digital output low voltage(IOL=3.2mA)  
Digital three-state current  
IIH  
µA  
µA  
pF  
V
IIL  
-1  
7
CIN  
VOH  
VOL  
2.4  
0.4  
50  
7
V
IOZ  
µA  
pF  
mA  
Digital output capacitance  
CDOUT  
ICC  
Supply current  
150  
10  
Analog multiplexer ON resistance  
Analog multiplexer OFF resistance  
RAON  
RAOFF  
10  
kΩ  
PAGE 37 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
AC ELECTRICAL CHARACTERISTICS  
Characteristics  
CS or SCLK low  
Symbol  
tpwlC  
tpwhC  
tsR/W  
thR/W  
tsA  
Min  
50  
4
Typ  
Max  
Unit  
ns  
CS or SCLK high  
CK27/CKV  
ns  
R/W setup time  
10  
10  
10  
10  
R/W hold time  
ns  
A[0:3] setup time  
ns  
A[0:3] hold time  
thA  
ns  
CS or SCLK active to data valid  
CS or SCLK inactive to data 3-state  
Data setup time  
tvalidD  
t3-stateD  
tsD  
40  
20  
ns  
ns  
10  
10  
ns  
Data hold time  
thD  
ns  
SFRS setup time  
tsFRM  
thFRM  
tsPIX  
10  
ns  
SFRS hold time  
10  
ns  
Setup time (P[0:31], DKY/R, AV, VBLK)  
Hold time (P[0:31], DKY/R, AV, VBLK)  
CKP to output delay  
-9  
ns  
thPIX  
tdPIX  
tdNTSC  
tdRGB  
fCK27  
fCKV  
18.5  
ns  
9
ns  
Video pipeline delay (NTSC output)  
Video pipeline delay (RGB output)  
CK27 clock rate  
53  
26.9999  
7
54  
CK27  
CKV  
MHz  
MHz  
ns  
23  
27  
27.0001  
Note1  
12.5  
CKV clock rate  
CK27, CKV to CKP delay  
32 for KS0119, 45 for KS0119Q2.  
tdCKP  
9
PAGE 38 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
Parallel Host Interface Timing  
t
t
t
pwhC  
pwlC  
CS  
t
sR/W  
hR/W  
R/W  
t
t
sA  
hA  
A[0:3]  
D[0:7]  
t
t
hD  
sD  
INDEX  
DATA 1  
DATA 2  
Figure 22. Parallel Host Interface Write Cycle  
t
t
pwhC  
pwlC  
hR/W  
hA  
CS  
t
sR/W  
t
t
R/W  
t
sA  
A[0:3]  
D[0:7]  
t
t
t
t
3-stateD  
sD  
hD  
validD  
INDEX  
DATA 1  
DATA 2  
Figure 23. Parallel Host Interface Read Cycle  
t
t
C
pwlC  
pwh  
SCLK  
t
hFRM  
t
sFRM  
SFRS  
SDAT  
t
sD  
t
t
t
validD  
3-stateD  
hD  
DATA WRITE (to slave)  
DATA READ (to slave)  
Figure 24. Serial Host Interface Detailed Timing  
PAGE 39 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
CKV  
t
dCKP  
CKP  
t
t
sPIX  
hPIX  
PD[0:31]  
DKY/R  
AV  
VBLK  
Figure 25. Pixel Data Setup and Hold Time  
CKP  
tdPIX  
AV  
VBLK  
MRQST  
F2  
Figure 26. CKP to Output Delay  
PAGE 40 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
DAC DC CHARACTERISTICS  
Characteristics  
Resolution  
Symbol  
Min  
Typ  
Max  
Unit  
RGB output  
8
Bits  
Bits  
NTSC or Y/C output  
Integral non-linearity error  
Differential non-linearity error  
Gray scale error  
10  
IL  
0.15%  
0.1%  
5%  
DL  
0
Monotonicity  
Guaranteed  
Coding  
Binary  
mA  
Analog outputs (NTSC)  
Full scale current range  
Output current  
25.3  
26.67  
28  
White level relative to black  
Black level relative to blank  
Blank level relative to sync  
LSB size  
16.74  
17.62  
1.44  
7.62  
26.1  
2%  
18.5  
mA  
mA  
mA  
µA  
DAC to DAC matching  
Output compliance  
5%  
1.5  
VOC  
RAOUT  
CAOUT  
Vref  
-0.3  
V
kΩ  
Output impedance  
10  
15  
Output capacitance (f=1MHz, IOUT=0mA)  
Internal reference voltage  
Voltage reference input current  
DAC reference current  
DAC reference resistor (VREF=Typ)  
30  
pF  
1.17  
1.235  
10  
1.296  
V
IVref  
µA  
IREF  
11.14  
11.56  
105  
12.34  
0.5  
mA  
RREF  
PSRR  
Power supply rejection ratio  
%/∆VDD  
(CCOMP=0.1 µF, f=1 KHz)  
Test conditions: In NTSC operation, with DAC output = 1.0 VP-P, VREF = 1.235 V, RREF = 105 Ω, 75 load.  
PAGE 41 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
DAC AC CHARACTERISTICS  
Characteristics  
Differential gain  
Symbol  
DG  
Min  
Typ  
±0.5%  
±0.5  
60  
Max  
1.5%  
1
Unit  
Differential phase  
DP  
Degree  
dB  
Signal to noise ratio  
Analog output delay  
Analog output rise/fall time  
Analog settling time  
Clock and data feedthrough  
Glitch impulse  
SNR  
td  
48  
30  
ns  
tr/tf  
3
20  
-30  
75  
0
ns  
tset  
ns  
FDTHR  
GI  
dB  
pV-Sec  
ns  
Analog output skew  
tskw  
5
PAGE 42 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
NTSC DAC OUTPUT WAVEFORMS  
Code  
27.3 1024  
mA  
34 IRE  
22.27  
835  
WHITE LEVEL (235)  
3.58 MHz  
COLOR BURST  
(9 CYCLES)  
100 IRE  
9.92  
7.68  
6.64  
372  
BLACK LEVEL (16)  
BLANK LEVEL  
288  
249  
20 IRE  
20 IRE  
40 IRE  
7.5 IRE  
3.36  
0.29  
126  
11  
Note: 37.5 load, VREF=1.235 V, and R  
=105 Ω. RS-170A levels and tolerances are assumed.  
REF  
Figure 27. Composite NTSC Video Output Waveform  
mA  
Code  
835  
22.27  
WHITE LEVEL  
100 IRE  
7.68  
6.64  
288  
249  
BLACK LEVEL  
BLANK LEVEL  
7.5 IRE  
40 IRE  
11  
0.29  
Note: 37.5 load, VREF=1.235 V, and R  
=105 Ω. RS-170A levels and tolerances are assumed.  
REF  
Figure 28. NTSC Y (Luminance) Video Output Waveform  
PAGE 43 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
mA  
Code  
356  
9.49  
3.58 MHz  
COLOR BURST  
(9 CYCLES)  
20 IRE  
20 IRE  
288  
7.68  
BLACK LEVEL  
220  
5.87  
Note: 37.5 load, VREF=1.235 V, and R  
=105 Ω. RS-170A levels and tolerances are assumed.  
REF  
Figure 29. NTSC C (Chrominance) Video Output Waveform  
PAGE 44 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
VDD  
2k  
30pF  
(60pF for Fsmp)  
Figure 30. Load Circuit for Timing Measurements. Digital Outputs  
Equivalent Input Circuit  
Equivalent Output Circuit  
Figure 31. ESD Protection  
PAGE 45 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
PACKAGE DIMENSION (Dimensions are in Millimeters)  
80-QFP-1420C  
23.90±0.30  
20.00±0.20  
3.00MAX  
0.10MAX  
2.65±0.10  
#80  
+0.10  
0.15  
#1  
0.80  
-0.05  
0.35±0.10  
0.80±0.20  
0.80±0.2  
PAGE 46 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
PACKAGE DIMENSION (Continued)  
100-QPF-1420C  
23.90±0.30  
20.00±0.20  
0.10MAX  
#100  
#1  
0.30±0.10  
0.00MIN  
3.00MAX  
0.65  
(0.58)  
0.10MAX  
2.65±0.10  
0.80±0.20  
PAGE 47 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
NOTES:  
PAGE 48 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
NOTES:  
PAGE 49 OF 50  
070595  
ELECTRONICS  
MULTIMEDIA VIDEO  
KS0119 Data Sheet  
SAMSUNG SEMICONDUCTOR SALES OFFICES  
NORTHEAST  
NORTHWEST  
NORTH CENTRAL  
119 Russell Street  
Littleton, MA 01460  
TEL (508) 486-0700  
FAX (508) 486-8209  
3655 North Fist Street  
San Jose, CA 95134-1708  
TEL (408) 954-7000  
300 Park Boulevard  
Suite 210  
Itasca, IL 60143-2636  
TEL (708) 775-1050  
FAX (708) 775-1058  
FAX (408) 954-7883  
SOUTH CENTRAL  
SOUTHEAST  
SOUTHWEST  
15851 Dallas Parkway  
Suite 410  
Dallas, TX 75248-3307  
TEL (214) 770-7970  
FAX (214) 770-7971  
2000 Regency Parkway  
Suite 285  
Cary, NC 27511  
TEL (919) 380-8483  
FAX (919) 380-8492  
16253 Laguna Canyon Road  
Suite 100  
Irvine, CA 92718  
TEL (714)753-7530  
FAX (714) 753-7544  
TECHNICAL SUPPORT HOT LINE  
Phone: (714)-236-9507  
Fax: (714)-236-9664  
E-mail: video@sldc.com  
Circuit diagrams utilizing SAMSUNG and/or SAMSUNG ELECTRONICS products are included as a means of illustrating typical  
semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The  
information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for  
inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described herein  
any license under the patent rights of SAMSUNG and/or SAMSUNG ELECTRONICS, or others. SAMSUNG and/or SAMSUNG  
ELECTRONICS, reserve the right to change device specifications.  
LIFE SUPPORT APPLICATIONS  
SAMSUNG and/or SAMSUNG ELECTRONICS products are not designed for use in life support applications, devices, or systems  
where malfunction of a SAMSUNG product can reasonably be expected to result in a personal injury. SAMSUNG and/or  
SAMSUNG ELECTRONICS’ customers using or selling SAMSUNG and/or SAMSUNG ELECTRONICS products for use in such  
applications do so at their own risk and agree to fully indemnify SAMSUNG and/or SAMSUNG ELECTRONICS for any damages  
resulting from such improper use or sale.  
PAGE 50 OF 50  
070595  
ELECTRONICS  

相关型号:

KS0119QFP

Consumer Circuit, PQFP100, 14 X 20 MM, QFP-100
SAMSUNG

KS0122

MULTISTANDARD VIDEO DECODER
SAMSUNG

KS0123

DIGITAL VIDEO ENCODER
SAMSUNG

KS0125

Color Signal Encoder, CMOS, PQFP80, 14 X 20 MM, QFP-80
SAMSUNG

KS0127

MULTISTANDARD VIDEO DECODER/SCALER
SAMSUNG

KS0127B

MULTISTANDARD VIDEO DECODER/SCALER
SAMSUNG

KS0143-40

Video Imager, 16-Bit, CMOS, MQFP208, CAVITY-DOWN, MQFP-208
SAMSUNG

KS0143-50

Video Imager, 16-Bit, CMOS, MQFP208, CAVITY-DOWN, MQFP-208
SAMSUNG

KS0143CQ-40

Video Imager, 16-Bit, CMOS, MQFP208, CAVITY-DOWN, MQFP-208
SAMSUNG

KS0143CQ-50

Video Imager, 16-Bit, CMOS, MQFP208, CAVITY-DOWN, MQFP-208
SAMSUNG

KS0144-50

Video Imager, 16-Bit, CMOS, MQFP208, CAVITY-DOWN, MQFP-208
SAMSUNG

KS0144CQ-40

Video Imager, 16-Bit, CMOS, MQFP208, CAVITY-DOWN, MQFP-208
SAMSUNG