M395T2953EZ4-CE660 [SAMSUNG]

DDR DRAM Module, 128MX72, CMOS, ROHS COMPLIANT, DIMM-240;
M395T2953EZ4-CE660
型号: M395T2953EZ4-CE660
厂家: SAMSUNG    SAMSUNG
描述:

DDR DRAM Module, 128MX72, CMOS, ROHS COMPLIANT, DIMM-240

动态存储器 双倍数据速率
文件: 总31页 (文件大小:642K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FBDIMM  
DDR2 SDRAM  
DDR2 Fully Buffered DIMM  
240pin FBDIMMs based on 512Mb E-die  
(RoHS compliant)  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.  
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,  
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,  
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL  
INFORMATION IN THIS DOCUMENT IS PROVIDED  
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar  
applications where Product failure couldresult in loss of life or personal or physical harm, or any military or  
defense application, or any governmental procurement to which special terms or provisions may apply.  
* Samsung Electronics reserves the right to change products or specification without notice.  
Rev. 1.3 April 2007  
1 of 31  
FBDIMM  
DDR2 SDRAM  
Table of Contents  
1. FEATURES .......................................................................................................................................4  
2.0 FBDIMM GENERALS .....................................................................................................................5  
2.1 FB-DIMM Operation Overview ..........................................................................................................5  
2.2 FB-DIMM Channel Frequency Scaling ...............................................................................................6  
2.3 FB-DIMM Clocking Scheme .............................................................................................................7  
2.4 FB-DIMM Protocol ..........................................................................................................................7  
2.5 Southbound Command Delivery ......................................................................................................8  
2.6 Basic Timing Diagram .....................................................................................................................9  
2.7 Advanced Memory Buffer Block Diagram ........................................................................................11  
2.8 Interfaces.................................................................................................................................... 12  
3.0 FBD HIGH-SPEED DIFFERENTIAL POINT TO POINT LINK (at 1.5 V) INTERFACE ...............12  
3.1 DDR2 Channel .............................................................................................................................12  
3.2 SMBus Slave Interface ..................................................................................................................12  
3.3 FBD Channel Latency ...................................................................................................................13  
3.4 Peak Theoretical Throughput .........................................................................................................13  
3.5 Hot-add .......................................................................................................................................13  
3.6 Hot remove ..................................................................................................................................13  
3.7 Hot replace ..................................................................................................................................13  
4.0 PIN CONFIGUREATION ..............................................................................................................14  
5.0 FBDIMM FUNCTIONAL BLOCK DIAGRAM ...............................................................................16  
5.1 512MB, 64Mx72 Module - M395T6553EZ4 ........................................................................................16  
5.2 1GB, 128Mx72 Module - M395T2953EZ4 ..........................................................................................17  
5.3 2GB, 256Mx72 Module - M395T5750EZ4 ..........................................................................................18  
6.0 ELECTRICAL CHARACTERISTICS ............................................................................................19  
7.0 CHANNEL INITIALIZATION ........................................................................................................25  
Rev. 1.3 April 2007  
2 of 31  
FBDIMM  
DDR2 SDRAM  
Revision History  
Revision  
Month  
November  
January  
February  
April  
Year  
2006  
2007  
2007  
2007  
History  
1.0  
1.1  
- First Released.  
- Added AMB revision  
1.2  
1.3  
- Added IDTA1.5 FBD, Corrected DIMM Thickness(8.0mm to 8.2mm)  
- Changed AMB device operation temperature symbol(Tj to Tcase)  
Rev. 1.3 April 2007  
3 of 31  
FBDIMM  
DDR2 SDRAM  
1. FEATURES  
- 240pin fully buffered dual in-line memory module (FB-  
- Channel fail over mode support  
DIMM)  
- Serial presence detect with EEPROM  
- 4 Banks  
- 3.2Gb/s, 4.0Gb/s link transfer rate  
- 1.8V +/- 0.1V Power Supply for DRAM VDD/VDDQ  
- 1.5V +0.075/-0.045V Power Supply for AMB VCC  
- 3.3V +/- 0.3V Power Supply for VDDSPD  
- Buffer Interface with high-speed differential point-to-  
point Link at 1.5 volt  
- Posted CAS  
- Programmable CAS Latency: 3, 4, 5  
- Automatic DDR2 DRAM bus and channel calibration  
- MBIST and IBIST Test functions  
- Hot add-on and Hot Remove Capability  
- Transparent mode for DRAM test support  
- Channel error detection & reporting  
Table 1 : Ordering Information  
Number of  
Rank  
Type of Heat  
Spreader  
Part Number  
Density Organization  
Component Composition  
AMB  
Height  
M395T6553EZ4-CD55/E65  
M395T6553EZ4-CD56/E66  
M395T6553EZ4-CD52/E62  
M395T6553EZ4-CD51/E61  
M395T2953EZ4-CD55/E65  
M395T2953EZ4-CD56/E66  
M395T2953EZ4-CD52/E62  
M395T2953EZ4-CD51/E61  
M395T5750EZ4-CD55/E65  
M395T5750EZ4-CD56/E66  
M395T5750EZ4-CD52/E62  
M395T5750EZ4-CD51/E61  
Intel D1  
IDT C1  
64Mx8(K4T51083QE)  
* 9EA  
512MB  
1GB  
64M x 72  
128M x 72  
256M x 72  
1
2
2
NEC B5+  
IDT A1.5  
Intel D1  
IDT C1  
64Mx8(K4T51083QE)  
* 18EA  
Full Module  
30.35mm  
NEC B5+  
IDT A1.5  
Intel D1  
IDT C1  
128Mx4(K4T51043QE)  
* 36EA  
2GB  
NEC B5+  
IDT A1.5  
Note :  
1. “Z” of Part number(11th digit) stands for Lead-free products.  
2. The last digit stands for AMB.  
Table 2 : Performance range  
E6(DDR2-667)  
D5(DDR2-533)  
533  
Unit  
Mbps  
CK  
DDR2 DRAM Speed  
CL-tRCD-tRP  
667  
5-5-5  
4-4-4  
Table 3 : Address Configuration  
Organization  
64Mx8(512Mb) based Module  
128Mx4(512Mb) based Module  
Row Address  
Column Address  
A0-A9  
Bank Address  
Auto Precharge  
A0-A13  
A0-A13  
BA0-BA1  
BA0-BA1  
A10  
A10  
A0-A9, A11  
Rev. 1.3 April 2007  
4 of 31  
FBDIMM  
DDR2 SDRAM  
2.0 FBDIMM GENERALS  
2.1 FB-DIMM Operation Overview  
FB-DIMM (Fully Buffered Dual in Line Memory Module) is designed for the applications which require higher data transfer bandwidth and  
scalable memory capacity. The memory slot access rate per channel decreases as the memory bus speed increases, resulting in limited  
density build-up as channel speeds increase with memory system having the stub-bus architecture. FB-DIMM solution is intended to  
eliminate this stub-bus channel bottleneck by using point-to-point links that enable multiple memory modules to be connected serially to  
a given channel.  
Memory system architecture perspective, FB-DIMM is fully differentiated from Registered DIMM and Unbuffered DIMM. A lot of new  
technologies are integrated into this solution in order to achieve this scalable higher speed memory solution. Serial link interface with  
packet data format and dedicated read/write paths are key attribute in FB-DIMM protocol. Point to Point interconnect with fully differential  
signaling and de-emphasis scheme are key attribute in FBD channel link. Clock recovery by using data stream is key attribute in FBD  
clocking. FB-DIMM supports both clock resync and resampling mode options. CRC (Cyclic Redundancy Check) bits are transferred with  
data stream for reliability at high speed data transaction. Failover mechanism supports system running with dynamic IO failure. Finally all  
FB-DIMM is connected in daisy chain manner. Thus, every interconnection between AMB (advanced memory buffer) to AMB, AMB to  
Host and AMB to DRAM, is point to point interconnection which allows higher data transfer bandwidth.  
Figure 1 shows a lot of new technologies integrated with FBD solution.  
Figure 1 : FB-DIMM Memory System Overview  
DRAM  
Two unidirectional links  
Protocol Packet  
DRAM  
- Northbound  
- Southbound  
ADDR.CMD, DATA  
DQs ADDR CLK  
CMD  
Daisy Chain  
Connection  
Upto 8 AMB  
SB (ADDR, CMD, Wdata)  
NB(Rdata)  
Rx  
Tx  
Clk_Ref  
Tx  
Rx  
Rx  
Tx  
Tx  
AMB  
AMB  
Rx  
Host  
ADDR  
CMD  
DQs  
CLK  
DRAM  
DRAM  
DIMM Topology  
P2P Interconnect  
- LVDS  
Reliability  
Fly-by CLK, CMD  
Clock Recovery  
- CRC fail-over  
- De-Emphasis  
FIFO  
Buffer  
Clock  
Rev. 1.3 April 2007  
5 of 31  
FBDIMM  
DDR2 SDRAM  
2.2 FB-DIMM Channel Frequency Scaling  
There are many frequency parameters including reference clock frequency, DRAM clock frequency, DRAM data transfer rate, channel  
transfer rate and channel unit interval. All of frequency parameters are scaled with a certain gear ratio. External clock source provides  
reference clock input to AMB and Host. External clock source is relatively slower than channel and DRAM frequency. Thus, AMB dou-  
bles external clock input and generates clock inputs to DRAMs. DRAM use clock input from AMB which is two times faster than refer-  
ence clock for DRAM operation. DRAM data transfer rate is two times faster than DRAM clock input with nature of double data rate  
operation and four times faster than external clock source. Channel speed is represented by unit interval - average time interval between  
voltage transitions of a signal in the FBD channel. It is six times faster than DRAM data transfer rate. For example, external clock source  
gives 6ns clock (166MHz), AMB doubles it and gives 3ns clock (333MHz) to DRAM and FBD channel communicate with unit interval -  
250ps (4.0Gbps transfer rate).  
Figure 2 shows frequency scale ratio over frequency parameters in FBD memory system.  
Figure 2 : FB-DIMM Speed Scaling  
DDR667 Ex.  
6ns  
3ns  
CLK_REF  
DRAM  
DRAM  
CLK_DRAM  
250ps Packet T/F  
12 UIs in one CLK_DRAM  
SB (ADDR, CMD, Wdata)  
DQs ADDR CLK  
CMD  
Rx  
Tx  
Clk_Ref  
Tx  
Rx  
AMB  
Host  
NB(Rdata)  
DRAM  
DRAM  
Reference CLK  
Reference CLK  
Clock  
UI  
312.5ps  
250ps  
CLK_DRAM  
266MHz  
CLK_REF  
133MHz  
166MHz  
200MHz  
Frequency  
3.2Gb/s  
DDR2-533  
DDR2-667  
DDR2-800  
333MHz  
4.0Gb/s  
208.33ps  
400MHz  
4.8Gb/s  
Rev. 1.3 April 2007  
6 of 31  
FBDIMM  
DDR2 SDRAM  
2.3 FB-DIMM Clocking Scheme  
In FB-DIMM platform design, phase adjustment among reference clock inputs to each individual AMB and host is not taken account.  
Thus, clock synchronization is made by using both external reference clock and channel data stream in FB-DIMM memory system. Host  
and each individual AMB has a each individual IO basis clock recovery circuitry for channel data communication. It runs with inputs from  
PLL inside chip and data stream from the other AMB or Host. Because data stream itself involves data communication process, no sig-  
naling switching or data communication may loss clock synchronization between transmitter and receiver. Thus, min transition density is  
defined for this purpose. In FBD channel, a density of 6 transitions within 512 transfers or unit intervals (UI) on the channel is required for  
interpolator training.  
Figure 3 : FB-DIMM Clocking  
Min. Transition Density  
6 Transitions  
Using Reference CLK (Not in Phase)  
Adjust edge/phase by; Min. Transition Density  
DRAM  
DRAM  
512 Transfers  
DQs ADDR CLK  
CMD  
Rx  
Tx  
Rx  
SB (ADDR, CMD, Wdata)  
AMB  
Tx  
Clk_Ref  
Host  
NB(Rdata)  
DRAM  
DRAM  
Clock  
Reference CLK  
Recovery  
Clock  
2.4 FB-DIMM Protocol  
FB-DIMM channel has two unidirectional communication paths - south bound and north bound. South bound and north bound use phys-  
ically different signal path. South and north mean direction of signal transaction. Southbound means direction of signals running from the  
host controller toward the DIMMs. North is the opposite of south. Due to nature of memory operation, southbound carries information  
including command to DRAM, address to DRAM and write data to DRAM, while north bound carries read data from DRAM. In channel  
protocol point of view, southbound and northbound have different data frame formats and frame format size is optimized to ratio of read  
and write. Data transfer perspective, read data transfer rate of north bound is twice faster than write data transfer. Higher channel utiliza-  
tion achieves with asymmetric read and write data transfer rate.  
Figure 4 : Southbound / Northbound Frame format  
Sout bound  
Northbound  
Command (with Address)  
A CMD  
B CMD  
C CMD  
R_Data(x72bits)  
Command (with Address)  
or Write Data in  
R_Data(x72bits)  
Command (with Address)  
or Write Data in  
Southbound consists of 10 differential signal pairs (lane), physically 20 signaling line. Southbound Format has 10x12 (10 IO (or Lane) x  
12 IO switching) frame format, which deliver 10x12 bit information per one DRAM clock. One south bound frame is divided into three  
command slot. See figure 5. Command slot A delivers command (with address). Command slot B and C delivers command (with  
address) or write data into DRAM.  
Rev. 1.3 April 2007  
7 of 31  
FBDIMM  
DDR2 SDRAM  
Figure 5 : FBDIMM Command Encoding & SB Frame  
Southbound Command Frame Format*  
Bit  
9
8
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
aE0 aE7 aE8 F0=0 aC20 aC16 aC12 aC8 aC4 aC0  
aE1 aE6 aE9 F1=0 aC21 aC17 aC13 aC9 aC5 aC1  
aE2 aE5 aE10 aE13 aC22 aC18 aC14 aC10 aC6 aC2  
aE3 aE4 aE11 aE12 aC23 aC19 aC15 aC11 aC7 aC3  
CLK_REF  
CLK_DRAM  
Packet T/F  
A CMD  
B CMD  
C CMD  
FE21  
FE20  
FE19  
FE18  
FE17  
FE16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
bC20 bC16 bC12 bC8 bC4 bC0  
bC21 bC17 bC13 bC9 bC5 bC1  
bC22 bC18 bC14 bC10 bC6 bC2  
bC23 bC19 bC15 bC11 bC7 bC3  
cC20 cC16 cC12 cC8 cC4 cC0  
cC21 cC17 cC13 cC9 cC5 cC1  
cC22 cC18 cC14 cC10 cC6 cC2  
cC23 cC19 cC15 cC11 cC7 cC3  
x10 bits  
10 FE15  
11 FE14  
FE0 FE7 FE11  
FE1 FE6 FE10  
FE2 FE5 FE9 FE13  
FE3 FE4 FE8 FE12  
12 transfers  
Note :  
1. aE[0~12] : CRC Checksum of the A Command  
2. F[0~1] : Frame Type  
3. FE[0~21] : CRC Checksum of 72bit data  
4. CRC : Cyclic Redundancy Check  
DRAM Cmnds  
23  
22  
21  
20  
1
0
0
0
0
0
0
19  
18  
17  
16  
X
15  
X
14  
X
13  
X
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Activate  
Write  
Read  
DS2 DS1 DS0  
DS2 DS1 DS0  
DS2 DS1 DS0  
DS2 DS1 DS0  
DS2 DS1 DS0  
DS2 DS1 DS0  
DS2 DS1 DS0  
DRAM Addr RS  
DRAM Bank & Address  
DRAM Bank & Address  
DRAM Bank & Address  
1
1
0
0
0
0
1
0
1
1
1
1
RS  
RS  
RS  
RS  
RS  
RS  
Precharge All  
1
1
1
1
1
1
0
0
1
0
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Precharge Single  
Auto (CBR) Refresh  
Enter Self Refresh  
DRAM Bank  
X
X
X
X
X
X
X
X
Exit Self Refresh/  
DS2 DS1 DS0  
0
0
1
RS  
X
X
X
X
0
1
1
X
X
X
X
X
X
X
X
X
X
Exit Power Down  
Enter Power Down  
reserved  
DS2 DS1 DS0  
0
0
0
0
1
1
RS  
X
X
X
X
X
X
X
X
X
0
0
1
0
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Note : The values in “ X” fields in non-reserved commands above may be driven onto the DRAM device pins.  
2.5 Southbound Command Delivery  
A DRAM command located in the "A" command may be delivered to the DRAM devices as soon as the 14-bit (10-bits in fail-over) CRC  
is checked. This minimizes DRAM access latency by allowing the command to be delivered after the first 4 transfers of the frame have  
been received. The "A" command is transferred immediately to the DRAM pins with minimum delay whereas the "B" and "C" command  
are delivered one DRAM clock later. To minimize memory access latency the read related Activate, Read (if the page is open) and  
explicit Precharge commands to a rank of DRAM devices should be placed in the "A" command, if possible. Figure 6 illustrates the deliv-  
ery of the three potential commands in a frame to three separate DRAM channels.  
Command "A" is delivered in this case to the DRAM devices on DIMM 3 as soon as the command can traverse the AMB buffer. The "B"  
and "C" commands are delayed and presented to two other DRAM channels on the following clock. See below figure7~10 for Basic  
Read & Write Operations  
Northbound consists of 14 differential signal pairs (lane), physically 28 signaling line. Southbound Format has 14x12 (14 IO (or Lane) x  
12 IO switching) frame format, which deliver 14x12 bit information per one DRAM clock. One north bound frame is divided into two. Both  
frame deliver read data from DRAM  
Figure 6 : FBDIMM Command Delivery Rules  
1
2
3
4
5
“A”  
“B”  
“C”  
FBD southbound  
cmd/data  
1. CMD A transferred immediately  
2. CMD A, B, C cannot target the same DIMM  
3. Host is responsible for scheduling CMD  
DIMM 1 cmd  
DIMM 2 cmd  
“C”  
“B”  
DIMM 3 cmd  
DIMM 4 cmd  
“A”  
FBD northbound  
cmd/data  
Rev. 1.3 April 2007  
8 of 31  
FBDIMM  
DDR2 SDRAM  
2.6 Basic Timing Diagram  
Figure 7 : Basic DRAM Read Data Transfers on FBD  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
ACT1  
NOP  
NOP  
RD1  
NOP  
NOP  
FBD southbound  
cmd/data  
DIMM 1 cmd  
DIMM 1 data  
DIMM 2 cmd  
DIMM 2 data  
ACT1  
RD1  
FBD northbound  
data  
Figure 8 : Back to Back DRAM Read Data Transfers  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
ACT1  
NOP  
NOP  
ACT2 RD1  
NOP NOP  
NOP NOP  
RD2  
NOP  
NOP  
FBD southbound  
cmd/data  
DIMM 1 cmd  
DIMM 1 data  
DIMM 2 cmd  
DIMM 2 data  
ACT1  
RD1  
ACT2  
RD2  
FBD northbound  
data  
No Bubble  
Rev. 1.3 April 2007  
9 of 31  
FBDIMM  
DDR2 SDRAM  
Figure 9 : Basic DRAM Write Data Transfers on FBD  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
ACT1  
NOP  
NOP  
NOP WR1 NOP NOP SYNC  
Wdata Wdata Wdata Wdata 1010  
Wdata Wdata Wdata Wdata 0101  
FBD southbound  
cmd/data  
DIMM 1 cmd  
DIMM 1 data  
DIMM 2 cmd  
DIMM 2 data  
ACT1  
WR1  
Fixed fall through time  
FBD northbound  
data  
Status  
Figure 10 : Simultaneous RD / WR Data Transfers  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
ACT1 ACT2 ACT3 RD1 WR2  
RD3  
SYNC  
1010  
0101  
FBD southbound  
cmd/data  
Wdata Wdata Wdata Wdata NOP NOP  
Wdata Wdata Wdata Wdata NOP NOP  
DIMM 1 cmd  
DIMM 1 data  
DIMM 2 cmd  
DIMM 2 data  
ACT1  
ACT3 RD1  
RD3  
ACT2  
WR2  
FBD northbound  
data  
Status  
Rev. 1.3 April 2007  
10 of 31  
FBDIMM  
DDR2 SDRAM  
2.7 Advanced Memory Buffer Block Diagram  
Figure 11 : Advanced Memory Buffer Block Diagram  
Advance Memory Buffer  
Block Dlagram  
10x2  
10x2  
Southbound  
Data Out  
NORTH  
Southbound  
Data In  
Data Merge  
Re-Time  
Re-synch  
1x2  
PLL  
demux  
PISO  
mux  
Ref Clock  
10*2  
10*2  
Link Init SM  
and Control  
and CSRs  
Reset#  
Reset  
Control  
lnit  
patterns  
4
DRAM Clock  
IBIST - RX  
IBIST - TX  
4
DRAM Clock #  
Command  
Decoder &  
CRC Check  
failover  
LAI Logic  
29  
DRAM Address /  
Cmd Out  
Command Copy 1  
DRAM Cmd  
29  
Thermal  
Sensor  
DRAM Address /  
Command Copy 2  
DDR State  
Controller  
and CSRs  
Data Out  
Data In  
Core Control  
and CSRs  
36  
deep  
Write  
Data  
FIFO  
72 + 18x2  
DRAM  
External MEMBIST  
DDR calibration &  
DDR IOBIST/DFX  
Data / strobe  
LAI  
Controller  
Data CRC Gen  
& Read FIFO  
Sync & ldie  
NB LAI Buffer  
Pattern  
Generator  
IBIST -TX  
IBIST - RX  
SMbus  
SMbus  
Controller  
mux  
Link lnit SM  
and Control  
and CSRs  
failover  
14*6*2  
14*12  
PISO  
demux  
Re-synch  
Re-Time  
Data Merge  
Northbound  
Data Out  
Northbound  
Data In  
14x2  
14x2  
Rev. 1.3 April 2007  
11 of 31  
FBDIMM  
DDR2 SDRAM  
2.8 Interfaces  
Figure12 illustrates the Advanced Memory Buffer and all of its interfaces. They consist of two FBD links, one DDR2 channel and an SM-  
Bus interface. Each FBD link connects the Advanced Memory Buffer to a host memory controller or an adjacent FBD. The DDR2 channel  
supports direct connection to the DDR2 SDRAMs on a Fully Buffered DIMM  
Figure 12 : Advanced Memory Buffer Interface Block Diagram  
MEMORY INTERFACE  
NB FBD  
Out Link  
NB FBD  
In Link  
AMB  
SB FBD  
Out Link  
SB FBD  
In Link  
SMB  
The FBDIMM channel uses a daisy-chain topology to provide expansion from a single DIMM per channel to up to 8 DIMMs per channel.  
The host sends data on the southbound link to the first DIMM where it is received and redriven to the second DIMM. On the southbound  
data path each DIMM receives the data and again redrives the data to the next DIMM until the last DIMM receives the data. The last DIMM  
in the chain initiates the transmission of data in the direction of the host (a.k.a. northbound). On the northbound data path each DIMM  
receives the data and re-drives the data to the next DIMM until the host is reached.  
3.0 FBD HIGH-SPEED DIFFERENTIAL POINT TO POINT LINK (at 1.5 V) INTERFACE  
The Advanced Memory Buffer supports one FBD Channel consisting of two bidirectional link interfaces using high-speed differential point-  
to-point electrical signaling.  
The southbound input link is 10 lanes wide and carries commands and write data from the host memory controller or the adjacent DIMM  
in the host direction. The southbound output link forwards this same data to the next FBD.  
The northbound input link is 14 lanes wide and carries read return data or status information from the next FBDIMM in the chain back  
towards the host. The northbound output link forwards this information back towards the host and multiplexes in any read return data or  
status information that is generated internally.  
3.1 DDR2 Channel  
The DDR2 channel on the Advanced Memory Buffer supports direct connection to DDR2 SDRAMs. The DDR2 channel supports two  
ranks of eight banks with 16 row/column request, 64 data signals, and eight check-bit signals. There are two copies of address and com-  
mand signals to support DIMM routing and electrical requirements. Four-transfer bursts are driven on the data and check-bit lines at 800  
MHz.  
Propagation delays between read data/check-bit strobe lanes on a given channel can differ. Each strobe can be calibrated by hardware  
state machines using write/read trial and error (or equivalent implementation). Hardware aligns the read data and check-bits to a single  
core clock.  
The Advanced Memory Buffer provides four copies of the command clock phase references (CLK[3:0]) and write data/check-bit.  
3.2 SMBus Slave Interface  
The Advanced Memory Buffer supports an SMBus interface to allow system access to configuration registers independent of the FBD  
link. The Advanced Memory Buffer will never be a master on the SMBus, only a slave. Serial SMBus data transfer is supported at 100  
kHz. SMBus access to the Advanced Memory Buffer may be a requirement to boot a system. This provides a mechanism to set link  
strength, frequency and other parameters needed to insure robust operation given platform specific configurations. It is also required for  
diagnostic support when the link is down. The SMBus address straps located on the DIMM connector are used by the Advanced Memory  
Buffer to get its unique ID.  
Rev. 1.3 April 2007  
12 of 31  
FBDIMM  
DDR2 SDRAM  
3.3 FBD Channel Latency  
FBD channel latency is measured from the time a read request is driven on the FBD channel pins to the time when the first 16 bytes (2nd  
chunk) of read completion data is sampled by the memory controller.  
When not using the Variable Read Latency capability, the latency for a specific FBDIMM on an FBD channel is always equal to the latency  
for any other FBDIMM on that channel. However, the latency for each FBDIMM in a specific configuration with some number of FBDIMMs  
installed may not be equal to the latency for each FBDIMM in a configuration with some different number of FBDIMMs installed.  
As more DIMMs are added to the FBD channel, additional latency is required to read from each DIMM on the channel. Because the FBD  
channel is based on the point-to-point interconnection of buffer components between DIMMs, memory requests are required to travel  
through N-1 buffers before reaching the Nth buffer. The result is that a four DIMM channel configuration will have greater idle read latency  
compared to a one DIMM channel configuration.  
The Variable Read Latency capability can be used to reduce latency for DIMMs closer to the host.  
The idle latencies listed in this section are representative of what might be achieved in typical AMB designs. Actual implementations with  
latencies less than the values listed will have higher application performance and vice versa.  
3.4 Peak Theoretical Throughput  
An FBD channel transfers read completion data on the FBD Northbound data connection. 144 bits of data are transferred for every FBD  
Northbound data frame. This matches the 18-byte data transfer of an ECC DDR DRAM in a single DRAM command clock. A DRAM burst  
of 8 from a single channel or a DRAM burst of four from two lock-stepped channels provides a total of 72 bytes of data (64 bytes plus 8  
bytes ECC).  
The FBD frame rate matches the DRAM command clock because of the fixed 6:1 ratio of the FBD channel clock to the DRAM command  
clock. Therefore, the Northbound data connection will exhibit the same peak theoretical throughput as a single DRAM channel. For ex-  
ample, when using DDR2 533 DRAMs, the peak theoretical bandwidth of the Northbound data connection is 4.267 GB/sec.  
Write data is transferred on the FBD Southbound command and data connection, via Command+Wdata frames. 72 bits of data are trans-  
ferred for every FBD Command+Wdata frame. Two Command+Wdata frames match the 18-byte data transfer of an ECC DDR DRAM in  
a single DRAM command clock. A DRAM burst of 8 transfers from a single channel, or a burst of 4 from two lock-step channels provides  
a total of 72 bytes of data (64 bytes plus 8 bytes ECC).  
When the FBD frame rate matches the DRAM command clock, the Southbound command and data connection will exhibit one half the  
peak theoretical throughput of a single DRAM channel. For example, when using DDR2 533 DRAMs, the peak theoretical bandwidth of  
the Southbound command and data connection is 2.133 GB/sec.  
The total peak theoretical throughput for a single FBD channel is defined as the sum of the peak theoretical throughput of the Northbound  
data connection and the Southbound command and data connection. When the FBD frame rate matches the DRAM command clock, this  
is equal to 1.5 times the peak theoretical throughput of a single DRAM channel. For example, when using DDR2 533 DRAMs, the peak  
theoretical throughput of a DDR2 533 channel would be 4.267 GB/sec, while the peak theoretical throughput of an FBD-533 channel would  
be 6.4 GB/sec  
3.5 Hot-add  
The FBDIMM channel does not provide a mechanism to automatically detect and report the addition of a new FBDIMM south of the cur-  
rently active last FBDIMM. It is assumed the system will be notified through some means of the addition of one or more new FBDIMMs  
so that specific commands can be sent to the host controller to initialize the newly added FBDIMM(s) and perform a hot-add reset to bring  
them into the channel timing domain. It should be noted that the power to the FBDIMM socket must be removed before a hot-add FBDIMM  
is inserted or removed. Applying or removing the power to a FBDIMM socket is a system platform function.  
3.6 Hot remove  
In order to accomplish removal of FBDIMMs, the host must perform a fast reset sequence targeted at the last FBDIMM that will be retained  
on the channel. The fast reset re-establishes the appropriate last FBDIMM so that the southbound transmission outputs of the last active  
FBDIMM and the southbound and northbound outputs of the FBDIMMs beyond the last active FBDIMM are disabled. Once the appropriate  
outputs are disabled, the system can coordinate the procedure to remove power in preparation for physical removal of the FBDIMM if  
needed. Note that the power to the FBDIMM socket must be removed before a hot-add FBDIMM is inserted or removed. Applying or re-  
moving the power to a FBDIMM socket is a system platform function.  
3.7 Hot replace  
Hot replace of FBDIMM is accomplished through combining the hot-remove and hotadd processes.  
Rev. 1.3 April 2007  
13 of 31  
FBDIMM  
DDR2 SDRAM  
4.0 PIN CONFIGUREATION  
Table 4 : DDR2 240 Pin FBDIMM Configurations (Front side/Back side)  
Pin  
1
Front  
VDD  
VDD  
VDD  
VSS  
VDD  
VDD  
VDD  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VTT  
Pin  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
Back  
VDD  
VDD  
VDD  
VSS  
VDD  
VDD  
VDD  
VSS  
VCC  
VCC  
VSS  
VCC  
VCC  
VSS  
VTT  
Pin  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Front  
PN3  
Pin  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
Back  
SN3  
Pin  
61  
62  
63  
64  
65  
66  
67  
68  
Front  
PN9  
Pin  
181  
182  
183  
184  
185  
186  
187  
188  
Back  
SN9  
Pin  
91  
Front  
PS9  
Pin  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
Back  
SS9  
VSS  
VSS  
VSS  
VSS  
2
PN3  
SN3  
92  
VSS  
VSS  
3
PN10  
PN10  
VSS  
SN10  
SN10  
VSS  
93  
PS5  
PS5  
VSS  
SS5  
SS5  
VSS  
4
PN4  
PN4  
VSS  
SN4  
SN4  
VSS  
94  
5
95  
6
PN11  
PN11  
VSS  
SN11  
SN11  
VSS  
96  
PS6  
PS6  
VSS  
SS6  
SS6  
VSS  
7
PN5  
PN5  
VSS  
SN5  
SN5  
VSS  
97  
8
98  
9
KEY  
99  
PS7  
PS7  
VSS  
SS7  
SS7  
VSS  
VSS  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
PN13  
PN13  
VSS  
SN13  
SN13  
VSS  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
PS0  
PS0  
VSS  
SS0  
SS0  
VSS  
PS8  
PS8  
VSS  
SS8  
SS8  
VSS  
VSS  
VSS  
RFU*  
RFU*  
VSS  
RFU*  
RFU*  
VSS  
PS1  
PS1  
VSS  
SS1  
SS1  
VSS  
RFU**  
RFU**  
VSS  
RFU**  
RFU**  
VSS  
VID1  
RESET  
VSS  
VID0  
DNU/M_Test  
VSS  
VSS  
VSS  
PS2  
PS2  
VSS  
SS2  
SS2  
VSS  
VDD  
VDD  
VSS  
PN12  
PN12  
VSS  
SN12  
SN12  
VSS  
SCK  
SCK  
VSS  
RFU**  
RFU**  
VSS  
RFU**  
RFU**  
VSS  
PS3  
PS3  
VSS  
SS3  
SS3  
VSS  
VDD  
VDD  
VDD  
VSS  
VDD  
PN6  
PN6  
VSS  
SN6  
SN6  
VSS  
VDD  
PN0  
PN0  
VSS  
SN0  
SN0  
VSS  
VDD  
PS4  
PS4  
VSS  
VSS  
SS4  
SS4  
VSS  
VSS  
VSS  
PN7  
PN7  
VSS  
SN7  
SN7  
VSS  
VDD  
VDD  
VTT  
VDD  
PN1  
PN1  
VSS  
PN2  
PN2  
VSS  
SN1  
SN1  
VSS  
SN2  
SN2  
VSS  
VDD  
VTT  
PN8  
PN8  
VSS  
SN8  
SN8  
VSS  
RFU*  
RFU*  
VSS  
RFU*  
RFU*  
VSS  
SA2  
SDA  
SCL  
VDDSPD  
SA0  
VSS  
PS9  
VSS  
SS9  
PN9  
SN9  
SA1  
RFU = Reserved Future Use.  
* These pin positions are reserved for forwarded clocks to be used in future module implementations  
** These pin positions are reserved for future architecture flexibility  
1. The following signals are CRC bits and thus appear out of the normal sequence : PN12/PN12, SN12/SN12, PN13/PN13, SN13/SN12, PS9/PS9,  
SS9/SS9.  
Rev. 1.3 April 2007  
14 of 31  
FBDIMM  
DDR2 SDRAM  
Table 5 : Pin Description  
Pin Name  
SCK  
Type  
Input  
Pin Description  
System Clock Input, positive line  
Pin Numbers  
228  
229  
SCK  
Input  
System Clock Input, negative line  
PN[13:0]  
PN[13:0]  
PS[9:0]  
PS[9:0]  
Output  
Output  
Input  
Primary northbound Data, positive lines  
Primary northbound Data, negative lines  
Primary Southbound Data, positive lines  
Primary Southbound Data, negative lines  
22, 25, 28, 31, 34, 37, 40, 48, 51, 54, 57, 60, 63, 66  
23, 26, 29, 32, 35, 38, 41, 49, 52, 55, 58, 61, 64, 67  
70, 73, 76, 79, 82, 90, 93, 96, 99, 102  
Input  
71, 74, 77, 80, 83, 91, 94, 97, 100, 103  
142, 145, 148, 151, 154, 157, 160, 168, 171, 174, 177,  
180, 183, 186  
SN[13:0]  
SN[13:0]  
Output  
Output  
Secondary Northbound Data, positive lines  
Secondary Northbound Data, negative lines  
143, 146, 149, 152, 155, 158, 161, 16, 172, 175, 178,  
181, 184, 187  
SS[9:0]  
SS[9:0]  
SCL  
Input  
Input  
Input  
Input  
Secondary Southbound Data, positive lines  
Secondary Southbound Data, negative lines  
Serial Presence Detect (SPD) Clock Input  
SPD Data Input / Output  
190, 193, 196, 199, 202, 210, 213, 216, 219, 222  
191, 194, 197, 200, 203, 211, 214, 217, 220, 223  
120  
119  
SDA  
SPD Address Inputs, also used to slelect the DIMM number in  
the AMB  
SA[2:0]  
Input  
118, 239, 240  
Voltage ID : These pins must be unconnected for DDR2 -  
based Fully Buffered DIMMs  
VID[1:0]  
NC  
16, 136  
17  
VID[0] is VDD value : OPEN = 1.8 V, GND = 1.5 V ; VID[1] is  
V
CC value : OPEN = 1.5V, GND = 1.2V  
RESET  
RFU  
Input  
RFU  
AMB reset signal  
19, 20, 44, 45, 86, 87, 105, 106, 139, 140, 164, 165,  
206, 207, 225, 226  
Reserved for Future Use  
AMB Core Power and AMB Channel Interface Power (1.5  
Volt)  
VCC  
VDD  
PWR  
PWR  
9, 10, 12, 13, 129, 130, 132, 133  
1, 2, 3, 5, 6, 7, 108, 109, 111, 112, 113, 115, 116, 121,  
122, 123, 125, 126, 127, 231, 232, 233, 235, 236  
DRAM Power and AMB DRAM I/O Power (1.8Volt)  
VTT  
PWR  
PWR  
DRAM Address/Command/Clcok Termination Power(VDD/2) 15, 117, 135, 237  
VDDSPD  
SPD Power  
238  
4, 8, 11, 14, 18, 21, 24, 27, 30, 33, 36, 39, 42, 43, 46,  
47, 50, 53, 56, 59, 62, 65, 68, 69, 72, 75, 78, 81, 84, 85,  
88, 89, 92, 95, 98, 101, 104, 107, 110, 114, 124, 128,  
131, 134, 138, 141, 144, 147, 150, 153, 156, 159, 162,  
163, 166, 167, 170, 173, 176, 179, 182, 185, 188, 189,  
192, 195, 198, 201, 204, 205, 208, 209, 212, 215, 218,  
221, 224, 227, 230, 234  
VSS  
GND  
DNU  
Ground  
The DNU/M_Test pin provides an external connection R/Cs A-  
D for testing the margin of Vref which is produced by a voltage  
divider on the module. It is not intended to be used in normal  
DNU/M_Test  
system operation and must not be connected (DNU) in a sys- 137  
tem. This test pin may have other features on future card de-  
signs and if it does, will be included in this specification at that  
time.  
Rev. 1.3 April 2007  
15 of 31  
FBDIMM  
DDR2 SDRAM  
5.0 FBDIMM FUNCTIONAL BLOCK DIAGRAM  
5.1 512MB, 64Mx72 Module - M395T6553EZ4  
(populated as 1 rank of x8 DDR2 SDRAMs)  
S0  
DQS0  
DQS0  
DQS9  
DQS4  
DQS4  
DQS13  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
I/O 0  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ32  
DQ33  
DQ34  
DQ35  
DQ36  
DQ37  
DQ38  
DQ39  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D0  
D4  
DQS1  
DQS1  
DQS5  
DQS5  
DQS10  
DQS14  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DQ8  
DQ40  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ46  
DQ47  
I/O 0  
I/O 0  
DQ9  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D1  
D5  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
DQS2  
DQS2  
DQS6  
DQS6  
DQS11  
DQS15  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DQ16  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
DQ48  
DQ49  
DQ50  
DQ51  
DQ52  
DQ53  
DQ54  
DQ55  
I/O 0  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D2  
D6  
DQS7  
DQS7  
DQS3  
DQS3  
DQS16  
DQS12  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DQ56  
DQ57  
DQ58  
DQ59  
DQ60  
DQ61  
DQ62  
DQ63  
DQ24  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
I/O 0  
I/O 0  
I/O 1  
I/O 1  
D7  
D3  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQS8  
DQS8  
PN0-PN13  
PN0-PN13  
PS0-PS9  
PS0-PS9  
SN0-SN13  
SN0-SN13  
SS0-SS9  
SS0-SS9  
DQS17  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
CB0  
CB1  
CB2  
CB3  
CB4  
CB5  
CB6  
CB7  
I/O 0  
S0->CS(all SDRAMs)  
I/O 1  
DQ0-DQ63  
CB0-CB7  
D8  
CKE0->CKE(all SDRAMs)  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
A
M
B
DQS0-DQS17  
DQS0-DQS8  
ODT->ODT(all SDRAMs)  
BA0-BA2(all SDRAMs)  
A0-A15(all SDRAMs)  
RAS(all SDRAMs)  
SCL  
SDA  
SA1-SA2  
SA0  
CAS(all SDRAMs)  
RESET  
Serial PD  
WE(all SDRAMs)  
CK/CK(all SDRAMs)  
SCK/SCK  
V
Terminators  
AMB  
TT  
SCL  
SDA  
All address/command/control/clock  
V
WP A0 A1 A2  
SA0 SA1 SA2  
TT  
V
CC  
V
SPD, AMB  
D0-D8, AMB  
D0-D8  
DDSPD  
V
DD  
V
REF  
Note :  
1.DQ-to I/O wiring may be changed within a byte.  
2.There are two physical copies of each address/command/control/clock  
V
D0-D8,SPD,AMB  
SS  
Rev. 1.3 April 2007  
16 of 31  
FBDIMM  
DDR2 SDRAM  
5.2 1GB, 128Mx72 Module - M395T2953EZ4  
(populated as 2 rank of x8 DDR2 SDRAMs)  
S1  
S0  
DQS0  
DQS0  
DQS9  
DQS4  
DQS4  
DQS13  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
RDQS RDQS  
I/O 0  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ32  
DQ33  
DQ34  
DQ35  
DQ36  
DQ37  
DQ38  
DQ39  
I/O 0  
I/O 0  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D0  
D9  
D4  
D13  
DQS1  
DQS1  
DQS5  
DQS5  
DQS10  
DQS14  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DQ8  
DQ40  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ46  
DQ47  
I/O 0  
I/O 0  
I/O 0  
I/O 0  
DQ9  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D1  
D10  
D5  
D14  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
DQS2  
DQS2  
DQS6  
DQS6  
DQS11  
DQS15  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DQ16  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
DQ48  
DQ49  
DQ50  
DQ51  
DQ52  
DQ53  
DQ54  
DQ55  
I/O 0  
I/O 0  
I/O 0  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D2  
D11  
D6  
D15  
DQS7  
DQS7  
DQS3  
DQS3  
DQS16  
DQS12  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DQ56  
DQ57  
DQ58  
DQ59  
DQ60  
DQ61  
DQ62  
DQ63  
DQ24  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
I/O 0  
I/O 0  
I/O 0  
I/O 0  
I/O 1  
I/O 1  
I/O 1  
I/O 1  
D7  
D16  
D3  
D12  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQS8  
DQS8  
PN0-PN13  
PN0-PN13  
PS0-PS9  
PS0-PS9  
SN0-SN13  
SN0-SN13  
SS0-SS9  
SS0-SS9  
DQS17  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
S0->CS(D0-D8)  
DQ0-DQ63  
CB0-CB7  
CB0  
CB1  
CB2  
CB3  
CB4  
CB5  
CB6  
CB7  
I/O 0  
I/O 0  
CKE0->CKE(D0-D8)  
S1->CS(D9-D17)  
A
M
B
I/O 1  
I/O 1  
DQS0-DQS17  
DQS0-DQS8  
D8  
D17  
CKE1->CKE(D9-D17)  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
ODT->ODT(all SDRAMs)  
BA0-BA2(all SDRAMs)  
A0-A15(all SDRAMs)  
RAS(all SDRAMs)  
SCL  
SDA  
SA1-SA2  
SA0  
CAS(all SDRAMs)  
RESET  
WE(all SDRAMs)  
CK/CK(all SDRAMs)  
SCK/SCK  
V
All address/command/control/clock  
TT  
V
Terminators  
TT  
Serial PD  
V
AMB  
CC  
SCL  
SDA  
WP A0 A1 A2  
V
SPD, AMB  
D0-D17, AMB  
D0-D17  
DDSPD  
V
DD  
SA0 SA1 SA2  
V
REF  
Note :  
1.DQ-to I/O wiring may be changed within a byte.  
2.There are two physical copies of each address/command/control/clock  
V
D0-D17,SPD,AMB  
SS  
Rev. 1.3 April 2007  
17 of 31  
FBDIMM  
DDR2 SDRAM  
5.3 2GB, 256Mx72 Module - M395T5750EZ4  
(populated as 2 rank of x4 DDR2 SDRAMs)  
VSS  
S1  
S0  
DQS0  
DQS0  
DQS9  
DQS9  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ0  
DQ4  
I/O 0  
I/O 0  
I/O 0  
I/O 0  
DQ1  
DQ2  
DQ3  
DQ5  
DQ6  
DQ7  
I/O 1  
I/O 2  
I/O 3  
I/O 1  
I/O 2  
I/O 3  
I/O 1  
I/O 2  
I/O 3  
I/O 1  
I/O 2  
I/O 3  
D0  
D18  
D9  
D27  
DQS1  
DQS1  
DQS10  
DQS10  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ8  
DQ12  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ9  
DQ13  
DQ14  
DQ15  
D1  
D19  
D10  
D28  
DQ10  
DQ11  
DQS2  
DQS2  
DQS11  
DQS11  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ16  
DQ20  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ17  
DQ18  
DQ19  
DQ21  
DQ22  
DQ23  
D2  
D20  
D11  
D29  
DQS3  
DQS12  
DQS3  
DQS12  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ24  
DQ28  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ25  
DQ26  
DQ27  
DQ29  
DQ30  
DQ31  
D3  
D21  
D12  
D30  
DQS4  
DQS13  
DQS4  
DQS13  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ32  
DQ36  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ33  
DQ34  
DQ35  
DQ37  
DQ38  
DQ39  
D4  
D22  
D13  
D31  
DQS5  
DQS14  
DQS5  
DQS14  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ40  
DQ44  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ41  
DQ42  
DQ43  
DQ45  
DQ46  
DQ47  
D5  
D23  
D14  
D32  
DQS6  
DQS15  
DQS6  
DQS15  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ48  
DQ52  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ49  
DQ50  
DQ51  
DQ53  
DQ54  
DQ55  
D6  
D24  
D15  
D33  
DQS7  
DQS16  
DQS7  
DQS16  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ56  
DQ60  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ57  
DQ58  
DQ59  
DQ61  
DQ62  
DQ63  
D7  
D25  
D16  
D34  
DQS8  
DQS17  
DQS8  
DQS17  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
CB0  
CB4  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
CB1  
CB2  
CB3  
CB5  
CB6  
CB7  
D8  
D26  
D17  
D35  
SN0-SN13  
SN0-SN13  
SS0-SS9  
SS0-SS9  
PN0-PN13  
V
All address/command/control/clock  
PN0-PN13  
PS0-PS9  
PS0-PS9  
TT  
S0->CS(D0-D17)  
DQ0-DQ63  
CB0-CB7  
CKE0->CKE(D0-D17)  
S1->CS(D18-D35)  
Serial PD  
A
DQS0-DQS17  
DQS0-DQS8  
M
B
CKE1->CKE(D18-D35)  
SCL  
SDA  
ODT->ODT(all SDRAMs)  
BA0-BA2(all SDRAMs)  
A0-A15(all SDRAMs)  
RAS(all SDRAMs)  
SCL  
V
Terminators  
AMB  
TT  
WP A0 A1 A2  
SDA  
SA1-SA2  
SA0  
V
CC  
CAS(all SDRAMs)  
RESET  
SA0 SA1 SA2  
WE(all SDRAMs)  
CK/CK(all SDRAMs)  
V
SPD, AMB  
D0-D35, AMB  
D0-D35  
SCK/SCK  
DDSPD  
V
DD  
V
REF  
Note :  
V
D0-D35,SPD,AMB  
SS  
1.DQ-to I/O wiring may be changed within a byte.  
2.There are two physical copies of each address/command/control/clock.  
3. There are four physical copies of each clock.  
Rev. 1.3 April 2007  
18 of 31  
FBDIMM  
DDR2 SDRAM  
6.0 ELECTRICAL CHARACTERISTICS  
Table 6 : AbsoIute Maximum Ratings  
Parameter  
Voltage on any pin relative to VSS  
Voltage on VCC pin relative to VSS  
Voltage VDD pin relative to VSS  
Voltage on VTT pin relative to VSS  
Storage temperature  
Symbol  
VIN, VOUT  
VCC  
MIN  
-0.3  
-0.3  
-0.5  
-0.5  
-55  
0
MAX  
1.75  
1.75  
2.3  
Units  
V
Note  
1
1
1
1
1
V
VDD  
V
VTT  
2.3  
V
TSTG  
100  
85  
°C  
DDR2 SDRAM device operating temperature(Ambient)  
AMB device operating temperature (Ambient)  
TCASE  
TCASE  
°C  
1,2  
85  
95  
0
110  
°C  
1,2  
Note : 1. Stresses greater than those Iisted may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other  
conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods  
may adversely affect reliability.  
2. DDR2 SDRAMs of FBDIMM should require this specification.  
Parameter  
Symbol  
0 °C TCASE 85°C  
85 °C < TCASE 95°C  
DRAM  
7.8  
Units  
µs  
Average periodic refresh interval  
tREFI  
3.9  
µs  
Table 7 : Input DC Operating Conditions  
Parameter  
AMB supply voltage  
Symbol  
VCC  
MIN  
1.455  
1.7  
Nom  
1.50  
1.8  
MAX  
1.575  
1.9  
Units  
V
Notes  
DDR2 SDRAM supply voltage  
Termination voltage  
VDD  
V
VTT  
VDDSPD  
VIH(DC)  
VIL(DC)  
VIH(DC)  
VIL(DC)  
IL  
0.48 x VDD  
3.0  
0.50 x VDD  
3.3  
0.52 x VDD  
3.6  
V
EEPROM supply voltage  
V
SPD Input HIGH (Iogic 1) voltage  
SPD Input LOW (logic 0) voltage  
RESET Input HIGH (logic 1) voltage  
RESET Input LOW (logic 0) voltage  
Leakage Current (RESET)  
Leakage Current (link)  
VDDSPD  
0.8  
V
1
1
2
1
2
3
1.0  
V
V
0.5  
90  
5
V
-90  
-5  
uA  
uA  
IL  
Note : 1. Applies for SMB and SPD bus signals.  
2. Applies for AMB CMOS signal RESET#.  
3. For all other AMB related DC parameters, please refer to the high-speed differential link interface specification.  
Table 8 : Timing Parameters  
Parameter  
EI Assertion Pass-Thru Timing  
EI Deassertion Pass-Thru Timing  
EI Assertion Duration  
Symbol  
MIN  
Typ.  
Max.  
4
Units  
clks  
clks  
clks  
ns  
Notes  
-
2
tEI Propagate  
t
tEID  
tEI  
Bitlock  
100  
1,2  
3
FBD Cmd to DDR Clk out that latches Cmd  
FBD Cmd to DDR Write  
8.1  
TBD  
5.0  
ns  
DDR Read to FBD (last DIMM)  
Resample Pass-Thru time  
ResynchPass-Thru time  
ns  
4
1.075  
2.075  
ns  
ns  
Bit Lock Interval  
tBitLock  
119  
154  
frames  
frames  
1
1
Frame Lock Interval  
tFrameLock  
Note : 1. Defined in FB-DIMM Architecture and Protocol Spec  
2. Clocks defined as core clocks = 2x SCK input  
3. @ DDR2-667 - measured from beginning of frame at southbound input to DDR clock output that latches the first command of a frame to the DRAMs  
4. @ DDR2-667 - measured from latest DQS input AMB TO start of matching data frame at northbound FB-DIMM outputs.  
Rev. 1.3 April 2007  
19 of 31  
FBDIMM  
DDR2 SDRAM  
Table 9 : Power specification parameter and test condition  
Power  
Units  
Symbol  
Conditions  
Supply  
Icc_Idle_0  
Idle Current, single or last DIMM  
L0 state, idle (0 BW)  
Primary channel enabled, Secondary Channel Disabled  
CKE high. Command and address lines stable.  
DRAM clock active.  
@1.5V  
mA  
Idd_Idle_0  
@1.8V  
mA  
Idd_Idle_0 Total Power  
W
Icc_Idle_1  
Idd_Idle_1  
Idle Current, first DIMM  
@1.5V  
@1.8V  
mA  
L0 state, idle (0 BW)  
Primary and Secondary channels enabled  
CKE high. Command and address lines stable.  
DRAM clock active.  
mA  
Idd_Idle_1 Total Power  
W
Icc_Active_1  
Idd_Active_1  
Active Power  
@1.5V  
@1.8V  
mA  
L0 state.  
50% DRAM BW, 67% read, 33% write.  
Primary and Secondary channels enabled.  
DRAM clock active, CKE high.  
mA  
Idd_Active_1 Total Power  
W
Icc_Active_2  
Idd_Active_2  
Active Power, data pass through  
L0 state.  
50% DRAM BW to downstream DIMM, 67% read, 33% write.  
Primary and Secondary channels enabled  
CKE high. Command and address lines stable.  
DRAM clock active.  
@1.5V  
@1.8V  
mA  
mA  
Idd_Active_2 Total Power  
W
Idd_Training  
(for AMB spec, Not in  
SPD)  
Training  
@1.5V  
@1.8V  
mA  
Primary and Secondary channels enabled.  
100% toggle on all channel lanes  
DRAMs idle. 0 BW.  
Idd_Training  
(for AMB spec, Not in  
SPD)  
CKE high, Command and address lines stable.  
DRAM clock active.  
mA  
W
Idd_Training Total Power  
Table 10 : Power specification (Vdd Max = 1.900V, Vcc Max = 1.575V)  
512MB (M395T6553EZ4)  
1GB (M395T2953EZ4)  
2GB (M395T5750EZ4)  
D56/  
D51  
E66/  
E61  
D56/  
D51  
E66/  
E61  
D56/  
D51  
E66/  
E61  
Symbol  
D55  
D52  
E65  
E62  
D55  
D52  
E65  
E62  
D55  
D52  
E65  
E62  
Notes Unit  
(PC2-4200)  
2200  
(PC2-5300)  
2600  
(PC2-4200)  
2200  
(PC2-5300)  
2600  
(PC2-4200)  
2200  
(PC2-5300)  
2600  
Icc_Idle_0  
Idd_Idle_0  
P_idle_0  
2200  
970  
2090  
396  
2600  
1015  
2350  
451  
2200  
1240  
2090  
666  
2600  
1330  
2350  
766  
2200  
1980  
2090  
1206  
5.583  
2930  
1206  
6.906  
2930  
2600  
2160  
2350  
1396  
6.354  
3220  
1396  
7.724  
3220  
@1.5V  
@1.8V  
mA  
mA  
W
970  
1015  
1240  
1330  
1980  
2160  
5.308  
3000  
970  
5.308  
3000  
970  
4.044  
2930  
396  
6.024  
3400  
1015  
7.284  
3900  
6.024  
3400  
1015  
7.284  
3900  
4.558  
3220  
451  
5.821  
3000  
1240  
7.081  
3400  
5.821  
3000  
1240  
7.081  
3400  
4.557  
2930  
666  
6.622  
3400  
1330  
7.882  
3900  
6.622  
3400  
1330  
7.882  
3900  
5.157  
3220  
766  
7.227  
3000  
1980  
8.487  
3400  
7.227  
3000  
1980  
8.487  
3400  
8.199  
3400  
2160  
9.459  
3900  
8.199  
3400  
2160  
9.459  
3900  
Icc_Idle_1  
Idd_Idle_1  
P_idle_1  
@1.5V  
@1.8V  
mA  
mA  
W
6.568  
3400  
6.568  
3400  
5.367  
2930  
5.928  
3220  
5.880  
2930  
6.527  
3220  
Icc_active_1  
Idd_active_1  
P_active_1  
Icc_active_2  
Idd_active_2  
P_active_2  
Icc_training  
Idd_training  
P_training  
@1.5V  
@1.8V  
mA  
mA  
W
2230.6 2230.6 1809.6 2425.9 2425.9 2031.9 2500.6 2500.6 2079.6 2740.9 2740.9 2346.9 3980.6 3980.6 3159.6 4340.6 4340.6 3546.6  
9.593  
3200  
970  
9.593  
3200  
970  
8.053 10.752 10.752 8.932 10.106 10.106 8.566 11.350 11.350 9.531 12.918 12.918 10.618 14.390 14.390 11.810  
2930  
396  
3700  
1015  
7.756  
4000  
1015  
8.229  
3700  
1015  
7.756  
4000  
1015  
8.229  
3220  
451  
3200  
1240  
7.396  
3500  
1240  
7.869  
3200  
1240  
7.396  
3500  
1240  
7.869  
2930  
666  
3700  
1330  
8.355  
4000  
1330  
8.827  
3700  
1330  
8.355  
4000  
1330  
8.827  
3220  
766  
3200  
1980  
8.802  
3500  
1980  
9.275  
3200  
1980  
8.802  
3500  
1980  
9.275  
2930  
1206  
6.906  
3050  
1959  
3700  
2160  
9.932  
4000  
2160  
3700  
2160  
9.932  
4000  
2160  
3220  
1396  
7.724  
3380  
2166  
@1.5V  
@1.8V  
mA  
mA  
W
6.883  
3500  
970  
6.883  
3500  
970  
5.367  
3050  
1149  
6.987  
5.928  
3380  
1221  
7.643  
5.880  
3050  
1419  
7.500  
6.527  
3380  
1536  
8.242  
@1.5V  
@1.8V  
mA  
mA  
W
7.356  
7.356  
8.526 10.404 10.404 9.439  
Note :  
1. FBDIMM Power was calculated on the basis of DRAM and AMB Values in datasheet.  
Rev. 1.3 April 2007  
20 of 31  
FBDIMM  
DDR2 SDRAM  
Table 11 : VTT Currents  
Description  
Idle current, DDR2 SDRAM device power down  
Active power, 50% DDR2 SDRAM BW  
Symbol  
ITT1  
Typ  
500  
500  
MAX  
700  
Units  
mA  
ITT2  
700  
mA  
Table 12 : Reference Clock Input Specifications  
Values  
Parameter  
Symbol  
Units  
Note  
MIN  
MAX  
Reference clock frequency @3.2 Gb/s  
(nominal 133.33 MHz)  
fRefclk-3.2  
fRefclk-4.0  
126.67  
133.40  
MHz  
MHz  
1.2  
Reference clock frequency @4.0 Gb/s  
(nominal 166.67 MHz)  
158.33  
166.75  
1.2  
3
Rise time, fall time  
Voltage high  
T
SCK-RISE, TSCK-FALL  
VSCK-HIGH  
175  
660  
700  
850  
ps  
mV  
mV  
mV  
Voltage low  
VSCK-LOW  
-150  
Absolute crossing point  
Relative crossing  
VCROSS-ABS  
VCROSS-REL  
250  
550  
calculated  
10  
4
calculated  
-
4,5  
Percent mismatch between rise and fall  
times  
TSCK-RISE-FALL-MATCH  
%
Duty cycle of reference clock  
Clock leakage current  
Clock input capacitance  
Clock input capacitance delta  
Transport delay  
TSCK-DUTYCYCLE  
II-CK  
40  
-10  
60  
10  
2
%
uA  
6,7  
7
CI-CK  
0.5  
pF  
CI_CK(D)  
T1  
-0.25  
0.25  
5
pF  
8
ns  
9, 10  
11  
Phase jitter sample size  
Reference clock jitter, filtered  
Reference clock deterministic jitter  
Note :  
NSAMPLE  
TREF-JITTER  
TREF-DJ  
1016  
Periods  
ps  
40  
12,13  
TBD  
ps  
1.133MHz for PC2-4200 and 166MHz for PC2-5300.  
2. Measured with SSC disabled.  
3. Measured differentially through the range of 0.175V to 0.525V.  
4. The crossing point must meet the absolute and relative crossing point specification simultaneously.  
5. VCROSS_REL_(MIN) and VCROSS_REL(MAX) are derived using the following calculation : Min = 0.5(Vhavg-0.710)+0.250;and Max=0.5(Vhavg-0.710)+0.550,  
where Vhavg is the average of VSCK-HIGHM.  
6. Measured with a single-ended input voltage of 1V.  
7. Applies to reference clocks SCK and SCK.  
8. Difference between SCK and SCK input.  
9. T1 = [Tdatapath-Tclockpath](excluding PLL loop delays). This parameter is not a direct clock output parameter but in indirectly determines the clock  
output parameter TREF-JITTER.  
10. The net transport delay is the difference in time of flight between associated data and clock paths. The data path is defined from the reference clock  
source, through the TX, to data arrival at the data dampling point in the RX. The clock path is defined from the reference clock source to clock arrival  
at the same sampling point. The path delays are caused by copper trace routes. on-chip routing, on-chip buffering, etc. They include the time-of flight  
of interpolators or other clock adjustment mechanisms. They do not include the phase delays caused by finite PLL loop bandwidth because these de-  
lays are modeled by the PLL transfer functions.  
11. Direct measurement of phase jitter records over 1016 periods is impractical. It is expected that the jitter will be measured over a smaller, yet statistically  
significant, sample size and the total jitter at 1016 samples extrapolated from an estimate of the sigma of the random jitter components.  
12. Measured with SSC enabled on reference clock generator.  
13. As measured after the phase jitter filter. This number is separate from the receiver jitter budget that is defined by the TRXTotal - MIN parameters.  
Rev. 1.3 April 2007  
21 of 31  
FBDIMM  
DDR2 SDRAM  
Table 13 : Differential Transmitter Output Specifications  
Values  
Parameter  
Symbol  
Units  
Comments  
MIN  
MAX  
Differential peak-to-peak output voltage for large  
voltage swing  
VTX-DIFFp-p_L  
VTX-DIFFPp-p_R  
VTX-DIFFp-p_S  
VTX-CM_L  
900  
1,300  
mV  
mV  
mV  
mV  
mV  
dB  
EQ1, Note1  
EQ1, Note1  
EQ1, Note1  
EQ2, Note1  
EQ2, Note1,2  
1,3,4  
Differential peak-to -peak output voltage for requ-  
lar voltage swing  
800  
520  
Differential peak-to-peak output voltage for small  
votage swing  
DC common code output voltage for large voltage  
swing  
375  
280  
-4.0  
-7.0  
90  
DC common code output voltage for small volt-  
age swing  
VTX-CM_S  
135  
-3.0  
-5.0  
De-emphasized differential output voltage ratio  
for -3.5 dB de-emphasis  
VTX-DE-3.5-Ratio  
VTX-DE-6.0-Ratio  
VTX-CM-ACp-p-L  
VTX-CM-ACp-p-R  
VTX-CM-ACp-p-S  
VTX-IDLE-SE  
De-emphasized differential output voltage ratio  
for -6.0 dB de-emphasis  
dB  
1,2,3  
AC peak-to-peak common mode output voltage  
for large swing  
mV  
mV  
mV  
mV  
mV  
mV  
EQ7, Note1,5  
EQ7, Note1,5  
EQ7, Note1,5  
6
AC peak-to-peak common mode output voltage  
for regular swing  
80  
AC peak-to-peak common mode output voltage  
for small swing  
70  
Maximum single-ended voltage in EI condition  
DC+AC  
50  
Maximum single-ended voltage in EI condition  
DC+AC  
VTX-IDLE-SE-DC  
VTX-IDLE-DIFFp-p  
20  
6
Maximum peak-to-peak differential voltage in EI  
condition  
40  
Single-ended voltage (w.r.t. VSS) on D+/D-  
Mimimum TX eye width, 3.2 and 4.0 Gb/s  
Mimimum TX eye width 4.8 Gb/s  
Maximum TX deterministic jitter, 3.2 and 4.8Gb/s  
Maximum TX deterministic jitter, 4.8 Gb/s  
Insantaneous pulse width  
VTX-SE  
TTX-Eye-MIN  
TTX-EYE-MIN4.8  
TTX-DJ-DD  
-75  
750  
mV  
UI  
1,7  
1,8  
UI  
1,8  
02  
UI  
1,8,9  
TTX-DJ-DD-4.8  
TTX-PULSE  
TBD  
UI  
1,8,9  
10  
0.85  
30  
UI  
Differential TX output rise/fall time  
Mismatch between rise and fall times  
Differential return loss  
T
TX-RISE TTX-FALL  
TTX-RF-MISMATCH  
RLTTX-DIFF  
RLTX-CM  
90  
20  
ps  
ps  
dB  
dB  
20-80% voltage, Note1  
8
6
1 GHz-2.4 GHz, Note 11  
1 GHz-2.4 GHz, Note 11  
12  
Common mode return loss  
Transmitter termination impender  
RTX  
41  
55  
4
EQ 4, Boundaries are applied sepa-  
rately to high and low output voltage  
states  
D+/D-TX Impedance difference  
RTX-MATCH-DC  
%
Lane-to lane skew at TX  
Lane-to lane skew at TX  
LTX-SKEW1  
LTX-SKEW2  
100+3UI  
100=2UI  
ps  
ps  
13, 15  
14, 15  
Rev. 1.3 April 2007  
22 of 31  
FBDIMM  
DDR2 SDRAM  
Table 14 : Differential Receiver Input Specifications  
Values  
Parameter  
Symbol  
Units  
Comments  
MIN  
MAX  
TBD  
75  
Differential peak-to-peak input voltage for large volt-  
age swing  
VRX-DIFFp-p  
VRX-IDLE-SE  
170  
mV  
mV  
mV  
EQ 5, Note1  
Maximum single-ended voltage in El condition  
2,3  
2,3  
Maximum single-ended voltage in Ei condition (DC  
only)  
VRX-IDLE-SE-DC  
50  
Maximum peak-to-peak differential voltage in El  
condition  
VRX-IDLE-DIFFp-p  
65  
mV  
3
Single-ended voltage (w.r.t. VSS) on D+/D-  
Single-pulse peak differential input voltage  
Amplitude ratio between adjacent symbols  
VRX-SE  
-300  
85  
900  
mV  
mV  
4
VRX-DIFF-PULSE  
VRX-DIFF-ADJ-RATIO  
4,5  
4,6  
TBD  
0.4  
Maximum RX inherent timing error, 3.2 and 4.0 Gb/  
x
TRX-TJ-MAX  
UI  
UI  
4,7,8  
4,7,8  
Maximum RX inherent deterministic timing eror, 3.2  
and 4.8 Gb/s  
TRX-TJ-MAX4.8  
TBD  
Single-pulse width as zero-voltage crossing  
Skingle-pulse width at minimum-level crossing  
Differential RX input rise/fall time  
common mode fo the input voltage  
Differential RX output rise/fall time  
Common mode of input voltage  
VRX-DJ-DD  
VRX-DJ-DD-4.8  
TRX-PW-ZC  
0.3  
UI  
UI  
4,7,8,9  
TBD  
4,7,8,9  
0.55  
0.2  
50  
UI  
4,5  
TRX-PW-ML  
UI  
4.5  
20~80% voltage  
EQ 6, Note1, 10  
EQ 7, Note 1  
11  
TRX-RISE TRX-FALL  
VRX-CM  
ps  
mV  
mV  
%
120  
400  
270  
45  
AC peak-to-peak common mode of input voltage  
Ratio of VRX-CM-ACp-p to minimum VRX-DIFFp-p  
Differential return loss  
VRX-CM-ACp-p  
VRX-CM-EH-RATOP  
RLRX-DIFF  
9
6
dB  
dB  
1GHz-2.4 GHz, Note 12  
1GHz-2.4 GHz, Note 12  
13  
Common mode return loss  
RLRX-CM  
RX termination impedance  
RRX  
41  
55  
4
D+/D- RX Impedance difference  
RRX-MATCH-DC  
%
EQ 8  
Lane-to-lane skew at the receiver that  
must be tolerated. Note 14  
Lane-to lane PCB skew at RX  
LRX-PCB-SKEW  
6
UI  
Minimum RX drift tolerance  
Minim data tracking 3dB bandwidth  
Electrical idle entry detect time  
Electrical idle exit detect time  
Bit Error Ratio  
TRX-DRIFT  
FTRK  
400  
0.2  
ps  
MHz  
ns  
15  
16  
17  
TEI-ENTRY-DETECT  
TEI-EXIT-DETECT  
BER  
60  
30  
10-12  
ns  
18  
Note :  
1. Specified at the package pins into a timing and voltage compliant test setup. Note that signal levels at the pad will be lower than at the pin.  
2. Single-ended voltages below that value that are simultaneously detected on D+ and D-are interpreted as the Electrical Idle condition. Worst-case mar-  
gins are determined for the case with transmitter using small voltage swing.  
3. Multiple lanes need to detect the El condition before the device can act upon the El detection.  
4. Specified at the package pins into a timing and voltage compliance test setup.  
5. The single-pulse mask provides suffcient symbol energy for reliable RX reception. Each symbol must comply with both the single-pulse mask and the  
cumulative eyemask.  
6. The relative amplitude ratio limit between adjacent symbols prevents excessive intersymbol interference in the RX. Each symbol must comply with the  
peak amplitude ratio with regard to both the preceding and subsequent symbols.  
7. This number does not include the effects of SSC or reference clock jitter.  
8. This number includes setup and hold of the RX sampling flop.  
9. Defined as the dual-dirac deterministic timing error.  
10. Allows for 15 mV DC offset between transmit and receive devices.  
Rev. 1.3 April 2007  
23 of 31  
FBDIMM  
DDR2 SDRAM  
11. The received differential signal must satisfy both this ratio as well as the absolute maximum AC peaktopeak common mode specification. For example,  
if VRX-DIFFp-p is 200 mV, the maximum AC peak-to peak common mode is the lesser of (200 mV*0.45=90 mV)and VRX-CM-AC-p-p.  
12. One of the components that contribute to the deterioration of the return loss is the ESD structure which needs to be carefully designed.  
13. The termination small signal resistance; tolerance across voltage from 100 mV to 400 mV shall not exceed +/-5 W with regard to the average of the  
values measured at 100 mV and at 400 mV for that pin.  
14. This number represents the lane-to-lane skew between TX and RX pins and does not include the transmitter output skew from the component of the  
end-to-end channel skew in the AMB specification.  
15. Measured from the reference clock edge to the center of the input eye. This specification must be met across specified voltage and temperature ranges  
for a single component. Drift rate of change is significantly below the tracking capability of the receiver.  
16. This bandwidth number assume the specified minimum data transition density. Maximum jitter at 0.2 MHz is 0.05 UI,  
17. The specified time includes the time required to forward the El entry condition.  
18. BER per differential lane.  
V
RX-DIFFp-p = 2x[VRX-D+-VRX-D-] (EQ5)  
(VRX-CM = DC(avg) of [VRX-D+ + VRX-D-] /2) (EQ 6)  
VRX-CM-AC=((Max[VRX-D+ + VRX-D)/2)((Min [VRX-D+ + VRX-D-)/2) (EQ 7)  
RRX-MATCH-DC = 2x((RRX-D+-RRX-D-)/(RRX-D+ + RRX-D-) (EQ 8)  
Rev. 1.3 April 2007  
24 of 31  
FBDIMM  
DDR2 SDRAM  
7.0 CHANNEL INITIALIZATION  
This chapter defines the process of initializing the FBD channel. The FBD initialzation process generally follows the top to bottom se-  
quence of state transitions shown in the high level AMB Initialization Flow diagram in Figure The host must sequence the AMB devices  
through the Disable, (back to Disable), Training, Testing, and Polling states in order to transition the AMBs into the active channel L0  
state. The value in parenthesis in each state bubble indicates the condition/activity of the links during these states.  
Figure16 : AMB Initialization Flow Diagram  
Power-up  
Disable  
Calibrate  
(EI)  
(1’s)  
Tranining  
(TS0)  
Testing  
(TS1)  
Polling  
(TS2)  
Config  
(TS3)  
L0  
L0s  
(EI)  
(EI)  
Recalibrate  
(NOP2)  
The states in the AMB Initialization Flow diagram are :  
Disable - The channel is inactive and the interface signals are in a low power Electrical Idle condition.  
Training - The initial bit alignment and frame alignment training is done in this state.  
Testing - Each bit lane is individually tested in this state.  
Polling - The channel capabilities of the individual AMB devices are communicated in this state.  
Config - The channel width configuration is communicated to the AMB devices in this state.  
L0 - The channel is active and frames of information are flowing between the host and the AMB devices.  
Recalibrate - The channel is momentarily idled to allow TX and Rx circuits to be recalibrated.  
L0s - The channel is in a low-latency power saving condition. (Optional)  
Each bit lane is initialized (mosly) independently to support fault tolerance. The transitions in the figure represent the transitions of the  
AMB core logic state machine and are taken when the transition event is detected on the minimum required number of southound bit  
lanes. The chain of FBD links connecting the host the AMBs must each be initialized to esabish the timing for broadcasting data frames  
in the southbound direction and for merging data frame in the northbound direction. The AMBs on the channel are generally initialized  
as a group but because each AMB is individually addressable many altemate may altemate initialization sequences may be employed.  
Rev. 1.3 April 2007  
25 of 31  
FBDIMM  
DDR2 SDRAM  
Figure 17 : FBDIMM Physical Dimension -1 (For PCB) : 64Mbx8 based 64Mx72 Module (1Rank)  
M395T6553EZ4  
133.35  
126.85  
2x 3.25  
2x 2.50 MIN  
d
AMB  
c
b
2x DIA. 2.0 +0.1/-0  
a
67  
51  
5.175  
123  
R0.595  
6.0  
1.19  
R0.75  
5.0  
2.50  
0.8 +/- 0.05  
2.50  
1.19  
120°  
2.25  
3.80  
1.25  
1.00  
MAX 0.178  
DETAIL b  
R0.595  
1.50  
DETAIL a  
DETAIL c  
DETAIL d  
DETAIL e  
Rev. 1.3 April 2007  
26 of 31  
FBDIMM  
DDR2 SDRAM  
Figure 18 : FBDIMM Physical Dimension -2 (For Heat Spreader): 64Mbx8 based 64Mx72 Module (1Rank)  
M395T6553EZ4  
Units : Millimeters  
8.2 max  
133.35  
67  
51  
1.27 ± 0.10  
Back  
3.0 max  
123  
Rev. 1.3 April 2007  
27 of 31  
FBDIMM  
DDR2 SDRAM  
Figure 19 : FBDIMM Physical Dimension -1 (For PCB) : 64Mbx8 based 128Mx72 Module (2Rank)  
M395T2953EZ4  
133.35  
126.85  
2x 3.25  
2x 2.50 MIN  
d
AMB  
c
b
2x DIA. 2.0 +0.1/-0  
a
67  
51  
5.175  
123  
R0.595  
6.0  
1.19  
R0.75  
5.0  
2.50  
0.8 +/- 0.05  
2.50  
1.19  
120°  
2.25  
3.80  
1.25  
1.00  
MAX 0.178  
DETAIL b  
R0.595  
1.50  
DETAIL a  
DETAIL c  
DETAIL d  
DETAIL e  
Rev. 1.3 April 2007  
28 of 31  
FBDIMM  
DDR2 SDRAM  
Figure 20 : FBDIMM Physical Dimension -2 (For Heat Spreader) : 64Mbx8 based 128Mx72 Module (2Rank)  
M395T2953EZ4  
Units : Millimeters  
8.2 max  
133.35  
67  
51  
1.27 ± 0.10  
Back  
3.0 max  
123  
Rev. 1.3 April 2007  
29 of 31  
FBDIMM  
DDR2 SDRAM  
Figure 21 : FBDIMM Physical Dimension -1 (For PCB) : 128Mbx4 based 256Mx72 Module (2Rank)  
M395T5750EZ4  
133.35  
126.85  
2x 3.25  
2x 2.50 MIN  
d
AMB  
e
c
b
2x DIA. 2.0 +0.1/-0  
a
67  
51  
5.175  
123  
R0.595  
6.0  
1.19  
R0.75  
5.0  
2.50  
0.8 +/- 0.05  
2.50  
1.19  
120°  
2.25  
3.80  
1.25  
1.00  
MAX 0.178  
DETAIL b  
R0.595  
1.50  
DETAIL a  
DETAIL c  
DETAIL d  
DETAIL e  
Rev. 1.3 April 2007  
30 of 31  
FBDIMM  
DDR2 SDRAM  
Figure 22 : FBDIMM Physical Dimension -2 (For Heat Spreader) : 128Mbx4 based 256Mx72 Module (2Rank)  
M395T5750EZ4  
Units : Millimeters  
8.2 max  
133.35  
67  
51  
1.27 ± 0.10  
Back  
3.0 max  
123  
Rev. 1.3 April 2007  
31 of 31  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY