M395T5160QZ4-CE76 [SAMSUNG]

DDR DRAM Module, 512MX72, CMOS, HALOGEN FREE AND ROHS COMPLIANT, DIMM-240;
M395T5160QZ4-CE76
型号: M395T5160QZ4-CE76
厂家: SAMSUNG    SAMSUNG
描述:

DDR DRAM Module, 512MX72, CMOS, HALOGEN FREE AND ROHS COMPLIANT, DIMM-240

动态存储器 双倍数据速率 内存集成电路
文件: 总42页 (文件大小:915K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FBDIMM  
DDR2 SDRAM  
DDR2 Fully Buffered DIMM  
240pin FBDIMMs based on 1Gb Q-die  
60FBGA with Lead-Free and Halogen-Free  
(RoHS compliant)  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE. NOTHING IN THIS DOCUMENT SHALL BE  
CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHER-  
WISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOL-  
OGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AS "AS IS" BASIS WITHOUT  
GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar  
applications where Product failure could result in loss of life or personal or physical harm, or any military or  
defense application, or any governmental procurement to which special terms or provisions may apply.  
* Samsung Electronics reserves the right to change products or specification without notice.  
Rev. 1.3 December 2008  
1 of 42  
FBDIMM  
DDR2 SDRAM  
Table of Contents  
1.0 FEATURES .....................................................................................................................................4  
2.0 FBDIMM GENERALS .....................................................................................................................5  
2.1 FB-DIMM Operation Overview ........................................................................................................5  
2.2 FB-DIMM Channel Frequency Scaling .............................................................................................6  
2.3 FB-DIMM Clocking Scheme ............................................................................................................7  
2.4 FB-DIMM Protocol ........................................................................................................................7  
2.5 Southbound Command Delivery .....................................................................................................8  
2.6 Basic Timing Diagram ...................................................................................................................9  
2.7 Advanced Memory Buffer Block Diagram ......................................................................................11  
2.8 Interfaces ..................................................................................................................................12  
3.0 FBD HIGH-SPEED DIFFERENTIAL POINT TO POINT LINK (at 1.5 V) INTERFACE ...............12  
3.1 DDR2 Channel ............................................................................................................................12  
3.2 SMBus Slave Interface ................................................................................................................12  
3.3 FBD Channel Latency .................................................................................................................13  
3.4 Peak Theoretical Throughput .......................................................................................................13  
3.5 Hot-add .....................................................................................................................................13  
3.6 Hot remove ................................................................................................................................13  
3.7 Hot replace ................................................................................................................................13  
4.0 PIN CONFIGUREATION ..............................................................................................................14  
5.0 FBDIMM FUNCTIONAL BLOCK DIAGRAM ...............................................................................16  
5.1 1GB, 128Mx72 Module - M395T2863QZ4 ........................................................................................16  
5.2 2GB, 256Mx72 Module - M395T5663QZ4 ........................................................................................17  
5.3 4GB, 512Mx72 Module - M395T5160QZ4 .......................................................................................18  
5.4 4GB, 512Mx72 Module - M395T5163QZ4 .......................................................................................19  
5.5 8GB, 1Gx72 Module - M395T1G60QJ4 .......................................................................................21  
6.0 ELECTRICAL CHARACTERISTICS ............................................................................................23  
7.0 CHANNEL INITIALIZATION ........................................................................................................32  
Rev. 1.3 December 2008  
2 of 42  
FBDIMM  
DDR2 SDRAM  
Revision History  
Revision  
Month  
Year  
2008  
2008  
2008  
2008  
2008  
2008  
History  
1.0  
1.1  
March  
March  
- Initial Spec. Release  
- Added 4Rank Products based on Low Power AMB  
- Corrected Typo  
1.11  
1.12  
1.2  
March  
April  
August  
December  
- Corrected mechanical Dimension  
- Changed the ordering information  
- Updated the IDD current specification  
1.3  
Rev. 1.3 December 2008  
3 of 42  
FBDIMM  
DDR2 SDRAM  
1.0 FEATURES  
-
240pin fully buffered dual in-line memory module (FB-  
-
-
-
-
-
-
-
-
-
Serial presence detect with EEPROM  
DIMM)  
8 Banks  
-
-
-
-
-
3.2Gb/s, 4.0Gb/s link transfer rate  
Posted CAS  
1.8V +/- 0.1V Power Supply for DRAM V /V  
Programmable CAS Latency: 3, 4, 5, 6  
Programmable Additive Latency: 0, 1, 2, 3, 4, 5  
Automatic DDR2 DRAM bus and channel calibration  
MBIST and IBIST Test functions  
Hot add-on and Hot Remove Capability  
Transparent mode for DRAM test support  
DD DDQ  
1.5V +0.075/-0.045V Power Supply for AMB V  
CC  
3.3V +/- 0.3V Power Supply for V  
DDSPD  
Buffer Interface with high-speed differential point-to-  
point Link at 1.5 volt  
Channel error detection & reporting  
Channel fail over mode support  
-
-
Table 1 : Ordering Information  
Type of  
Number  
Part Number  
Density Organization  
Component Composition  
AMB  
Heat  
Height  
of Rank  
Spreader  
M395T2863QZ4-CE66/F76/E76  
M395T2863QZ4-CE65  
IDT C1  
Intel D1  
1GB  
2GB  
128M x 72  
128Mx8(K4T1G084QQ) *9EA  
1
M395T2863QZ4-CE68/F78  
M395T2863QZ4-CE69  
IDT L4  
Montage D1  
IDT C1  
M395T5663QZ4-CE66/F76/E76  
M395T5663QZ4-CE65  
Intel D1  
256M x 72 128Mx8(K4T1G084QQ) *18EA  
2
2
M395T5663QZ4-CE68/F78  
M395T5663QZ4-CE69  
IDT L4  
Full Module 30.35mm  
Montage D1  
IDT C1  
M395T5160QZ4-CE66/F76/E76  
M395T5160QZ4-CE65  
Intel D1  
256Mx4(K4T1G044QQ) *36EA  
512M x 72  
M395T5160QZ4-CE68  
IDT L4  
4GB  
8GB  
M395T5160QZ4-CE69  
Montage D1  
IDT L4  
M395T5163QZ4-CE68/F78/E78  
128Mx8(K4T1G084QQ) *36EA  
4
4
DDP 512Mx4(K4T2G044QQ)  
M395T1G60QJ4-CE68/F78  
Note :  
1G x 72  
*36EA  
IDT L4  
1. “Z” of Part number(11th digit) stands for Lead-Free and RoHS compliant products.  
2. “J” of Part number(11th digit) stands for Dual-Die Package based, Lead-Free and RoHS compliant products.  
3. The last digit stands for AMB.  
Table 2 : Performance range  
F7(DDR2-800)  
800  
E7(DDR2-800)  
800  
E6(DDR2-667)  
667  
Unit  
Mbps  
CK  
DDR2 DRAM Speed  
CL-tRCD-tRP  
6-6-6  
5-5-5  
5-5-5  
Table 3 : Address Configuration  
Organization  
128Mx8(1Gb) based Module  
256Mx4(1Gb) based Module  
Row Address  
A0-A13  
Column Address  
A0-A9  
Bank Address  
BA0-BA2  
Auto Precharge  
A10  
A10  
A0-A13  
A0-A9, A11  
BA0-BA2  
Rev. 1.3 December 2008  
4 of 42  
FBDIMM  
DDR2 SDRAM  
2.0 FBDIMM GENERALS  
2.1 FB-DIMM Operation Overview  
FB-DIMM (Fully Buffered Dual in Line Memory Module) is designed for the applications which require higher data transfer bandwidth  
and scalable memory capacity. The memory slot access rate per channel decreases as the memory bus speed increases, resulting in  
limited density build-up as channel speeds increase with memory system having the stub-bus architecture. FB-DIMM solution is  
intended to eliminate this stub-bus channel bottleneck by using point-to-point links that enable multiple memory modules to be con-  
nected serially to a given channel.  
Memory system architecture perspective, FB-DIMM is fully differentiated from Registered DIMM and Unbuffered DIMM. A lot of new  
technologies are integrated into this solution in order to achieve this scalable higher speed memory solution. Serial link interface with  
packet data format and dedicated read/write paths are key attribute in FB-DIMM protocol. Point to Point interconnect with fully differen-  
tial signaling and de-emphasis scheme are key attribute in FBD channel link. Clock recovery by using data stream is key attribute in FBD  
clocking. FB-DIMM supports both clock resync and resampling mode options. CRC (Cyclic Redundancy Check) bits are transferred with  
data stream for reliability at high speed data transaction. Failover mechanism supports system running with dynamic IO failure. Finally  
all FB-DIMM is connected in daisy chain manner. Thus, every interconnection between AMB (advanced memory buffer) to AMB, AMB to  
Host and AMB to DRAM, is point to point interconnection which allows higher data transfer bandwidth.  
Figure 1 shows a lot of new technologies integrated with FBD solution.  
Figure 1 : FB-DIMM Memory System Overview  
DRAM  
Two unidirectional links  
Protocol Packet  
DRAM  
- Northbound  
- Southbound  
ADDR.CMD, DATA  
DQs ADDR CLK  
CMD  
Daisy Chain  
Connection  
Upto 8 AMB  
Rx  
Tx  
Clk_Ref  
Tx  
Rx  
Rx  
Tx  
Tx  
SB (ADDR, CMD, Wdata)  
NB(Rdata)  
AMB  
AMB  
Rx  
Host  
ADDR  
CMD  
DQs  
CLK  
DRAM  
DRAM  
DIMM Topology  
P2P Interconnect  
- LVDS  
Reliability  
Fly-by CLK, CMD  
Clock Recovery  
- CRC fail-over  
- De-Emphasis  
FIFO  
Buffer  
Clock  
Rev. 1.3 December 2008  
5 of 42  
FBDIMM  
DDR2 SDRAM  
2.2 FB-DIMM Channel Frequency Scaling  
There are many frequency parameters including reference clock frequency, DRAM clock frequency, DRAM data transfer rate, channel  
transfer rate and channel unit interval. All of frequency parameters are scaled with a certain gear ratio. External clock source provides  
reference clock input to AMB and Host. External clock source is relatively slower than channel and DRAM frequency. Thus, AMB dou-  
bles external clock input and generates clock inputs to DRAMs. DRAM use clock input from AMB which is two times faster than refer-  
ence clock for DRAM operation. DRAM data transfer rate is two times faster than DRAM clock input with nature of double data rate  
operation and four times faster than external clock source. Channel speed is represented by unit interval - average time interval between  
voltage transitions of a signal in the FBD channel. It is six times faster than DRAM data transfer rate. For example, external clock source  
gives 6ns clock (166MHz), AMB doubles it and gives 3ns clock (333MHz) to DRAM and FBD channel communicate with unit interval -  
250ps (4.0Gbps transfer rate).  
Figure 2 shows frequency scale ratio over frequency parameters in FBD memory system.  
Figure 2 : FB-DIMM Speed Scaling  
DDR667 Ex.  
6ns  
3ns  
CLK_REF  
DRAM  
DRAM  
CLK_DRAM  
250ps Packet T/F  
12 UIs in one CLK_DRAM  
SB (ADDR, CMD, Wdata)  
DQs ADDR CLK  
CMD  
Rx  
Tx  
Clk_Ref  
Tx  
Rx  
AMB  
Host  
NB(Rdata)  
DRAM  
DRAM  
Reference CLK  
Reference CLK  
Clock  
UI  
312.5ps  
250ps  
CLK_DRAM  
266MHz  
CLK_REF  
133MHz  
166MHz  
200MHz  
Frequency  
3.2Gb/s  
DDR2-533  
DDR2-667  
DDR2-800  
333MHz  
4.0Gb/s  
208.33ps  
400MHz  
4.8Gb/s  
Rev. 1.3 December 2008  
6 of 42  
FBDIMM  
DDR2 SDRAM  
2.3 FB-DIMM Clocking Scheme  
In FB-DIMM platform design, phase adjustment among reference clock inputs to each individual AMB and host is not taken account.  
Thus, clock synchronization is made by using both external reference clock and channel data stream in FB-DIMM memory system. Host  
and each individual AMB has a each individual IO basis clock recovery circuitry for channel data communication. It runs with inputs from  
PLL inside chip and data stream from the other AMB or Host. Because data stream itself involves data communication process, no sig-  
naling switching or data communication may loss clock synchronization between transmitter and receiver. Thus, min transition density is  
defined for this purpose. In FBD channel, a density of 6 transitions within 512 transfers or unit intervals (UI) on the channel is required for  
interpolator training.  
Figure 3 : FB-DIMM Clocking  
Min. Transition Density  
6 Transitions  
Using Reference CLK (Not in Phase)  
Adjust edge/phase by; Min. Transition Density  
DRAM  
DRAM  
512 Transfers  
DQs ADDR CLK  
CMD  
Rx  
Tx  
Rx  
SB (ADDR, CMD, Wdata)  
AMB  
Tx  
Clk_Ref  
Host  
NB(Rdata)  
DRAM  
DRAM  
Clock  
Reference CLK  
Recovery  
Clock  
2.4 FB-DIMM Protocol  
FB-DIMM channel has two unidirectional communication paths - south bound and north bound. South bound and north bound use phys-  
ically different signal path. South and north mean direction of signal transaction. Southbound means direction of signals running from the  
host controller toward the DIMMs. North is the opposite of south. Due to nature of memory operation, southbound carries information  
including command to DRAM, address to DRAM and write data to DRAM, while north bound carries read data from DRAM. In channel  
protocol point of view, southbound and northbound have different data frame formats and frame format size is optimized to ratio of read  
and write. Data transfer perspective, read data transfer rate of north bound is twice faster than write data transfer. Higher channel utiliza-  
tion achieves with asymmetric read and write data transfer rate.  
Figure 4 : Southbound / Northbound Frame format  
Sout bound  
Northbound  
Command (with Address)  
A CMD  
B CMD  
C CMD  
R_Data(x72bits)  
Command (with Address)  
or Write Data in  
R_Data(x72bits)  
Command (with Address)  
or Write Data in  
Southbound consists of 10 differential signal pairs (lane), physically 20 signaling line. Southbound Format has 10x12 (10 IO (or Lane) x  
12 IO switching) frame format, which deliver 10x12 bit information per one DRAM clock. One south bound frame is divided into three  
command slot. See figure 5. Command slot A delivers command (with address). Command slot B and C delivers command (with  
address) or write data into DRAM.  
Rev. 1.3 December 2008  
7 of 42  
FBDIMM  
DDR2 SDRAM  
Figure 5 : FBDIMM Command Encoding & SB Frame  
Southbound Command Frame Format*  
Bit  
9
8
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
aE0 aE7 aE8 F0=0 aC20 aC16 aC12 aC8 aC4 aC0  
aE1 aE6 aE9 F1=0 aC21 aC17 aC13 aC9 aC5 aC1  
aE2 aE5 aE10 aE13 aC22 aC18 aC14 aC10 aC6 aC2  
aE3 aE4 aE11 aE12 aC23 aC19 aC15 aC11 aC7 aC3  
CLK_REF  
CLK_DRAM  
Packet T/F  
A CMD  
B CMD  
C CMD  
FE21  
FE20  
FE19  
FE18  
FE17  
FE16  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
bC20 bC16 bC12 bC8 bC4 bC0  
bC21 bC17 bC13 bC9 bC5 bC1  
bC22 bC18 bC14 bC10 bC6 bC2  
bC23 bC19 bC15 bC11 bC7 bC3  
cC20 cC16 cC12 cC8 cC4 cC0  
cC21 cC17 cC13 cC9 cC5 cC1  
cC22 cC18 cC14 cC10 cC6 cC2  
cC23 cC19 cC15 cC11 cC7 cC3  
x10 bits  
10 FE15  
11 FE14  
FE0 FE7 FE11  
FE1 FE6 FE10  
FE2 FE5 FE9 FE13  
FE3 FE4 FE8 FE12  
12 transfers  
Note :  
1. aE[0~12] : CRC Checksum of the A Command  
2. F[0~1] : Frame Type  
3. FE[0~21] : CRC Checksum of 72bit data  
4. CRC : Cyclic Redundancy Check  
DRAM Cmnds  
23  
22  
21  
20  
1
0
0
0
0
0
0
19  
18  
17  
16  
X
15  
X
14  
X
13  
X
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Activate  
Write  
Read  
DS2 DS1 DS0  
DS2 DS1 DS0  
DS2 DS1 DS0  
DS2 DS1 DS0  
DS2 DS1 DS0  
DS2 DS1 DS0  
DS2 DS1 DS0  
DRAM Addr RS  
DRAM Bank & Address  
DRAM Bank & Address  
DRAM Bank & Address  
1
1
0
0
0
0
1
0
1
1
1
1
RS  
RS  
RS  
RS  
RS  
RS  
Precharge All  
1
1
1
1
1
1
0
0
1
0
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Precharge Single  
Auto (CBR) Refresh  
Enter Self Refresh  
DRAM Bank  
X
X
X
X
X
X
X
X
Exit Self Refresh/  
DS2 DS1 DS0  
DS2 DS1 DS0  
0
0
1
RS  
X
X
X
X
0
1
1
X
X
X
X
X
X
X
X
X
X
Exit Power Down  
Enter Power Down  
reserved  
0
0
0
0
1
1
RS  
X
X
X
X
X
X
X
X
X
0
0
1
0
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Note : The values in “ X” fields in non-reserved commands above may be driven onto the DRAM device pins.  
2.5 Southbound Command Delivery  
A DRAM command located in the "A" command may be delivered to the DRAM devices as soon as the 14-bit (10-bits in fail-over) CRC  
is checked. This minimizes DRAM access latency by allowing the command to be delivered after the first 4 transfers of the frame have  
been received. The "A" command is transferred immediately to the DRAM pins with minimum delay whereas the "B" and "C" command  
are delivered one DRAM clock later. To minimize memory access latency the read related Activate, Read (if the page is open) and  
explicit Precharge commands to a rank of DRAM devices should be placed in the "A" command, if possible. Figure 6 illustrates the deliv-  
ery of the three potential commands in a frame to three separate DRAM channels.  
Command "A" is delivered in this case to the DRAM devices on DIMM 3 as soon as the command can traverse the AMB buffer. The "B"  
and "C" commands are delayed and presented to two other DRAM channels on the following clock. See below figure7~10 for Basic  
Read & Write Operations  
Northbound consists of 14 differential signal pairs (lane), physically 28 signaling line. Southbound Format has 14x12 (14 IO (or Lane) x  
12 IO switching) frame format, which deliver 14x12 bit information per one DRAM clock. One north bound frame is divided into two. Both  
frame deliver read data from DRAM  
Figure 6 : FBDIMM Command Delivery Rules  
1
2
3
4
5
“A”  
“B”  
“C”  
FBD southbound  
cmd/data  
1. CMD A transferred immediately  
2. CMD A, B, C cannot target the same DIMM  
3. Host is responsible for scheduling CMD  
DIMM 1 cmd  
DIMM 2 cmd  
“C”  
“B”  
DIMM 3 cmd  
“A”  
DIMM 4 cmd  
FBD northbound  
cmd/data  
Rev. 1.3 December 2008  
8 of 42  
FBDIMM  
DDR2 SDRAM  
2.6 Basic Timing Diagram  
Figure 7 : Basic DRAM Read Data Transfers on FBD  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
ACT1  
NOP  
NOP  
RD1  
NOP  
NOP  
FBD southbound  
cmd/data  
DIMM 1 cmd  
DIMM 1 data  
DIMM 2 cmd  
DIMM 2 data  
ACT1  
RD1  
FBD northbound  
data  
Figure 8 : Back to Back DRAM Read Data Transfers  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
ACT1  
NOP  
NOP  
ACT2 RD1  
NOP NOP  
NOP NOP  
RD2  
NOP  
NOP  
FBD southbound  
cmd/data  
DIMM 1 cmd  
DIMM 1 data  
DIMM 2 cmd  
DIMM 2 data  
ACT1  
RD1  
ACT2  
RD2  
FBD northbound  
data  
No Bubble  
Rev. 1.3 December 2008  
9 of 42  
FBDIMM  
DDR2 SDRAM  
Figure 9 : Basic DRAM Write Data Transfers on FBD  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
ACT1  
NOP  
NOP  
NOP WR1 NOP NOP SYNC  
Wdata Wdata Wdata Wdata 1010  
Wdata Wdata Wdata Wdata 0101  
FBD southbound  
cmd/data  
DIMM 1 cmd  
DIMM 1 data  
DIMM 2 cmd  
DIMM 2 data  
ACT1  
WR1  
Fixed fall through time  
FBD northbound  
data  
Status  
Figure 10 : Simultaneous RD / WR Data Transfers  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
ACT1 ACT2 ACT3 RD1 WR2  
RD3  
SYNC  
1010  
0101  
FBD southbound  
cmd/data  
Wdata Wdata Wdata Wdata NOP NOP  
Wdata Wdata Wdata Wdata NOP NOP  
DIMM 1 cmd  
DIMM 1 data  
DIMM 2 cmd  
DIMM 2 data  
ACT1  
ACT3 RD1  
RD3  
ACT2  
WR2  
FBD northbound  
data  
Status  
Rev. 1.3 December 2008  
10 of 42  
FBDIMM  
DDR2 SDRAM  
2.7 Advanced Memory Buffer Block Diagram  
Figure 11 : Advanced Memory Buffer Block Diagram  
Advance Memory Buffer  
Block Dlagram  
10x2  
Southbound  
Data In  
10x2  
Southbound  
Data Out  
NORTH  
Data Merge  
Re-Time  
Re-synch  
1x2  
PLL  
demux  
PISO  
mux  
Ref Clock  
10*2  
10*2  
Link Init SM  
and Control  
and CSRs  
Reset#  
Reset  
Control  
lnit  
patterns  
4
DRAM Clock  
IBIST - RX  
IBIST - TX  
4
DRAM Clock #  
Command  
Decoder &  
CRC Check  
failover  
LAI Logic  
29  
DRAM Address /  
Cmd Out  
Command Copy 1  
DRAM Cmd  
29  
Thermal  
Sensor  
DRAM Address /  
Command Copy 2  
DDR State  
Controller  
and CSRs  
Data Out  
Data In  
Core Control  
and CSRs  
36  
deep  
Write  
Data  
FIFO  
72 + 18x2  
DRAM  
External MEMBIST  
DDR calibration &  
DDR IOBIST/DFX  
Data / strobe  
LAI  
Controller  
Data CRC Gen  
& Read FIFO  
Sync & ldie  
NB LAI Buffer  
Pattern  
Generator  
IBIST -TX  
IBIST - RX  
SMbus  
SMbus  
Controller  
mux  
Link lnit SM  
and Control  
and CSRs  
failover  
14*6*2  
14*12  
PISO  
demux  
Re-synch  
Re-Time  
Data Merge  
Northbound  
Data Out  
Northbound  
Data In  
14x2  
14x2  
Rev. 1.3 December 2008  
11 of 42  
FBDIMM  
DDR2 SDRAM  
2.8 Interfaces  
Figure12 illustrates the Advanced Memory Buffer and all of its interfaces. They consist of two FBD links, one DDR2 channel and an SM-  
Bus interface. Each FBD link connects the Advanced Memory Buffer to a host memory controller or an adjacent FBD. The DDR2 channel  
supports direct connection to the DDR2 SDRAMs on a Fully Buffered DIMM  
Figure 12 : Advanced Memory Buffer Interface Block Diagram  
MEMORY INTERFACE  
NB FBD  
Out Link  
NB FBD  
In Link  
AMB  
SB FBD  
Out Link  
SB FBD  
In Link  
SMB  
The FBDIMM channel uses a daisy-chain topology to provide expansion from a single DIMM per channel to up to 8 DIMMs per channel.  
The host sends data on the southbound link to the first DIMM where it is received and redriven to the second DIMM. On the southbound  
data path each DIMM receives the data and again redrives the data to the next DIMM until the last DIMM receives the data. The last DIMM  
in the chain initiates the transmission of data in the direction of the host (a.k.a. northbound). On the northbound data path each DIMM  
receives the data and re-drives the data to the next DIMM until the host is reached.  
3.0 FBD HIGH-SPEED DIFFERENTIAL POINT TO POINT LINK (at 1.5 V) INTERFACE  
The Advanced Memory Buffer supports one FBD Channel consisting of two bidirectional link interfaces using high-speed differential point-  
to-point electrical signaling.  
The southbound input link is 10 lanes wide and carries commands and write data from the host memory controller or the adjacent DIMM  
in the host direction. The southbound output link forwards this same data to the next FBD.  
The northbound input link is 14 lanes wide and carries read return data or status information from the next FBDIMM in the chain back  
towards the host. The northbound output link forwards this information back towards the host and multiplexes in any read return data or  
status information that is generated internally.  
3.1 DDR2 Channel  
The DDR2 channel on the Advanced Memory Buffer supports direct connection to DDR2 SDRAMs. The DDR2 channel supports two  
ranks of eight banks with 16 row/column request, 64 data signals, and eight check-bit signals. There are two copies of address and com-  
mand signals to support DIMM routing and electrical requirements. Four-transfer bursts are driven on the data and check-bit lines at 800  
MHz.  
Propagation delays between read data/check-bit strobe lanes on a given channel can differ. Each strobe can be calibrated by hardware  
state machines using write/read trial and error (or equivalent implementation). Hardware aligns the read data and check-bits to a single  
core clock.  
The Advanced Memory Buffer provides four copies of the command clock phase references (CLK[3:0]) and write data/check-bit .  
3.2 SMBus Slave Interface  
The Advanced Memory Buffer supports an SMBus interface to allow system access to configuration registers independent of the FBD  
link. The Advanced Memory Buffer will never be a master on the SMBus, only a slave. Serial SMBus data transfer is supported at 100  
kHz. SMBus access to the Advanced Memory Buffer may be a requirement to boot a system. This provides a mechanism to set link  
strength, frequency and other parameters needed to insure robust operation given platform specific configurations. It is also required for  
diagnostic support when the link is down. The SMBus address straps located on the DIMM connector are used by the Advanced Memory  
Buffer to get its unique ID.  
Rev. 1.3 December 2008  
12 of 42  
FBDIMM  
DDR2 SDRAM  
3.3 FBD Channel Latency  
FBD channel latency is measured from the time a read request is driven on the FBD channel pins to the time when the first 16 bytes (2nd  
chunk) of read completion data is sampled by the memory controller.  
When not using the Variable Read Latency capability, the latency for a specific FBDIMM on an FBD channel is always equal to the latency  
for any other FBDIMM on that channel. However, the latency for each FBDIMM in a specific configuration with some number of FBDIMMs  
installed may not be equal to the latency for each FBDIMM in a configuration with some different number of FBDIMMs installed.  
As more DIMMs are added to the FBD channel, additional latency is required to read from each DIMM on the channel. Because the FBD  
channel is based on the point-to-point interconnection of buffer components between DIMMs, memory requests are required to travel  
through N-1 buffers before reaching the Nth buffer. The result is that a four DIMM channel configuration will have greater idle read latency  
compared to a one DIMM channel configuration.  
The Variable Read Latency capability can be used to reduce latency for DIMMs closer to the host.  
The idle latencies listed in this section are representative of what might be achieved in typical AMB designs. Actual implementations with  
latencies less than the values listed will have higher application performance and vice versa.  
3.4 Peak Theoretical Throughput  
An FBD channel transfers read completion data on the FBD Northbound data connection. 144 bits of data are transferred for every FBD  
Northbound data frame. This matches the 18-byte data transfer of an ECC DDR DRAM in a single DRAM command clock. A DRAM burst  
of 8 from a single channel or a DRAM burst of four from two lock-stepped channels provides a total of 72 bytes of data (64 bytes plus 8  
bytes ECC).  
The FBD frame rate matches the DRAM command clock because of the fixed 6:1 ratio of the FBD channel clock to the DRAM command  
clock. Therefore, the Northbound data connection will exhibit the same peak theoretical throughput as a single DRAM channel. For exam-  
ple, when using DDR2 533 DRAMs, the peak theoretical bandwidth of the Northbound data connection is 4.267 GB/sec.  
Write data is transferred on the FBD Southbound command and data connection, via Command+Wdata frames. 72 bits of data are trans-  
ferred for every FBD Command+Wdata frame. Two Command+Wdata frames match the 18-byte data transfer of an ECC DDR DRAM in  
a single DRAM command clock. A DRAM burst of 8 transfers from a single channel, or a burst of 4 from two lock-step channels provides  
a total of 72 bytes of data (64 bytes plus 8 bytes ECC).  
When the FBD frame rate matches the DRAM command clock, the Southbound command and data connection will exhibit one half the  
peak theoretical throughput of a single DRAM channel. For example, when using DDR2 533 DRAMs, the peak theoretical bandwidth of  
the Southbound command and data connection is 2.133 GB/sec.  
The total peak theoretical throughput for a single FBD channel is defined as the sum of the peak theoretical throughput of the Northbound  
data connection and the Southbound command and data connection. When the FBD frame rate matches the DRAM command clock, this  
is equal to 1.5 times the peak theoretical throughput of a single DRAM channel. For example, when using DDR2 533 DRAMs, the peak  
theoretical throughput of a DDR2 533 channel would be 4.267 GB/sec, while the peak theoretical throughput of an FBD-533 channel would  
be 6.4 GB/sec  
3.5 Hot-add  
The FBDIMM channel does not provide a mechanism to automatically detect and report the addition of a new FBDIMM south of the cur-  
rently active last FBDIMM. It is assumed the system will be notified through some means of the addition of one or more new FBDIMMs so  
that specific commands can be sent to the host controller to initialize the newly added FBDIMM(s) and perform a hot-add reset to bring  
them into the channel timing domain. It should be noted that the power to the FBDIMM socket must be removed before a hot-add FBDIMM  
is inserted or removed. Applying or removing the power to a FBDIMM socket is a system platform function.  
3.6 Hot remove  
In order to accomplish removal of FBDIMMs, the host must perform a fast reset sequence targeted at the last FBDIMM that will be retained  
on the channel. The fast reset re-establishes the appropriate last FBDIMM so that the southbound transmission outputs of the last active  
FBDIMM and the southbound and northbound outputs of the FBDIMMs beyond the last active FBDIMM are disabled. Once the appropriate  
outputs are disabled, the system can coordinate the procedure to remove power in preparation for physical removal of the FBDIMM if need-  
ed. Note that the power to the FBDIMM socket must be removed before a hot-add FBDIMM is inserted or removed. Applying or removing  
the power to a FBDIMM socket is a system platform function.  
3.7 Hot replace  
Hot replace of FBDIMM is accomplished through combining the hot-remove and hotadd processes  
Rev. 1.3 December 2008  
13 of 42  
FBDIMM  
DDR2 SDRAM  
4.0 PIN CONFIGUREATION  
Table 4 : DDR2 240 Pin FBDIMM Configurations (Front side/Back side)  
Pin  
1
Front  
Pin  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
Back  
Pin  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Front  
PN3  
Pin  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
Back  
SN3  
Pin  
61  
62  
63  
64  
65  
66  
67  
68  
Front  
PN9  
Pin  
181  
182  
183  
184  
185  
186  
187  
188  
Back  
SN9  
Pin  
91  
Front  
PS9  
Pin  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
Back  
SS9  
V
V
DD  
DD  
V
V
V
V
V
V
2
PN3  
SN3  
92  
DD  
DD  
SS  
SS  
SS  
SS  
V
V
V
V
3
PN10  
PN10  
SN10  
SN10  
93  
PS5  
PS5  
SS5  
SS5  
DD  
DD  
SS  
SS  
V
V
4
PN4  
PN4  
SN4  
SN4  
94  
SS  
SS  
V
V
V
V
V
V
5
95  
DD  
DD  
SS  
SS  
SS  
SS  
V
V
V
V
6
PN11  
PN11  
SN11  
SN11  
96  
PS6  
PS6  
SS6  
SS6  
DD  
DD  
SS  
SS  
V
V
7
PN5  
PN5  
SN5  
SN5  
97  
DD  
DD  
V
V
V
V
V
V
8
98  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
9
KEY  
99  
PS7  
PS7  
SS7  
SS7  
CC  
CC  
SS  
SS  
V
V
V
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
PN13  
PN13  
SN13  
SN13  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
CC  
CC  
SS  
SS  
V
V
V
V
PS0  
PS0  
SS0  
SS0  
SS  
SS  
SS  
SS  
V
V
V
V
PS8  
PS8  
SS8  
SS8  
CC  
CC  
SS  
SS  
V
V
V
V
V
V
CC  
CC  
SS  
SS  
SS  
SS  
V
V
V
V
RFU*  
RFU*  
RFU*  
RFU*  
PS1  
PS1  
SS1  
SS1  
SS  
SS  
SS  
SS  
V
V
RFU**  
RFU**  
RFU**  
RFU**  
TT  
TT  
V
V
V
V
VID1  
VID0  
SS  
SS  
SS  
SS  
V
V
V
V
RESET  
DNU/M_Test  
PS2  
PS2  
SS2  
SS2  
SS  
SS  
SS  
SS  
V
V
V
PN12  
PN12  
SN12  
SN12  
SCK  
SCK  
SS  
SS  
DD  
V
V
V
RFU**  
RFU**  
RFU**  
RFU**  
SS  
SS  
DD  
V
V
V
V
PS3  
PS3  
SS3  
SS3  
SS  
SS  
SS  
SS  
V
V
V
V
PN6  
PN6  
SN6  
SN6  
SS  
SS  
DD  
DD  
V
V
V
V
PN0  
PN0  
SN0  
SN0  
SS  
SS  
DD  
DD  
V
V
V
V
PS4  
PS4  
SS4  
SS4  
SS  
SS  
DD  
DD  
V
V
V
V
PN7  
PN7  
SN7  
SN7  
SS  
SS  
SS  
SS  
V
V
V
V
PN1  
PN1  
SN1  
SN1  
SS  
SS  
DD  
DD  
V
V
V
V
V
V
SS  
SS  
SS  
SS  
DD  
DD  
V
V
V
V
PN8  
PN8  
SN8  
SN8  
RFU*  
RFU*  
RFU*  
RFU*  
SS  
SS  
TT  
TT  
V
PN2  
PN2  
SN2  
SN2  
SA2  
SDA  
SCL  
DDSPD  
V
V
V
V
SA0  
SS  
SS  
SS  
SS  
V
V
V
V
PN9  
SN9  
SA1  
SS  
SS  
SS  
SS  
PS9  
SS9  
RFU = Reserved Future Use.  
* These pin positions are reserved for forwarded clocks to be used in future module implementations  
** These pin positions are reserved for future architecture flexibility  
1. The following signals are CRC bits and thus appear out of the normal sequence : PN12/PN12, SN12/SN12, PN13/PN13, SN13/SN12,  
PS9/PS9, SS9/SS9.  
Rev. 1.3 December 2008  
14 of 42  
FBDIMM  
DDR2 SDRAM  
Table 5 : Pin Description  
Pin Name  
SCK  
Type  
Input  
Pin Description  
System Clock Input, positive line  
Pin Numbers  
228  
229  
SCK  
Input  
System Clock Input, negative line  
PN[13:0]  
PN[13:0]  
PS[9:0]  
PS[9:0]  
Output  
Output  
Input  
Primary northbound Data, positive lines  
Primary northbound Data, negative lines  
Primary Southbound Data, positive lines  
Primary Southbound Data, negative lines  
22, 25, 28, 31, 34, 37, 40, 48, 51, 54, 57, 60, 63, 66  
23, 26, 29, 32, 35, 38, 41, 49, 52, 55, 58, 61, 64, 67  
70, 73, 76, 79, 82, 90, 93, 96, 99, 102  
Input  
71, 74, 77, 80, 83, 91, 94, 97, 100, 103  
142, 145, 148, 151, 154, 157, 160, 168, 171, 174, 177,  
180, 183, 186  
SN[13:0]  
SN[13:0]  
Output  
Output  
Secondary Northbound Data, positive lines  
Secondary Northbound Data, negative lines  
143, 146, 149, 152, 155, 158, 161, 16, 172, 175, 178,  
181, 184, 187  
SS[9:0]  
SS[9:0]  
SCL  
Input  
Input  
Input  
Input  
Secondary Southbound Data, positive lines  
Secondary Southbound Data, negative lines  
Serial Presence Detect (SPD) Clock Input  
SPD Data Input / Output  
190, 193, 196, 199, 202, 210, 213, 216, 219, 222  
191, 194, 197, 200, 203, 211, 214, 217, 220, 223  
120  
119  
SDA  
SPD Address Inputs, also used to slelect the DIMM number in  
the AMB  
SA[2:0]  
Input  
118, 239, 240  
Voltage ID : These pins must be unconnected for DDR2 -  
based Fully Buffered DIMMs  
V
[1:0]  
NC  
16, 136  
17  
ID  
V
V
[0] is V value : OPEN = 1.8 V, GND = 1.5 V ; V [1] is  
ID  
CC  
DD ID  
value : OPEN = 1.5V, GND = 1.2V  
RESET  
RFU  
Input  
RFU  
AMB reset signal  
19, 20, 44, 45, 86, 87, 105, 106, 139, 140, 164, 165,  
206, 207, 225, 226  
Reserved for Future Use  
AMB Core Power and AMB Channel Interface Power (1.5  
Volt)  
V
V
PWR  
PWR  
9, 10, 12, 13, 129, 130, 132, 133  
CC  
DD  
1, 2, 3, 5, 6, 7, 108, 109, 111, 112, 113, 115, 116, 121,  
122, 123, 125, 126, 127, 231, 232, 233, 235, 236  
DRAM Power and AMB DRAM I/O Power (1.8Volt)  
V
PWR  
PWR  
DRAM Address/Command/Clcok Termination Power(V /2) 15, 117, 135, 237  
DD  
TT  
V
SPD Power  
238  
DDSPD  
4, 8, 11, 14, 18, 21, 24, 27, 30, 33, 36, 39, 42, 43, 46,  
47, 50, 53, 56, 59, 62, 65, 68, 69, 72, 75, 78, 81, 84, 85,  
88, 89, 92, 95, 98, 101, 104, 107, 110, 114, 124, 128,  
131, 134, 138, 141, 144, 147, 150, 153, 156, 159, 162,  
163, 166, 167, 170, 173, 176, 179, 182, 185, 188, 189,  
192, 195, 198, 201, 204, 205, 208, 209, 212, 215, 218,  
221, 224, 227, 230, 234  
V
GND  
DNU  
Ground  
SS  
The DNU/M_Test pin provides an external connection R/Cs A-  
D for testing the margin of Vref which is produced by a voltage  
divider on the module. It is not intended to be used in normal  
DNU/M_Test  
system operation and must not be connected (DNU) in a sys- 137  
tem. This test pin may have other features on future card de-  
signs and if it does, will be included in this specification at that  
time.  
Rev. 1.3 December 2008  
15 of 42  
FBDIMM  
DDR2 SDRAM  
5.0 FBDIMM FUNCTIONAL BLOCK DIAGRAM  
5.1 1GB, 128Mx72 Module - M395T2863QZ4  
(populated as 1 rank of x8 DDR2 SDRAMs)  
S0  
DQS0  
DQS0  
DQS9  
DQS4  
DQS4  
DQS13  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
I/O 0  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ32  
DQ33  
DQ34  
DQ35  
DQ36  
DQ37  
DQ38  
DQ39  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D0  
D4  
DQS1  
DQS1  
DQS5  
DQS5  
DQS10  
DQS14  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DQ8  
DQ40  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ46  
DQ47  
I/O 0  
I/O 0  
DQ9  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D1  
D5  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
DQS2  
DQS2  
DQS6  
DQS6  
DQS11  
DQS15  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DQ16  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
DQ48  
DQ49  
DQ50  
DQ51  
DQ52  
DQ53  
DQ54  
DQ55  
I/O 0  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D2  
D6  
DQS7  
DQS7  
DQS3  
DQS3  
DQS16  
DQS12  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DQ56  
DQ57  
DQ58  
DQ59  
DQ60  
DQ61  
DQ62  
DQ63  
DQ24  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
I/O 0  
I/O 0  
I/O 1  
I/O 1  
D7  
D3  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQS8  
DQS8  
PN0-PN13  
PN0-PN13  
PS0-PS9  
PS0-PS9  
SN0-SN13  
SN0-SN13  
SS0-SS9  
SS0-SS9  
DQS17  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
CB0  
CB1  
CB2  
CB3  
CB4  
CB5  
CB6  
CB7  
I/O 0  
S0->CS(all SDRAMs)  
I/O 1  
DQ0-DQ63  
CB0-CB7  
D8  
CKE0->CKE(all SDRAMs)  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
A
M
B
DQS0-DQS17  
DQS0-DQS8  
ODT->ODT(all SDRAMs)  
BA0-BA2(all SDRAMs)  
A0-A15(all SDRAMs)  
RAS(all SDRAMs)  
SCL  
SDA  
SA1-SA2  
SA0  
CAS(all SDRAMs)  
RESET  
Serial PD  
WE(all SDRAMs)  
CK/CK(all SDRAMs)  
SCK/SCK  
V
Terminators  
AMB  
TT  
SCL  
SDA  
All address/command/control/clock  
V
WP A0 A1 A2  
SA0 SA1 SA2  
TT  
V
CC  
V
SPD, AMB  
D0-D8, AMB  
D0-D8  
DDSPD  
V
DD  
V
REF  
Note :  
1.DQ-to I/O wiring may be changed within a byte.  
2.There are two physical copies of each address/command/control/clock  
V
D0-D8,SPD,AMB  
SS  
Rev. 1.3 December 2008  
16 of 42  
FBDIMM  
DDR2 SDRAM  
5.2 2GB, 256Mx72 Module - M395T5663QZ4  
(populated as 2 rank of x8 DDR2 SDRAMs)  
S1  
S0  
DQS0  
DQS0  
DQS9  
DQS4  
DQS4  
DQS13  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
RDQS RDQS  
I/O 0  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ32  
DQ33  
DQ34  
DQ35  
DQ36  
DQ37  
DQ38  
DQ39  
I/O 0  
I/O 0  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D0  
D9  
D4  
D13  
DQS1  
DQS1  
DQS5  
DQS5  
DQS10  
DQS14  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DQ8  
DQ40  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ46  
DQ47  
I/O 0  
I/O 0  
I/O 0  
I/O 0  
DQ9  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D1  
D10  
D5  
D14  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
DQS2  
DQS2  
DQS6  
DQS6  
DQS11  
DQS15  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DQ16  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
DQ48  
DQ49  
DQ50  
DQ51  
DQ52  
DQ53  
DQ54  
DQ55  
I/O 0  
I/O 0  
I/O 0  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D2  
D11  
D6  
D15  
DQS7  
DQS7  
DQS3  
DQS3  
DQS16  
DQS12  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DQ56  
DQ57  
DQ58  
DQ59  
DQ60  
DQ61  
DQ62  
DQ63  
DQ24  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
I/O 0  
I/O 0  
I/O 0  
I/O 0  
I/O 1  
I/O 1  
I/O 1  
I/O 1  
D7  
D16  
D3  
D12  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQS8  
DQS8  
PN0-PN13  
PN0-PN13  
PS0-PS9  
PS0-PS9  
SN0-SN13  
SN0-SN13  
SS0-SS9  
SS0-SS9  
DQS17  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
DM/ NU/ CS DQS DQS  
RDQS RDQS  
S0->CS(D0-D8)  
DQ0-DQ63  
CB0-CB7  
CB0  
CB1  
CB2  
CB3  
CB4  
CB5  
CB6  
CB7  
I/O 0  
I/O 0  
CKE0->CKE(D0-D8)  
S1->CS(D9-D17)  
A
M
B
I/O 1  
I/O 1  
DQS0-DQS17  
DQS0-DQS8  
D8  
D17  
CKE1->CKE(D9-D17)  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
ODT->ODT(all SDRAMs)  
BA0-BA2(all SDRAMs)  
A0-A15(all SDRAMs)  
RAS(all SDRAMs)  
SCL  
SDA  
SA1-SA2  
SA0  
CAS(all SDRAMs)  
RESET  
WE(all SDRAMs)  
CK/CK(all SDRAMs)  
SCK/SCK  
V
All address/command/control/clock  
TT  
V
Terminators  
TT  
Serial PD  
V
AMB  
CC  
SCL  
SDA  
WP A0 A1 A2  
V
SPD, AMB  
D0-D17, AMB  
D0-D17  
DDSPD  
V
DD  
SA0 SA1 SA2  
V
REF  
Note :  
1.DQ-to I/O wiring may be changed within a byte.  
2.There are two physical copies of each address/command/control/clock  
V
D0-D17,SPD,AMB  
SS  
Rev. 1.3 December 2008  
17 of 42  
FBDIMM  
DDR2 SDRAM  
5.3 4GB, 512Mx72 Module - M395T5160QZ4  
(populated as 2 rank of x4 DDR2 SDRAMs)  
VSS  
S1  
S0  
DQS0  
DQS0  
DQS9  
DQS9  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ0  
DQ4  
DQ5  
DQ6  
DQ7  
I/O 0  
I/O 0  
I/O 0  
I/O 0  
DQ1  
DQ2  
DQ3  
I/O 1  
I/O 2  
I/O 3  
I/O 1  
I/O 2  
I/O 3  
I/O 1  
I/O 2  
I/O 3  
I/O 1  
I/O 2  
I/O 3  
D0  
D18  
D9  
D27  
DQS1  
DQS1  
DQS10  
DQS10  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ8  
DQ12  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ9  
DQ13  
DQ14  
DQ15  
D1  
D19  
D10  
D28  
DQ10  
DQ11  
DQS2  
DQS2  
DQS11  
DQS11  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ16  
DQ20  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ17  
DQ18  
DQ19  
DQ21  
DQ22  
DQ23  
D2  
D20  
D11  
D29  
DQS3  
DQS12  
DQS3  
DQS12  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ24  
DQ28  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ25  
DQ26  
DQ27  
DQ29  
DQ30  
DQ31  
D3  
D21  
D12  
D30  
DQS4  
DQS13  
DQS4  
DQS13  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ32  
DQ36  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ33  
DQ34  
DQ35  
DQ37  
DQ38  
DQ39  
D4  
D22  
D13  
D31  
DQS5  
DQS14  
DQS5  
DQS14  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ40  
DQ44  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ41  
DQ42  
DQ43  
DQ45  
DQ46  
DQ47  
D5  
D23  
D14  
D32  
DQS6  
DQS15  
DQS6  
DQS15  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ48  
DQ52  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ49  
DQ50  
DQ51  
DQ53  
DQ54  
DQ55  
D6  
D24  
D15  
D33  
DQS7  
DQS16  
DQS7  
DQS16  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ56  
DQ60  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ57  
DQ58  
DQ59  
DQ61  
DQ62  
DQ63  
D7  
D25  
D16  
D34  
DQS8  
DQS17  
DQS8  
DQS17  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
CB0  
CB4  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
CB1  
CB2  
CB3  
CB5  
CB6  
CB7  
D8  
D26  
D17  
D35  
PN0-PN13  
SN0-SN13  
SN0-SN13  
SS0-SS9  
SS0-SS9  
V
All address/command/control/clock  
TT  
PN0-PN13  
PS0-PS9  
PS0-PS9  
Serial PD  
S0->CS(D0-D17)  
DQ0-DQ63  
CB0-CB7  
CKE0->CKE(D0-D17)  
S1->CS(D18-D35)  
A
DQS0-DQS17  
DQS0-DQS8  
SCL  
SDA  
M
B
CKE1->CKE(D18-D35)  
WP A0 A1 A2  
ODT->ODT(all SDRAMs)  
BA0-BA2(all SDRAMs)  
A0-A15(all SDRAMs)  
RAS(all SDRAMs)  
SCL  
V
Terminators  
AMB  
TT  
SDA  
SA1-SA2  
SA0  
V
SA0 SA1 SA2  
CC  
CAS(all SDRAMs)  
RESET  
WE(all SDRAMs)  
CK/CK(all SDRAMs)  
V
SPD, AMB  
D0-D35, AMB  
D0-D35  
SCK/SCK  
DDSPD  
V
DD  
V
REF  
V
D0-D35,SPD,AMB  
SS  
Note :  
1. DQ-to I/O wiring may be changed within a byte.  
2. There are two physical copies of each address/command/control/clock.  
3. There are four physical copies of each clock.  
Rev. 1.3 December 2008  
18 of 42  
FBDIMM  
DDR2 SDRAM  
5.4 4GB, 512Mx72 Module - M395T5163QZ4  
(populated as 4 rank of x8 DDR2 SDRAMs)  
DQS0  
DQS0  
DQS9  
S0  
S1  
S2  
S3  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
I/O 0  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
I/O 0  
I/O 0  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D0  
D9  
D18  
D0  
DQS1  
DQS1  
DQS10  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DQ8  
I/O 0  
I/O 0  
I/O 0  
I/O 0  
DQ9  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D1  
D10  
D19  
D28  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
DQS2  
DQS2  
DQS11  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DQ16  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
I/O 0  
I/O 0  
I/O 0  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D2  
D11  
D20  
D29  
DQS3  
DQS3  
DQS12  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DQ24  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
I/O 0  
I/O 0  
I/O 0  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D3  
D12  
D21  
D30  
DQS4  
DQS4  
DQS13  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DQ32  
DQ33  
DQ34  
DQ35  
DQ36  
DQ37  
DQ38  
DQ39  
I/O 0  
I/O 0  
I/O 0  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D4  
D13  
D22  
D31  
Rev. 1.3 December 2008  
19 of 42  
FBDIMM  
DDR2 SDRAM  
DQS5  
DQS5  
DQS14  
S0  
S1  
S2  
S3  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
I/O 0  
DQ40  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ46  
DQ47  
I/O 0  
I/O 0  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
D5  
D14  
D23  
D32  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQS6  
DQS6  
DQS15  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DQ48  
DQ49  
DQ50  
DQ51  
DQ52  
DQ53  
DQ54  
DQ55  
I/O 0  
I/O 0  
I/O 0  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D6  
D15  
D24  
D33  
DQS7  
DQS7  
DQS16  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DQ56  
DQ57  
DQ58  
DQ59  
DQ60  
DQ61  
DQ62  
DQ63  
I/O 0  
I/O 0  
I/O 0  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D7  
D16  
D25  
D34  
DQS3  
DQS3  
DQS12  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
DM/ NU/ DQS DQS CS  
RDQS RDQS  
CB0  
CB1  
CB2  
CB3  
CB4  
CB5  
CB6  
CB7  
I/O 0  
I/O 0  
I/O 0  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
D8  
D17  
D26  
D35  
Serial PD  
SN0-SN13  
PN0-PN13  
SN0-SN13  
PN0-PN13  
PS0-PS9  
PS0-PS9  
SS0-SS9  
SS0-SS9  
SCL  
SDA  
WP A0 A1 A2  
SA0 SA1 SA2  
CK0 -> CKE (D0 - D17)  
CK1 -> CKE (D18 - D35)  
ODT0 -> ODT (D0 - D17)  
ODT1 -> ODT (D18 - D26)  
ODT2 -> ODT (D27 - D35)  
BA0-BA2 (all SDRAMs)  
DQ0-DQ63  
CB0-CB7  
A
M
B
DQS0-DQS17  
DQS0-DQS8  
SCL  
SDA  
A0,A1-A3-A5, A7-A15 (all SDRAMs)  
A2_ECC, A6_ECC(D8,D17,D26,D35)  
RAS (all SDRAMs)  
SA1-SA2  
SA0  
CAS (all SDRAMs)  
V
RESET  
All address/command/control/clock  
TT  
WE (all SDRAMs)  
CK/CK (all SDRAMs)  
SCK/SCK  
V
Terminators  
AMB  
TT  
V
CC  
V
SPD, AMB  
D0-D17, AMB  
D0-D17  
DDSPD  
V
DD  
V
REF  
Note :  
1. DQ-to I/O wiring may be changed within a byte.  
2. There are two physical copies of each address/command/control/clock.  
V
D0-D17,SPD,AMB  
SS  
Rev. 1.3 December 2008  
20 of 42  
FBDIMM  
DDR2 SDRAM  
5.5 8GB, 1Gx72 Module - M395T1G60QJ4  
(populated as 4 rank of x4 DDR2 SDRAMs)  
VSS  
S1  
S3  
S0  
S2  
DQS0  
DQS0  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ0  
I/O 0  
I/O 0  
I/O 0  
I/O 0  
DQ1  
DQ2  
DQ3  
I/O 1  
I/O 2  
I/O 3  
I/O 1  
I/O 2  
I/O 3  
I/O 1  
I/O 2  
I/O 3  
I/O 1  
I/O 2  
I/O 3  
D0  
D36  
D18  
D54  
DQS9  
DQS9  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ4  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ5  
DQ6  
DQ7  
D1  
D37  
D19  
D55  
DQS1  
DQS1  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ8  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ9  
D2  
D38  
D20  
D56  
DQ10  
DQ11  
DQS10  
DQS10  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ12  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ13  
DQ14  
DQ15  
D3  
D39  
D21  
D57  
DQS2  
DQS2  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ16  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ17  
DQ18  
DQ19  
D4  
D40  
D22  
D58  
DQS11  
DQS11  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ20  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ21  
DQ22  
DQ23  
D5  
D41  
D23  
D59  
DQS3  
DQS3  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ24  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ25  
DQ26  
DQ27  
D6  
D42  
D24  
D60  
DQS12  
DQS12  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ28  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ29  
DQ30  
DQ31  
D7  
D43  
D25  
D61  
DQS8  
DQS8  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
CB0  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
CB1  
CB2  
CB3  
D8  
D44  
D26  
D62  
Rev. 1.3 December 2008  
21 of 42  
FBDIMM  
DDR2 SDRAM  
VSS  
S1  
S3  
S0  
S2  
DQS4  
DQS4  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ32  
DQ33  
DQ34  
DQ35  
I/O 0  
I/O 0  
I/O 0  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 1  
I/O 2  
I/O 3  
I/O 1  
I/O 2  
I/O 3  
I/O 1  
I/O 2  
I/O 3  
D9  
D45  
D27  
D63  
DQS13  
DQS13  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ36  
DQ37  
DQ38  
DQ39  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
D10  
D46  
D28  
D64  
DQS5  
DQS5  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ40  
DQ41  
DQ42  
DQ43  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
D11  
D47  
D29  
D65  
DQS10  
DQS10  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ44  
DQ45  
DQ46  
DQ47  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
D12  
D48  
D30  
D66  
DQS6  
DQS6  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ48  
DQ49  
DQ50  
DQ51  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
D13  
D49  
D31  
D67  
DQS11  
DQS11  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ52  
DQ53  
DQ54  
DQ55  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
D14  
D50  
D32  
D68  
DQS7  
DQS7  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ56  
DQ57  
DQ58  
DQ59  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
D15  
D51  
D33  
D69  
DQS16  
DQS16  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DQ60  
DQ61  
DQ62  
DQ63  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
D16  
D52  
D34  
D70  
DQS17  
DQS17  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
DM  
CS DQS DQS  
CB4  
CB5  
CB6  
CB7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
D17  
D53  
D35  
D71  
V
All address/command/control/clock  
TT  
Serial PD  
PN0-PN13  
PN0-PN13  
PS0-PS9  
PS0-PS9  
SN0-SN13  
SN0-SN13  
SS0-SS9  
SS0-SS9  
SCL  
SDA  
WP A0 A1 A2  
SA0 SA1 SA2  
S0->CS(D36-D53)  
DQ0-DQ63  
CB0-CB7  
DQS0-DQS17  
DQS0-DQS17  
S1->CS(D54-D71)  
S2->CS(D0-D17)  
S3->CS(D18-D35)  
CKE0 -> CKE (D0-D17,D36-D53)  
CKE1 -> CKE (D18-D35,D53-D71)  
ODT->ODT0 (D36-D71)  
BA0-BA2 (all SDRAMs)  
A0,A1-A3-A5,A7-A13 (all SDRAMs)  
A
M
B
V
Terminators  
AMB  
TT  
SCL  
SDA  
SA1-SA2  
SA0  
V
CC  
A2,A6 (D0-D7, D9-D16, D18-D25, D27-D34, D36-D43, D45-D52, D54-D61, D63-D70)  
ECCA2,ECCA6 (D8, D17, D26, D35, D44, D53, D62, D71)  
RAS(all SDRAMs)  
V
SPD, AMB  
D0-D71, AMB  
D0-D71  
RESET  
DDSPD  
CAS(all SDRAMs)  
SCK/SCK  
WE(all SDRAMs)  
V
DD  
CK/CK(all SDRAMs)  
V
REF  
Note :  
1. DQ-to I/O wiring may be changed within a nibble  
V
D0-D71,SPD,AMB  
SS  
2. There are two physical copies of each address/command/control excluding CS  
3. There are four physical copies of each clock.  
4. ODT pin(D0-D35) is connected to V  
SS  
Rev. 1.3 December 2008  
22 of 42  
FBDIMM  
DDR2 SDRAM  
6.0 ELECTRICAL CHARACTERISTICS  
Table 6 : AbsoIute Maximum Ratings  
Parameter  
Symbol  
, V  
OUT  
MIN  
-0.3  
-0.3  
-0.5  
-0.5  
-55  
0
MAX  
1.75  
1.75  
2.3  
Units  
V
Note  
Voltage on any pin relative to V  
V
1
1
1
1
1
SS  
IN  
Voltage on V pin relative to V  
V
CC  
V
CC  
SS  
Voltage V pin relative to V  
V
DD  
V
DD  
SS  
Voltage on V pin relative to V  
TT  
V
2.3  
V
SS  
TT  
Storage temperature  
T
100  
85  
°C  
STG  
DDR2 SDRAM device operating temperature(Ambient)  
T
°C  
1,2  
CASE  
85  
95  
AMB device operating temperature (Ambient)  
T
0
110  
°C  
1,2  
CASE  
Note : 1. Stresses greater than those Iisted may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other  
conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods  
may adversely affect reliability.  
2. DDR2 SDRAMs of FBDIMM should require this specification.  
Parameter  
Symbol  
DRAM  
Units  
µs  
0 °C T  
85°C  
95°C  
7.8  
CASE  
Average periodic refresh interval  
tREFI  
85 °C < T  
3.9  
µs  
CASE  
Table 7 : Input DC Operating Conditions  
Parameter  
AMB supply voltage  
Symbol  
MIN  
1.455  
1.7  
Nom  
1.50  
MAX  
1.575  
1.9  
Units  
Notes  
V
V
V
V
CC  
DD  
DDR2 SDRAM supply voltage  
Termination voltage  
1.8  
V
0.48 x V  
3.0  
0.50 x V  
3.3  
0.52 x V  
3.6  
V
TT  
DDSPD  
DD  
DD  
DD  
EEPROM supply voltage  
V
V
SPD Input HIGH (Iogic 1) voltage  
SPD Input LOW (logic 0) voltage  
RESET Input HIGH (logic 1) voltage  
RESET Input LOW (logic 0) voltage  
Leakage Current (RESET)  
Leakage Current (link)  
V
(DC)  
2.1  
V
V
1
1
2
1
2
3
IH  
DDSPD  
V (DC)  
0.8  
V
IL  
V
(DC)  
V
IH  
V (DC)  
0.5  
90  
5
V
IL  
I
I
-90  
-5  
uA  
uA  
L
L
Note : 1. Applies for SMB and SPD bus signals.  
2. Applies for AMB CMOS signal RESET.  
3. For all other AMB related DC parameters, please refer to the high-speed differential link interface specification.  
Table 8 : Timing Parameters  
Parameter  
EI Assertion Pass-Thru Timing  
EI Deassertion Pass-Thru Timing  
EI Assertion Duration  
Symbol  
tEI Propagatet  
tEID  
MIN  
Typ.  
Max.  
4
Units  
Notes  
clks  
clks  
clks  
ns  
-
2
Bitlock  
tEI  
100  
1,2  
3
FBD Cmd to DDR Clk out that latches Cmd  
FBD Cmd to DDR Write  
8.1  
TBD  
5.0  
ns  
DDR Read to FBD (last DIMM)  
Resample Pass-Thru time  
ResynchPass-Thru time  
ns  
4
1.075  
2.075  
ns  
ns  
Bit Lock Interval  
tBitLock  
119  
154  
frames  
frames  
1
1
Frame Lock Interval  
tFrameLock  
Note : 1. Defined in FB-DIMM Architecture and Protocol Spec  
2. Clocks defined as core clocks = 2x SCK input  
3. @DDR2-667 - measured from beginning of frame at southbound input to DDR clock output that latches the first command of a frame to the DRAMs  
4. @ DDR2-667 - measured from latest DQS input AMB TO start of matching data frame at northbound FB-DIMM outputs.  
Rev. 1.3 December 2008  
23 of 42  
FBDIMM  
DDR2 SDRAM  
Table 9 : Power specification parameter and test condition  
Power  
Units  
Symbol  
Conditions  
Supply  
Icc_Idle_0  
Idle Current, single or last DIMM  
L0 state, idle (0 BW)  
Primary channel enabled, Secondary Channel Disabled  
CKE high. Command and address lines stable.  
DRAM clock active.  
@1.5V  
mA  
Idd_Idle_0  
@1.8V  
mA  
Idd_Idle_0 Total Power  
W
Icc_Idle_1  
Idd_Idle_1  
Idle Current, first DIMM  
@1.5V  
@1.8V  
mA  
L0 state, idle (0 BW)  
Primary and Secondary channels enabled  
CKE high. Command and address lines stable.  
DRAM clock active.  
mA  
Idd_Idle_1 Total Power  
W
Icc_Active_1  
Idd_Active_1  
Active Power  
@1.5V  
@1.8V  
mA  
L0 state.  
50% DRAM BW, 67% read, 33% write.  
Primary and Secondary channels enabled.  
DRAM clock active, CKE high.  
mA  
Idd_Active_1 Total Power  
W
Icc_Active_2  
Idd_Active_2  
Active Power, data pass through  
L0 state.  
50% DRAM BW to downstream DIMM, 67% read, 33% write.  
Primary and Secondary channels enabled  
CKE high. Command and address lines stable.  
DRAM clock active.  
@1.5V  
@1.8V  
mA  
mA  
Idd_Active_2 Total Power  
W
Idd_Training  
(for AMB spec, Not in  
SPD)  
Training  
@1.5V  
@1.8V  
mA  
Primary and Secondary channels enabled.  
100% toggle on all channel lanes  
DRAMs idle. 0 BW.  
Idd_Training  
(for AMB spec, Not in  
SPD)  
CKE high, Command and address lines stable.  
DRAM clock active.  
mA  
W
Idd_Training Total Power  
Rev. 1.3 December 2008  
24 of 42  
FBDIMM  
DDR2 SDRAM  
Table 10.1 : Power specification (Vdd Max = 1.900V, Vcc Max = 1.575V)  
1GB(M395T2863QZ4)  
Symbol  
E66  
E65  
E68  
E69  
F76  
F78  
(PC2-6400)  
1700  
770  
E76  
Notes  
Unit  
(PC2-5300)  
Icc_Idle_0  
2600  
970  
2600  
970  
1600  
770  
1480  
770  
3200  
1070  
7.07  
3200  
1070  
7.07  
@1.5V  
@1.8V  
mA  
mA  
W
Idd_Idle_0  
P_idle_0  
5.94  
3400  
970  
5.94  
3400  
970  
3.98  
2300  
770  
3.79  
1930  
790  
4.14  
Icc_Idle_1  
Idd_Idle_1  
P_idle_1  
4200  
1070  
8.65  
2500  
770  
4200  
1070  
8.65  
@1.5V  
@1.8V  
mA  
mA  
W
7.20  
3900  
2335  
10.58  
3700  
970  
7.20  
3900  
2335  
10.58  
3700  
970  
5.09  
2900  
2235  
8.81  
2400  
770  
4.54  
1990  
1765  
6.49  
1920  
790  
5.40  
Icc_active_1  
Idd_active_1  
P_active_1  
Icc_active_2  
Idd_active_2  
P_active_2  
Icc_training  
Idd_training  
P_training  
4700  
2556  
12.26  
4500  
1070  
9.12  
3300  
2456  
9.86  
4700  
2556  
12.26  
4500  
1070  
9.12  
@1.5V  
@1.8V  
mA  
mA  
W
2600  
770  
@1.5V  
@1.8V  
mA  
mA  
W
7.67  
4000  
970  
7.67  
4000  
970  
5.24  
2300  
670  
4.53  
1960  
810  
5.56  
4600  
1070  
9.28  
2400  
670  
4600  
1070  
9.28  
@1.5V  
@1.8V  
mA  
mA  
W
8.14  
8.14  
4.90  
4.63  
5.05  
Table 10.2 : Power specification (Vdd Max = 1.900V, Vcc Max = 1.575V)  
2GB(M395T5663QZ4)  
Symbol  
E66  
E65  
E68  
E69  
F76  
F78  
(PC2-6400)  
1700  
1040  
4.65  
E76  
Notes  
Unit  
(PC2-5300)  
Icc_Idle_0  
2600  
1240  
6.45  
2600  
1980  
7.86  
1600  
1040  
4.50  
2300  
1040  
5.60  
2900  
2505  
9.33  
2400  
1040  
5.76  
2300  
940  
1480  
1040  
4.31  
3200  
1340  
7.59  
3200  
1340  
7.59  
@1.5V  
@1.8V  
mA  
mA  
W
Idd_Idle_0  
P_idle_0  
Icc_Idle_1  
Idd_Idle_1  
P_idle_1  
3400  
1240  
7.71  
4000  
1980  
9.12  
1930  
1060  
5.05  
4200  
1340  
9.16  
2500  
1040  
5.91  
4200  
1340  
9.16  
@1.5V  
@1.8V  
mA  
mA  
W
Icc_active_1  
Idd_active_1  
P_active_1  
Icc_active_2  
Idd_active_2  
P_active_2  
Icc_training  
Idd_training  
P_training  
3900  
2605  
11.09  
3700  
1240  
8.18  
3900  
4221  
14.16  
3700  
1980  
9.59  
1990  
2035  
7.00  
4700  
2826  
12.77  
4500  
1340  
9.63  
3300  
2726  
10.38  
2600  
1040  
6.07  
4700  
2826  
12.77  
4500  
1340  
9.63  
@1.5V  
@1.8V  
mA  
mA  
W
1920  
1060  
5.04  
@1.5V  
@1.8V  
mA  
mA  
W
4000  
1240  
8.66  
4000  
1980  
10.06  
1960  
1080  
5.14  
4600  
1340  
9.79  
2400  
940  
4600  
1340  
9.79  
@1.5V  
@1.8V  
mA  
mA  
W
5.41  
5.57  
Note :  
1. FBDIMM Power was calculated on the basis of DRAM and AMB Values in datasheet.  
Rev. 1.3 December 2008  
25 of 42  
FBDIMM  
DDR2 SDRAM  
Table 10.3 : Power specification (Vdd Max = 1.900V, Vcc Max = 1.575V)  
4GB(M395T5160QZ4)  
Symbol  
Notes  
Unit  
E66  
E65  
E68  
E69  
F76  
E76  
(PC2-5300)  
(PC2-6400)  
Icc_Idle_0  
2600  
1980  
7.86  
2600  
1980  
7.86  
1700  
1580  
5.68  
1480  
1650  
5.47  
1930  
1680  
6.23  
1990  
3361  
9.52  
1920  
1680  
6.22  
1960  
1700  
6.32  
3200  
2080  
8.99  
3200  
2080  
8.99  
@1.5V  
@1.8V  
mA  
mA  
W
Idd_Idle_0  
P_idle_0  
Icc_Idle_1  
Idd_Idle_1  
P_idle_1  
3400  
1980  
9.12  
3400  
1980  
9.12  
2600  
1580  
7.10  
4200  
2080  
10.57  
4700  
4661  
16.26  
4500  
2080  
11.04  
4600  
2080  
11.20  
4200  
2080  
10.57  
4700  
4661  
16.26  
4500  
2080  
11.04  
4600  
2080  
11.20  
@1.5V  
@1.8V  
mA  
mA  
W
Icc_active_1  
Idd_active_1  
P_active_1  
Icc_active_2  
Idd_active_2  
P_active_2  
Icc_training  
Idd_training  
P_training  
3900  
4221  
14.16  
3700  
1980  
9.59  
3900  
4221  
14.16  
3700  
1980  
9.59  
3200  
3921  
12.49  
2600  
1580  
7.10  
@1.5V  
@1.8V  
mA  
mA  
W
@1.5V  
@1.8V  
mA  
mA  
W
4000  
1980  
10.06  
4000  
1980  
10.06  
2500  
1580  
6.94  
@1.5V  
@1.8V  
mA  
mA  
W
Note :  
1. FBDIMM Power was calculated on the basis of DRAM and AMB Values in datasheet.  
Table 10.4 : Power specification (Vdd Max = 1.900V, Vcc Max = 1.575V)  
4GB(M395T5163QZ4)  
Symbol  
E68  
(PC2-5300)  
1600  
1580  
5.52  
F78  
(PC2-6400)  
1700  
1580  
5.68  
E78  
(PC2-6400)  
1700  
1580  
5.68  
Notes  
Unit  
Icc_Idle_0  
@1.5V  
@1.8V  
mA  
mA  
W
Idd_Idle_0  
P_idle_0  
Icc_Idle_1  
Idd_Idle_1  
P_idle_1  
2300  
1580  
6.62  
2500  
1580  
6.94  
2500  
1580  
6.94  
@1.5V  
@1.8V  
mA  
mA  
W
Icc_active_1  
Idd_active_1  
P_active_1  
Icc_active_2  
Idd_active_2  
P_active_2  
Icc_training  
Idd_training  
P_training  
2900  
3045  
10.35  
2400  
1580  
6.78  
3300  
3266  
11.40  
2600  
1580  
7.10  
3300  
3266  
11.40  
2600  
1580  
7.10  
@1.5V  
@1.8V  
mA  
mA  
W
@1.5V  
@1.8V  
mA  
mA  
W
2300  
1480  
6.43  
2400  
1480  
6.59  
2400  
1480  
6.59  
@1.5V  
@1.8V  
mA  
mA  
W
Note :  
1. FBDIMM Power was calculated on the basis of DRAM and AMB Values in datasheet.  
Rev. 1.3 December 2008  
26 of 42  
FBDIMM  
DDR2 SDRAM  
Table 10.5 : Power specification (Vdd Max = 1.900V, Vcc Max = 1.575V)  
8GB(M395T1G60QJ4)  
Symbol  
E68  
(PC2-5300)  
1700  
2660  
7.73  
F78  
(PC2-6400)  
1900  
2660  
8.05  
Notes  
Unit  
Icc_Idle_0  
Idd_Idle_0  
P_idle_0  
@1.5V  
@1.8V  
mA  
mA  
W
Icc_Idle_1  
Idd_Idle_1  
P_idle_1  
2600  
2660  
9.15  
2800  
2660  
9.46  
@1.5V  
@1.8V  
mA  
mA  
W
Icc_active_1  
Idd_active_1  
P_active_1  
Icc_active_2  
Idd_active_2  
P_active_2  
Icc_training  
Idd_training  
P_training  
3200  
5001  
14.54  
2600  
2660  
9.15  
3600  
5241  
15.63  
2800  
2660  
9.46  
@1.5V  
@1.8V  
mA  
mA  
W
@1.5V  
@1.8V  
mA  
mA  
W
2500  
2660  
8.99  
2700  
2660  
9.31  
@1.5V  
@1.8V  
mA  
mA  
W
Note :  
1. FBDIMM Power was calculated on the basis of DRAM and AMB Values in datasheet.  
Rev. 1.3 December 2008  
27 of 42  
FBDIMM  
DDR2 SDRAM  
Table 11 : VTT Currents  
Description  
Symbol  
ITT1  
Typ  
500  
500  
MAX  
700  
Units  
mA  
Idle current, DDR2 SDRAM device power down  
Active power, 50% DDR2 SDRAM BW  
ITT2  
700  
mA  
Table 12 : Reference Clock Input Specifications  
Values  
Parameter  
Symbol  
Units  
Note  
MIN  
MAX  
Reference clock frequency @3.2 Gb/s  
(nominal 133.33 MHz)  
Reference clock frequency @4.0 Gb/s  
(nominal 166.67 MHz)  
Rise time, fall time  
Voltage high  
Voltage low  
fRefclk-3.2  
fRefclk-4.0  
126.67  
133.40  
MHz  
MHz  
1.2  
158.33  
166.75  
1.2  
3
T
, T  
175  
660  
-150  
700  
850  
ps  
SCK-RISE SCK-FALL  
V
mV  
mV  
mV  
SCK-HIGH  
V
SCK-LOW  
Absolute crossing point  
Relative crossing  
V
V
250  
calculated  
550  
calculated  
4
4,5  
CROSS-ABS  
CROSS-REL  
Percent mismatch between rise and  
fall times  
T
-
10  
%
SCK-RISE-FALL-MATCH  
Duty cycle of reference clock  
Clock leakage current  
Clock input capacitance  
Clock input capacitance delta  
Transport delay  
Phase jitter sample size  
Reference clock jitter, filtered  
Reference clock deterministic jitter  
Note :  
T
40  
-10  
0.5  
60  
10  
2
0.25  
5
%
uA  
pF  
pF  
ns  
SCK-DUTYCYCLE  
I
6,7  
7
8
9, 10  
11  
12,13  
I-CK  
C
I-CK  
C
-0.25  
I_CK(D)  
T1  
16  
NSAMPLE  
10  
Periods  
ps  
T
40  
TBD  
REF-JITTER  
T
ps  
REF-DJ  
1.133MHz for PC2-4200 and 166MHz for PC2-5300.  
2. Measured with SSC disabled.  
3. Measured differentially through the range of 0.175V to 0.525V.  
4. The crossing point must meet the absolute and relative crossing point specification simultaneously.  
5. V and V are derived using the following calculation : Min = 0.5(V  
-0.710)+0.250;and Max=0.5(V -0.710)+0.550,  
havg  
CROSS_REL_(MIN)  
CROSS_REL(MAX)  
havg  
where Vhavg is the average of V  
SCK-HIGHM.  
6. Measured with a single-ended input voltage of 1V.  
7. Applies to reference clocks SCK and SCK.  
8. Difference between SCK and SCK input.  
9. T1 = [Tdatapath-Tclockpath](excluding PLL loop delays). This parameter is not a direct clock output parameter but in indirectly determines the clock  
output parameter T  
REF-JITTER.  
10. The net transport delay is the difference in time of flight between associated data and clock paths. The data path is defined from the reference clock  
source, through the TX, to data arrival at the data dampling point in the RX. The clock path is defined from the reference clock source to clock arrival  
at the same sampling point. The path delays are caused by copper trace routes. on-chip routing, on-chip buffering, etc. They include the time-of flight  
of interpolators or other clock adjustment mechanisms. They do not include the phase delays caused by finite PLL loop bandwidth because these de-  
lays are modeled by the PLL transfer functions.  
11. Direct measurement of phase jitter records over 1016 periods is impractical. It is expected that the jitter will be measured over a smaller, yet statistically  
16  
significant, sample size and the total jitter at 10 samples extrapolated from an estimate of the sigma of the random jitter components.  
12. Measured with SSC enabled on reference clock generator.  
13. As measured after the phase jitter filter. This number is separate from the receiver jitter budget that is defined by the TRXTotal - MIN parameters.  
Rev. 1.3 December 2008  
28 of 42  
FBDIMM  
DDR2 SDRAM  
Table 13 : Differential Transmitter Output Specifications  
Values  
Parameter  
Symbol  
Units  
Comments  
MIN  
MAX  
Differential peak-to-peak output voltage for large  
voltage swing  
V
900  
1,300  
mV  
mV  
mV  
mV  
mV  
dB  
EQ1, Note1  
EQ1, Note1  
EQ1, Note1  
EQ2, Note1  
EQ2, Note1,2  
1,3,4  
TX-DIFFp-p_L  
Differential peak-to -peak output voltage for requ-  
lar voltage swing  
V
800  
520  
TX-DIFFPp-p_R  
Differential peak-to-peak output voltage for small  
votage swing  
V
TX-DIFFp-p_S  
DC common code output voltage for large voltage  
swing  
V
375  
280  
-4.0  
-7.0  
90  
TX-CM_L  
DC common code output voltage for small volt-  
age swing  
V
135  
-3.0  
-5.0  
TX-CM_S  
De-emphasized differential output voltage ratio  
for -3.5 dB de-emphasis  
V
V
TX-DE-3.5-Ratio  
TX-DE-6.0-Ratio  
De-emphasized differential output voltage ratio  
for -6.0 dB de-emphasis  
dB  
1,2,3  
AC peak-to-peak common mode output voltage  
for large swing  
V
mV  
mV  
mV  
mV  
mV  
mV  
EQ7, Note1,5  
EQ7, Note1,5  
EQ7, Note1,5  
6
TX-CM-ACp-p-L  
TX-CM-ACp-p-R  
TX-CM-ACp-p-S  
AC peak-to-peak common mode output voltage  
for regular swing  
V
V
80  
AC peak-to-peak common mode output voltage  
for small swing  
70  
Maximum single-ended voltage in EI condition  
DC+AC  
V
50  
TX-IDLE-SE  
Maximum single-ended voltage in EI condition  
DC+AC  
V
20  
6
TX-IDLE-SE-DC  
Maximum peak-to-peak differential voltage in EI  
condition  
V
40  
TX-IDLE-DIFFp-p  
Single-ended voltage (w.r.t. VSS) on D+/D-  
Mimimum TX eye width, 3.2 and 4.0 Gb/s  
Mimimum TX eye width 4.8 Gb/s  
Maximum TX deterministic jitter, 3.2 and 4.8Gb/s  
Maximum TX deterministic jitter, 4.8 Gb/s  
Insantaneous pulse width  
V
-75  
750  
mV  
UI  
1,7  
TX-SE  
T
1,8  
TX-Eye-MIN  
T
UI  
1,8  
TX-EYE-MIN4.8  
T
02  
UI  
1,8,9  
TX-DJ-DD  
T
TBD  
UI  
1,8,9  
10  
TX-DJ-DD-4.8  
T
0.85  
30  
UI  
TX-PULSE  
Differential TX output rise/fall time  
Mismatch between rise and fall times  
Differential return loss  
T
T
90  
20  
ps  
ps  
dB  
dB  
20-80% voltage, Note1  
TX-RISE TX-FALL  
T
TX-RF-MISMATCH  
RL  
8
6
1 GHz-2.4 GHz, Note 11  
1 GHz-2.4 GHz, Note 11  
12  
TTX-DIFF  
Common mode return loss  
RL  
TX-CM  
Transmitter termination impender  
R
41  
55  
4
TX  
EQ 4, Boundaries are applied sepa-  
rately to high and low output voltage  
states  
D+/D-TX Impedance difference  
R
%
TX-MATCH-DC  
Lane-to lane skew at TX  
Lane-to lane skew at TX  
L
L
100+3UI  
100=2UI  
ps  
ps  
13, 15  
14, 15  
TX-SKEW1  
TX-SKEW2  
Rev. 1.3 December 2008  
29 of 42  
FBDIMM  
DDR2 SDRAM  
Table 14 : Differential Receiver Input Specifications  
Values  
Parameter  
Symbol  
Units  
Comments  
MIN  
MAX  
TBD  
75  
Differential peak-to-peak input voltage for large voltage swing  
Maximum single-ended voltage in El condition  
V
170  
mV  
mV  
mV  
mV  
mV  
mV  
EQ 5, Note1  
RX-DIFFp-p  
V
2,3  
RX-IDLE-SE  
Maximum single-ended voltage in Ei condition (DC only)  
Maximum peak-to-peak differential voltage in El condition  
V
50  
2,3  
RX-IDLE-SE-DC  
V
65  
3
RX-IDLE-DIFFp-p  
Single-ended voltage (w.r.t. V ) on D+/D-  
SS  
V
-300  
85  
900  
4
RX-SE  
Single-pulse peak differential input voltage  
Amplitude ratio between adjacent symbols  
Maximum RX inherent timing error, 3.2 and 4.0 Gb/x  
Maximum RX inherent deterministic timing eror, 3.2 and 4.8 Gb/s  
Single-pulse width as zero-voltage crossing  
Single-pulse width at minimum-level crossing  
Differential RX input rise/fall time  
V
4,5  
RX-DIFF-PULSE  
V
TBD  
0.4  
4,6  
RX-DIFF-ADJ-RATIO  
T
UI  
UI  
UI  
UI  
UI  
UI  
ps  
mV  
mV  
%
4,7,8  
RX-TJ-MAX  
T
TBD  
0.3  
4,7,8  
RX-TJ-MAX4.8  
V
4,7,8,9  
RX-DJ-DD  
V
TBD  
4,7,8,9  
RX-DJ-DD-4.8  
T
T
0.55  
0.2  
50  
4,5  
RX-PW-ZC  
Common mode fo the input voltage  
4.5  
20~80% voltage  
EQ 6, Note1, 10  
EQ 7, Note 1  
11  
RX-PW-ML  
Differential RX output rise/fall time  
T
T
RX-RISE RX-FALL  
Common mode of input voltage  
V
120  
400  
270  
45  
RX-CM  
RX-CM-ACp-p  
V
RX-CM-EH-RATOP  
AC peak-to-peak common mode of input voltage  
V
Ratio of V  
to minimum V  
RX-CM-ACp-p  
RX-DIFFp-p  
Differential return loss  
RL  
9
6
dB  
dB  
1GHz-2.4 GHz, Note 12  
1GHz-2.4 GHz, Note 12  
13  
RX-DIFF  
Common mode return loss  
RX termination impedance  
D+/D- RX Impedance difference  
RL  
RX-CM  
R
41  
55  
4
RX  
R
%
EQ 8  
RX-MATCH-DC  
Lane-to-lane skew at the receiver  
that must be tolerated. Note 14  
Lane-to lane PCB skew at RX  
L
6
UI  
RX-PCB-SKEW  
Minimum RX drift tolerance  
Minim data tracking 3dB bandwidth  
Electrical idle entry detect time  
Electrical idle exit detect time  
Bit Error Ratio  
T
400  
0.2  
ps  
MHz  
ns  
15  
16  
17  
RX-DRIFT  
F
TRK  
EI-ENTRY-DETECT  
T
60  
30  
T
ns  
EI-EXIT-DETECT  
-12  
BER  
10  
18  
Notes :  
1. Specified at the package pins into a timing and voltage compliant test setup. Note that signal levels at the pad will be lower than at the pin.  
2. Single-ended voltages below that value that are simultaneously detected on D+ and D-are interpreted as the Electrical Idle condition. Worst-case mar-  
gins are determined for the case with transmitter using small voltage swing.  
3. Multiple lanes need to detect the El condition before the device can act upon the El detection.  
4. Specified at the package pins into a timing and voltage compliance test setup.  
5. The single-pulse mask provides suffcient symbol energy for reliable RX reception. Each symbol must comply with both the single-pulse mask and the  
cumulative eyemask.  
6. The relative amplitude ratio limit between adjacent symbols prevents excessive intersymbol interference in the RX. Each symbol must comply with the  
peak amplitude ratio with regard to both the preceding and subsequent symbols.  
7. This number does not include the effects of SSC or reference clock jitter.  
8. This number includes setup and hold of the RX sampling flop.  
9. Defined as the dual-dirac deterministic timing error.  
10. Allows for 15 mV DC offset between transmit and receive devices.  
Rev. 1.3 December 2008  
30 of 42  
FBDIMM  
DDR2 SDRAM  
11. The received differential signal must satisfy both this ratio as well as the absolute maximum AC peaktopeak common mode specification. For example,  
if V p-p is 200 mV, the maximum AC peak-to peak common mode is the lesser of (200 mV*0.45=90 mV)and V  
.
RX-CM-AC-p-p  
RX-DIFF  
12. One of the components that contribute to the deterioration of the return loss is the ESD structure which needs to be carefully designed.  
13. The termination small signal resistance; tolerance across voltage from 100 mV to 400 mV shall not exceed +/-5 W with regard to the average of the  
values measured at 100 mV and at 400 mV for that pin.  
14. This number represents the lane-to-lane skew between TX and RX pins and does not include the transmitter output skew from the component of the  
end-to-end channel skew in the AMB specification.  
15. Measured from the reference clock edge to the center of the input eye. This specification must be met across specified voltage and temperature ranges  
for a single component. Drift rate of change is significantly below the tracking capability of the receiver.  
16. This bandwidth number assume the specified minimum data transition density. Maximum jitter at 0.2 MHz is 0.05 UI,  
17. The specified time includes the time required to forward the El entry condition.  
18. BER per differential lane.  
V
= 2x[V  
+-V  
] (EQ5)  
RX-DIFFp-p  
RX-D  
RX-D-  
(V  
= DC(avg) of [V  
+ V  
] /2) (EQ 6)  
RX-D-  
RX-CM  
RX-D+  
V
=((Max[V  
+ V  
)/2)((Min [V  
+ V  
)/2) (EQ 7)  
RX-D-  
RX-CM-AC  
RX-D+  
RX-D  
RX-D+  
R
= 2x((R  
-R  
)/(R  
+ R  
) (EQ 8)  
RX-D-  
RX-MATCH-DC  
RX-D+ RX-D-  
RX-D+  
Rev. 1.3 December 2008  
31 of 42  
FBDIMM  
DDR2 SDRAM  
7.0 CHANNEL INITIALIZATION  
This chapter defines the process of initializing the FBD channel. The FBD initialzation process generally follows the top to bottom se-  
quence of state transitions shown in the high level AMB Initialization Flow diagram in Figure The host must sequence the AMB devices  
through the Disable, (back to Disable), Training, Testing, and Polling states in order to transition the AMBs into the active channel L0  
state. The value in parenthesis in each state bubble indicates the condition/activity of the links during these states.  
Figure15 : AMB Initialization Flow Diagram  
Power-up  
Disable  
Calibrate  
(EI)  
(1’s)  
Tranining  
(TS0)  
Testing  
(TS1)  
Polling  
(TS2)  
Config  
(TS3)  
L0  
L0s  
(EI)  
(EI)  
Recalibrate  
(NOP2)  
The states in the AMB Initialization Flow diagram are :  
Disable - The channel is inactive and the interface signals are in a low power Electrical Idle condition.  
Training - The initial bit alignment and frame alignment training is done in this state.  
Testing - Each bit lane is individually tested in this state.  
Polling - The channel capabilities of the individual AMB devices are communicated in this state.  
Config - The channel width configuration is communicated to the AMB devices in this state.  
L0 - The channel is active and frames of information are flowing between the host and the AMB devices.  
Recalibrate - The channel is momentarily idled to allow TX and Rx circuits to be recalibrated.  
L0s - The channel is in a low-latency power saving condition. (Optional)  
Each bit lane is initialized (mosly) independently to support fault tolerance. The transitions in the figure represent the transitions of the  
AMB core logic state machine and are taken when the transition event is detected on the minimum required number of southound bit  
lanes. The chain of FBD links connecting the host the AMBs must each be initialized to esabish the timing for broadcasting data frames  
in the southbound direction and for merging data frame in the northbound direction. The AMBs on the channel are generally initialized  
as a group but because each AMB is individually addressable many altemate may altemate initialization sequences may be employed.  
Rev. 1.3 December 2008  
32 of 42  
FBDIMM  
DDR2 SDRAM  
Figure 16 : FBDIMM Physical Dimension -1 (For PCB) : 128Mbx8 based 128Mx72 Module (1Rank)  
M395T2863QZ4  
133.35  
126.85  
2x 3.25  
2x 2.50 MIN  
d
AMB  
c
b
2x DIA. 2.0 +0.1/-0  
a
67  
51  
5.175  
123  
R0.595  
6.0  
1.19  
R0.75  
5.0  
2.50  
0.8 +/- 0.05  
2.50  
1.19  
120°  
2.25  
3.80  
1.25  
1.00  
MAX 0.178  
DETAIL b  
R0.595  
1.50  
DETAIL a  
DETAIL c  
DETAIL d  
DETAIL e  
Rev. 1.3 December 2008  
33 of 42  
FBDIMM  
DDR2 SDRAM  
Figure 17 : FBDIMM Physical Dimension -2 (For Heat Spreader): 128Mbx8 based 128Mx72 Module (1Rank)  
M395T2863QZ4  
Units : Millimeters  
8.2 max  
133.35  
67  
51  
1.27 ± 0.10  
Back  
3.0 max  
123  
Rev. 1.3 December 2008  
34 of 42  
FBDIMM  
DDR2 SDRAM  
Figure 18 : FBDIMM Physical Dimension -1 (For PCB) : 128Mbx8 based 256Mx72 Module (2Rank)  
M395T5663QZ4  
133.35  
126.85  
2x 3.25  
2x 2.50 MIN  
d
AMB  
c
b
2x DIA. 2.0 +0.1/-0  
a
67  
51  
5.175  
123  
R0.595  
6.0  
1.19  
R0.75  
5.0  
2.50  
0.8 +/- 0.05  
2.50  
1.19  
120°  
2.25  
3.80  
1.25  
1.00  
MAX 0.178  
DETAIL b  
R0.595  
1.50  
DETAIL a  
DETAIL c  
DETAIL d  
DETAIL e  
Rev. 1.3 December 2008  
35 of 42  
FBDIMM  
DDR2 SDRAM  
Figure 19 : FBDIMM Physical Dimension -2 (For Heat Spreader) : 128Mbx8 based 256Mx72 Module (2Rank)  
M395T5663QZ4  
Units : Millimeters  
8.2 max  
133.35  
67  
51  
1.27 ± 0.10  
Back  
3.0 max  
123  
Rev. 1.3 December 2008  
36 of 42  
FBDIMM  
DDR2 SDRAM  
Figure 20 : FBDIMM Physical Dimension -1 (For PCB) : 256Mbx4 based 512Mx72 Module (2Rank)  
M395T5160QZ4  
133.35  
126.85  
2x 3.25  
2x 2.50 MIN  
d
AMB  
e
c
b
2x DIA. 2.0 +0.1/-0  
a
67  
51  
5.175  
123  
R0.595  
6.0  
1.19  
R0.75  
5.0  
2.50  
0.8 +/- 0.05  
2.50  
1.19  
120°  
2.25  
3.80  
1.25  
1.00  
MAX 0.178  
DETAIL b  
R0.595  
1.50  
DETAIL a  
DETAIL c  
DETAIL d  
DETAIL e  
Rev. 1.3 December 2008  
37 of 42  
FBDIMM  
DDR2 SDRAM  
Figure 21 : FBDIMM Physical Dimension -2 (For Heat Spreader): 256Mbx4 based 512Mx72 Module (2Rank)  
M395T5160QZ4  
Units : Millimeters  
8.2 max  
133.35  
67  
51  
1.27 ± 0.10  
Back  
3.0 max  
123  
Rev. 1.3 December 2008  
38 of 42  
FBDIMM  
DDR2 SDRAM  
Figure 22 : FBDIMM Physical Dimension -1 (For PCB) : 128Mbx8 based 512Mx72 Module (4Rank)  
M395T5163QZ4  
133.35  
126.85  
2x 3.25  
2x 2.50 MIN  
d
AMB  
e
c
b
2x DIA. 2.0 +0.1/-0  
a
67  
51  
5.175  
123  
R0.595  
6.0  
1.19  
R0.75  
5.0  
2.50  
0.8 +/- 0.05  
2.50  
1.19  
120°  
2.25  
3.80  
1.25  
1.00  
MAX 0.178  
DETAIL b  
R0.595  
1.50  
DETAIL a  
DETAIL c  
DETAIL d  
DETAIL e  
Rev. 1.3 December 2008  
39 of 42  
FBDIMM  
DDR2 SDRAM  
Figure 23 : FBDIMM Physical Dimension -2 (For Heat Spreader): 128Mbx8 based 512Mx72 Module (4Rank)  
M395T5163QZ4  
Units : Millimeters  
8.2 max  
133.35  
67  
51  
1.27 ± 0.10  
Back  
3.0 max  
123  
Rev. 1.3 December 2008  
40 of 42  
FBDIMM  
DDR2 SDRAM  
Figure 24 : FBDIMM Physical Dimension -1 (For PCB) : 256Mbx4 based 1Gx72 Module (4Rank)  
M395T1G60QJ4  
133.35  
126.85  
2x 3.25  
2x 2.50 MIN  
d
AMB  
e
c
b
2x DIA. 2.0 +0.1/-0  
a
67  
51  
5.175  
123  
R0.595  
6.0  
1.19  
R0.75  
5.0  
2.50  
0.8 +/- 0.05  
2.50  
1.19  
120°  
2.25  
3.80  
1.25  
1.00  
MAX 0.178  
DETAIL b  
R0.595  
1.50  
DETAIL a  
DETAIL c  
DETAIL d  
DETAIL e  
Rev. 1.3 December 2008  
41 of 42  
FBDIMM  
DDR2 SDRAM  
Figure 25 : FBDIMM Physical Dimension -2 (For Heat Spreader): 256Mbx4 based 1Gx72 Module (4Rank)  
M395T1G60QJ4  
Units : Millimeters  
8.2 max  
133.35  
67  
51  
1.27 ± 0.10  
Back  
3.0 max  
123  
Rev. 1.3 December 2008  
42 of 42  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY