M471B2874DZ1-CF8 [SAMSUNG]

DDR DRAM Module, 128MX64, CMOS, ROHS COMPLIANT, SO-DIMM-204;
M471B2874DZ1-CF8
型号: M471B2874DZ1-CF8
厂家: SAMSUNG    SAMSUNG
描述:

DDR DRAM Module, 128MX64, CMOS, ROHS COMPLIANT, SO-DIMM-204

时钟 动态存储器 双倍数据速率 内存集成电路
文件: 总45页 (文件大小:805K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Unbuffered SoDIMM  
DDR3 SDRAM  
DDR3 SDRAM Specification  
204pin Unbuffered SODIMM based on 1Gb D-die  
64-bit Non-ECC  
82FBGA with Lead-Free  
(RoHS compliant)  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE. NOTHING IN THIS DOCUMENT SHALL BE  
CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHER-  
WISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOL-  
OGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AS "AS IS" BASIS WITHOUT  
GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar  
applications where Product failure could result in loss of life or personal or physical harm, or any military or  
defense application, or any governmental procurement to which special terms or provisions may apply.  
* Samsung Electronics reserves the right to change products or specification without notice.  
1 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
Table Contents  
1.0 DDR3 Unbuffered SoDIMM Ordering Information ......................................................................................................4  
2.0 Key Features .................................................................................................................................................................4  
3.0 Address Configuration ................................................................................................................................................. 4  
4.0 x64 DIMM Pin Configurations (Front side/Back side) ................................................................................................5  
5.0 Pin Description ..............................................................................................................................................................6  
6.0 Input/Output Functional Description ..........................................................................................................................7  
7.0 Functional Block Diagram: ..........................................................................................................................................8  
7.1 512MB, 64Mx64 Module(Populated as 1 rank of x16 DDR3 SDRAMs) ...............................................................8  
7.2 1GB, 128Mx64 Module(Populated as 2 ranks of x16 DDR3 SDRAMs) ...............................................................9  
7.3 2GB, 256Mx64 Module(Populated as 2 ranks of x8 DDR3 SDRAMs) ...............................................................10  
8.0 Absolute Maximum Ratings .......................................................................................................................................11  
8.1 Absolute Maximum DC Ratings ...........................................................................................................................11  
8.2 DRAM Component Operating Temperature Range ............................................................................................11  
9.0 AC & DC Operating Conditions .................................................................................................................................11  
9.1 Recommended DC Operating Conditions (SSTL - 15) .......................................................................................11  
10.0 AC & DC Input Measurement Levels .......................................................................................................................12  
10.1 AC and DC Logic Input Levels for Single-ended Signals ................................................................................12  
10.2 VREF Tolerances. ...............................................................................................................................................13  
10.3 AC and DC Logic Input Levels for Differential Signals ...................................................................................14  
10.3.1 Differential Signals Definition .................................................................................................................14  
10.3.2 Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS) ..................................14  
10.3.3 Single-ended Requirements for Differential Signals ............................................................................15  
10.3.4 Differential Input Cross Point Voltage ...................................................................................................16  
10.4 Slew Rate Definition for Single Ended Input Signals ......................................................................................16  
10.5 Slew rate definition for Differential Input Signals ............................................................................................16  
11.0 AC and DC Output Measurement Levels ................................................................................................................17  
11.1 Single Ended AC and DC Output Levels ..........................................................................................................17  
11.2 Differential AC and DC Output Levels ..............................................................................................................17  
11.3 Single Ended Output Slew Rate ........................................................................................................................17  
11.4 Differential Output Slew Rate ............................................................................................................................18  
12.0 IDD specification definition ......................................................................................................................................19  
12.1 IDD SPEC Table ...................................................................................................................................................21  
13.0 Input/Output Capacitance ........................................................................................................................................23  
14.0 Electrical Characteristics and AC timing ................................................................................................................24  
14.1 Refresh Parameters by Device Density .............................................................................................................24  
14.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin .........................................................24  
14.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin ..........................................................25  
14.3.1 Speed Bin Table Notes ............................................................................................................................26  
15.0 Timing Parameters for DDR3-800, DDR3-1066 and DDR3-1333 ............................................................................27  
15.1 Jitter Notes ..........................................................................................................................................................30  
15.2 Timing Parameter Notes .....................................................................................................................................31  
15.3 Address / Command Setup, Hold and Derating: ..............................................................................................32  
15.4 Data Setup, Hold and Slew Rate Derating: .......................................................................................................38  
16.0 Physical Dimensions : .............................................................................................................................................43  
16.1 64Mbx16 based 64Mx64 Module(1 Rank) .........................................................................................................43  
16.2 64Mbx16 based 128Mx64 Module(2 Ranks) .....................................................................................................44  
16.3 128Mbx8 based 256Mx64 Module(2 Ranks) .....................................................................................................45  
2 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
Revision History  
Revision  
1.0  
Month  
March  
July  
Year  
2008  
2008  
History  
- First release  
- Typo corrected  
1.1  
- Change Current SPEC  
- Correct Typo.  
1.2  
August  
2008  
3 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
1.0 DDR3 Unbuffered SoDIMM Ordering Information  
Number of  
Height  
Part Number  
Density  
Organization  
Component Composition  
Rank  
M471B6474DZ1-CF7/F8/H9  
M471B2874DZ1-CF7/F8/H9  
M471B5673DZ1-CF7/F8/H9  
512MB  
1GB  
2GB  
64Mx64  
128Mx64  
256Mx64  
64Mx16(K4B1G1646D-HC##)*4  
64Mx16(K4B1G1646D-HC##)*8  
128Mx8(K4B1G0846D-HC##)*16  
1
2
2
30mm  
30mm  
30mm  
* ## : F7 / F8 / H9  
** F7 : 800Mbps 6-6-6, F8 : 1066Mbps 7-7-7, H9 : 1333Mbps 9-9-9  
2.0 Key Features  
DDR3-800  
6-6-6  
2.5  
DDR3-1066  
DDR3-1333  
9-9-9  
1.5  
Speed  
Unit  
7-7-7  
1.875  
7
tCK(min)  
CAS Latency  
tRCD(min)  
tRP(min)  
ns  
tCK  
ns  
6
9
15  
13.125  
13.125  
37.5  
13.5  
13.5  
36  
15  
ns  
tRAS(min)  
tRC(min)  
37.5  
52.5  
ns  
50.625  
49.5  
ns  
JEDEC standard 1.5V ± 0.075V Power Supply  
DDQ = 1.5V ± 0.075V  
400 MHz fCK for 800Mb/sec/pin, 533MHz fCK for 1066Mb/sec/pin, 667MHz fCK for 1333Mb/sec/pin  
V
8 independent internal bank  
Programmable CAS Latency: 6,7,8,9  
Programmable Additive Latency(Posted CAS) : 0, CL - 2, or CL - 1 clock  
Programmable CAS Write Latency(CWL) = 5(DDR3-800), 6(DDR3-1066), 7(DDR3-1333)  
8-bit pre-fetch  
Burst Length: 8 (Interleave without any limit, sequential with starting address “000” only), 4 with tCCD = 4 which does not allow seamless read or  
write [either On the fly using A12 or MRS]  
Bi-directional Differential Data Strobe  
Internal(self) calibration : Internal self calibration through ZQ pin (RZQ : 240 ohm ± 1%)  
On Die Termination using ODT pin  
Average Refresh Period 7.8us at lower than TCASE 85°C, 3.9us at 85°C < TCASE < 95 °C  
Asynchronous Reset  
3.0 Address Configuration  
Organization  
Row Address  
A0-A12  
Column Address  
A0-A9  
Bank Address  
BA0-BA2  
Auto Precharge  
A10/AP  
64x16(1Gb) based Module  
128x8(1Gb) based Module  
A0-A13  
A0-A9  
BA0-BA2  
A10/AP  
4 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
4.0 x64 DIMM Pin Configurations (Front side/Back side)  
Pin  
Front  
Pin  
Back  
Pin  
Front  
Pin  
Back  
Pin  
139  
141  
143  
145  
147  
149  
Front  
Pin  
140  
142  
144  
146  
148  
Back  
DQ38  
DQ39  
V
V
V
V
V
1
2
71  
72  
REFDQ  
SS  
SS  
SS  
SS  
V
3
4
DQ4  
DQ5  
KEY  
DQ34  
DQ35  
SS  
V
5
DQ0  
DQ1  
6
73  
75  
77  
CKE0  
74  
76  
78  
CKE1  
SS  
V
V
V
V
7
8
DQ44  
DQ45  
SS  
DD  
DD  
SS  
3
V
9
10  
DQS0  
DQS0  
NC  
DQ40  
DQ41  
A15  
SS  
3
V
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
41  
43  
45  
47  
49  
50  
53  
55  
57  
59  
61  
63  
65  
67  
69  
DM0  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
79  
81  
BA2  
80  
82  
150  
152  
154  
156  
158  
160  
162  
164  
166  
168  
170  
172  
174  
176  
178  
180  
182  
184  
186  
188  
190  
192  
194  
196  
198  
200  
202  
204  
A14  
SS  
V
V
V
V
V
151  
153  
155  
157  
159  
161  
163  
165  
167  
169  
171  
173  
175  
177  
179  
181  
183  
185  
187  
189  
191  
193  
195  
197  
199  
201  
203  
DQS5  
DQS5  
SS  
SS  
DD  
DD  
SS  
DQ2  
DQ3  
DQ6  
DQ7  
83  
A12/BC  
A9  
84  
A11  
A7  
DM5  
V
V
85  
86  
SS  
SS  
V
V
V
V
87  
88  
DQ42  
DQ43  
DQ46  
DQ47  
SS  
SS  
DD  
DD  
DQ8  
DQ9  
DQ12  
DQ13  
89  
A8  
A5  
90  
A6  
A4  
V
V
91  
92  
SS  
SS  
V
V
V
V
93  
94  
DQ48  
DQ49  
DQ52  
DQ53  
SS  
SS  
DD  
DD  
DQS1  
DQS1  
DM1  
95  
A3  
A1  
96  
A2  
A0  
V
V
RESET  
97  
98  
SS  
SS  
V
V
V
V
DQS6  
DQS6  
DM6  
99  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
122  
124  
126  
128  
130  
132  
134  
136  
138  
SS  
SS  
DD  
DD  
V
DQ10  
DQ11  
DQ14  
DQ15  
101  
103  
105  
107  
109  
111  
113  
115  
117  
119  
CK0  
CK0  
CK1  
CK1  
SS  
V
DQ54  
DQ55  
SS  
V
V
V
V
DQ50  
DQ51  
SS  
SS  
DD  
DD  
V
DQ16  
DQ17  
DQ20  
DQ21  
A10/AP  
BA0  
BA1  
RAS  
SS  
V
DQ60  
DQ61  
SS  
V
V
V
V
DQ56  
DQ57  
SS  
SS  
DD  
DD  
V
DQS2  
DQS2  
DM2  
WE  
S0  
SS  
V
V
CAS  
ODT0  
DQS7  
DQS7  
SS  
SS  
V
V
V
DQ22  
DQ23  
DM7  
SS  
DD  
DD  
3
V
V
DQ18  
DQ19  
ODT1  
NC  
A13  
SS  
SS  
V
121  
123  
125  
127  
129  
131  
133  
135  
137  
S1  
DQ58  
DQ59  
DQ62  
DQ63  
SS  
V
V
V
DQ28  
DQ29  
SS  
DD  
DD  
V
V
V
DQ24  
DQ25  
TEST  
REFCA  
SS  
SS  
V
V
V
SA0  
NC  
SDA  
SCL  
SS  
SS  
SS  
V
V
DQS3  
DQS3  
DQ32  
DQ33  
DQ36  
DQ37  
SS  
DDSPD  
SA1  
DM3  
V
V
V
V
V
V
SS  
SS  
SS  
SS  
TT  
TT  
DQ26  
DQ27  
DQ30  
DQ31  
DQS4  
DQS4  
DM4  
V
SS  
Note :  
1. NC = No Connect, NU = Not Useable, RFU = Reserved Future Use  
2. TEST(pin 125) is reserved for bus analysis probes and is NC on normal memory modules.  
3. This address might be connected to NC balls of the DRAMs (depending on density); either way they will be connected to the termination resistor.  
SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice.  
5 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
5.0 Pin Description  
Pin Name  
Description  
Number Pin Name  
Description  
Number  
CK0, CK1  
Clock Inputs, positive line  
2
DQ0-DQ63  
Data Input/Output  
64  
Data Masks/ Data strobes,  
Termination data strobes  
CK0, CK1  
Clock Inputs, negative line  
2
DM0-DM7  
8
CKE0, CKE1 Clock Enables  
2
1
1
DQS0-DQS7 Data strobes  
8
8
1
RAS  
CAS  
Row Address Strobe  
DQS0-DQS7 Data strobes complement  
Column Address Strobe  
RESET  
TEST  
VDD  
Reset Pin  
Logic Analyzer specific test pin (No connect  
on SODIMM)  
WE  
Write Enable  
1
2
1
S0, S1  
Chip Selects  
Core and I/O Power  
18  
52  
A0-A9, A11,  
A13-A15  
VSS  
Address Inputs  
14  
Ground  
VREFDQ  
VREFCA  
A10/AP  
Address Input/Autoprecharge  
1
1
Input/Output Reference  
2
1
VDDSPD  
VTT  
A12/BC  
Address Input/Burst chop  
SDRAM Bank Addresses  
SPD and Temp sensor Power  
BA0-BA2  
3
2
1
1
2
Termination Voltage  
Reserved for future use  
Total  
2
3
ODT0, ODT1 On-die termination control  
NC  
SCL  
SDA  
Serial Presence Detect (SPD) Clock Input  
204  
SPD Data Input/Output  
SPD Address  
SA0-SA1  
*The V and V  
pins are tied common to a single power-plane on these desigus.  
DDQ  
DD  
6 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
6.0 Input/Output Functional Description  
Symbol  
Type  
Function  
The system clock inputs. All address and command lines are sampled on the cross point of the rising edge of CK and  
falling edge of CK. A Delay Locked Loop (DLL) circuit is driven from the clock inputs and output timing for read opera-  
tions is synchronized to the input clock.  
CK0-CK1  
CK0-CK1  
Input  
Activates the DDR3 SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks,  
CKE low initiates the Power Down mode or the Self Refresh mode.  
CKE0-CKE1  
S0-S1  
Input  
Input  
Input  
Enables the associated DDR3 SDRAM command decoder when low and disables the command decoder when high.  
When the command decoder is disabled, new commands are ignored but previous operations continue. Rank 0 is  
selected by S0; Rank 1 is selected by S1.  
When sampled at the cross point of the rising edge of CK and falling edge of CK, signals CAS, RAS, and WE define  
the operation to be executed by the SDRAM.  
RAS, CAS, WE  
BA0-BA2  
Input  
Input  
Selects which DDR3 SDRAM internal bank of eight is activated.  
ODT0-ODT1  
Asserts on-die termination for DQ, DM, DQS, and DQS signals if enabled via the DDR3 SDRAM mode register.  
During a Bank Activate command cycle, defines the row address when sampled at the cross point of the rising edge of  
CK and falling edge of CK. During a Read or Write command cycle, defines the column address when sampled at the  
cross point of the rising edge of CK and falling edge of CK. In addition to the column address, AP is used to invoke  
autoprecharge operation at the end of the burst read or write cycle. If AP is high, autoprecharge is selected and BA0-  
BAn defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a Precharge command cycle,  
AP is used in conjunction with BA0-BAn to control which bank(s) to precharge. If AP is high, all banks will be pre-  
charged regardless of the state of BA0-BAn inputs. If AP is low, then BA0-BAn are used to define which bank to pre-  
charge.A12(BC) is sampled during READ and WRITE commands to determine if burst chop (on-thefly) will be  
performed (HIGH, no burst chop; LOW, burst chopped)  
A0-A9,  
A10/AP,  
A11  
A12/BC  
A13-A15  
Input  
DQ0-DQ63  
DM0-DM7  
I/O  
Data Input/Output pins.  
The data write masks, associated with one data byte. In Write mode, DM operates as a byte mask by allowing input  
data to be written if it is low but blocks the write operation if it is high. In Read mode, DM lines have no effect.  
Input  
The data strobes, associated with one data byte, sourced with data transfers. In Write mode, the data strobe is  
sourced by the controller and is centered in the data window. In Read mode, the data strobe is sourced by the DDR3  
SDRAMs and is sent at the leading edge of the data window. DQS signals are complements, and timing is relative to  
the crosspoint of respective DQS and DQS.  
DQS0-DQS7  
DQS0-DQS7  
I/O  
VDD,VDDSPD,  
VSS  
Supply  
Supply  
I/O  
Power supplies for core, I/O, Serial Presence Detect, Temp sensor, and ground for the module.  
Reference voltage for SSTL15 inputs.  
VREFDQ,  
VREFCA  
This is a bidirectional pin used to transfer data into or out of the SPD EEPROM and Temp sensor. A resistor must be  
connected from the SDA bus line to VDDSPD on the system planar to act as a pull up.  
SDA  
SCL  
SA0-SA1  
TEST  
Input  
Input  
I/O  
This signal is used to clock data into and out of the SPD EEPROM and Temp sensor.  
Address pins used to select the Serial Presence Detect and Temp sensor base address.  
The TEST pin is reserved for bus analysis tools and is not connected on normal memory modules  
RESET In Active Low This signal resets the DDR3 SDRAM  
RESET  
Input  
7 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
7.0 Functional Block Diagram:  
7.1 512MB, 64Mx64 Module(Populated as 1 rank of x16 DDR3 SDRAMs)  
SCL  
SA0  
SA1  
SCL  
A0  
A1  
A2  
(SPD)  
WP  
SDA  
240Ω  
DQS0  
DQS0  
DM0  
LDQS  
LDQS  
LDM  
± 1%  
ZQ  
DQ[0:7]  
DQS1  
DQS1  
DM1  
DQ[0:7]  
UDQS  
UDQS  
UDM  
D0  
DQ[8:15]  
DQ[8:15]  
V
V
tt  
tt  
V
SPD  
DDSPD  
V
V
D0 - D3  
D0 - D3  
D0 - D3  
D0 - D3, SPD  
D0 - D3  
D0 - D3  
REFCA  
REFDQ  
240Ω  
DQS2  
DQS2  
LDQS  
LDQS  
LDM  
± 1%  
V
DD  
ZQ  
DM2  
V
SS  
DQ[16:23]  
DQS3  
DQ[0:7]  
UDQS  
UDQS  
UDM  
D1  
CK0  
CK0  
DQS3  
DM3  
DQ[8:15]  
DQ[24:31]  
Terminated near  
card edge  
CK1  
CK1  
NC  
ODT1  
S1  
NC  
240Ω  
DQS4  
DQS4  
LDQS  
LDQS  
LDM  
D0 - D3  
± 1%  
RESET  
ZQ  
DM4  
DQ[32:39]  
DQS5  
DQ[0:7]  
UDQS  
UDQS  
UDM  
D2  
DQS5  
DM5  
DQ[8:15]  
DQ[40:47]  
D0  
D1  
D2  
D3  
240Ω  
DQS6  
DQS6  
LDQS  
LDQS  
LDM  
± 1%  
ZQ  
DM6  
DQ[48:55]  
DQS7  
DQ[0:7]  
UDQS  
UDQS  
UDM  
D3  
Address and Controllines  
DQS7  
DM7  
DQ[8:15]  
DQ[56:63]  
Note :  
1. DQ wiring may differ from that shown  
however ,DQ, DM, DQS and DQS  
relationships are maintained as shown  
Vtt  
Vtt  
Rank0  
V
DD  
8 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
7.2 1GB, 128Mx64 Module(Populated as 2 ranks of x16 DDR3 SDRAMs)  
SCL  
SA0  
SA1  
SCL  
A0  
A1  
A2  
(SPD)  
WP  
SDA  
240Ω  
240Ω  
DQS0  
DQS0  
DM0  
LDQS  
LDQS  
LDM  
LDQS  
LDQS  
LDM  
± 1%  
± 1%  
ZQ  
ZQ  
DQ[0:7]  
DQS1  
DQS1  
DM1  
DQ[0:7]  
UDQS  
UDQS  
UDM  
DQ[0:7]  
UDQS  
UDQS  
UDM  
D0  
D4  
DQ[8:15]  
DQ[8:15]  
DQ[8:15]  
V
V
tt  
tt  
V
SPD  
DDSPD  
V
V
D0 - D7  
D0 - D7  
D0 - D7  
D0 - D7, SPD  
D0 - D3  
D4 - D7  
D0 - D3  
D4 - D7  
D0 - D7  
REFCA  
240Ω  
240Ω  
DQS2  
DQS2  
LDQS  
LDQS  
LDM  
LDQS  
LDQS  
LDM  
REFDQ  
± 1%  
± 1%  
ZQ  
ZQ  
DM2  
V
DD  
DQ[16:23]  
DQS3  
DQ[0:7]  
DQ[0:7]  
UDQS  
UDQS  
UDM  
V
UDQS  
UDQS  
UDM  
SS  
D1  
D5  
DQS3  
CK0  
CK1  
DM3  
DQ[8:15]  
DQ[8:15]  
DQ[24:31]  
CK0  
CK1  
RESET  
240Ω  
240Ω  
DQS4  
DQS4  
LDQS  
LDQS  
LDM  
LDQS  
LDQS  
LDM  
± 1%  
± 1%  
ZQ  
ZQ  
DM4  
DQ[32:39]  
DQS5  
DQ[0:7]  
DQ[0:7]  
UDQS  
UDQS  
UDM  
UDQS  
UDQS  
UDM  
D2  
D6  
DQS5  
DM5  
DQ[8:15]  
DQ[8:15]  
DQ[40:47]  
240Ω  
240Ω  
DQS6  
DQS6  
LDQS  
LDQS  
LDM  
LDQS  
LDQS  
LDM  
D4  
V1  
D5  
D6  
D2  
D7  
D3  
± 1%  
± 1%  
V2  
V2  
V3  
V4  
V4  
ZQ  
ZQ  
DM6  
DQ[48:55]  
DQS7  
DQ[0:7]  
DQ[0:7]  
UDQS  
UDQS  
UDM  
UDQS  
UDQS  
UDM  
D3  
D7  
DQS7  
DM7  
DQ[8:15]  
DQ[8:15]  
DQ[56:63]  
V1  
D0  
V3  
D1  
Rank0  
Rank1  
Address and Controllines  
Vtt  
Note :  
Vtt  
Vtt  
1. DQ wiring may differ from that shown  
however ,DQ, DM, DQS and DQS  
relationships are maintained as shown  
V
V
DD  
DD  
9 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
7.3 2GB, 256Mx64 Module(Populated as 2 ranks of x8 DDR3 SDRAMs)  
V
V
DD  
DD  
Vtt  
Vtt  
Vtt  
240Ω  
240Ω  
240Ω  
240Ω  
DQS3  
DQS3  
DQS4  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
± 1%  
± 1%  
± 1%  
± 1%  
DQS4  
ZQ  
ZQ  
ZQ  
ZQ  
DM3  
DM4  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
DQ[24:31]  
DQ[32:39]  
D11  
D3  
D11  
D3  
240Ω  
240Ω  
240Ω  
240Ω  
DQS1  
DQS1  
DQS6  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
± 1%  
± 1%  
± 1%  
± 1%  
DQS6  
ZQ  
ZQ  
ZQ  
ZQ  
DM1  
DM6  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
DQ[8:15]  
DQ[48:55]  
D1  
D9  
D1  
D9  
240Ω  
240Ω  
240Ω  
240Ω  
DQS0  
DQS0  
DM0  
DQS7  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
± 1%  
± 1%  
± 1%  
± 1%  
DQS7  
ZQ  
ZQ  
Rank0  
Rank1  
ZQ  
ZQ  
DM7  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
DQ[56:63]  
D0  
D8  
D0  
D8  
240Ω  
240Ω  
240Ω  
240Ω  
DQS2  
DQS2  
DQS5  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
DQS  
DQS  
DM  
± 1%  
± 1%  
± 1%  
± 1%  
DQS5  
ZQ  
ZQ  
ZQ  
ZQ  
D10  
DM2  
DM5  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
DQ[0:7]  
DQ[16:23]  
DQ[40:47]  
D2  
D10  
D2  
V2  
V1  
V1  
V8  
D9  
V3  
D3  
D12  
D5  
D6  
V7  
V9  
V5  
V
V
tt  
tt  
V
SPD  
D8  
D10  
D7  
DDSPD  
V4  
V4  
V6  
V6  
V
D0 - D15  
D0 - D15  
D0 - D15  
REFCA  
REFDQ  
V
SCL  
SA0  
SA1  
SCL  
A0  
(SPD)  
WP  
SDA  
V
D0  
D2  
D13  
D4  
D15  
DD  
A1  
V5  
tt  
V
D0 - D15, SPD  
D0 - D7  
SS  
A2  
V3  
D1  
V7  
D14  
V
V1  
CK0  
CK1  
CK0  
CK1  
D11  
V2  
V9  
V8  
D8 - D15  
D0 - D7  
D8 - D15  
D0 - D7  
Address and Controllines  
Note :  
RESET  
1. DQ wiring may differ from that shown  
however ,DQ, DM, DQS and DQS  
relationships are maintained as shown  
10 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
8.0 Absolute Maximum Ratings  
8.1 Absolute Maximum DC Ratings  
DDR3 SDRAM  
Symbol  
Parameter  
Rating  
Units  
Notes  
VDD  
Voltage on VDD pin relative to VSS  
-0.4 V ~ 1.975 V  
V
1,3  
VDDQ  
VIN, VOUT  
TSTG  
Voltage on VDDQ pin relative to VSS  
Voltage on any pin relative to VSS  
Storage Temperature  
-0.4 V ~ 1.975 V  
-0.4 V ~ 1.975 V  
-55 to +100  
V
V
1,3  
1
°C  
1, 2  
Note :  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2  
standard.  
3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than  
500mV; VREF may be equal to or less than 300mV.  
8.2 DRAM Component Operating Temperature Range  
Symbol  
Parameter  
rating  
Unit  
Notes  
TOPER  
Operating Temperature Range  
0 to 95  
°C  
1, 2, 3  
Note :  
1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the  
JEDEC document JESD51-2.  
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case tem-  
perature must be maintained between 0-85°C under all operating conditions  
3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaran-  
teed in this range, but the following additional conditions apply:  
a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. It is also possible to specify a component  
with 1X refresh (tREFI to 7.8us) in the Extended Temperature Range.  
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with  
Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7  
= 0b)  
9.0 AC & DC Operating Conditions  
9.1 Recommended DC Operating Conditions (SSTL - 15)  
Rating  
Typ.  
1.5  
Symbol  
Parameter  
Units  
Notes  
Min.  
1.425  
1.425  
Max.  
1.575  
1.575  
VDD  
Supply Voltage  
Supply Voltage for Output  
V
V
1,2  
1,2  
VDDQ  
1.5  
Note :  
1. Under all conditions VDDQ must be less than or equal to VDD  
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.  
.
11 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
10.0 AC & DC Input Measurement Levels  
10.1 AC and DC Logic Input Levels for Single-ended Signals  
Single Ended AC and DC input levels for Command and Address  
DDR3-800/1066  
DDR3-1333  
Symbol  
Parameter  
Unit Notes  
Max.  
Min.  
Max.  
Min.  
VIH.CA(DC)  
VREF + 100  
VDD  
VREF + 100  
VDD  
DC input logic high  
DC input logic low  
AC input logic high  
AC input logic low  
AC input logic high  
AC input logic lowM  
mV  
mV  
mV  
mV  
mV  
mV  
1
V
IL.CA(DC)  
IH.CA(AC)  
IL.CA(AC)  
IH.CA(AC150)  
IL.CA(AC150)  
VSS  
VREF - 100  
VSS  
VREF - 100  
1
V
VREF + 175  
VREF + 175  
-
-
1,2  
1,2  
1,2  
1,2  
V
VREF - 175  
VREF - 175  
-
-
-
-
V
VREF+150  
-
-
-
V
VREF-150  
-
Reference Voltage for ADD,  
CMD inuts  
V
REFCA(DC)  
0.49*VDD  
0.51*VDD  
0.49*VDD  
0.51*VDD  
V
3,4  
Note :  
1. For input only pins except RESET, VREF = VREFCA(DC)  
2. See "Overshoot and Undershoot specifications" section.  
3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)  
4. For reference : approx. VDD/2 ± 15mV  
Single Ended AC and DC input levels for DQ and DM  
DDR3-800/1066  
DDR3-1333  
Symbol  
Parameter  
Unit Notes  
Min.  
Max.  
Min.  
Max.  
VIH.DQ(DC)  
VREF + 100  
VDD  
VREF + 100  
VDD  
DC input logic high  
DC input logic low  
mV  
mV  
mV  
mV  
V
1
V
IL.DQ(DC)  
IH.DQ(AC)  
IL.DQ(AC)  
VREFDQ(DC)  
Note :  
VSS  
VREF - 100  
VSS  
VREF - 100  
1
V
VREF + 175  
VREF + 150  
AC input logic high  
AC input logic low  
-
-
1,2,5  
1,2,5  
3,4  
V
VREF - 175  
0.51*VDD  
VREF - 150  
0.51*VDD  
-
-
0.49*VDD  
0.49*VDD  
I/O Reference Voltage(DQ)  
1. For input only pins except RESET, VREF = VREFDQ(DC)  
2. See "Overshoot and Undershoot specifications" section.  
3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)  
4. For reference : approx. VDD/2 ± 15mV  
5. Single ended swing requirement for DQS - DQS is 350mV (peak to peak). Differential swing for DQS - DQS is 700mV (peak to peak).  
12 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
10.2 V  
Tolerances.  
REF  
The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrate in Figure 2. It shows a valid reference voltage  
V
REF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise).  
VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requiremts of VREF. Fur-  
thermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD  
.
voltage  
VDD  
VSS  
time  
Figure 2. Illustration of VREF(DC) tolerance and VREF ac-noise limits  
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF  
.
"VREF" shall be understood as VREF(DC), as defined in Figure 2.  
This clarifies, that dc-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to  
which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the  
data-eye of the input signals.  
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise. Timing  
and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.  
13 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
10.3 AC and DC Logic Input Levels for Differential Signals  
10.3.1 Differential Signals Definition  
tDVAC  
VIH.DIFF.AC.MIN  
VIH.DIFF.MIN  
0.0  
half cycle  
VIL.DIFF.MAX  
VIL.DIFF.AC.MAX  
tDVAC  
time  
Figure 3 : Definition of differential ac-swing and "time above ac level" tDVAC  
10.3.2 Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS)  
DDR3-800/1066/1333  
Symbol  
Parameter  
unit  
Note  
min  
+0.2  
max  
note 3  
VIHdiff  
VILdiff  
differential input high  
differential input low  
V
V
V
V
1
1
2
2
note 3  
-0.2  
V
IHdiff(AC)  
ILdiff(AC)  
2 x (VIH(AC)-VREF  
note 3  
)
differential input high ac  
differential input low ac  
note 3  
V
2 x (VREF - VIL(AC))  
Notes:  
1. Used to define a differential signal slew-rate.  
2. for CK - CK use VIH/VIL(AC) of ADD/CMD and VREFCA; for DQS - DQS, DQSL - DQSL, DQSU - DQSU use VIH/VIL(AC) of DQs and VREFDQ; if a  
reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here.  
3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective  
limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Reter to "overshoot and Undersheet  
Specification"  
Allowed time before ringback (tDVAC) for CLK - CLK and DQS - DQS.  
tDVAC [ps] @ |VIH/Ldiff(AC)| = 350mV  
tDVAC [ps] @ |VIH/Ldiff(AC)| = 300mV  
Slew Rate [V/ns]  
min  
75  
57  
50  
38  
34  
29  
22  
13  
0
max  
min  
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
max  
> 4.0  
4.0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
< 1.0  
0
14 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
10.3.3 Single-ended Requirements for Differential Signals  
Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, or DQSU) has also to comply with certain requirements for  
single-ended signals.  
CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels ( VIH(AC) / VIL(AC) ) for ADD/CMD signals) in every  
half-cycle.  
DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax (approximately the ac-levels ( VIH(AC) / VIL(AC) ) for DQ signals) in every half-cycle  
preceeding and following a valid transition.  
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if VIH150(AC)/VIL150(AC) is used for ADD/CMD sig-  
nals, then these ac-levels apply also for the single-ended signals CK and CK .  
VDD or VDDQ  
VSEH min  
VSEH  
VDD/2 or VDDQ/2  
CK or DQS  
VSEL max  
VSEL  
VSS or VSSQ  
time  
Figure 4 : Single-ended requirement for differential signals.  
Note that while ADD/CMD and DQ signal requirements are with respect to VREF, the single-ended components of differential signals have a requirement  
with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For single-  
ended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common  
mode charateristics of these signals.  
Single ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU  
DDR3-800/1066/1333  
Symbol  
Parameter  
Unit  
Notes  
Min  
Max  
Note3  
Note3  
(VDD/2)+0.175  
(VDD/2)+0.175  
Note3  
Single-ended high-level for strobes  
Single-ended high-level for CK, CK  
Single-ended low-level for strobes  
Single-ended low-level for CK, CK  
V
V
V
V
1, 2  
1, 2  
1, 2  
1, 2  
VSEH  
(VDD/2)-0.175  
(VDD/2)-0.175  
VSEL  
Note3  
Notes:  
1. For CK, CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL(AC) of DQs.  
2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a  
signal group, then the reduced level applies also here  
3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective  
limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot  
Specification"  
15 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
10.3.4 Differential Input Cross Point Voltage  
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input  
signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual  
cross point of true and complement signal to the mid level between of VDD and VSS  
.
VDD  
CK, DQS  
VIX  
VDD/2  
VIX  
VIX  
CK, DQS  
VSS  
Figure 5. VIX Definition  
Cross point voltage for differential input signals (CK, DQS)  
DDR3-800/1066/1333  
Symbol  
Parameter  
Unit  
Notes  
Min  
Max  
150  
175  
150  
-150  
-175  
-150  
mV  
mV  
mV  
VIX  
VIX  
Differential Input Cross Point Voltage relative to VDD/2 for CK,CK  
1
Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS  
Note :  
1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CKand CK are monotonic, have a single-ended swing VSEL  
VSEH of at least VDD/2 =/-250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns.  
/
10.4 Slew Rate Definition for Single Ended Input Signals  
See "Address / Command Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals.  
See "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data signals.tDH nominal slew rate for a falling signal is defined  
as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF  
10.5 Slew rate definition for Differential Input Signals  
Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in below.  
Differential input slew rate definition  
Measured  
Description  
Defined by  
From  
To  
VIHdiffmin - VILdiffmax  
Delta TRdiff  
VIHdiffmin - VILdiffmax  
VILdiffmax  
VIHdiffmin  
Differential input slew rate for rising edge (CK-CK and DQS-DQS)  
Differential input slew rate for falling edge (CK-CK and DQS-DQS)  
VIHdiffmin  
VILdiffmax  
Delta TFdiff  
Note : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds  
V
IHdiffmin  
0
V
ILdiffmax  
delta TFdiff  
delta TRdiff  
Figure 6. Differential Input Slew Rate definition for DQS, DQS and CK, CK  
16 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
11.0 AC and DC Output Measurement Levels  
11.1 Single Ended AC and DC Output Levels  
Single Ended AC and DC output levels  
Symbol Parameter  
DDR3-800/1066/1333  
Units  
Notes  
VOH(DC) DC output high measurement level (for IV curve linearity)  
0.8 x VDDQ  
V
V
OM(DC) DC output mid measurement level (for IV curve linearity)  
OL(DC) DC output low measurement level (for IV curve linearity)  
OH(AC) AC output high measurement level (for output SR)  
OL(AC) AC output low measurement level (for output SR)  
0.5 x VDDQ  
0.2 x VDDQ  
V
V
V
V
V
V
VTT + 0.1 x VDDQ  
VTT - 0.1 x VDDQ  
1
1
V
Note : 1. The swing of +/-0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω  
and an effective test load of 25to VTT=VDDQ/2.  
11.2 Differential AC and DC Output Levels  
Differential AC and DC output levels  
Symbol  
Parameter  
DDR3-800/1066/1333  
Units  
Notes  
VOHdiff(AC)  
AC differential output high measurement level (for output SR)  
+0.2 x VDDQ  
V
1
VOLdiff(DC)  
AC differential output low measurement level (for output SR)  
-0.2 x VDDQ  
V
1
Note : 1. The swing of +/-0.2xVDDQ is based on approximately 50% of the static singel ended output high or low swing with a driver impedance of 40Ω  
and an effective test load of 25to VTT=VDDQ/2 at each of the differential outputs.  
11.3 Single Ended Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC)  
for single ended signals as shown in below.  
Single Ended Output slew rate definition  
Measured  
Description  
Defined by  
From  
To  
VOH(AC)-VOL(AC)  
Delta TRse  
VOL(AC)  
VOH(AC)  
Single ended output slew rate for rising edge  
Single ended output slew rate for falling edge  
VOH(AC)-VOL(AC)  
Delta TFse  
V
OH(AC)  
VOL(AC)  
Note : Output slew rate is verified by design and characterization, and may not be subject to production test.  
Single Ended Output slew rate  
DDR3-800  
DDR3-1066  
DDR3-1333  
Parameter  
Symbol  
Units  
Min  
2.5  
Max  
Min  
Max  
Min  
2.5  
Max  
Single ended output slew rate  
Description : SR : Slew Rate  
SRQse  
5
2.5  
5
5
V/ns  
Q : Query Output (like in DQ, which stands for Data-in, Query-Output  
se : Singe-ended Signals  
For Ron = RZQ/7 setting  
V
OH(AC)  
V
V
TT  
OL(AC)  
delta TFse  
delta TRse  
Figure 7. Single Ended Output Slew Rate definition  
17 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
11.4 Differential Output Slew Rate  
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and  
VOHdiff(AC) for differential signals as shown in below.  
Differential Output slew rate definition  
Measured  
Description  
Defined by  
From  
To  
VOHdiff(AC)-VOLdiff(AC)  
Delta TRdiff  
VOLdiff(AC)  
VOHdiff(AC)  
Differential output slew rate for rising edge  
Differential output slew rate for falling edge  
VOHdiff(AC)-VOLdiff(AC)  
Delta TFdiff  
VOHdiff(AC)  
VOLdiff(AC)  
Note : Output slew rate is verified by design and characterization, and may not be subject to production test.  
Differential Output slew rate  
DDR3-800  
DDR3-1066  
DDR3-1333  
Parameter  
Symbol  
Units  
Min  
Max  
Min  
Max  
Min  
Max  
Differential output slew rate  
Description : SR : Slew Rate  
SRQse  
5
10  
5
10  
5
10  
V/ns  
Q : Query Output (like in DQ, which stands for Data-in, Query-Output  
diff : Singe-ended Signals  
V
(AC)  
(AC)  
OHdiff  
V
V
TT  
OLdiff  
delta TFdiff  
delta TRdiff  
Figure 8. Differential Output Slew Rate definition  
18 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
12.0 IDD specification definition  
Symbol  
Description  
Operating One Bank Active-Precharge Current  
CKE: High; External clock: On; tCK, nRC, nRAS, CL: AC Timing Table ; BL: 8a); AL: 0; CS: High between ACT and PRE; Command, Address, Bank  
Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... ; Output Buffer  
and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0  
IDD0  
Operating One Bank Active-Read-Precharge Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: AC Timing Table ; BL: 8a); AL: 0; CS: High between ACT, RD and PRE; Command, Address,  
Bank Address Inputs, Data IO: partially toggling ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... ; Output Buffer and  
RTT: Enabled in Mode Registersb); ODT Signal: stable at 0;  
IDD1  
Precharge Standby Current  
IDD2N  
CKE: High; External clock: On; tCK, CL: AC Timing Table ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling ;  
Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0  
Precharge Standby ODT Current  
DD2NT  
CKE: High; External clock: On; tCK, CL: AC Timing Table ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling ;  
Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: toggling  
DDQ2NT  
(optional)  
Precharge Standby ODT IDDQ Current  
Same definition like for IDD2NT, however measuring IDDQ current instead of IDD current  
Precharge Power-Down Current Slow Exit  
CKE: Low; External clock: On; tCK, CL: AC Timing Table ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:  
FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pecharge  
Power Down Mode: Slow Exitc)  
IDD2P0  
Precharge Power-Down Current Fast Exit  
CKE: Low; External clock: On; tCK, CL: AC Timing Table ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data  
IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pecharge  
Power Down Mode: Fast Exitc)  
IDD2P1  
IDD2Q  
IDD3N  
IDD3P  
Precharge Quiet Standby Current  
CKE: High; External clock: On; tCK, CL: AC Timing Table ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data  
IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0  
Active Standby Current  
CKE: High; External clock: On; tCK, CL: AC Timing Table ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling  
according to Table 34 ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Sig-  
nal: stable at 0  
Active Power-Down Current  
CKE: Low; External clock: On; tCK, CL: AC Timing Table ; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO:  
FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0  
Operating Burst Read Current  
CKE: High; External clock: On; tCK, CL: AC Timing Table ; BL: 8a); AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially tog-  
gling ; Data IO: seamless read data burst with different data between one burst and the next one according to Table 36 ; DM:stable at 0; Bank Activity: all  
banks open, RD commands cycling through banks: 0,0,1,1,2,2,... (see Table 7 on page 10); Output Buffer and RTT: Enabled in Mode Registersb); ODT  
Signal: stable at 0  
IDD4R  
IDDQ4R  
(optional)  
Operating Burst Read IDDQ Current  
Same definition like for IDD4R, however measuring IDDQ current instead of IDD current  
Operating Burst Write Current  
CKE: High; External clock: On; tCK, CL: AC Timing Table ; BL: 8a); AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially  
toggling ; Data IO: seamless write data burst with different data between one burst and the next one ; DM: stable at 0; Bank Activity: all banks open, WR  
commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at HIGH  
IDD4W  
IDD5B  
IDD6  
Burst Refresh Current  
CKE: High; External clock: On; tCK, CL, nRFC: AC Timing Table ; BL: 8a); AL: 0; CS: High between REF; Command, Address, Bank Address Inputs:  
partially toggling according to Table 38 ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC (see Table 38); Output Buffer and  
RTT: Enabled in Mode Registersb); ODT Signal: stable at 0  
Self Refresh Current: Normal Temperature Range  
TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabledd); Self-Refresh Temperature Range (SRT): Normale); CKE: Low; External clock: Off; CK and CK:  
LOW; CL: AC Timing Table ; BL: 8a); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Self-Refresh oper-  
ation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING  
19 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
Symbol  
Description  
Self-Refresh Current: Extended Temperature Range (optional) )  
f
TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Disabledd); Self-Refresh Temperature Range (SRT): Extendede); CKE: Low; External clock: Off; CK and CK:  
LOW; CL: AC Timing Table ; BL: 8a); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Extended Temper-  
ature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING  
IDD6ET  
f
Auto Self-Refresh Current (optional) )  
TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Enabledd); Self-Refresh Temperature Range (SRT): Normale); CKE: Low; External clock: Off; CK and CK:  
LOW; CL: AC Timing Table ; BL: 8a); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING; DM:stable at 0; Bank Activity: Auto  
Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: FLOATING  
IDD6TC  
IDD7  
Operating Bank Interleave Read Current  
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: AC Timing Table; BL: 8a); AL: CL-1; CS: High between ACT and RDA; Com-  
mand, Address, Bank Address Inputs: partially toggling ; Data IO: read data bursts with different data between one burst and the next one ; DM:stable at 0;  
Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing, see Table 39 ; Output Buffer and RTT: Enabled in Mode Reg-  
istersb); ODT Signal: stable at 0  
a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B  
b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B  
c) Pecharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit  
d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature  
e) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range  
f) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device  
g) IDD current measure method and detail patterns are described on DDR3 component datasheet  
20 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
12.1 IDD SPEC Table  
M471B6474DZ1 : 512MB (64Mx64) Module  
F7  
F8  
H9  
Symbol  
Unit  
Notes  
(DDR3-800@CL=6)  
(DDR3-1066@CL=7)  
(DDR3-1333@CL=9)  
IDD0  
IDD1  
IDD2P0(slow exit)  
IDD2P1(fast exit)  
IDD2N  
IDD2Q  
IDD3P(fast exit)  
IDD3N  
340  
480  
40  
360  
500  
44  
400  
540  
48  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
140  
200  
180  
160  
200  
720  
740  
820  
40  
180  
220  
220  
180  
240  
920  
940  
840  
40  
200  
240  
240  
200  
260  
1160  
1160  
880  
40  
IDD4R  
IDD4W  
IDD5B  
IDD6  
IDD7  
1120  
1240  
1480  
M471B2874DZ1 : 1GB (128Mx64) Module  
F7  
F8  
H9  
Symbol  
Unit  
Notes  
(DDR3-800@CL=6)  
(DDR3-1066@CL=7)  
(DDR3-1333@CL=9)  
IDD0  
IDD1  
IDD2P0(slow exit)  
IDD2P1(fast exit)  
IDD2N  
IDD2Q  
IDD3P(fast exit)  
IDD3N  
540  
680  
80  
580  
720  
88  
640  
780  
96  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
280  
400  
360  
320  
400  
920  
940  
1020  
80  
360  
440  
440  
360  
460  
1140  
1160  
1060  
80  
400  
480  
480  
400  
500  
1400  
1400  
1120  
80  
IDD4R  
IDD4W  
IDD5B  
IDD6  
IDD7  
1320  
1460  
1720  
21 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
M471B5673DZ1 : 2GB (256Mx64) Module  
F7  
F8  
H9  
Symbol  
Unit  
Notes  
(DDR3-800@CL=6)  
(DDR3-1066@CL=7)  
(DDR3-1333@CL=9)  
IDD0  
IDD1  
IDD2P0(slow exit)  
IDD2P1(fast exit)  
IDD2N  
IDD2Q  
IDD3P(fast exit)  
IDD3N  
1000  
1160  
160  
560  
800  
720  
640  
800  
1480  
1560  
2040  
160  
1120  
1280  
176  
720  
880  
880  
720  
920  
1800  
1960  
2120  
160  
1200  
1360  
192  
800  
960  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
960  
800  
1000  
2120  
2320  
2240  
160  
IDD4R  
IDD4W  
IDD5B  
IDD6  
IDD7  
2360  
2640  
3400  
22 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
13.0 Input/Output Capacitance  
M471B6474DZ1  
DDR3-1066  
DDR3-800  
Min Max  
DDR3-1333  
Parameter  
Symbol  
Units  
Notes  
Min  
Max  
Min  
Max  
Input/output capacitance  
CIO  
-
-
TBD  
TBD  
-
TBD  
-
TBD  
pF  
pF  
(DQ, DM, DQS, DQS, TDQS, TDQS)  
Input capacitance  
(CK and CK)  
CCK  
-
TBD  
-
TBD  
Input capacitance  
CI  
-
-
TBD  
TBD  
-
-
TBD  
TBD  
-
-
TBD  
TBD  
pF  
pF  
(All other input-only pins)  
Input/output capacitance of ZQ pin  
CZQ  
M471B2874DZ1  
DDR3-1066  
DDR3-800  
Min Max  
DDR3-1333  
Parameter  
Symbol  
Units  
Notes  
Min  
Max  
Min  
Max  
Input/output capacitance  
(DQ, DM, DQS, DQS, TDQS, TDQS)  
CIO  
-
-
TBD  
TBD  
-
TBD  
-
TBD  
pF  
pF  
Input capacitance  
(CK and CK)  
CCK  
-
TBD  
-
TBD  
Input capacitance  
CI  
-
-
TBD  
TBD  
-
-
TBD  
TBD  
-
-
TBD  
TBD  
pF  
pF  
(All other input-only pins)  
Input/output capacitance of ZQ pin  
CZQ  
M471B5673DZ1  
DDR3-1066  
DDR3-800  
Min Max  
DDR3-1333  
Parameter  
Symbol  
Units  
Notes  
Min  
Max  
Min  
Max  
Input/output capacitance  
(DQ, DM, DQS, DQS, TDQS, TDQS)  
CIO  
-
-
TBD  
TBD  
-
TBD  
-
TBD  
pF  
pF  
Input capacitance  
(CK and CK)  
CCK  
-
TBD  
-
TBD  
Input capacitance  
CI  
-
-
TBD  
TBD  
-
-
TBD  
TBD  
-
-
TBD  
TBD  
pF  
pF  
(All other input-only pins)  
Input/output capacitance of ZQ pin  
CZQ  
23 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
14.0 Electrical Characteristics and AC timing  
(0 °C<TCASE 95 °C, VDDQ = 1.5V ± 0.075V; VDD = 1.5V ± 0.075V)  
14.1 Refresh Parameters by Device Density  
Parameter  
All Bank Refresh to active/refresh cmd time  
Symbol  
tRFC  
1Gb  
110  
7.8  
2Gb  
160  
7.8  
4Gb  
300  
7.8  
8Gb  
350  
7.8  
Units  
ns  
Note  
0 °C TCASE 85°C  
µs  
Average periodic refresh interval  
tREFI  
85 °C < TCASE 95°C  
3.9  
3.9  
3.9  
3.9  
µs  
1
Note :  
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or  
requirements referred to in this material.  
14.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin  
Speed  
DDR3-800  
6-6-6  
min  
6
DDR3-1066  
7-7-7  
min  
DDR3-1333  
9-9-9  
min  
9
Units  
Note  
Bin (CL - tRCD - tRP)  
Parameter  
CL  
7
tCK  
ns  
ns  
ns  
ns  
ns  
ns  
tRCD  
tRP  
15  
13.13  
13.13  
37.5  
13.5  
13.5  
36  
15  
tRAS  
tRC  
37.5  
52.5  
10  
50.63  
7.5  
49.5  
6.0  
tRRD  
tFAW  
40  
37.5  
30  
24 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
14.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin  
DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.  
DDR3-800 Speed Bins  
Speed  
CL-nRCD-nRP  
DDR3-800  
6 - 6 - 6  
Units  
Note  
Parameter  
Symbol  
tAA  
min  
15  
max  
20  
Intermal read command to first data  
ACT to internal read or write delay time  
PRE command period  
ns  
ns  
tRCD  
tRP  
15  
-
15  
-
-
ns  
ACT to ACT or REF command period  
ACT to PRE command period  
CL = 6 / CWL = 5  
tRC  
52.5  
37.5  
2.5  
ns  
tRAS  
9*tREFI  
3.3  
ns  
8
tCK(AVG)  
ns  
1,2,3  
Supported CL Settings  
6
5
nCK  
nCK  
Supported CWL Settings  
DDR3-1066 Speed Bins  
Speed  
DDR3-1066  
7 - 7 - 7  
CL-nRCD-nRP  
Units  
Note  
Parameter  
Symbol  
tAA  
min  
13.125  
13.125  
13.125  
50.625  
37.5  
max  
20  
Intermal read command to first data  
ACT to internal read or write delay time  
PRE command period  
ns  
ns  
tRCD  
-
tRP  
-
-
ns  
ACT to ACT or REF command period  
ACT to PRE command period  
tRC  
ns  
tRAS  
9*tREFI  
3.3  
ns  
8
CWL = 5  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
2.5  
ns  
1,2,3,6  
1,2,3,4  
4
CL = 6  
CL = 7  
CL = 8  
CWL = 6  
CWL = 5  
CWL = 6  
CWL = 5  
CWL = 6  
Reserved  
Reserved  
ns  
ns  
1.875  
1.875  
<2.5  
<2.5  
ns  
1,2,3,4  
4
Reserved  
ns  
ns  
1,2,3  
Supported CL Settings  
Supported CWL Settings  
6,7,8  
5,6  
nCK  
nCK  
25 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
DDR3-1333 Speed Bins  
Speed  
DDR3-1333  
9 -9 - 9  
CL-nRCD-nRP  
Units  
Note  
Parameter  
Symbol  
tAA  
min  
13.5  
13.5  
13.5  
49.5  
36  
max  
20  
Intermal read command to first data  
ACT to internal read or write delay time  
PRE command period  
ns  
ns  
tRCD  
-
tRP  
-
-
ns  
ACT to ACT or REF command period  
ACT to PRE command period  
tRC  
ns  
tRAS  
9*tREFI  
3.3  
ns  
8
1,2,3,7  
1,2,3,4,7  
4
CWL = 5  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
tCK(AVG)  
2.5  
ns  
CL = 6  
CL = 7  
CWL = 6  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5  
CWL = 6  
CWL = 7  
CWL = 5,6  
CWL = 7  
CWL = 5,6  
Reserved  
Reserved  
Reserved  
ns  
ns  
ns  
4
1.875  
1.875  
<2.5  
<2.5  
ns  
1,2,3,4,7  
1,2,3,4,  
4
Reserved  
Reserved  
ns  
ns  
CL = 8  
CL = 9  
CL = 10  
ns  
1,2,3,7  
1,2,3,4,  
4
Reserved  
Reserved  
ns  
ns  
1.5  
1.5  
<1.875  
<1.875  
ns  
1,2,3,4  
4
Reserved  
ns  
ns  
1,2,3  
5
CWL = 7  
tCK(AVG)  
(Optional)  
6,7,8,9  
5,6,7  
ns  
Supported CL Settings  
Supported CWL Settings  
nCK  
nCK  
14.3.1 Speed Bin Table Notes  
Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V);  
Note :  
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be ful-  
filled: Requirements from CL setting as well as requirements from CWL setting.  
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequen-  
cies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculat-  
ing CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next "SupportedCL".  
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns  
or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.  
4. "Reserved" settings are not allowed. User must program a different value.  
5. "Optional" settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to supplier’s data sheet and/  
or the DIMM SPD information if and how this setting is supported.  
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but  
verified by Design/Characterization.  
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but  
verified by Design/Characterization.  
8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but  
verified by Design/Characterization.  
26 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
15.0 Timing Parameters for DDR3-800, DDR3-1066 and DDR3-1333  
Timing Parameters by Speed Bin  
Speed  
DDR3-800  
DDR3-1066  
DDR3-1333  
Units  
Note  
Parameter  
Symbol  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Clock Timing  
tCK(DLL_OF  
F)  
Minimum Clock Cycle Time (DLL off mode)  
8
-
8
-
8
-
ns  
6
Average Clock Period  
Clock Period  
tCK(avg)  
tCK(abs)  
See Speed Bins Table  
ps  
ps  
tCK(avg)min +  
tJIT(per)min  
tCK(avg)max +  
tJIT(per)max  
tCK(avg)min +  
tCK(avg)max +  
tCK(avg)min +  
tJIT(per)min  
tCK(avg)max +  
tJIT(per)max  
tJIT(per)min  
tJIT(per)max  
Average high pulse width  
tCH(avg)  
tCL(avg)  
0.47  
0.47  
-100  
-90  
0.53  
0.53  
100  
90  
0.47  
0.53  
0.47  
0.47  
-80  
0.53  
0.53  
80  
tCK(avg)  
Average low pulse width  
0.47  
0.53  
tCK(avg)  
ps  
Clock Period Jitter  
tJIT(per)  
-90  
90  
Clock Period Jitter during DLL locking period  
Cycle to Cycle Period Jitter  
tJIT(per, lck)  
tJIT(cc)  
-80  
80  
-70  
70  
ps  
200  
180  
180  
160  
160  
140  
ps  
Cycle to Cycle Period Jitter during DLL locking period  
Cumulative error across 2 cycles  
Cumulative error across 3 cycles  
Cumulative error across 4 cycles  
Cumulative error across 5 cycles  
Cumulative error across 6 cycles  
Cumulative error across 7 cycles  
Cumulative error across 8 cycles  
Cumulative error across 9 cycles  
Cumulative error across 10 cycles  
Cumulative error across 11 cycles  
Cumulative error across 12 cycles  
tJIT(cc, lck)  
tERR(2per)  
tERR(3per)  
tERR(4per)  
tERR(5per)  
tERR(6per)  
tERR(7per)  
tERR(8per)  
tERR(9per)  
tERR(10per)  
tERR(11per)  
tERR(12per)  
ps  
- 147  
- 175  
- 194  
- 209  
- 222  
- 232  
- 241  
- 249  
- 257  
- 263  
- 269  
147  
175  
194  
209  
222  
232  
241  
249  
257  
263  
269  
- 132  
- 157  
- 175  
- 188  
- 200  
- 209  
- 217  
- 224  
- 231  
- 237  
- 242  
132  
157  
175  
188  
200  
209  
217  
224  
231  
237  
242  
- 118  
- 140  
- 155  
- 168  
- 177  
- 186  
- 193  
- 200  
- 205  
- 210  
- 215  
118  
140  
155  
168  
177  
186  
193  
200  
205  
210  
215  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min  
tERR(nper)max = (1 = 0.68ln(n))*tJIT(per)max  
Cumulative error across n = 13, 14 ... 49, 50 cycles  
tERR(nper)  
ps  
24  
Absolute clock HIGH pulse width  
Absolute clock Low pulse width  
tCH(abs)  
tCL(abs)  
0.43  
0.43  
-
-
0.43  
0.43  
-
-
0.43  
0.43  
-
-
tCK(avg)  
tCK(avg)  
25  
26  
Data Timing  
DQS,DQS to DQ skew, per group, per access  
DQ output hold time from DQS, DQS  
DQ low-impedance time from CK, CK  
DQ high-impedance time from CK, CK  
Data setup time to DQS, DQS referenced to  
tDQSQ  
tQH  
-
200  
-
-
150  
-
-
125  
-
ps  
tCK(avg)  
ps  
13  
0.38  
-800  
-
0.38  
-600  
-
0.38  
-500  
-
13, g  
tLZ(DQ)  
tHZ(DQ)  
400  
400  
300  
300  
250  
250  
13,14, f  
13,14, f  
ps  
tDS(base)  
75  
-
25  
-
30  
-
ps  
d, 17  
V
(AC)V (AC) levels  
IL  
IH  
Data hold time to DQS, DQS referenced to  
(AC)V (AC) levels  
tDH(base)  
tDIPW  
150  
600  
100  
490  
65  
-
ps  
ps  
d, 17  
28  
-
-
-
-
V
IH  
IL  
DQ and DM Input pulse width for each input  
Data Strobe Timing  
400  
-
DQS, DQS READ Preamble  
DQS, DQS differential READ Postamble  
DQS, DQS output high time  
tRPRE  
tRPST  
tQSH  
0.9  
0.3  
Note 19  
0.9  
0.3  
Note 19  
0.9  
0.3  
0.4  
0.4  
0.9  
0.3  
Note 19  
tCK  
tCK  
13, 19, g  
11, 13, b  
13, g  
Note 11  
Note 11  
Note 11  
0.38  
0.38  
0.9  
-
-
-
-
0.38  
0.38  
0.9  
-
-
-
-
-
-
-
-
tCK(avg)  
tCK(avg)  
tCK  
DQS, DQS output low time  
tQSL  
13, g  
DQS, DQS WRITE Preamble  
DQS, DQS WRITE Postamble  
tWPRE  
tWPST  
0.3  
0.3  
tCK  
DQS, DQS rising edge output access time from rising  
CK, CK  
tDQSCK  
-400  
-800  
-
400  
400  
400  
-300  
-600  
-
300  
300  
300  
-255  
-500  
-
255  
250  
250  
ps  
ps  
ps  
13,f  
DQS, DQS low-impedance time (Referenced from RL-1) tLZ(DQS)  
13,14,f  
12,13,14  
DQS, DQS high-impedance time (Referenced from  
tHZ(DQS)  
RL+BL/2)  
DQS, DQS differential input low pulse width  
tDQSL  
tDQSH  
tDQSS  
tDSS  
0.45  
0.45  
-0.25  
0.2  
0.55  
0.55  
0.25  
-
0.45  
0.45  
-0.25  
0.2  
0.55  
0.55  
0.25  
-
0.45  
0.45  
-0.25  
0.2  
0.55  
0.55  
0.25  
-
tCK  
29, 31  
30, 31  
c
DQS, DQS differential input high pulse width  
DQS, DQS rising edge to CK, CK rising edge  
DQS,DQS faling edge setup time to CK, CK rising edge  
DQS,DQS faling edge hold time to CK, CK rising edge  
tCK  
tCK(avg)  
tCK(avg)  
tCK(avg)  
c, 32  
c, 32  
tDSH  
0.2  
-
0.2  
-
0.2  
-
27 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
Timing Parameters by Speed Bin (Cont.)  
Speed  
DDR3-800  
DDR3-1066  
DDR3-1333  
Units  
Note  
Parameter  
Command and Address Timing  
DLL locking time  
Symbol  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
tDLLK  
tRTP  
512  
-
-
512  
-
-
512  
-
-
nCK  
internal READ Command to PRECHARGE Command  
delay  
max  
max  
max  
e
(4nCK,7.5ns)  
(4nCK,7.5ns)  
(4nCK,7.5ns)  
Delay from start of internal write transaction to internal  
read command  
max  
max  
max  
tWTR  
-
-
-
e,18  
e
(4nCK,7.5ns)  
(4nCK,7.5ns)  
(4nCK,7.5ns)  
WRITE recovery time  
tWR  
15  
4
-
-
15  
4
-
-
15  
4
-
-
ns  
Mode Register Set command cycle time  
tMRD  
nCK  
max  
max  
max  
Mode Register Set command update delay  
tMOD  
-
-
-
-
-
-
(12nCK,15ns)  
(12nCK,15ns)  
(12nCK,15ns)  
CAS# to CAS# command delay  
tCCD  
tDAL(min)  
tMPRR  
tRAS  
4
4
4
nCK  
nCK  
nCK  
ns  
Auto precharge write recovery + precharge time  
Multi-Purpose Register Recovery Time  
ACTIVE to PRECHARGE command period  
WR + roundup (tRP / tCK(AVG))  
1
-
1
-
1
-
22  
e
See 13.3 " Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin" on page 37  
max  
max  
max  
ACTIVE to ACTIVE command period for 1KB page size  
ACTIVE to ACTIVE command period for 2KB page size  
tRRD  
tRRD  
-
-
-
-
-
-
e
e
(4nCK,10ns)  
(4nCK,7.5ns)  
(4nCK,6ns)  
max  
max  
max  
(4nCK,10ns)  
(4nCK,10ns)  
(4nCK,7.5ns)  
Four activate window for 1KB page size  
Four activate window for 2KB page size  
Command and Address setup time to CK, CK refer-  
tFAW  
tFAW  
40  
50  
-
-
37.5  
50  
-
-
30  
45  
-
-
ns  
ns  
e
e
tIS(base)  
tIH(base)  
200  
275  
125  
200  
65  
-
-
ps  
ps  
b,16  
b,16  
-
-
-
-
enced to V (AC) / V (AC) levels  
IH  
IL  
Command and Address hold time from CK, CK refer-  
enced to V (AC) / V (AC) levels  
140  
IH  
IL  
Command and Address setup time to CK, CK refer-  
enced to V (AC) / V (AC) levels  
tIS(base)  
AC150  
200 + 150  
900  
125 + 150  
780  
65+125  
620  
-
-
ps  
ps  
b,16,27  
28  
-
-
-
-
IH  
IL  
Control & Address Input pulse width for each input  
Calibration Timing  
tIPW  
Power-up and RESET calibration time  
Normal operation Full calibration time  
Normal operation short calibration time  
Reset Timing  
tZQinitI  
tZQoper  
tZQCS  
512  
256  
64  
-
-
-
512  
256  
64  
-
-
-
512  
256  
64  
-
-
-
nCK  
nCK  
nCK  
23  
max(5nCK, tRFC  
+ 10ns)  
max(5nCK, tRFC  
+ 10ns)  
max(5nCK, tRFC  
+ 10ns)  
Exit Reset from CKE HIGH to a valid command  
tXPR  
-
-
-
Self Refresh Timing  
Exit Self Refresh to commands not requiring a locked  
DLL  
max(5nCK,tRFC  
+ 10ns)  
max(5nCK,tRFC  
+ 10ns)  
max(5nCK,tRFC  
+ 10ns)  
tXS  
-
-
-
-
-
-
-
-
-
Exit Self Refresh to commands requiring a locked DLL  
tXSDLL  
tCKESR  
tDLLK(min)  
tDLLK(min)  
tDLLK(min)  
nCK  
Minimum CKE low width for Self refresh entry to exit  
timing  
tCKE(min) +  
1tCK  
tCKE(min) +  
1tCK  
tCKE(min) +  
1tCK  
Valid Clock Requirement after Self Refresh Entry  
(SRE) or Power-Down Entry (PDE)  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
tCKSRE  
tCKSRX  
-
-
-
-
-
-
Valid Clock Requirement before Self Refresh Exit  
(SRX) or Power-Down Exit (PDX) or Reset Exit  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
max(5nCK,  
10ns)  
28 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
Timing Parameters by Speed Bin (Cont.)  
Speed  
DDR3-800  
DDR3-1066  
DDR3-1333  
Units  
Note  
Parameter  
Symbol  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Power Down Timing  
Exit Power Down with DLL on to any valid com-  
mand;Exit Percharge Power Down with DLL  
frozen to commands not requiring a locked DLL  
max  
max  
max  
tXP  
tXPDLL  
tCKE  
(3nCK,  
7.5ns)  
-
-
-
(3nCK,  
7.5ns)  
-
-
-
-
-
-
(3nCK,6ns)  
max  
max  
(10nCK,  
24ns)  
max  
(10nCK,  
24ns)  
Exit Precharge Power Down with DLL frozen to com-  
mands requiring a locked DLL  
(10nCK,  
24ns)  
2
max  
max  
max  
CKE minimum pulse width  
(3nCK,  
7.5ns)  
(3nCK,  
5.625ns)  
(3nCK,  
5.625ns)  
Command pass disable delay  
tCPDED  
tPD  
1
-
1
-
1
-
nCK  
tCK  
Power Down Entry to Exit Timing  
tCKE(min)  
9*tREFI  
tCKE(min)  
9*tREFI  
tCKE(min)  
9*tREFI  
15  
20  
20  
Timing of ACT command to Power Down entry  
Timing of PRE command to Power Down entry  
Timing of RD/RDA command to Power Down entry  
tACTPDEN  
tPRPDEN  
tRDPDEN  
1
1
-
-
-
1
1
-
-
-
1
1
-
-
-
nCK  
nCK  
RL + 4 +1  
RL + 4 +1  
RL + 4 +1  
Timing of WR command to Power Down entry  
(BL8OTF, BL8MRS, BL4OTF)  
WL + 4 +(tWR/  
tCK(avg))  
WL + 4 +(tWR/  
tCK(avg))  
WL + 4 +(tWR/  
tCK(avg))  
tWRPDEN  
-
-
-
-
-
-
-
-
-
-
-
-
nCK  
nCK  
nCK  
nCK  
9
10  
9
Timing of WRA command to Power Down entry  
(BL8OTF, BL8MRS, BL4OTF)  
tWRAPDEN WL + 4 +WR +1  
WL + 4 +WR +1  
WL + 4 +WR +1  
Timing of WR command to Power Down entry  
(BL4MRS)  
WL + 2 +(tWR/  
tWRPDEN  
WL + 2 +(tWR/  
tCK(avg))  
WL + 2 +(tWR/  
tCK(avg))  
tCK(avg))  
Timing of WRA command to Power Down entry  
(BL4MRS)  
tWRAPDEN WL +2 +WR +1  
WL +2 +WR +1  
WL +2 +WR +1  
10  
Timing of REF command to Power Down entry  
Timing of MRS command to Power Down entry  
ODT Timing  
tREFPDEN  
tMRSPDEN  
1
-
-
1
-
-
1
-
-
20,21  
tMOD(min)  
tMOD(min)  
tMOD(min)  
ODT high time without write command or with wirte  
command and BC4  
ODTH4  
ODTH8  
tAONPD  
4
6
2
-
-
4
6
2
-
-
4
6
2
-
-
nCK  
nCK  
ns  
ODT high time with Write command and BL8  
Asynchronous RTT tum-on delay (Power-Down with  
DLL frozen)  
8.5  
8.5  
8.5  
Asynchronous RTT tum-off delay (Power-Down with  
DLL frozen)  
tAOFPD  
tAON  
2
8.5  
400  
0.7  
0.7  
2
8.5  
300  
0.7  
0.7  
2
8.5  
250  
0.7  
0.7  
ns  
ODT turn-on  
-400  
0.3  
0.3  
-300  
0.3  
0.3  
-250  
0.3  
0.3  
ps  
7,f  
8,f  
f
RTT_NOM and RTT_WR turn-off time from ODTLoff  
reference  
tAOF  
tCK(avg)  
tCK(avg)  
RTT dynamic change skew  
tADC  
Write Leveling Timing  
First DQS pulse rising edge after tDQSS margining  
mode is programmed  
tWLMRD  
40  
-
40  
-
40  
-
tCK  
3
3
DQS/DQS delay after tDQS margining mode is pro-  
grammed  
tWLDQSEN  
tWLS  
25  
-
-
-
25  
-
-
-
25  
-
-
-
tCK  
ps  
Setup time for tDQSS latch  
325  
325  
245  
245  
195  
195  
Write leveling hold time from rising DQS, DQS cross-  
ing to rising CK, CK crossing  
tWLH  
ps  
Write leveling output delay  
Write leveling output error  
tWLO  
0
0
9
2
0
0
9
2
0
0
9
2
ns  
ns  
tWLOE  
29 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
15.1 Jitter Notes  
Specific Note a Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the input  
clock, counting the actual clock edges.ex) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm, another  
Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min.  
Specific Note b These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge  
to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per),  
tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these param-  
eters should be met whether clock jitter is present or not.  
Specific Note c These parameters are measured from a data strobe signal (DQS(L/U), DQS(L/U)) crossing to its respective clock signal (CK, CK)  
crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the  
clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.  
Specific Note d These parameters are measured from a data signal (DM(L/U), DQ(L/U)0, DQ(L/U)1, etc.) transition edge to its respective data strobe  
signal (DQS(L/U), DQS(L/U)) crossing. Specific Note e For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] =  
RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the  
device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For  
DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifi-  
cations are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to  
input clock jitter.  
Specific Note f When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input clock,  
where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.)  
For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = + 193 ps,  
then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(derated) =  
tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) =  
- 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the min/max usage!)  
Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <=  
12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.  
Specific Note g When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input clock. (out-  
put deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act =  
2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9 x  
tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) = tQH,min + tJIT(per),act,min = 0.38 x  
tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/max usage!)  
30 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
15.2 Timing Parameter Notes  
1. Actual value dependant upon measurement level definitions which are TBD.  
2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.  
3. The max values are system dependent.  
4. WR as programmed in mode register  
5. Value must be rounded-up to next higher integer value  
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.  
7. For definition of RTT turn-on time tAON see "Device Operation"  
8. For definition of RTT turn-off time tAOF see "Device Operation".  
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.  
10. WR in clock cycles as programmed in MR0  
11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. Device Operation.  
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated  
by TBD  
13. Value is valid for RON34  
14. Single ended signal parameter.  
15. tREFI depends on T  
OPER  
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,  
V
(DC) = V DQ(DC). FOr input only pins except RESET, V (DC)=V CA(DC).  
REF  
REF  
REF  
REF  
See "Address/ Command Setup, Hold and Derating"  
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals,  
V
(DC)= V  
DQ(DC). For input only pins except RESET, V  
(DC)=V  
CA(DC).  
REF  
REF  
REF  
REF  
See "Data Setup, Hold and Slew Rate Derating"  
18. Start of internal write transaction is definited as follows ;  
For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.  
For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL  
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL  
19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation"  
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down  
IDD spec will not be applied until finishing those operations.  
21. Altough CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time  
such as tXPDLL(min) is also required. See "Device Operation".  
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.  
23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming  
the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The  
appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters.  
One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is sub-  
ject to in the application, is illustrated. The interval could be defined by the following formula:  
ZQCorrection  
(TSens x Tdriftrate) + (VSens x Vdriftrate)  
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.  
For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calcu-  
lated as:  
0.5  
~
~
= 0.133  
128ms  
(1.5 x 1) + (0.15 x 15)  
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.  
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.  
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.  
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) specification by adding an additional 100 ps of derating to accommodate for the lower alter-  
nate threshold of 150 mV and another 25 ps to account for the earlier reference point [(175 mv - 150 mV) / 1 V/ns].  
28. Pulse width of a input signal is defined as the width between the first crossing of V  
(DC) and the consecutive crossing of V  
(DC)  
REF  
REF  
29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge.  
30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge.  
31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.  
32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.  
31 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
15.3 Address / Command Setup, Hold and Derating:  
For all input signals the total tIS (setup time) and tIH (hold time) required is calculated by adding the data sheet tIS(base) and tIH(base) value to the tIS  
and tIH derating value respectively.  
Example: tIS (total setup time) = tIS(base) + tIS Setup (tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of  
V
REF(DC) and the first crossing of VIH(AC)min. Setup (tIS) nominal slew rate for a falling signal is defined as  
the slew rate between the last crossing of VREF(DC) and the first crossing of VIL(AC)max. If the actual signal is always earlier than the nominal slew rate  
line between shaded ’VREF(DC) to ac region’, use nominal slew rate for derating value. If the actual signal is later than the nominal slew rate line any-  
where between shaded ’VREF(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value.  
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VREF(DC).  
Hold (tIH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC). If  
the actual signal is always later than the nominal slew rate line between shaded ’dc to VREF(DC) region’, use nominal slew rate for derating value. If the  
actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to VREF(DC) region’, the slew rate of a tangent line to the actual sig-  
nal from the dc level to VREF(DC) level is used for derating value.  
For a valid transition the input signal has to remain above/below VIH/IL(AC) for some time tVAC.  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(AC) at the time of the rising clock  
transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC).  
For slew rates in between the values listed in Table below, the derating values may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization.  
ADD/CMD Setup and Hold Base-Values for 1V/ns  
[ps]  
tIS(base)  
DDR3-800  
200  
DDR3-1066  
125  
DDR3-1333  
65  
reference  
VIH/L(AC)  
VIH/L(DC)  
VIH/L(AC)  
tIH(base)  
275  
200  
140  
tIS(base)-AC150  
200 + 150  
125 + 150  
65+125  
Note : AC/DC referenced for 1V/ns DQ-slew rate and 2V/ns DQS slew rate  
Note : The tIS(base)-AC150 specifications are further adjusted to add an addi-tional 100ps of derating to accommodate for the lower alternate thresh-old  
of 150mV and another 25ps to acccount for the earlier reference point [(175mv-150mV)/1 V/ns].  
Derating values DDR3-800/1066 tIS/tIH-ac/dc based  
tIS, tIH Derating [ps] AC/DC based  
AC175 Threshold -> VIH(AC) = VREF(DC) + 175mV, VIL(AC) = VREF(DC) - 175mV  
CLK,CLK Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
tIS  
1.0V/ns  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
58  
42  
8
tIS  
tIH  
66  
50  
16  
12  
6
tIS  
tIH  
74  
58  
24  
20  
14  
8
tIH  
84  
68  
34  
30  
24  
18  
8
tIS  
tIH  
100  
84  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
88  
59  
0
88  
59  
0
88  
59  
0
96  
67  
8
104  
75  
16  
14  
10  
5
112  
83  
24  
20  
13  
13  
7
120  
91  
32  
30  
26  
21  
15  
-2  
128  
99  
40  
38  
34  
29  
23  
5
34  
34  
34  
0
0
0
50  
CMD/  
ADD  
Slew  
rate  
-2  
-4  
-2  
-4  
-2  
-4  
6
4
46  
-6  
-10  
-16  
-26  
-40  
-60  
-6  
-10  
-16  
-26  
-40  
-60  
-6  
-10  
-16  
-26  
-40  
-60  
2
-2  
40  
-11  
-17  
-35  
-62  
-11  
-17  
-35  
-62  
-11  
-17  
-35  
-62  
-3  
-9  
-27  
-54  
-8  
0
34  
V/ns  
-18  
-32  
-52  
-1  
-10  
-24  
-44  
-2  
24  
-19  
-46  
-11  
-38  
-16  
-36  
-6  
10  
-30  
-26  
-22  
-10  
32 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
Derating values DDR3-1333/1600 tIS/tIH-ac/dc based - Alternate AC150 Threshold  
tIS, tIH Derating [ps] AC/DC based  
Alternate AC150 Threshold -> VIH(AC) = VREF(DC) + 150mV, VIL(AC) = VREF(DC) - 150mV  
CLK,CLK Differential Slew Rate  
1.8 V/ns 1.6 V/ns  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.4V/ns  
1.2V/ns  
tIS  
1.0V/ns  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
50  
tIS  
tIH  
58  
42  
8
tIS  
tIH  
66  
50  
16  
12  
6
tIS  
tIH  
74  
58  
24  
20  
14  
8
tIH  
84  
68  
34  
30  
24  
18  
8
tIS  
tIH  
100  
84  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
75  
50  
0
75  
50  
0
75  
50  
0
83  
58  
8
91  
66  
16  
16  
16  
16  
15  
6
99  
74  
24  
24  
24  
24  
23  
14  
-1  
107  
82  
32  
32  
32  
32  
31  
22  
7
115  
90  
40  
40  
40  
40  
39  
30  
15  
34  
34  
34  
0
0
0
50  
CMD/  
ADD  
Slew  
rate  
0
-4  
0
-4  
0
-4  
8
4
46  
0
-10  
-16  
-26  
-40  
-60  
0
-10  
-16  
-26  
-40  
-60  
0
-10  
-16  
-26  
-40  
-60  
8
-2  
40  
0
0
0
8
-8  
0
34  
V/ns  
-1  
-10  
-25  
-1  
-10  
-25  
-1  
-10  
-25  
7
-18  
-32  
-52  
-10  
-24  
-44  
-2  
24  
-2  
-17  
-16  
-36  
-6  
10  
-9  
-26  
-10  
Required time tVAC above VIH(AC) {blow VIL(AC)} for valid transition  
tVAC @175mV [ps]  
Slew Rate[V/ns]  
tVAC @150mV [ps]  
min  
max  
min  
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
max  
>2.0  
2.0  
75  
57  
50  
38  
34  
29  
22  
13  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
< 0.5  
0
33 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
Note :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
tVAC  
VIH(AC) min  
VREF to ac  
region  
V
IH(DC) min  
nominal  
slew rate  
VREF(DC)  
nominal slew  
rate  
VIL(DC) max  
VREF to ac  
region  
VIL(AC) max  
VSS  
tVAC  
Delta TF  
Delta TR  
Setup Slew Rate VIH(AC)min - VREF(DC)  
=
V
REF(DC) - VIL(AC)max  
Setup Slew Rate  
=
Rising Signal  
Delta TR  
Falling Signal  
Delta TF  
Figure 9 - Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS  
(for ADD/CMD with respect to clock).  
34 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
Note :Clock and Strobe are drawn on a different time scale.  
CK  
tIH  
tIH  
tIS  
tIS  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(AC) min  
V
IH(DC) min  
dc to VREF  
region  
nominal  
slew rate  
VREF(DC)  
nominal  
dc to VREF  
region  
dc to VREF  
region  
slew rate  
VIL(DC) max  
VIL(AC) max  
VSS  
Delta TF  
Delta TR  
Hold Slew Rate  
Hold Slew Rate  
Rising Signal  
VREF(DC) - VIL(DC)max  
Delta TR  
V
IH(DC)min - VREF(DC)  
Delta TF  
=
=
Falling Signal  
Figure 10 - Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH  
(for ADD/CMD with respect to clock).  
35 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
Note :Clock and Strobe are drawn on a different time scale.  
CK  
tIH  
tIH  
tIS  
tIS  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
tVAC  
nominal  
line  
VIH(AC) min  
V
REF to ac  
region  
V
IH(DC) min  
tangent  
line  
VREF(DC)  
tangent  
line  
VIL(DC) max  
VIL(AC) max  
VREF to ac  
region  
nominal  
line  
Delta TR  
VSS  
tangent line[VIH(AC)min - VREF(DC)]  
Delta TR  
Setup Slew Rate  
=
Rising Signal  
Delta TF  
Setup Slew Rate tangent line[VREF(DC) - VIL(AC)max]  
=
Falling Signal  
Delta TF  
Figure 11. Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS  
(for ADD/CMD with respect to clock)  
36 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
Note :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(AC) min  
nominal  
line  
V
IH(DC) min  
dc to VREF  
region  
tangent  
line  
VREF(DC)  
tangent  
line  
dc to VREF  
region  
nominal  
line  
VIL(DC) max  
VIL(AC) max  
VSS  
Delta TF  
Delta TR  
tangent line [ VREF(DC) - VIL(DC)max ]  
Delta TR  
Hold Slew Rate  
=
Rising Signal  
tangent line [ VIH(DC)min - VREF(DC) ]  
Delta TF  
Hold Slew Rate  
=
Falling Signal  
Figure 12 - Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH  
(for ADD/CMD with respect to clock)  
37 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
15.4 Data Setup, Hold and Slew Rate Derating:  
For all input signals the total tDS (setup time) and tDH (hold time) required is calculated by adding the data sheet tDS(base) and tDH(base) value to the ∆  
tDS and tDH derating value respectively. Example: tDS (total setup time) = tDS(base) + tDS.  
Setup (tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIH(AC)min.  
Setup (tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VREF(DC) and the first crossing of VIL(AC)max.  
If the actual signal is always earlier than the nominal slew rate line between shaded ’VREF(DC) to ac region’, use nominal slew rate for derating value. If  
the actual signal is later than the nominal slew rate line anywhere  
between shaded ’VREF(DC) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value.  
Hold (tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and the first crossing of VREF(DC).  
Hold (tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of VIH(DC)min and the first crossing of VREF(DC). If  
the actual signal is always later than the nominal slew rate line between shaded ’dc level to VREF(DC) region’, use nominal slew rate for derating value. If  
the actual signal is earlier than the nominal slew rate line anywhere between shaded ’dc to VREF(DC) region’, the slew rate of a tangent line to the actual  
signal from the dc level to VREF(DC) level is used for derating value.  
For a valid transition the input signal has to remain above/below VIH/IL(AC) for some time tVAC.  
Although for slow slew rates the total setup time might be negative (i.e. a valid input signal will not have reached VIH/IL(AC) at the time of the rising clock  
transition) a valid input signal is still required to complete the transition and reach VIH/IL(AC).  
For slew rates in between the values listed in the tables the derating values may obtained by linear interpolation.  
These values are typically not subject to production test. They are verified by design and characterization  
Data Setup and Hold Base-Value  
[ps]  
tDS(base)  
tDH(base)  
DDR3-800  
75  
DDR3-1066  
DDR3-1333  
reference  
VIH/L(AC)  
VIH/L(DC)  
25  
30  
65  
150  
100  
Note : AC/DC referenced for 1V/ns DQ-slew rate and 2 V/ns DQS slew rate)  
Derating values DDR3-1066/1333 tIS/tIH-ac/dc based  
tDS, tDH Derating [ps] AC/DC baseda  
DQS,DQS Differential Slew Rate  
1.8 V/ns 1.6 V/ns  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
88  
59  
0
-
50  
34  
0
-
88  
59  
0
-2  
-
50  
34  
0
-4  
-
88  
59  
0
50  
34  
0
-
67  
8
6
2
-3  
-
-
42  
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
16  
14  
10  
5
16  
12  
6
-
-
-
-
DDR3 DQ  
-2  
-6  
-
-4  
-10  
-
4
22  
18  
13  
7
20  
14  
8
-
-
-
-
-
-
-
Slew  
-
-
-2  
-8  
-
26  
21  
15  
-2  
-30  
-
24  
18  
8
800/ rate  
1066 V/ns  
-
-
-
-
0
29  
23  
6
34  
24  
10  
-10  
-
-
-
-
-
-
-
-1  
-
-10  
-
-2  
-16  
-
-
-
-
-
-
-
-
-
-11  
-
-6  
-26  
-
-
-
-
-
-
-
-
-
-
-
-
-22  
-
75  
50  
0
-
50  
34  
0
-
75  
50  
0
0
-
50  
34  
0
-4  
-
75  
50  
0
50  
34  
0
-
-
-
-
-
58  
8
8
8
8
-
42  
8
-
-
-
-
-
-
-
-
16  
16  
16  
16  
15  
-
16  
12  
6
-
-
-
-
-
-
-
DDR3 DQ  
0
-4  
-10  
-
4
24  
24  
24  
23  
14  
-
20  
14  
8
-2  
-16  
-
-
-
-
-
Slew  
-
-
0
-2  
-8  
-
32  
32  
31  
22  
7
24  
18  
8
-6  
-26  
-
-
1333/ rate  
1600 V/ns  
-
-
-
-
-
0
40  
39  
30  
15  
34  
24  
10  
-10  
-
-
-
-
-
-
-10  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Note : a. Cell contents shaded in red are defined as ’not supported’.  
Required time tVAC above VIH(AC) {blow VIL(AC)} for valid transition  
tVAC[ps] DDR3-800/1066  
min max  
tVAC[ps] DDR3-1333  
Slew Rate[V/ns]  
min  
max  
>2.0  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
<0.5  
75  
57  
50  
38  
34  
29  
22  
13  
0
-
-
-
-
-
-
-
-
-
-
175  
170  
167  
163  
162  
161  
159  
155  
155  
150  
-
-
-
-
-
-
-
-
-
-
0
38 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
Note :Clock and Strobe are drawn on a different time scale.  
CK  
tIH  
tIH  
tIS  
tIS  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
tVAC  
VIH(AC) min  
VREF to ac  
region  
V
IH(DC) min  
nominal  
slew rate  
VREF(DC)  
nominal slew  
rate  
VIL(DC) max  
VREF to ac  
region  
VIL(AC) max  
VSS  
tVAC  
Delta TF  
Delta TR  
Setup Slew Rate  
Rising Signal  
V
IH(AC)min - VREF(DC)  
V
REF(DC) - VIL(AC)max  
Setup Slew Rate  
=
=
Falling Signal  
Delta TF  
Delta TR  
Figure 13 - Illustration of nominal slew rate and tVAC for setup time tDS (for DQ with respect to strobe) and tIS  
(for ADD/CMD with respect to clock).  
39 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
Note :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(AC) min  
V
IH(DC) min  
dc to VREF  
region  
nominal  
slew rate  
VREF(DC)  
nominal  
dc to VREF  
region  
dc to VREF  
region  
slew rate  
VIL(DC) max  
VIL(AC) max  
VSS  
Delta TF  
Delta TR  
V
REF(DC) - VIL(DC)max  
VIH(DC)min - VREF(DC)  
Delta TF  
Hold Slew Rate  
Rising Signal  
Hold Slew Rate  
Falling Signal  
=
=
Delta TR  
Figure 14 - Illustration of nominal slew rate for hold time tDH (for DQ with respect to strobe) and tIH  
(for ADD/CMD with respect to clock).  
40 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
Note :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
tVAC  
nominal  
line  
VIH(AC) min  
V
REF to ac  
region  
V
IH(DC) min  
tangent  
line  
VREF(DC)  
tangent  
line  
VIL(DC) max  
VIL(AC) max  
VREF to ac  
region  
nominal  
line  
Delta TR  
VSS  
tangent line[VIH(AC)min - VREF(DC)]  
Delta TR  
Setup Slew Rate  
=
Rising Signal  
Delta TF  
tangent line[VREF(DC) - VIL(AC)max]  
Delta TF  
Setup Slew Rate  
=
Falling Signal  
Figure 15 - Illustration of tangent line for setup time tDS (for DQ with respect to strobe) and tIS  
(for ADD/CMD with respect to clock)  
41 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
Note :Clock and Strobe are drawn on a different time scale.  
tIH  
tIH  
tIS  
tIS  
CK  
CK  
DQS  
DQS  
tDH  
tDH  
tDS  
tDS  
VDDQ  
VIH(AC) min  
nominal  
line  
V
IH(DC) min  
dc to VREF  
region  
tangent  
line  
VREF(DC)  
tangent  
line  
dc to VREF  
region  
nominal  
line  
VIL(DC) max  
VIL(AC) max  
VSS  
Delta TF  
Delta TR  
tangent line [ VREF(DC) - VIL(DC)max ]  
Delta TR  
Hold Slew Rate  
=
Rising Signal  
tangent line [ VIH(DC)min - VREF(DC) ]  
Delta TF  
Hold Slew Rate  
=
Falling Signal  
Figure 16 - Illustration of tangent line for hold time tDH (for DQ with respect to strobe) and tIH  
(for ADD/CMD with respect to clock)  
42 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
16.0 Physical Dimensions :  
16.1 64Mbx16 based 64Mx64 Module(1 Rank)  
Units : Millimeters  
67.60  
Max 3.8  
1.00 ± 0.10  
3.00  
2X 1.80  
0.10 M C A B  
(OPTIONAL HOLES)  
2X 4.00 ± 0.10  
0.10 M C A B  
0.60  
0.45 ± 0.03  
4.00 ± 0.10  
2.55  
0.25 MAX  
1.00 ± 0.10  
Detail A  
Detail B  
The used device is 64M x16 DDR3 SDRAM, FBGA.  
DDR3 SDRAM Part NO : K4B1G1646D - HC**  
43 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
16.2 64Mbx16 based 128Mx64 Module(2 Ranks)  
Units : Millimeters  
67.60  
Max 3.8  
1.00 ± 0.10  
3.00  
2X 1.80  
0.10 M C A B  
(OPTIONAL HOLES)  
2X 4.00 ± 0.10  
0.10 M C A B  
0.60  
0.45 ± 0.03  
4.00 ± 0.10  
2.55  
0.25 MAX  
1.00 ± 0.10  
Detail A  
Detail B  
The used device is 64M x16 DDR3 SDRAM, FBGA.  
DDR3 SDRAM Part NO : K4B1G1646D - HC**  
44 of 45  
Rev. 1.2 August 2008  
Unbuffered SoDIMM  
DDR3 SDRAM  
16.3 128Mbx8 based 256Mx64 Module(2 Ranks)  
Units : Millimeters  
67.60  
Max 3.8  
1.00 ± 0.10  
3.00  
2X 1.80  
0.10 M C A B  
(OPTIONAL HOLES)  
2X 4.00 ± 0.10  
0.10 M C A B  
0.60  
0.45 ± 0.03  
4.00 ± 0.10  
2.55  
0.25 MAX  
1.00 ± 0.10  
Detail A  
Detail B  
The used device is 128M x8 DDR3 SDRAM, FBGA.  
DDR3 SDRAM Part NO : K4B1G0846D - HC**  
45 of 45  
Rev. 1.2 August 2008  

相关型号:

M471B2874DZ1-CG8

DDR DRAM Module, 128MX64, CMOS, ROHS COMPLIANT, SO-DIMM-204
SAMSUNG

M471B2874DZ1-CH9

DDR DRAM Module, 128MX64, CMOS, ROHS COMPLIANT, SO-DIMM-204
SAMSUNG

M471B2874EH1

DDR3 SDRAM Memory
SAMSUNG

M471B2874EH1-CF8

DDR DRAM Module, 128MX64, CMOS, HALOGEN FREE AND ROHS COMPLIANT, SODIMM-204
SAMSUNG

M471B2874EH1-CH9

DDR DRAM Module, 128MX64, CMOS, HALOGEN FREE AND ROHS COMPLIANT, SODIMM-204
SAMSUNG

M471B5173QH0-YK0

DDR DRAM Module, 512MX64, CMOS, HALOGEN FREE AND ROHS COMPLIANT, SODIMM-204
SAMSUNG

M471B5273BH1

DDR3 SDRAM Memory
SAMSUNG

M471B5273CH0

DDR3 SDRAM Memory
SAMSUNG

M471B5273CH0-CK0

DDR DRAM Module, 256MX8, 0.225ns, CMOS, HALOGEN FREE AND ROHS COMPLIANT, SODIMM-204
SAMSUNG

M471B5273DH0-CF8

DDR DRAM Module, 512MX64, 0.3ns, CMOS, SODIMM-204
SAMSUNG

M471B5273DH0-CH9

DDR DRAM Module, 512MX64, 0.255ns, CMOS, SODIMM-204
SAMSUNG

M471B5273DH0-CK0

DDR DRAM Module, 512MX64, 0.225ns, CMOS, SODIMM-204
SAMSUNG