S524A40X10-RCU [SAMSUNG]

EEPROM, 128X8, Serial, CMOS, PDSO8;
S524A40X10-RCU
型号: S524A40X10-RCU
厂家: SAMSUNG    SAMSUNG
描述:

EEPROM, 128X8, Serial, CMOS, PDSO8

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 双倍数据速率 光电二极管 内存集成电路
文件: 总18页 (文件大小:82K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S524A40X10/40X20/40X40  
1K/2K/4K-bit  
Serial EEPROM for Low Power  
with software write protect  
Data Sheet  
OVERVIEW  
The S524A40X10/40X20/40X40 serial EEPROM has a 1,024/2,048/4,096-bit (128/256/512-byte) capacity,  
supporting the standard I2C™-bus serial interface. It is fabricated using Samsungs most advanced CMOS  
technology. It has been developed for low power and low voltage applications (1.8 V to 5.5 V). Important features  
are a hardware-based write protection circuit for the entire memory area and software-based write protection logic  
for the lower 128 bytes. Hardware-based write protection is controlled by the state of the write-protect (WP) pin.  
The software-based method is one-time programmable and permanent. Using one-page write mode, you can  
load up to 16 bytes of data into the EEPROM in a single write operation. Another significant feature of the  
S524A40X10/40X20/40X40 is its support for fast mode and standard mode.  
FEATURES  
I2C-Bus Interface  
Operating Characteristics  
·
·
Two-wire serial interface  
·
Operating voltage  
— 1.8 V to 5.5 V  
Automatic word address increment  
EEPROM  
·
Operating current  
— Maximum write current: < 3 mA at 5.5 V  
— Maximum read current: < 200 mA at 5.5 V  
— Maximum stand-by current: < 1 mA at 5.5 V  
Operating temperature range  
— – 25°C to + 70°C (commercial)  
— – 40°C to + 85°C (industrial)  
Operating clock frequencies  
— 100 kHz at standard mode  
— 400 kHz at fast mode  
·
·
·
1K/2K/4K-bit (128/256/512-byte) storage area  
16-byte page buffer  
Typical 3 ms write cycle time with  
auto-erase function  
·
·
·
·
·
·
Hardware-based write protection for the entire  
EEPROM (using the WP pin)  
Software-based write protection for the lower  
128-byte EEPROM  
EEPROM programming voltage generated  
on chip  
·
·
1,000,000 erase/write cycles  
100 years data retention  
Electrostatic discharge (ESD)  
— 5,000 V (HBM)  
— 500 V (MM)  
Packages  
8-pin DIP, SOP, and TSSOP  
·
2-1  
S524A40X10/40X20/40X40 SERIAL EEPROM  
DATA SHEET  
SDA  
WP  
Start/Stop  
Logic  
HV Generation  
Timing Control  
Control Logic  
EEPROM  
Cell Array  
128 x 8 bits  
256 x 8 bits  
512 x 8 bits  
SCL  
Slave Address  
Comparator  
Word Address  
Pointer  
Row  
decoder  
A0  
A1  
A2  
Column Decoder  
Data Register  
DOUT and ACK  
Figure 2-1. S524A40X10/40X20/40X40 Block Diagram  
2-2  
DATA SHEET  
S524A40X10/40X20/40X40 SERIAL EEPROM  
VCC WP SCL SDA  
S524A40X10/  
40X20/40X40  
A0  
A1  
A2  
VSS  
NOTE:  
The S524A40X10/40X20/40X40 is available  
in 8-pin DIP, SOP, and TSSOP package.  
Figure 2-2. Pin Assignment Diagram  
Table 2-1. S524A40X10/40X20/40X40 Pin Descriptions  
Description  
Name  
Type  
Circuit  
Type  
A0, A1, A2  
Input  
Input pins for device address selection. To configure a device address,  
these pins should be connected to the VCC or VSS of the device.  
1
These pins are internally pulled down to VSS  
.
VSS  
Ground pin.  
3
SDA  
I/O  
Bi-directional data pin for the I2C-bus serial data interface. Schmitt  
trigger input and open-drain output. An external pull-up resistor must  
be connected to VCC. Typical values for this pull-up resistor are 4.7 kW  
(100 kHz) and 1 kW (400 kHz).  
SCL  
WP  
Input  
Input  
Schmitt trigger input pin for serial clock input.  
Input pin for hardware write protection control. If you tie this pin to VCC,  
2
1
the write function is disabled to protect previously written data in the  
entire memory; if you tie it to VSS, the write function is enabled.  
This pin is internally pulled down to VSS  
.
VCC  
Single power supply.  
NOTE: See the following page for diagrams of pin circuit types 1, 2, and 3.  
2-3  
S524A40X10/40X20/40X40 SERIAL EEPROM  
DATA SHEET  
A0, A1,  
A2, WP  
Noise  
Filter  
SCL  
Figure 2-3. Pin Circuit Type 1  
Figure 2-4. Pin Circuit Type 2  
SDA  
Data Out  
Data In  
VSS  
Noise  
Filter  
Figure 2-5. Pin Circuit Type 3  
2-4  
DATA SHEET  
S524A40X10/40X20/40X40 SERIAL EEPROM  
FUNCTION DESCRIPTION  
I2C-BUS INTERFACE  
The S524A40X10/40X20/40X40 supports the I2C-bus serial interface data transmission protocol. The two-wire bus  
consists of a serial data line (SDA) and a serial clock line (SCL). The SDA and the SCL lines must be connected  
to VCC by a pull-up resistor that is located somewhere on the bus.  
Any device that puts data onto the bus is defined as the transmitter” and any device that gets data from the bus  
is the receiver.” The bus is controlled by a master device which generates the serial clock and start/stop  
conditions, controlling bus access. Using the A0,A1 and A2 input pins, up to eight S524A40X10/40X20 (four for  
S524A40X40) devices can be connected to the same I2C-bus as slaves (see Figure 2-6). Both the master and  
slaves can operate as transmitter or receiver, but the master device determines which bus operating mode would  
be active.  
VCC  
VCC  
R
R
SDA  
SCL  
Slave 1  
S524A40X20  
Slave 2  
S524A40X20  
Slave 3  
S524A40X20  
Slave 8  
S524A40X20  
Bus Master  
(Transmitter/  
Receiver)  
Tx/Rx  
A0 A1 A2  
Tx/Rx  
A0 A1 A2  
Tx/Rx  
A0 A1 A2  
Tx/Rx  
A0 A1 A2  
MCU  
To VCC or VSS  
To VCC or VSS  
To VCC or VSS  
To VCC or VSS  
NOTE: The A0 does not affect the device address of the S524A40X40.  
Figure 2-6. Typical Configuration (16 Kbits of Memory on the I2C-Bus)  
2-5  
S524A40X10/40X20/40X40 SERIAL EEPROM  
DATA SHEET  
I2C-BUS PROTOCOLS  
Here are several rules for I2C-bus transfers:  
— A new data transfer can be initiated only when the bus is currently not busy.  
— MSB is always transferred first in transmitting data.  
— During a data transfer, the data line (SDA) must remain stable whenever the clock line (SCL) is High.  
The I2C-bus interface supports the following communication protocols:  
·
·
Bus not busy: The SDA and the SCL lines remain High level when the bus is not active.  
Start condition: Start condition is initiated by a High-to-Low transition of the SDA line while SCL remains High  
level. All bus commands must be preceded by a start condition.  
·
Stop condition: A stop condition is initiated by a Low-to-High transition of the SDA line while SCL remains  
High level. All bus operations must be completed by a stop condition (see Figure 2-7).  
SCL  
SDA  
Start  
Data or  
Data  
Stop  
Condition  
ACK Valid Change  
Condition  
Figure 2-7. Data Transmission Sequence  
·
·
Data valid: Following a start condition, the data becomes valid if the data line remains stable for the duration  
of the High period of SCL. New data must be put onto the bus while SCL is Low. Bus timing is one clock  
pulse per data bit. The number of data bytes to be transferred is determined by the master device. The total  
number of bytes that can be transferred in one operation is theoretically unlimited.  
ACK (Acknowledge): An ACK signal indicates that a data transfer is completed successfully. The transmitter  
(the master or the slave) releases the bus after transmitting eight bits. During the 9th clock, which the master  
generates, the receiver pulls the SDA line low to acknowledge that it successfully received the eight bits of  
data (see Figure 2-8). But the slave does not send an ACK if an internal write cycle is still in progress.  
In data read operations, the slave releases the SDA line after transmitting 8 bits of data and then monitors  
the line for an ACK signal during the 9th clock period. If an ACK is detected, the slave will continue to  
transmit data. If an ACK is not detected, the slave terminates data transmission and waits for a stop condition  
to be issued by the master before returning to its stand-by mode.  
2-6  
DATA SHEET  
S524A40X10/40X20/40X40 SERIAL EEPROM  
Master  
SCL Line  
Bit 1  
Bit 9  
Data from  
Transmitter  
ACK from  
Receiver  
ACK  
Figure 2-8. Acknowledge Response From Receiver  
·
·
Slave Address: After the master initiates a Start condition, it must output the address of the device to be  
accessed. The most significant four bits of the slave address are called the device identifier. The identifier  
for the S524A40X10/40X20/40X40 is 1010B. The next three bits comprise the address of a specific device.  
The device address is defined by the state of the A0, A1 and A2 pins. Using this addressing scheme, you can  
cascade up to eight S524A40X10/40X20 or four S524A40X40 on the bus (see Table 2-2 below). The b1 for  
S524A40X40 is used by the master to select which of the blocks of internal memory (1 block = 256 words)  
are to be accessed. The bit is in effect the most significant bit of the word address.  
Read/Write: The final (eighth) bit of the slave address defines the type of operation to be performed. If the  
R/W bit is 1, a read operation is executed. If it is 0, a write operation is executed.  
Table 2-2. Slave Device Addressing  
Function  
Device Identifier  
Device Address  
R/W Bit  
b1(note)  
A0  
b7 b6 b5 b4  
b3  
A2  
A2  
A2  
b2  
A1  
A1  
A1  
b0  
1
Read  
1
1
0
0
0
1
1
1
1
0
0
0
Write  
A0  
0
Write-protect  
A0  
0
NOTE: The b1 for S524A40X40 corresponds to the MSB of the memory array address word.  
2-7  
S524A40X10/40X20/40X40 SERIAL EEPROM  
BYTE WRITE OPERATION  
DATA SHEET  
In a complete byte write operation, the master transmits the slave address, word address, and one data byte to  
the S524A40X10/40X20/40X40 slave device (see Figure 2-9).  
Start Slave Address  
Word Address  
Data  
Stop  
A
C
K
A
C
K
A
C
K
Figure 2-9. Byte Write Operation  
Following the Start condition, the master sends the device identifier (4 bits), the device address (3 bits), and an  
R/W bit set to 0” onto the bus. Then the addressed S524A40X10/40X20/40X40 generates an ACK and waits for  
the next byte. The next byte to be transmitted by the master is the word address. This 8-bit address is written into  
the word address pointer of the S524A40X10/40X20/40X40.  
When the S524A40X10/40X20/40X40 receives the word address, it responds by issuing an ACK and then waits  
for the next 8-bit data. When it receives the data byte, the S524A40X10/40X20/40X40 again responds with an  
ACK. The master terminates the transfer by generating a Stop condition, at which time the  
S524A40X10/40X20/40X40 begins the internal write cycle.  
While the internal write cycle is in progress, all S524A40X10/40X20/40X40 inputs are disabled and the  
S524A40X10/40X20/40X40 does not respond to additional requests from the master.  
2-8  
DATA SHEET  
S524A40X10/40X20/40X40 SERIAL EEPROM  
PAGE WRITE OPERATION  
The S524A40X10/40X20/40X40 can also perform 16-byte page write operation. A page write operation is initiated  
in the same way as a byte write operation. However, instead of finishing the write operation after the first data  
byte is transferred, the master can transmit up to 15 additional bytes. The S524A40X10/40X20/40X40 responds  
with an ACK each time it receives a complete byte of data (see Figure 2-10).  
Start Slave Address  
Word Address (n)  
Data (n)  
Data (  
£
n + 15)  
Stop  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Figure 2-10. Page Write Operation  
The S524A40X10/40X20/40X40 automatically increments the word address pointer each time it receives a  
complete data byte. When one byte has been received, the internal word address pointer increments to the next  
address and the next data byte can be received.  
If the master transmits more than 16 bytes before it generates a stop condition to end the page write operation,  
the S524A40X10/40X20/40X40 word address pointer value rolls over” and the previously received data is  
overwritten. If the master transmits less than 16 bytes and generates a stop condition, the  
S524A40X10/40X20/40X40 writes the received data to the corresponding EEPROM address.  
During a page write operation, all inputs are disabled and there is no response to additional requests from the  
master until the internal write cycle is completed.  
2-9  
S524A40X10/40X20/40X40 SERIAL EEPROM  
POLLING FOR AN ACK SIGNAL  
DATA SHEET  
When the master issues a stop condition to initiate a write cycle, the S524A40X10/40X20/40X40 starts an internal  
write cycle. The master can then immediately begin polling for an ACK from the slave device.  
To poll for an ACK signal in a write operation, the master issues a start condition followed by the slave address.  
As long as the S524A40X10/40X20/40X40 remains busy with the write operation, no ACK is returned. When the  
S524A40X10/40X20/40X40 completes the write operation, it returns an ACK and the master can then proceed  
with the next read or write operation (see Figure 2-11).  
Send Write  
Command  
Send Stop Condition to  
Initiate Write Cycle  
Send Start  
Condition  
Send Slave Address  
with R/  
W bit = "0"  
No  
ACK = "0" ?  
Yes  
Start Next  
Operation  
Figure 2-11. Master Polling for an ACK Signal from a Slave Device  
2-10  
DATA SHEET  
S524A40X10/40X20/40X40 SERIAL EEPROM  
SOFTWARE-BASED WRITE PROTECTION  
You can write-protect the lower 128 bytes of the EEPROM, locations 00H–7FH, in one operation. To do this, you  
simply write a value to a one-time, write-only register. Once you have applied this write protection, any write  
attempt to access the lower 128-byte area is ignored. In other words, the write protection is permanent. The effect  
of such a failed attempt is processed in the same way as an invalid I2C-bus protocol.  
To enable write protection, you must execute a write operation to the write protection register. To access the write  
protection register, you use the device address 0110. The word address and data in this write operation can be  
any value and the timing and wave form characteristics are identical to a normal byte write operation (see Figure  
2-12).  
Word Address  
(Ignored)  
Data  
(Ignored)  
Start Slave Address  
Stop  
A
C
K
A
C
K
A
C
K
Figure 2-12. Write Protection Operation  
HARDWARE-BASED WRITE PROTECTION  
You can also write-protect the entire memory area of the S524A40X10/40X20/40X40. This method of write  
protection is controlled by the state of the Write Protect (WP) pin.  
When the WP pin is connected to VCC, any attempt to write a value to the memory is ignored.  
The S524A40X10/40X20/40X40 will acknowledge slave and word address, but it will not generate an  
acknowledge after receiving the first byte of the data. Thus the write cycle will not be started when the stop  
condition is generated. By connecting the WP pin to VSS, the write function is allowed for the entire memory.  
These write protection features effectively change the EEPROM to a ROM in order to prevent data from being  
overwritten. Whenever the write function is disabled, a slave address and a word address are acknowledged on  
the bus, but data bytes are not acknowledged.  
2-11  
S524A40X10/40X20/40X40 SERIAL EEPROM  
DATA SHEET  
CURRENT ADDRESS BYTE READ OPERATION  
The internal word address pointer maintains the address of the last word accessed, incremented by one.  
Therefore, if the last access (either read or write) was to the address n, the next read operation would access  
data at address n+1.  
When the S524A40X10/40X20/40X40 receives a slave address with the R/W bit set to 1, it issues an ACK and  
sends the eight bits of data. The master does not acknowledge the transfer but it does generate a Stop condition.  
In this way, the S524A40X10/40X20/40X40 effectively stops the transmission (see Figure 2-13).  
Start Slave Address  
Data  
Stop  
A
C
K
N
O
A
C
K
Figure 2-13. Current Address Byte Read Operation  
2-12  
DATA SHEET  
S524A40X10/40X20/40X40 SERIAL EEPROM  
RANDOM ADDRESS BYTE READ OPERATION  
Using random read operations, the master can access any memory location at any time. Before it issues the  
slave address with the R/W bit set to 1, the master must first perform a dummy” write operation. This operation  
is performed in the following steps:  
1. The master first issues a Start condition, the slave address, and the word address to be read. (This step sets  
the internal word address pointer of the S524A40X10/40X20/40X40 to the desired address.)  
2. When the master receives an ACK for the word address, it immediately re-issues a start condition followed  
by another slave address, with the R/W bit set to 1.  
3. The S524A40X10/40X20/40X40 then sends an ACK and the 8-bit data stored at the desired address.  
4. At this point, the master does not acknowledge the transmission, but generates a stop condition instead.  
5. In response, the S524A40X10/40X20/40X40 stops transmitting data and reverts to its stand-by mode (see  
Figure 2-14).  
Start Slave Address  
Word Address  
Start Slave Address  
Data (n)  
Stop  
A
C
K
A
C
K
A
C
K
N
O
A
C
K
Figure 2-14. Random Address Byte Read Operation  
2-13  
S524A40X10/40X20/40X40 SERIAL EEPROM  
SEQUENTIAL READ OPERATION  
DATA SHEET  
Sequential read operations can be performed in two ways: as a series of current address reads or as random  
address reads. The first data is sent in the same way as the previous read mode used on the bus. The next time,  
however, the master responds with an ACK, indicating that it requires additional data.  
The S524A40X10/40X20/40X40 continues to output data for each ACK it receives. To stop the sequential read  
operation, the master does not respond with an ACK, but instead issues a Stop condition.  
Using this method, data is output sequentially with the data from address n” followed by the data from n+1. The  
word address pointer for read operations increments all word addresses, allowing the entire EEPROM to be read  
sequentially in a single operation. After the entire EEPROM is read, the word address pointer rolls over” and the  
S524A40X10/40X20/40X40 continues to transmit data for each ACK it receives from the master (see Figure 2-  
15).  
Start Slave Address  
Data (n)  
Data (n + x)  
A
C
K
A
C
K
A
C
K
N
O
A
C
K
Figure 2-15. Sequential Read Operation  
2-14  
DATA SHEET  
S524A40X10/40X20/40X40 SERIAL EEPROM  
ELECTRICAL DATA  
Table 2-3. Absolute Maximum Ratings  
°
(TA = 25 C)  
Parameter  
Symbol  
Conditions  
Rating  
Unit  
VCC  
– 0.3 to + 7.0  
V
Supply voltage  
VIN  
VO  
– 0.3 to + 7.0  
– 0.3 to + 7.0  
– 40 to + 85  
– 65 to + 150  
5000  
V
V
Input voltage  
Output voltage  
°
C
TA  
Operating temperature  
Storage temperature  
Electrostatic discharge  
°
C
TSTG  
VESD  
HBM  
MM  
V
500  
Table 2-4. D.C. Electrical Characteristics  
°
°
°
°
(TA = – 25 C to + 70 C (C), – 40 C to + 85 C (I), VCC = 1.8 V to 5.5 V)  
Parameter  
Input low voltage  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
0.3 VCC  
V
SCL, SDA, A0, A1, A2  
VIH  
ILI  
0.7 VCC  
10  
10  
0.4  
3
V
µA  
µA  
V
Input high voltage  
Input leakage current  
VIN = 0 to VCC  
ILO  
VOL  
VO = 0 to VCC  
Output leakage current  
Output low voltage  
IOL = 3 mA, VCC = 2.5 V  
VCC = 5.5 V, 400 kHz  
VCC = 1.8 V, 100 kHz  
VCC = 5.5 V, 400 kHz  
VCC = 1.8 V, 100 kHz  
mA  
ICC1  
ICC2  
ICC3  
ICC4  
ICC5  
Supply current  
Write  
1
0.2  
60  
1
Read  
µA  
µA  
VCC = SDA = SCL = 5.5 V,  
all other inputs = 0 V  
Stand-by current  
ICC6  
1
VCC = SDA = SCL = 1.8 V,  
all other inputs = 0 V  
2-15  
S524A40X10/40X20/40X40 SERIAL EEPROM  
DATA SHEET  
Table 2-4. D.C. Electrical Characteristics (Continued)  
°
°
°
°
(TA = – 25 C to + 70 C (C), – 40 C to + 85 C (I), VCC = 1.8 V to 5.5 V)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
CIN  
10  
pF  
°
Input capacitance  
25 C, 1MHz,  
VCC = 5 V, VIN = 0 V,  
A0, A1, A2, SCL and WP pin  
CI/O  
10  
°
Input/output capacitance  
25 C, 1MHz,  
VCC = 5 V, VI/O = 0 V,  
SDA pin  
Table 2-5. A.C. Electrical Characteristics  
°
°
°
°
(TA = – 25 C to + 70 C (C), – 40 C to + 85 C (I), VCC = 1.8 V to 5.5 V)  
Parameter  
Symbol Conditions  
VCC = 1.8 to 5.5 V  
(Standard Mode)  
VCC = 2.5 to 5.5 V  
(Fast Mode)  
Unit  
Min  
Max  
Min  
Max  
FCLK  
tHIGH  
tLOW  
External clock frequency  
Clock high time  
0
100  
0
400  
kHz  
4
4.7  
0.6  
1.3  
ms  
Clock low time  
tR  
Rising time  
SDA, SCL  
1
0.3  
0.3  
tF  
Falling time  
SDA, SCL  
0.3  
tHD:STA  
tSU:STA  
tHD:DAT  
tSU:DAT  
tSU:STO  
tBUF  
Start condition hold time  
Start condition setup time  
Data input hold time  
Data input setup time  
Stop condition setup time  
Bus free time  
4
0.6  
0.6  
0
4.7  
0
0.25  
4
0.1  
0.6  
1.3  
Before new  
4.7  
transmission  
tAA  
Data output valid from  
clock low (note)  
0.3  
3.5  
0.9  
tSP  
Noise spike width  
Write cycle time  
100  
5
50  
5
ns  
tWR  
ms  
NOTE: When acting as a transmitter, the S524A40X10/40X20/40X40 must provide an internal minimum delay time to  
bridge the undefined period (minimum 300 ns) of the falling edge of SCL. This is required to avoid unintended  
generation of a start or stop condition.  
2-16  
DATA SHEET  
S524A40X10/40X20/40X40 SERIAL EEPROM  
tF  
tHIGH  
tR  
tLOW  
SCL  
tSU:STA  
tHD:STA  
tHD:DAT  
tSU:DAT  
tSU:STO  
tBUF  
SDA In  
tAA  
SDA Out  
Figure 2-16. Timing Diagram for Bus Operations  
SCL  
SDA  
8th Bit  
ACK  
WORDn  
tWR  
Stop  
Condition  
Start  
Condition  
Figure 2-17. Write Cycle Timing Diagram  
2-17  
S524A40X10/40X20/40X40 SERIAL EEPROM  
DATA SHEET  
NOTES  
2-18  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY