MD2203-D576 [SANDISK]

Flash Memory Drive, CMOS, PDIP32, DIP-32;
MD2203-D576
型号: MD2203-D576
厂家: SANDISK CORPORATION    SANDISK CORPORATION
描述:

Flash Memory Drive, CMOS, PDIP32, DIP-32

光电二极管
文件: 总29页 (文件大小:323K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DiskOnChip 2000 DIP  
From 16MByte to 1GByte  
Data Sheet, March 2006  
Highlights  
DiskOnChip 2000 DIP is a member of  
M-Systems’ family of DiskOnChip flash disk  
products. It is available in densities of 16MByte  
to 1GByte.  
DiskOnChip 2000 DIP features:  
„
Single-chip plug-n-play flash disk  
TrueFFS Software  
„
Low power, single 3.3V or 5V power  
supply  
„
„
„
Full hard-disk read/write emulation for  
transparent file system management  
„
„
„
„
„
16MByte (MB) to 1GByte (GB) density  
Simple, easy-to-integrate interface  
8KB sized memory window  
Boot OS capability  
Proprietary TrueFFS® technology for full  
hard-disk emulation, high data reliability  
and maximum flash lifetime  
Identical software for all DiskOnChip  
capacities  
Patented methods to extend flash lifetime,  
including:  
†
Dynamic virtual mapping  
†
Dynamic and static wear-leveling  
„
„
Support for all major OSs, including:  
VxWorks, Windows CE/.NET, Linux,  
Windows NT/XP, QNX and others.  
„
Software tools for programming,  
duplicating, testing, and debugging  
Operates with TrueFFS Software  
Development Kit (SDK) in OS-less  
environment.  
Reliability  
„
On-the-fly Reed-Solomon Error Detection  
Code/Error Correction Code (EDC/ECC)  
RoHS Support  
„
Guaranteed data integrity, even after power  
failure  
„
RoHS version available (16MB-96MB)  
„
„
Transparent bad-block management  
Dynamic and static wear-leveling  
1
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
DiskOnChip 2000 DIP  
Hardware Compatibility  
„
32-pin DIP, JEDEC standard,  
EEPROM-compatible pinout  
„
Compatible with all major CPUs, including:  
†
†
†
†
†
†
†
†
†
x86  
StrongARM  
XScale  
Geode® SCxxxx  
PowerPC™ MPC8xx  
MediaGX  
68K  
MIPS  
SuperH™ SH-x  
„
8-bit, 16-bit and 32-bit bus architecture  
support  
Applications  
„
„
„
„
„
„
„
„
Embedded systems  
Internet access devices  
Internet set-top boxes/ITV, Web browsers  
WBT, thin clients, network computers  
Routers, networking  
Web phones, car PCs, DVD, HPC  
Point of sale, industrial PCs  
Telecom, medical  
Densities  
„
Low profile: 16, 32, 48, 64, 96, 128, 192, 256,  
384MB  
„
„
High profile: 576, 768, 1024MB  
Commercial (0°C to 70°C) and extended  
temperature range (-40°C to +85°C) for all  
densities  
2
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
DiskOnChip 2000 DIP  
TABLE OF CONTENTS  
1. Introduction ...............................................................................................................................5  
2. Product Overview......................................................................................................................6  
2.1 Product Description ............................................................................................................6  
2.2 I/O Operation......................................................................................................................7  
2.3 Pin Diagram........................................................................................................................7  
2.4 Signal Descriptions.............................................................................................................8  
3. Theory of Operation ..................................................................................................................9  
3.1 Overview.............................................................................................................................9  
3.2 System Interface.................................................................................................................9  
3.3 Boot Block ........................................................................................................................10  
3.4 Error Detection Code/Error Correction Code (EDC/ECC)................................................10  
3.5 Flash Control ....................................................................................................................10  
4. Operating Modes.....................................................................................................................11  
5. TrueFFS Technology...............................................................................................................12  
5.1 General Description..........................................................................................................12  
5.1.1 Built-In Operating System Support..................................................................................... 13  
5.1.2 TrueFFS Software Development Kit (SDK)........................................................................ 13  
5.1.3 File Management................................................................................................................ 13  
5.1.4 Bad-Block Management..................................................................................................... 13  
5.1.5 Wear-Leveling .................................................................................................................... 13  
5.2 Power Failure Management .............................................................................................14  
5.2.1 Error Detection/Correction.................................................................................................. 14  
5.2.2 Special Features through I/O Control (IOCTL) Mechanism............................................... 15  
5.2.3 Compatibility....................................................................................................................... 15  
5.3 8KB Memory Window.......................................................................................................16  
6. Booting from DiskOnChip 2000 .............................................................................................17  
6.1 Introduction.......................................................................................................................17  
6.2 Boot Procedure in PC-Compatible Platforms ...................................................................17  
7. Design Considerations ...........................................................................................................19  
7.1 Design Environment .........................................................................................................19  
7.2 System Interface...............................................................................................................19  
7.3 Connecting Signals...........................................................................................................20  
7.4 Platform-Specific Issues...................................................................................................20  
7.4.1 Wait State........................................................................................................................... 20  
3
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
DiskOnChip 2000 DIP  
7.4.2 Big and Little Endian Systems............................................................................................ 20  
7.4.3 Working with 8/16/32-Bit Systems...................................................................................... 21  
8. Product Specifications ...........................................................................................................22  
8.1 Environmental Specifications ...........................................................................................22  
8.1.1 Temperature Ranges ......................................................................................................... 22  
8.1.2 DiskOnChip Assembly........................................................................................................ 22  
8.1.3 Humidity.............................................................................................................................. 22  
8.1.4 Shock and Vibration ........................................................................................................... 22  
8.2 Electrical Specifications....................................................................................................22  
8.2.1 Absolute Maximum Ratings................................................................................................ 22  
8.2.2 Capacitance........................................................................................................................ 23  
8.2.3 DC Electrical Characteristics over Operating Range......................................................... 23  
8.2.4 AC Operating Conditions.................................................................................................... 24  
8.3 Timing Specifications........................................................................................................25  
8.3.1 Read Cycle Timing............................................................................................................. 25  
8.3.2 Write Cycle Timing ............................................................................................................. 26  
8.4 Mechanical Dimensions....................................................................................................27  
9. Ordering Information...............................................................................................................28  
How to Contact Us ........................................................................................................................29  
4
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
DiskOnChip 2000 DIP  
1.  
INTRODUCTION  
This data sheet includes the following sections:  
Section 1:  
Section 2:  
Overview of data sheet contents  
Product overview, including brief product description, a pin diagram and signal  
descriptions  
Section 3:  
Section 4:  
Section 5:  
Section 6:  
Section 7:  
Theory of operation for the major building blocks  
Modes of operation  
Description of TrueFFS technology  
Using DiskOnChip 2000 DIP as a boot device  
Design considerations for implementing popular applications and for maximizing  
built-in flexibility features  
Section 8:  
Environmental, mechanical, electrical and production specifications  
To contact SanDisk’s worldwide offices for general information and technical support, please see  
the listing on the back page, or visit SanDisk’s website (www.SanDisk.com).  
5
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
DiskOnChip 2000 DIP  
2.  
PRODUCT OVERVIEW  
2.1 Product Description  
The DiskOnChip 2000 product line is the second-generation of SanDisk’s DiskOnChip series of  
products. The DiskOnChip 2000 series provides a small, single-chip, solid-state flash disk in a  
standard 32-pin DIP package. Combining a disk controller with flash memory on a single chip,  
DiskOnChip 2000 is the solution where minimal weight, space, and power consumption are  
essential. DiskOnChip 2000 is used in a wide range of products, such as information appliances,  
set-top boxes, thin clients, thin servers, network computers, and embedded, portable computers.  
By placing DiskOnChip 2000 in a standard socket, physical space requirements are reduced. Unlike  
standard IDE drives, no cables or extra space are required. DiskOnChip 2000 has no moving parts,  
resulting in significantly decreased power consumption and increased reliability. It is easy to use  
and reduces integration overhead. DiskOnChip 2000 is therefore a very attractive alternative to  
conventional hard and floppy disk drives.  
Using TrueFFS technology, DiskOnChip 2000 delivers full hard disk emulation. As such, the  
design and integration stages can be considerably reduced, thereby enabling very fast time-to-  
market and ease of production. Combined with its very attractive cost structure, DiskOnChip 2000  
is a superior alternative to resident flash array (RFA).  
DiskOnChip 2000 products are available in capacities ranging from 16MB to 1GB. DiskOnChip  
technology provides broad support for all major operating systems and processors in the market,  
enabling it to be readily integrated with any architecture.  
DiskOnChip 2000 is shipped as a plug-and-play device that is fully tested and formatted, and  
programmed with a DOS driver. Future driver, software or content upgrades, or formatting, can be  
made on-board or off-board using DiskOnChip utilities and accessories provided by SanDisk.  
6
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
DiskOnChip 2000 DIP  
2.2 I/O Operation  
See Figure 1 for a simplified I/O diagram.  
A[12:0]  
D[7:0]  
DiskOnChip 2000  
OE#  
WE#  
CE#  
Figure 1: Simplified I/O Diagram  
2.3 Pin Diagram  
1
NC  
NC  
NC  
A12  
A7  
VCC  
WE#  
NC  
NC  
NC  
A8  
32  
2
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
3
4
5
A6  
6
A5  
A9  
7
A4  
8
A11  
OE#  
A10  
CE#  
D7  
DiskOnChip  
2000 DIP  
A3  
9
A2  
10  
11  
12  
13  
14  
15  
16  
A1  
A0  
D0  
D1  
D2  
VSS  
D6  
D5  
D4  
D3  
Figure 2: Package Description and Pinout  
7
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
 
DiskOnChip 2000 DIP  
2.4 Signal Descriptions  
Table 1: DiskOnChip 2000 Signal Descriptions  
Signal  
Pin  
Number  
Input  
Type  
Description  
Signal  
Type  
System Interface  
Address signals  
A[12:0] 4 to 12, 23,  
25 to 27  
ST  
IN  
Input  
D[7:0]  
13 to 15,  
17 to 21  
Data signals  
Input/  
Output  
CE#  
OE#  
WE#  
22  
24  
31  
ST  
ST  
ST  
Chip Enable, active low  
Output Enable, active low  
Write Enable, active low  
Power  
Input  
Input  
Input  
VCC  
VSS  
32  
16  
-
-
Device supply  
Ground  
Supply  
Supply  
Other  
NC  
1, 2, 3, 28,  
29, 30  
-
Not Connected. These pins should be left floating. Absolute  
maximum ratings must be observed.  
The following abbreviations are used:  
1. IN: Standard (non-Schmidt) input  
2. ST: Schmidt Trigger input  
8
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
DiskOnChip 2000 DIP  
3.  
THEORY OF OPERATION  
3.1 Overview  
DiskOnChip 2000 consists of the following major functional blocks, as shown in Figure 3:  
System Interface for host interface.  
Boot Block that contains IPL ROM required for recognition during BIOS expansion search in  
PC architectures.  
Reed-Solomon-based Error Detection and Error Correction Code (EDC/ECC) for on-the-  
fly error handling.  
Flash Control block that contains registers responsible for transferring the address, data and  
control information between the TrueFFS driver and the flash media.  
CE#  
WE#  
Flash  
Control  
System  
Interface  
OE#  
Flash  
D[0:7]  
A[0:12]  
Boot Block  
(IPL ROM)  
EDC/ECC  
Figure 3: DiskOnChip 2000 Simplified Block Diagram  
3.2 System Interface  
The system interface block provides an easy-to-integrate SRAM-like (also EEPROM-like) interface  
to DiskOnChip 2000, enabling it to interface with various CPU interfaces, such as a local bus, ISA  
bus, SRAM interface, EEPROM interface or any other compatible interface.  
A 13-bit wide address bus enables access to the DiskOnChip 8KB memory window (as shown in  
Figure 5). The Chip Enable (CE#), Write Enable (WE#) and Output Enable (OE#) signals trigger  
read and write cycles. A write cycle occurs while both the CE# and the WE# inputs are asserted.  
Similarly, a read cycle occurs while both the CE# and OE# inputs are asserted. Note that  
DiskOnChip 2000 does not require a clock signal. The CE#, WE# and OE# signals trigger the  
controller (e.g., system interface block, bus control and data pipeline) and flash access.  
9
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
 
DiskOnChip 2000 DIP  
3.3 Boot Block  
The boot block is responsible for answering the BIOS expansion search in PC architectures. After  
the BIOS identifies DiskOnChip 2000 as a valid BIOS expansion device, it executes the code stored  
in the boot block. The BIOS then loads the TrueFFS software from the flash memory into the host  
memory, delivering full disk capabilities to the operating system. This code is identical for all  
DiskOnChip 2000 capacities, since TrueFFS automatically detects the memory density of  
DiskOnChip 2000.  
3.4 Error Detection Code/Error Correction Code (EDC/ECC)  
NAND flash, being an imperfect memory, requires error handling. DiskOnChip 2000 implements  
Reed-Solomon Error Detection Code (EDC). A hardware-generated, 6-byte error detection  
signature is computed each time a page (512 bytes) is written to or read from DiskOnChip 2000.  
The TrueFFS driver implements complementary Error Correction Code (ECC). Unlike error  
detection, which is required on every cycle, error correction is relatively seldom required, hence  
implemented in software. The combination of DiskOnChip’s built-in EDC mechanism and the  
TrueFFS driver ensures highly reliable error detection and correction, while providing maximum  
performance.  
The following detection and correction capability is provided for each 512 bytes:  
Corrects up to two 10-bit symbols, including two random bit errors.  
Corrects single bursts up to 11 bits.  
Detects single bursts up to 31 bits and double bursts up to 11 bits.  
Detects up to 4 random bit errors.  
3.5 Flash Control  
The Flash Control block contains registers responsible for transferring the address, data and control  
information between the DiskOnChip TrueFFS driver and the flash media. Additional registers are  
used to monitor the status of the flash media (ready/busy) and of the DiskOnChip controller.  
10  
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
 
DiskOnChip 2000 DIP  
4.  
OPERATING MODES  
DiskOnChip 2000 can operate in two modes:  
Normal: The device responds to every valid hardware cycle. While in this mode, all sections  
respond to valid read and write cycles.  
Reset: The device ignores all write cycles (except for the “leave Reset mode” sequence), and  
returns predetermined values for all read cycles.  
Mode changes can occur due to any of the following events:  
o
o
A valid write sequence to the Control register  
Triggering the Boot Detector circuit, which enables automatic driver loading in a PC  
environment.  
11  
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
DiskOnChip 2000 DIP  
5.  
TRUEFFS TECHNOLOGY  
5.1 General Description  
SanDisk’s patented TrueFFS technology was designed to maximize the benefits of flash memory  
while overcoming inherent flash limitations that would otherwise reduce its performance, reliability  
and lifetime. TrueFFS emulates a hard disk, making it completely transparent to the OS. In addition,  
since it operates under the OS file system layer (see Figure 4), it is completely transparent to the  
application.  
Application  
OS File System  
TrueFFS  
DiskOnChip  
Figure 4: TrueFFS Location in System Hierarchy  
TrueFFS technology support includes:  
Binary driver support for all major OSs  
TrueFFS Software Development Kit (SDK)  
Boot Software Development Kit (BDK)  
Support for all major CPUs, including 8-, 16- and 32-bit bus architectures  
TrueFFS technology features:  
Block device API  
Flash file system management  
Bad-block management  
Dynamic virtual mapping  
Dynamic and static wear-leveling  
Power failure management  
Implementation of Reed-Solomon EDC/ECC  
Performance optimization  
Compatible with all DiskOnChip products  
12  
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
 
DiskOnChip 2000 DIP  
5.1.1 Built-In Operating System Support  
The TrueFFS driver is integrated into all major OSs, including: Windows CE/NT/NT  
Embedded/XP, Linux (various kernels), VxWorks, Nucleus, QNX, DOS, Symbian, and others. For  
a complete listing of all available drivers, please refer to SanDisk’s website www.SanDisk.com. It  
is advised to use the latest driver versions that can be downloaded from the DiskOnChip 2000 web  
page on the SanDisk site.  
5.1.2 TrueFFS Software Development Kit (SDK)  
The basic TrueFFS Software Development Kit (SDK) provides the source code of the TrueFFS  
driver. It can be used in an OS-less environment or when special customization of the driver is  
required for proprietary OSs.  
5.1.3 File Management  
TrueFFS accesses the flash memory within DiskOnChip 2000 through an 8KB window in the CPU  
memory space. It provides block device API, by using standard file system calls, identical to those  
used by a mechanical hard disk, to enable reading from and writing to any sector on DiskOnChip  
2000. This makes it compatible with any file system and file system utilities such as diagnostic tools  
and applications. When using the File Allocation Table (FAT) file system, the data stored on  
DiskOnChip 2000 uses FAT-16.  
Note: DiskOnChip 2000 is shipped formatted, and contains the FAT file system.  
5.1.4 Bad-Block Management  
NAND flash, being an imperfect storage media, contains some bad blocks that cannot be used for  
storage because of their high error rates. TrueFFS automatically detects and maps bad blocks upon  
system initialization, ensuring that they are not used for storage. This management process is  
completely transparent to the user, who remains unaware of the existence and location of bad  
blocks, while remaining confident of the integrity of data stored. The Bad Block Table in  
DiskOnChip 2000 DIP is stored in a protected area for ensured reliability.  
5.1.5 Wear-Leveling  
Flash memory can be erased a limited number of times. This number is called the erase cycle limit  
or write endurance limit and is defined by the flash array vendor. The erase cycle limit applies to  
each individual erase block in the flash device. After reaching the cycle limit, as given by the flash  
vendor, the erase block begins to make storage errors at a rate significantly higher than the error rate  
that is typical to the flash.  
In a typical application and especially if a file system is used, a specific page or pages are constantly  
updated (e.g., the page/s that contain the FAT, registry etc.). Without any special handling, these  
pages would wear out more rapidly than other pages, reducing the lifetime of the entire flash.  
To overcome this inherent deficiency, TrueFFS uses SanDisk’s patented wear-leveling algorithm.  
The wear-leveling algorithm ensures that consecutive writes of a specific sector are not written  
physically to the same page in the flash. This spreads flash media usage evenly across all pages,  
thereby maximizing flash lifetime. TrueFFS wear-leveling extends the flash lifetime 10 to 15 years  
beyond the lifetime of a typical application.  
13  
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
DiskOnChip 2000 DIP  
Dynamic Wear-Leveling  
TrueFFS uses statistical allocation to perform dynamic wear-leveling on newly written data. This  
not only minimizes the number of erase cycles per block, it also minimizes the total number of erase  
cycles. Because a block erase is the most time-consuming operation, dynamic wear-leveling has a  
major impact on overall performance. This impact cannot be noticed during the first write to flash  
(since there is no need to erase blocks beforehand), but it is more and more noticeable as the flash  
media becomes full.  
Static Wear-Leveling  
Areas on the flash media may contain static files, characterized by blocks of data that remain  
unchanged for very long periods of time, or even for the whole device lifetime. If wear-leveling  
were only applied on newly written pages, static areas would never be cycled. This limited  
application of wear-leveling would lower life expectancy significantly in cases where flash memory  
contains large static areas. To overcome this problem, TrueFFS forces data transfer in static areas as  
well as in dynamic areas, thereby applying wear-leveling to the entire media.  
5.2 Power Failure Management  
TrueFFS uses algorithms based on “erase after write” instead of "erase before write" to ensure data  
integrity during normal operation and in the event of a power failure. Used areas are reclaimed for  
erasing and writing the flash management information into them only after an operation is  
complete. This procedure serves as a check on data integrity.  
The “erase after write” algorithm is also used to update and store mapping information on the flash  
memory. This keeps the mapping information coherent even during power failures. The only  
mapping information held in RAM is a table pointing to the location of the actual mapping  
information. This table is reconstructed during power-up or after reset from the information stored  
in the flash memory.  
To prevent data from being lost or corrupted, TrueFFS uses the following mechanisms:  
When writing, copying, or erasing the flash device, the data format remains valid at all  
intermediate stages. Previous data is never erased until the operation has been completed and  
the new data has been verified.  
A data sector cannot exist in a partially written state. Either the operation is successfully  
completed, in which case the new sector contents are valid, or the operation has not yet been  
completed or has failed, in which case the old sector contents remain valid.  
5.2.1 Error Detection/Correction  
TrueFFS implements a Reed-Solomon Error Correction Code (ECC) algorithm to ensure data  
reliability. Refer to Section 3.4 for further information on the EDC/ECC mechanism.  
14  
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
DiskOnChip 2000 DIP  
5.2.2 Special Features through I/O Control (IOCTL) Mechanism  
In addition to standard storage device functionality, the TrueFFS driver provides extended  
functionality. This functionality goes beyond simple data storage capabilities to include features  
such as: format the media, binary partition(s) access, flash defragmentation, and other options. This  
unique functionality is available in all TrueFFS-based drivers through the standard I/O control  
command of the native file system.  
For further information, please refer to application note AP-DOC-046, Extended Functions of the  
TrueFFS Driver for DiskOnChip.  
5.2.3 Compatibility  
The TrueFFS driver supports all released DiskOnChip products. Upgrading from one product to  
another requires no additional software integration.  
When using different drivers (e.g. TrueFFS SDK, BDK, BIOS extension firmware, etc.) to access  
DiskOnChip, the user must verify that all software is based on the same code base version. It is also  
important to use only tools (e.g. DFORMAT, DINFO, GETIMAGE, etc.) derived from the same  
version as the firmware version and the TrueFFS drivers used in the application. Failure to do so  
may lead to unexpected results, such as lost or corrupted data. The driver and firmware version can  
be verified by the sign-on messages displayed, or by the version information stored in the driver or  
tool.  
15  
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
DiskOnChip 2000 DIP  
5.3 8KB Memory Window  
The DiskOnChip 2000 memory map occupies a total address space of 8KB. This space consists of  
four 2KB sections, as shown in Figure 5and described below.  
Section 0: Boot Block  
This section includes data that is typically used for booting code from the CPU. The available  
size is 64 bytes, aliased 32 times in the 2KB section. The second half of the boot block is  
located in Section 2.  
Section 1: Boot Block  
This section includes the second 64 bytes of the Boot Block. The first 64 bytes can be found in  
Section 0, aliased 32 times.  
Section 2: Control Registers  
Used to control the behavior of DiskOnChip 2000 and the flash media.  
Section 3: Flash Area Window  
Used as a window to the flash media for data to be written or read.  
Reset Mode  
Normal Mode  
000H  
800H  
Boot  
Block  
Boot  
Block  
Section 0  
Section 1  
Section 2  
Boot  
Block  
Boot  
Block  
1000H  
1800H  
Control  
Registers  
00H  
00H  
Flash Area  
Window  
Section 3  
Figure 5: DiskOnChip 2000 Memory Map  
16  
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
 
DiskOnChip 2000 DIP  
6.  
BOOTING FROM DISKONCHIP 2000  
6.1 Introduction  
DiskOnChip 2000 can operate as the OS boot device. The DiskOnChip default firmware contains  
drivers to enable it to perform as the OS boot device under DOS. For other OSs, please refer to the  
TrueFFS driver readme file.  
6.2 Boot Procedure in PC-Compatible Platforms  
When used in PC-compatible platforms, DiskOnChip 2000 is connected to an 8KB memory  
window in the BIOS expansion memory range, typically located between 0C8000H to 0EFFFFH.  
During the boot process, the BIOS loads the TrueFFS firmware into the PC memory and installs  
DiskOnChip 2000 as a disk drive in the system. When the operating system is loaded, DiskOnChip  
2000 is recognized as a standard disk. No external software is required to boot from DiskOnChip  
2000. Figure 6 illustrates the location of the DiskOnChip 2000 memory window in the PC memory  
map.  
Extended Memory  
1M  
0FFFFFH  
BIOS  
0F0000H  
8k  
DiskOnChip  
Display  
0C8000H  
0B0000H  
640k  
RAM  
0
Figure 6: DiskOnChip 2000 Memory Window in the PC Memory Map  
After reset, the BIOS code first executes the Power On Self-Test (POST) and then searches for all  
expansion ROM devices. When DiskOnChip 2000 is found, the BIOS code executes from it the IPL  
(Initial Program Loader) code, located in the boot block. This code loads the TrueFFS driver into  
system memory, installs DiskOnChip 2000 as a disk in the system, and then returns control to the  
BIOS code. The operating system subsequently identifies DiskOnChip 2000 as an available disk.  
TrueFFS responds by emulating a hard disk.  
From this point onward, DiskOnChip 2000 appears as a standard disk drive. It is assigned a drive  
letter and can be used by any application, without any modifications to either the BIOS set-up or the  
autoexec.bat/config.sys files. DiskOnChip 2000 can be used as the only disk in the system, with or  
without a floppy drive, and with or without hard disks.  
The drive letter assigned depends on how DiskOnChip 2000 is used in the system, as follows:  
If DiskOnChip 2000 is used as the only disk in the system, the system boots directly from it  
and assigns it drive C.  
17  
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
 
DiskOnChip 2000 DIP  
If DiskOnChip 2000 is used with other disks in the system:  
o
DiskOnChip 2000 can be configured as the last drive (the default configuration). The  
system assigns drive C to the hard disk and drive D to DiskOnChip 2000.  
o
Alternatively, DiskOnChip 2000 can be configured as the system’s first drive. The system  
assigns drive D to the hard disk and drive C to DiskOnChip 2000.  
If DiskOnChip 2000 is used as the OS boot device when configured as drive C, it must be  
formatted as a bootable device by copying the OS files onto it. This is done by using the SYS  
command when running DOS.  
18  
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
DiskOnChip 2000 DIP  
7.  
DESIGN CONSIDERATIONS  
7.1 Design Environment  
DiskOnChip 2000 provides a complete design environment consisting of:  
Evaluation Boards (EVBs) for enabling software integration and development with  
DiskOnChip 2000, even before the target platform is available. An EVB with an ISA standard  
connector and a PCI standard connector for immediate plug and play usage are available.  
Programming solutions:  
o
o
o
GANG programmer  
Programming house  
On-board programming  
TrueFFS Software Development Kit (SDK) and BDK  
DOS utilities:  
DFORMAT  
GETIMG/PUTIMG  
DINFO  
Documentation:  
o
o
o
o
o
Data sheet  
Application notes  
Technical notes  
Articles  
White papers  
Please visit SanDisk’s website (www.SanDisk.com) for the most updated documentation, utilities  
and drivers.  
7.2 System Interface  
DiskOnChip 2000 uses an SRAM-like interface that can easily be connected to any microprocessor  
bus. With a standard interface, it requires 13 address lines, 8 data lines and basic memory control  
signals (CE#, OE#, WE#), as shown in Figure 7 below. Typically, DiskOnChip 2000 can be  
mapped to any free 8KB memory space. In a PC-compatible platform, it is usually mapped into the  
BIOS expansion area. If the allocated memory window is larger than 8KB, an automatic anti-  
aliasing mechanism prevents the firmware from being loaded more than once during the ROM  
expansion search.  
19  
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
DiskOnChip 2000 DIP  
3.3V or 5V  
0.1 uF  
10 nF  
VCC  
Address  
Data  
A[12:0]  
D[7:0]  
DiskOnChip 2000  
Output Enable  
Write Enable  
Chip Enable  
OE#  
WE#  
CE#  
VSS  
Figure 7: DiskOnChip 2000 System Interface  
Notes: 1. The 0.1 µF and the 10 nF low-inductance high-frequency capacitors must be attached to  
each of the device’s VCC and VSS pins.  
2. DiskOnChip 2000 is an edge-sensitive device. CE#, OE# and WE# should be  
properly terminated (according to board layout, serial parallel, or both terminations)  
to avoid signal ringing.  
7.3 Connecting Signals  
DiskOnChip 2000 uses standard SRAM-like control signals, which should be connected as follows:  
Address (A[12:0]) – Connect these signals to the host address bus.  
Data (D[7:0]) – Connect these signals to the host data bus.  
Write (WE#) and Output Enable (OE#) – Connect these signals to the host WR# and RD#  
signals, respectively.  
Chip Enable (CE#) – Connect this signal to the memory address decoder.  
7.4 Platform-Specific Issues  
The following section describes hardware design issues.  
7.4.1 Wait State  
Wait states can be implemented only when DiskOnChip 2000 is designed in a bus that supports a  
Wait state insertion, and supplies a WAIT signal.  
7.4.2 Big and Little Endian Systems  
PowerPC, ARM, and other RISC processors can use either Big or Little Endian systems.  
DiskOnChip 2000 uses the Little Endian system. Therefore, byte D[7:0] is its Least Significant Byte  
(LSB); bit D0 is the least significant bit within that byte. When connecting DiskOnChip 2000 to a  
20  
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
DiskOnChip 2000 DIP  
device that supports Big Endian systems, make sure to that the bytes of the CPU and DiskOnChip  
2000 match.  
Note: Processors, such as the PowerPC, also change the bit ordering within the bytes. Failing to  
follow these rules results in improper connection of DiskOnChip 2000, and prevents the  
TrueFFS driver from identifying DiskOnChip 2000.  
7.4.3 Working with 8/16/32-Bit Systems  
The TrueFFS driver supports 8-bit, 16-bit, and 32-bit bus architectures. Support for the 16-bit and  
32-bit bus architectures, typically used in RISC processors, can be achieved by using the LSB of the  
data bus as follows:  
For 16-bit address boundary shifts, shift the address lines by one, so that the host address line  
A1 connects to DiskOnChip 2000 address line A0, the host address line A2 connects to  
DiskOnChip 2000 line A1, and so on.  
For 32-bit address boundary shifts, shift the address lines by two, so that the host address line  
A2 connects to DiskOnChip 2000 address line A0, the host address line A3 connects to  
DiskOnChip 2000 line A1, and so on.  
21  
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
DiskOnChip 2000 DIP  
8.  
PRODUCT SPECIFICATIONS  
8.1 Environmental Specifications  
8.1.1 Temperature Ranges  
Commercial operating temperature: 0ºC to +70ºC  
Extended operating temperature: -40ºC to +85ºC  
Storage temperature: -50ºC to +85ºC  
8.1.2 DiskOnChip Assembly  
The DiskOnChip 2000 DIP device is not hermetically sealed. Therefore, it must be assembled after  
the PCB goes through its final rinse. Assembling DiskOnChip 2000 prior to the rinse phase may  
cause it to absorb moisture. Failure to adhere to the above assembly instruction can lead to device  
failures not covered by SanDisk’s warranty.  
Note: DiskOnChip 2000 DIP requires a DIP socket on the target platform. Due to its plastic shell  
and molding material, it cannot be soldered directly to the platform.  
8.1.3 Humidity  
10% - 90% relative, non-condensing  
8.1.4 Shock and Vibration  
Table 2: Reliability Tests  
Reliability Test  
Vibration  
Test Conditions  
Reference Standard  
100 ~ 2000 Hz, 15 G peak, 3 cycles per axis (1hr.), 3 STD-202F, Method 204D  
axes  
Mechanical Shock  
Half-sine shock 50 G, 11 msec, ±3 shocks per axis, 3 STD-202F, Method 213B  
axes  
8.2 Electrical Specifications  
8.2.1 Absolute Maximum Ratings  
Table 3: Maximum Ratings  
Parameter  
DC supply voltage  
Input pin voltage2  
Input pin current  
Power Dissipation  
Symbol  
VCCS  
VIN  
3.3V Model Rating1  
-0.5 to 4.6  
5V Model Rating1  
-0.3 to 6.0  
Units  
V
Notes  
-0.5 to VCC + 0.3  
Not Specified  
1.3  
-0.3 to VCC + 0.3  
-10 to 10  
V
IIN  
mA  
Watt  
+25°C  
PD  
2.0  
1.  
2.  
3.  
The voltage on any pin may undershoot to -2.0V or overshoot to Vcc+2.0V for periods <20 ns.  
The unit shall be supplied from limited power source, which meets the requirements, detailed in clause 2.5 of UL 60950-1.  
Permanent device damage may occur if absolute maximum ratings are exceeded. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
In order to protect DiskOnChip 2000 when it is exposed to overcurrent, a fuse may be added, or  
modifications to the power supply’s overcurrent protection mechanism may be considered.  
22  
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
DiskOnChip 2000 DIP  
Figure 8 illustrates the suggested overcurrent protection for DiskOnChip 2000.  
Figure 8: Protecting DiskOnChip 2000 from Overcurrent  
8.2.2 Capacitance  
Table 4: Input/Output Capacitance  
Symbol  
Parameter  
Conditions  
3.3V Model Rating 5V Model Rating  
Unit  
pF  
MD2200/2, VIN = 0V  
MD2203, VIN = 0V  
12  
36  
15  
45  
Input/Output  
Capacitance  
CI/O  
pF  
Note: Capacitance is not 100% tested.  
8.2.3 DC Electrical Characteristics over Operating Range  
Table 5: Vcc = 5V Characteristics  
Symbol  
VCCS  
Vih  
Parameter  
Conditions  
Min  
4.5  
2.0  
Typ Max  
Unit  
System Supply Voltage1  
High-level Input Voltage  
Low-level Input Voltage  
High-level Output Voltage  
Low-level Output Voltage  
5.0  
5.5  
V
V
Vil  
0.8  
V
Voh  
IOH = -16 mA  
IOL = 16 mA  
2.4  
V
VOL  
0.4  
±10  
±30  
±10  
±30  
60  
V
MD2200, MD2202  
MD2203  
µA  
µA  
µA  
µA  
mA  
µA  
µA  
IIL  
Input Leakage Current  
Output Leakage Current  
MD2200, MD2202  
MD2203  
IOZ  
Ivcc  
Supply Current  
Standby Current  
200 ns Cycle Time, outputs open  
MD2200, MD2202  
MD2203  
40  
60  
400  
Istdby  
240 1200  
Note: The supply voltage of the extended temperature products listed below is Vcc = 5V ± 0.25V:  
MD2202-D192-X, MD2202-D256-X, MD2202-D384-X, MD2203-D576-X, MD2203-D768-X, MD2203-  
D1024-X  
Table 6: Vcc = 3.3V Characteristics  
Symbol  
VCCS  
Vih  
Parameter  
Conditions  
Min  
3.0  
2.7  
Typ  
Max  
Unit  
V
System Supply Voltage1  
High-level Input Voltage  
Low-level Input Voltage  
3.3  
3.6  
V
Vil  
0.6  
V
23  
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
 
DiskOnChip 2000 DIP  
VHYS  
Voh  
Input Voltage Hysteresis  
1.1  
2.4  
1.5  
V
V
IOH = -18 mA  
IOH = 0 mA  
High-level Output  
Voltage  
Vcc-0.1  
V
IOL = 18 mA  
IOL = 0 mA  
0.4  
0.1  
V
VOL  
Low-level Output Voltage  
Input Leakage Current  
Output Leakage Current  
V
MD2200, MD2202  
MD2203  
µA  
µA  
µA  
µA  
±10  
±30  
±10  
±30  
IIL  
MD2200, MD2202  
MD2203  
IOZ  
150 ns Cycle Time, outputs  
open  
Ivcc  
Supply Current  
Standby Current  
30  
60  
mA  
MD2200, MD2202  
MD2203  
70  
400  
µA  
µA  
Istdby  
300  
1350  
Note: The supply voltage of the extended temperature products listed below is Vcc = 3. 3V ± 0.15V:  
MD2202-D192-V3-X, MD2202-D256-V3-X, MD2202-D384-V3-X, MD2203-D576-V3-X, MD2203-D768-V3-  
X, MD2203-D1024-V3-X  
8.2.4 AC Operating Conditions  
Timing specifications are based on the following conditions:  
Table 7: AC Operating Conditions  
Parameter  
Supply Voltage1,2  
3.3V Model  
VCC = 3.3V ±0.3V  
0.2V to 2.9V  
1 ns  
5V Model  
VCC = 5V ±0.5V  
0.4V to 2.6V  
5 ns  
Input Pulse Levels  
Input Rise and Fall Times  
Input and Output Timing Levels  
Output Load  
1.5V  
0.8V and 2.0V  
50 pF  
100 pF  
Notes: 1. The supply voltage of the extended temperature products listed below is Vcc = 3. 3V ±  
0.15V: MD2202-D192-V3-X, MD2202-D256-V3-X, MD2202-D384-V3-X, MD2203-  
D576-V3-X, MD2203-D768-V3-X, MD2203-D1024-V3-X  
2. The supply voltage of the extended temperature products listed below is Vcc = 5V ±  
0.25V: MD2202-D192-X, MD2202-D256-X, MD2202-D384-X, MD2203-D576-X,  
MD2203-D768-X, MD2203-D1024-X  
24  
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
DiskOnChip 2000 DIP  
8.3 Timing Specifications  
8.3.1 Read Cycle Timing  
TSU(A)  
A[0..12]  
CE#  
TSU(CE1)  
THO(CE1)  
OE#  
TSU(CE0)  
THO(CE0)  
TREC  
TACC  
WE#  
TDIS(D)  
TEN(D)  
D[0..7]  
Figure 9: Read Cycle  
Table 8: Read Cycle Timing  
3.3V  
5V  
Symbol  
Description  
Notes  
Min (ns)  
Max (ns)  
Min (ns)  
Max (ns)  
TSU(A)  
THO(A)  
Address to OE# È setup  
OE#È to Address hold  
2
35  
0
10  
56  
0
TSU(CE0) CE# È to OE# È setup  
1
2
THO(CE0) OE#Ç to CE# = 0 hold  
0
0
THO(CE1) OE# or WE#Ç to CE# = 1 hold  
TSU(CE1) CE#Ç to WE# or OE#È setup time  
8
42  
42  
59  
8
TREC  
OE#Ç to start of next cycle  
Read access time  
20  
Tacc  
110  
75  
130  
91  
Ten(D)  
Tdis(D)  
OE#È to D active delay  
OE#Ç to D Hi-Z delay  
15  
7
13  
44  
1.  
CE# may be asserted any time before or after OE# is asserted. If CE# is asserted after OE#, all timing relative to OE# asserted will be  
referenced instead to the time CE# was asserted.  
2.  
CE# may be negated any time before or after OE# is negated. If CE# is negated before OE#, all timing relative to OE# negated will be  
referenced instead to the time CE# was negated.  
25  
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
DiskOnChip 2000 DIP  
8.3.2 Write Cycle Timing  
TSU(A)  
THO(A)  
A[0..12]  
THO(CE1)  
CE#  
OE#  
T
SU(CE1)  
THO(CE0)  
THO(CE0)  
TW(WE)  
TREC  
WE#  
THO(D)  
TSU(D)  
D[0..7]  
Figure 10: Write Cycle  
Table 9: Write Cycle Timing  
Symbol  
Description  
3.3V  
5V  
Notes  
Min (ns) Max (ns) Min (ns) Max (ns)  
TSU(A)  
Address to WE#È setup time  
WE#È to Address hold time  
WE# asserted width  
0
35  
62  
0
10  
56  
98  
0
THO(A)  
TW(WE)  
TSU(CE0) CE#È to WE#È setup time  
1
2
THO(CE0) WE#Ç to CE# = 0 hold time  
THO(CE1) OE# or WE#Ç to CE# = 1 hold time  
TSU(CE1) CE#Ç to WE# or OE#È setup time  
0
0
8
42  
42  
59  
48  
40  
8
TREC  
TSU(D)  
THO(D)  
1.  
WE#Ç to start of next cycle  
D to WE#Ç setup time  
WE#Ç to D hold time  
22  
50  
0
CE# may be asserted any time before or after WE# is asserted. If CE# is asserted after WE#, all timing relative to WE# asserted will be  
referenced instead to the time CE# was asserted.  
2.  
CE# may be negated any time before or after WE# is negated. If CE# is negated before WE#, all timing relative to WE# negated will  
be referenced instead to the time CE# was negated.  
26  
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
DiskOnChip 2000 DIP  
8.4 Mechanical Dimensions  
Figure 11: MD220x Mechanical Dimensions  
Table 10: Low-Profile  
MD2200  
MD2202  
Millimeters (max.)  
Millimeters (max.)  
A
B
C
D
E
F
41.9  
18.05  
2.54  
15.24  
5.7  
43.95  
18.3  
2.54  
15.24  
6.0  
4.0  
4.0  
G
H
0.51  
38.2  
0.51  
38.2  
Table 11: High-Profile  
MD2203  
Millimeters (max.)  
A
45.6  
18.8  
2.54  
15.24  
13.5  
4.0  
B
C
D
E
F
G
H
0.51  
38.2  
Note: The above dimensions are maximum values.  
27  
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
DiskOnChip 2000 DIP  
9.  
ORDERING INFORMATION  
MD2202-DCCC-V-T-P (Low-Profile)  
CCC: Density (MB)  
16, 32, 48, 64, 96, 128, 192, 256, 384  
V:  
T:  
P:  
Supply Voltage  
Blank  
V3  
5V  
3.3V  
Temperature Range  
(optional)  
Blank  
X
Commercial: 0°C to +70°C  
Extended: -40°C to +85°C  
RoHS Compliance  
(Optional)  
Blank  
P
Pb  
RoHS compliance (available only in 16,  
32, 48, 64, and 96MB)  
MD2203-DCCC-V-T (High-Profile)  
CCC: Density (MB)  
576, 768, 1024  
V:  
Supply Voltage  
Blank  
V3  
5V  
3.3V  
T:  
Temperature Range  
(optional)  
Blank  
X
Commercial: 0°C to +70°C  
Extended: -40°C to +85°C  
28  
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 
DiskOnChip 2000 DIP  
HOW TO CONTACT US  
SanDisk Corporation  
Corporate Headquarters • 601 McCarthy Blvd. • Milpitas, CA 95035  
Phone (408) 801-1000 • Fax (408) 801-8657  
www.SanDisk.com  
SanDisk® Corporation general policy does not recommend the use of its products in life  
support applications where in a failure or malfunction of the product may directly threaten  
life or injury. Per SanDisk Terms and Conditions of Sale, the user of SanDisk products in life  
support applications assumes all risk of such use and indemnifies SanDisk against all  
damages. See “Disclaimer of Liability.”  
This document is for information use only and is subject to change without prior notice.  
SanDisk Corporation assumes no responsibility for any errors that may appear in this  
document, nor for incidental or consequential damages resulting from the furnishing,  
performance or use of this material. No part of this document may be reproduced,  
transmitted, transcribed, stored in a retrievable manner or translated into any language or  
computer language, in any form or by any means, electronic, mechanical, magnetic,  
optical, chemical, manual or otherwise, without the prior written consent of an officer of  
SanDisk Corporation.  
All parts of the SanDisk documentation are protected by copyright law and all rights are  
reserved.  
SanDisk and the SanDisk logo are registered trademarks of SanDisk Corporation.  
CompactFlash is a U.S. registered trademark of SanDisk Corporation.  
Product names mentioned herein are for identification purposes only and may be  
trademarks and/or registered trademarks of their respective companies.  
© 2007 SanDisk Corporation. All rights reserved.  
SanDisk products are covered or licensed under one or more of the following U.S. Patent  
Nos. 5,070,032; 5,095,344; 5,168,465; 5,172,338; 5,198,380; 5,200,959; 5,268,318;  
5,268,870; 5,272,669; 5,418,752; 5,602,987. Other U.S. and foreign patents awarded and  
pending.  
Lit. No. 91-SR-002-42-8L Rev. 3.9  
Printed in U.S.A.  
29  
Data Sheet, Rev. 3.9  
91-SR-002-42-8L  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY