LA9230M [SANYO]

Analog Signal Processor ASP for CD players; 模拟信号处理器ASP的CD播放器
LA9230M
型号: LA9230M
厂家: SANYO SEMICON DEVICE    SANYO SEMICON DEVICE
描述:

Analog Signal Processor ASP for CD players
模拟信号处理器ASP的CD播放器

商用集成电路 CD
文件: 总20页 (文件大小:226K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ordering number: EN 5189  
Monolithic Linear IC  
LA9230M/9231M  
Analog Signal Processor (ASP)  
for CD players  
Overview  
Package Dimensions  
unit : mm  
The LA9230M and LA9231M are analog signal processing and  
servo control bipolar ICs designed for use in compact disc  
players; a compact disc player can be configured by combining  
these ICs, a CD-DSP such as the LC78620E, and a small  
number of additional components. The differences between the  
LA9230M and the LA9231M are that the LA9231M: (1) has a  
focus search time that is four times faster; (2) has an additional  
capacitor pin for focus search smoothing; (3) and can disable  
output of the track-kick signal during EF balance adjustment.  
3159-QIP64E  
[LA9230M/9231M]  
Functions  
I/V amplifier, RF amplifier (with AGC), SLC, APC, FE, TE  
(with VCA and auto-balance function), focus servo amplifier  
(with offset cancellation function), tracking servo amplifier  
(with offset cancellation function), spindle servo amplifier  
(with gain switching function), sled servo amplifier (with off  
function), focus detection (DRF, FZD), track detection (HFL,  
TES), defect detection, and shock detection.  
SANYO : QIP64E  
Features  
The following automatic adjustment functions are built in.  
.
Focus offset auto cancel  
Tracking offset auto cancel  
EF balance auto adjustment  
RF level AGC function  
.
.
.
.
Tracking servo gain RF level following function  
Specifications  
Maximum Ratings at Ta = 25 C, Pins 22, 45 = GND  
°
Parameter  
Maximum supply voltage  
Allowable power dissipation  
Operating temperature  
Storage temperature  
Symbol  
Vsup max  
Pd max  
Topr  
Conditions  
Pin 56, 64  
Ratings  
Unit  
V
7
350  
mW  
–25 to +75  
C
C
°
°
Tstg  
–40 to +150  
SANYO Electric Co.,Ltd. Semiconductor Bussiness Headquarters  
TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN  
92595HA(II) No.5189-1/20  
LA9230M/9231M  
Operating Conditions at Pins 22, 45 = GND  
Parameter  
Recommended supply voltage  
Operating supply voltage  
Symbol  
Conditions  
Ratings  
Unit  
V
V
5
CC  
op  
V
3.6 to 5.5  
V
CC  
Operating Characteristics at Ta = 25 C, Pins 22, 45 = GND, V (pins 56, 64) = 5 V  
°
CC  
Parameter  
Current drain  
Symbol  
Conditions  
min  
22  
typ  
32  
max  
42  
Unit  
mA  
V
I
V
1 (pin 64) + V 2 (pin 56)  
CCO  
CC CC  
Reference voltage  
[Interface]  
Vref  
VR  
2.3  
2.5  
2.7  
CE-Vth  
CEvth  
CLvth  
CE  
0.8  
0.8  
0.8  
V
V
CL-Vth  
CL  
DAT-Vth  
DATvth  
CLmax  
DAT  
V
Maximum CL frequency  
[RF amplifier]  
RFSM no signal voltage  
500  
kHz  
RFSMo  
1.35  
1.60  
1.85  
V
FIN1, FIN2 : 1 M-input, PH1 = 4 V  
freq = 200 kHz, RFSM  
Minimum gain  
RFSM min  
–14.0 –12.5 –11.0  
dB  
G
[Focus amplifier]  
FDO gain  
FD  
FIN2 : 1 M-input, FDO  
3.5  
–170  
–40  
5.0  
0
6.5  
+170  
+40  
dB  
mV  
mV  
V
G
FDO offset  
FDost  
FDofost  
FDstep  
FSmax  
FSmin  
Difference from reference voltage, servo on  
Off time offset  
Offset adjustment step  
F search voltage H  
F search voltage L  
[Tracking amplifier]  
TE gain MAX  
TE gain MIN  
TE−3 dB  
Difference from reference voltage, servo off  
0
FDO  
FDO  
FDO  
50  
0.8  
–0.8  
V
V
TE max  
f = 10 kHz, E: 1 M-input, PH1 = 4 V  
f = 10 kHz, E: 1 M-input, PH1 = 1 V  
E: 1 M-input  
5.0  
6.5  
+1.8  
60  
6.0  
0
8.0  
dB  
dB  
kHz  
dB  
mV  
mV  
mV  
mV  
mV  
mV  
dB  
dB  
V
G
TE min  
G
TEfc  
–0.5  
+4.0  
TO gain  
TO  
TH TO gain, THLD mode  
Servo on, TGL = H, TO  
TGL = L, difference from TGL offset, TO  
THLD mode, difference from TGL offset, TO  
TOFF = H  
4.0  
–250  
–50  
8.0  
+250  
+50  
G
TGL offset  
TGLost  
TGHost  
THLDost  
OFF1ost  
OFF2ost  
TOstep  
BAL-H  
TGH offset  
0
THLD offset  
–50  
0
+50  
Off 1 offset  
–50  
0
+50  
Off 2 offset  
TOF2 off (IF)  
–50  
0
+50  
Offset adjustment step  
Balance range H  
Balance range L  
TOFF-VTH  
TO  
60  
3.5  
–3.5  
2.5  
2.5  
gain E/F input, TB = 5 V  
gain E/F input, TB = 0 V  
BAL-L  
TOFFvth  
TGLvth  
1.0  
1.0  
3.0  
3.0  
TGL-VTH  
V
[PH]  
No signal voltage  
[BH]  
PHo  
BHo  
Difference from RFSM  
Difference from RFSM  
Difference from VR at RFSM  
–0.85 –0.65 –0.45  
0.45 0.65 0.85  
–0.60 –0.35 –0.20  
V
V
No signal voltage  
[DRF]  
Detection voltage  
Output voltage H  
Output voltage L  
[FZD]  
DRFvth  
DRF-H  
DRF-L  
V
V
V
4.5  
4.9  
0
+0.5  
Detection voltage 1  
Detection voltage 2  
FZD1  
FZD2  
FE, difference from VR  
FE, difference from VR  
0
+0.2  
0
V
V
Continued on next page.  
No.5189 - 2/20  
LA9230M/9231M  
Continued from preceding page.  
Parameter  
[HFL]  
Symbol  
Conditions  
min  
typ  
max  
Unit  
V
Detection voltage  
Output voltage H  
Output voltage L  
[TES]  
HFLvth  
HFL-H  
HFL-L  
Difference from VR at RFSM  
–0.35  
4.5  
–0.2 –0.05  
4.9  
0
+0.5  
V
Detection voltage LH  
Detection voltage HL  
Output voltage H  
Output voltage L  
[JP]  
TES-LH  
TES-HL  
TES-H  
TES-L  
TESI, difference from VR  
TESI, difference from VR  
–0.15 –0.10 –0.05  
V
V
V
V
0.05  
4.5  
0.10  
4.9  
0
0.15  
+0.5  
Difference from JP+ = 0 V, JP= 0 V at JP+ = 0 V,  
JP= 5 V, TO  
Output voltage H  
Output voltage L  
JP-H  
JP-L  
0.35  
0.5  
0.65  
V
V
Difference from JP+ = 0 V, JP= 0 V at JP+ = 5 V,  
–0.65  
–0.5 –0.35  
JP= 0 V, TO  
[Spindle amplifier]  
Offset 12  
SPD12ost Difference from VR at SPD, 12 cm mode  
–40  
–40  
–30  
0
0
0
+40  
+40  
+30  
mV  
mV  
mV  
Offset 8  
SPD8ost  
SPDof  
Difference from VR at SPD, 8 cm mode  
Difference from VR at SPD, OFF mode  
Offset off  
Difference from offset-12, 12 cm mode  
CV+ = 5 V, CV= 0 V  
Output voltage H12  
Output voltage L12  
Output voltage H8  
SPD-H12  
SPD-L12  
SPD-H8  
0.75  
–1.25  
0.35  
1.0  
1.25  
V
V
V
Difference from offset-12 , 12 cm mode  
CV+ = 0 V, CV= 5 V  
–1.0 –0.75  
Difference from offset-8, 8 cm mode  
CV+ = 5 V, CV= 0 V  
0.5  
0.65  
[Sled amplifier]  
SLEQ offset  
Offset SLD  
SLEQost  
SLDost  
SLDof  
Difference from TO at SLEQ  
SLEQ = VR, difference from VR  
Off mode  
–30  
–100  
–40  
0
0
+30  
+100  
+40  
mV  
mV  
mV  
V
Offset off  
0
Off VTH  
SLOFvth  
SLOF  
1.0  
1.4  
2.0  
[SLC]  
No signal voltage  
[Shock]  
SLCo  
SLC  
2.25  
2.5  
2.75  
V
No signal voltage  
Detection voltage H  
Detection voltage L  
[DEF]  
SCIo  
SCI, difference from VR  
SCI, difference from VR  
SCI, difference from VR  
–40  
60  
0
+40  
140  
–60  
mV  
mV  
mV  
SCIvthH  
SCIvthL  
100  
–140 –100  
Difference between LF2 voltage when RFSM =  
3.5 V and DEF is detected and LF2 voltage when  
RFSM = 3.5 V  
Detection voltage  
DEFvth  
0.20  
4.5  
0.35  
0.50  
+0.5  
V
Output voltage H  
Output voltage L  
[APC]  
DEF-H  
DEF-L  
4.9  
0
V
V
Reference voltage  
Off voltage  
LDS  
LDS voltage at which LDD = 3 V  
LDD  
150  
3.9  
180  
4.3  
210  
4.6  
mV  
V
LDDof  
No.5189 - 3/20  
LA9230M/9231M  
Pin Function  
Descriptions enclosed in brackets apply to the LA9231M only.  
Pin  
No.  
Symbol  
Contents  
1
FIN2  
Pickup photodiode connection pin. Added to FIN1 pin to generate the RF signal, subtracted from FIN1 pin to generate  
the FE signal.  
2
3
4
5
6
7
8
9
FIN1  
E
Pickup photodiode connection pin.  
Pickup photodiode connection pin. Subtracted from F pin to generate the TE signal.  
Pickup photodiode connection pin.  
F
TB  
TE signal DC component input pin.  
TE−  
TE  
Pin which connects the TE signal gain setting resistor between this pin and TE pin.  
TE signal output pin.  
TESI  
SCI  
TES (Track Error Sense) comparator input pin. The TE signal is input through a bandpass filter.  
Shock detection input pin.  
10 TH  
Tracking gain time constant setting pin.  
11 TA  
TA amplifier output pin.  
12 TD−  
13 TD  
Pin for configuring the tracking phase compensation constant between the TD and VR pins.  
Tracking phase compensation setting pin.  
14 JP  
Tracking jump signal (kick pulse) amplitude setting pin.  
Tracking control signal output pin.  
15 TO  
16 FD  
Focusing control signal output pin.  
17 FD−  
18 FA  
Pin for configuring the focusing phase compensation constant between the FD and FA pins.  
Pin for configuring the focusing phase compensation constant between the FDand FApins.  
Pin for configuring the focusing phase compensation constant between the FA and FE pins.  
FE signal output pin.  
19 FA−  
20 FE  
21 FE−  
22 AGND  
23 SP  
Pin which connects the FE signal gain setting resistor between this pin and FE pin.  
Analog signal GND.  
CV+ and CVpins input signal single-end output.  
Spindle amplifier input.  
24 SPI  
25 SPG  
26 SP−  
27 SPD  
28 SLEQ  
29 SLD  
30 SL−  
31 SL+  
32 JP−  
33 JP+  
34 TGL  
35 TOFF  
36 TES  
37 HFL  
12-cm spindle mode gain setting resistor connection pin.  
Spindle phase compensation constant connection pin, along with the SPD pin.  
Spindle control signal output pin.  
Sled phase compensation constant connection pin.  
Sled control signal output pin.  
Input pin for sled movement signal from microprocessor.  
Input pin for sled movement signal from microprocessor.  
Input pin for tracking jump signal from DSP.  
Input pin for tracking jump signal from DSP.  
Input pin for tracking gain control signal from DSP. Gain is low when TGL is high.  
Input pin for tracking off control signal from DSP. Tracking servo is off when TOFF is high.  
Output pin for TES signal to DSP.  
The High Frequency Level is used to determine whether the main beam is positioned over a bit or over the mirrored  
surface.  
38 SLOF  
39 CV−  
40 CV+  
41 RFSM  
42 RFS−  
43 SLC  
44 SLI  
Sled servo off control input pin  
Input pin for CLV error signal from DSP.  
Input pin for CLV error signal from DSP.  
RF output pin.  
RF gain setting and EFM signal 3T compensation constant setting pin, along with the RFSM pin.  
Slice Level Control is an output pin that controls the data slice level used by the DSP for the RF waveform.  
Input pin used by DSP for controlling the data slice level.  
Digital system GND pin.  
45 DGND  
NC  
46  
No connection  
[FSC]  
[Focus search smoothing capacitor output pin.]  
No connection  
47 NC  
48 NC  
49 DEF  
50 CLK  
51 CL  
No connection  
Disc defect detection output pin.  
Reference clock input pin. 4.23 MHz signal from the DSP is input.  
Microprocessor command clock input pin.  
Continued on next page.  
No.5189 - 4/20  
LA9230M/9231M  
Continued from preceding page.  
Pin  
No.  
Symbol  
Contents  
52 DAT  
53 CE  
54 DRF  
55 NC  
Microprocessor command data input pin.  
Microprocessor command chip enable input pin.  
RF level detection output (Detect RF).  
No connection  
56  
V
2
Servo system and digital system V pin.  
CC  
CC  
57 REF1  
58 VR  
By-pass capacitor connection pin for reference voltage.  
Reference voltage output pin.  
59 LF2  
60 PH1  
61 BH1  
62 LDD  
63 LDS  
Disc defect detection time constant setting pin.  
RF signal peak hold capacitor connection pin.  
RF signal bottom hold capacitor connection pin.  
APC circuit output pin.  
APC circuit input pin.  
64  
V
1
RF system V pin.  
CC  
CC  
No.5189 - 5/20  
LA9230M/9231M  
Equivalent Circuit Block Diagram  
Descriptions enclosed in dotted lines or brackets apply to the LA9231M only.  
No.5189 - 6/20  
LA9230M/9231M  
Test Circuit  
Descriptions enclosed in dotted lines or brackets apply to the LA9231M only.  
LA9230M/LA9231M  
No.5189 - 7/20  
LA9230M/9231M  
Description of Operation  
1. APC (auto laser power control)  
This circuit controls the pickup laser power. The laser is turned on and off by commands from the microprocessor.  
2. RF amplifier (eye pattern output)  
The pickup photodiode output current (A + C) is input to FIN2 (pin 1), and (B + D) is input to FIN1 (pin 2). The current that  
is input is converted to the voltage, passes through the AGC circuit, and is then output from the RFSM amplifier output  
RFSM (pin41). The internal AGC circuit has a variable range of ±3 dB, and the time constant can be changed through the  
external capacitor connected to PH1 (pin 60). In addition, this circuit also controls the bottom level of the EFM signal  
(RFSM output), and the response can be changed through the external capacitor connected to BH1 (pin 61). The center gain  
setting for the AGC variable range is set by the resistance between RFSM (pin 41) and RFS(pin 42); if necessary, this  
resistance is also used for 3T compensation for the EFM signal.  
3. SLC (slice level control)  
The SLC sets the duty ratio for the EFM signal that is input to the DSP to 50%. The DC level is determined by integrating  
the EFMO signal output from the DSP to determine the duty factor.  
4. Focus servo  
The focus error signal is derived by detecting the difference between (A + C) and (B + D), which is (B + D) − (A + C), and  
is then output from FE (pin 20). The focus error signal gain is set by the resistance between FE (pin 20) and FE(pin 21).  
The FA amplifier is the pickup phase compensation amplifier, and the equalizer curve is set by the external capacitor and  
resistance. Furthermore, this amplifier has a mute function which is applied when VCC is turned on, when the F-SERVO OFF  
command is sent, and during F-SEARCH. In order to turn the focus servo on, send either the LASER ON command or the  
F-SERVO ON command.  
The FD amplifier has a phase compensation circuit, a focus search signal composition function, and an offset cancellation  
function. Focus search is initiated by the F-SEARCH command, and a ramp waveform is generated by the internal clock.  
This waveform is used for focus detection (focus zero cross) with the focus error signal and then turn the focus servo on. The  
ramp waveform amplitude is set by the resistance between FD (pin 16) and FD(pin 17). Offset cancellation cancels the IC  
offset; adjustment is started by the FOCUS-OFFSET ADJUST START command, and is completed in about 250 ms.  
To cancel even the offset for the IV amplifier, etc., it is necessary to send the F-SERVO ON (LASER OFF) command. The  
FOCUS-OFFSET ADJUST OFF command is used to return to the state prior to offset cancellation.  
For the LA9231M, FCS (pin 46) is for smoothing the focus search ramp waveforms, and a capacitor is connected between  
FSC and VR.  
5. Tracking servo  
The pickup photodiode output current is input to E (pin 3) and F (pin 4). The current that is input is converted to the voltage,  
passes through the balance adjustment VCA circuit and then the VCA circuit that follows the gain in the RFAGC circuit, and  
is then output from TE (pin 7). The tracking error gain is set by the resistance between TE(pin6) and TE (pin7).  
The TA output (pin 11) has a built-in resistance to allow configuration of a low-pass filter.  
The TH amplifier alters the servo response characteristics according to the THLD signal, etc., generated internally after  
detection of the TGL signal from the DSP or the JP signal. When a defect is detected, the THLD mode goes into effect  
internally. To avoid this, short DEF (pin 49) to L = GND. By inserting an external bandpass filter to remove the shock  
component from the tracking error signal at SCI (pin 9), the gain is automatically boosted when a defect is detected.  
The TD amplifier performs servo loop phase compensation; the characteristics are set by external CR. Furthermore, this  
amplifier has a mute function, which is applied when VCC is turned on or the TRACK-SERVO OFF command is issued. The  
muting function is released by the TRACK-SERVO ON command.  
The TOFF amplifier that is positioned immediately after TD (pin 13) functions to turn off the servo in response to the TOFF  
signal from the DSP.  
The TO amplifier has a JP pulse composition function and a tracking offset cancellation function. The JP pulse is set by JP  
(pin 14). (THLD detection is performed internally.) Offset cancellation is completed in about 30 ms. The TRACK-SERVO  
ON command and setting the TOFF pin (pin 35) low are required for offset cancellation.  
Note:  
The LC78620E TOFF ON/OFF command is valid only when disc motor control is in CLV mode. Accordingly, tracking offset  
is cancelled in normal CLV mode. Note that when performed in STOP mode, external control of the TOFF pin is required.  
6. Sled servo  
The response characteristics are set by SLEQ (pin 28). The amplifier positioned after SLEQ (pin 28) has a mute function that  
is applied either when SLOF (pin 38) goes high or the SLED OFF command is issued. The sled is moved by inputting  
current to SL(pin 30) and SL+ (pin 31); specifically, the pins are connected to the microprocessor output ports via resistors,  
and the movement gain is set by the resistance value of that resistor. It is important to note that if there is a deviation in the  
resistance values for SL(pin 30) and SL+ (pin 31), an offset will arise in the SLD output.  
7. Spindle servo  
The Configures this servo circuit, which maintains the linear velocity of the disc at a constant speed, along with the DSP.  
This circuit accepts signals from the DSP through CV(pin 39) and CV+ (pin 40) and sets the equalizer characteristics  
through SP (pin 23), SP(pin 36), and SPD (pin 27), which are output to SPD (pin 27). The 12-cm mode amplifier gain is  
set by the resistor connected between SPG (pin 25) and the reference voltage. In 8-cm mode, this amplifier serves as an  
internal buffer, and SPG (pin 25) is ignored. Note that the gain setting is made for 8-cm mode first, and then 12-cm mode. If  
SPG (pin 25) is left open, the gain is forcibly set for 8-cm mode, regardless of whether 8-cm or 12-cm mode is in effect.  
No.5189 - 8/20  
LA9230M/9231M  
8. TES and HFL (traverse signals)  
When moving the pickup from the outer track to the inner track, the EF output from the pickup must be connected so that the  
phase relationship of TES and HFL is as shown in the diagram below. For the TESI input, the TES comparator has negative  
polarity and hysteresis of approximately ±100 mV. An external bandpass filter is needed in order to extract only the required  
signal from the TE signal.  
9. DRF (luminous energy determination)  
DRF goes high when the peak of the EFM signal (RFSM output) held by the PH1 (pin 60) capacitor exceeds approximately  
2.1 V. The PH1 (pin 60) capacitor affects the DRF detection time constant and the RFAGC response bidirectional setting.  
Pickup position  
Focus  
10. Focus determination  
Focus is assumed to be obtained when the focus error signal S curve reaching REF + 0.2 V is detected, and the S curve  
subsequently returns to REF.  
Focus  
No.5189 - 9/20  
LA9230M/9231M  
11. DEFECT  
The mirrored surface level is maintained by the capacitor for LF2 (pin 59); when a drop in the EFM signal (RFSM output)  
reaches 0.35 V or more, a high signal is output to DEF (pin 49). If DEF (pin 49) goes high, the tracking servo enters THLD  
mode. In order to prevent the tracking servo from entering THLD mode when a defect is detected, prevent DEFECT from  
being output by either shorting DEF (pin 49) to GND, or shorting LF2 (pin 59) to GND. The DEFECT output is driven by  
constant current (approximately 100 µA).  
EFM signal  
(RFSM output)  
LF2 (pin 59)  
DEF (pin 49)  
12. Microprocessor interface  
Because the Reset (Nothing) command initializes the LA9230M and the LA9231M, it must be used carefully.  
The LA9230M/LA9231M command acceptance (mode switching) timing is defined by the internal clock (4.23 MHz divided  
to 130 kHz) after the falling edge of CE (RWC); therefore, when commands are sent consecutively, CE must go low for at  
least 10 µsec. / The 4.23 MHz clock is required for that reason. 2BYTE-COMMAND DETECT and 2BYTE-COMMAND  
RESET are used only for the purpose of masking two-byte data.  
All instructions can be input by setting CE high and sending commands synchronized with the CL clock from the  
microprocessor to DAT (pin 52) in LSB first format. Note that the command is executed at the falling edge of CE.  
Timing  
*The DSP pin names are shown in parentheses.  
13. Reset circuit  
The power-on reset is released when VCC exceeds approximately 2.8 V.  
14. Pattern design notes  
To prevent signal jump-in from CV+ (pin 40) to RFSM (pin 41), a shielding line is necessary in between.  
15. VCC /REF/GND/NC  
V
V
CC1 (pin 64)  
CC2 (pin 56)  
: RF system  
: SERVO system, DIGITAL system  
: RF system, SERVO system  
: DIGITAL system  
AGND (pin 22)  
DGND (pin 45)  
NC (pins 46*, 47, 48, and 55)  
: No connection  
*Only for LA9230M  
No.5189 - 10/20  
LA9230M/9231M  
Microprocessor Command List  
Reset mode  
Power on mode  
Command  
DSP  
MSB  
LSB  
0 0 0 0 0 0 0 0 RESET  
RESET(NOTHING)  
FOCUS START #1  
0 0 0 0 1 0 0 0 FOCUS START  
1 1 1 1 0 0 0 0 2BYTE-COMMAND DETECT  
1 1 1 1 1 0 0 0 2BYTE-COMMAND DETECT  
1 1 1 1 1 1 1 1 2BYTE-COMMAND RESET  
2BYTE-COMMAND DETECT  
2BYTE-COMMAND DETECT  
2BYTE-COMMAND RESET  
1 0 0 1 0 0 0 0 FOCUS-OFFSET ADJUST START  
1 0 0 1 0 0 0 1 FOCUS-OFFSET ADJUST OFF  
1 0 0 1 0 0 1 0 TRACK-OFFSET ADJUST START  
1 0 0 1 0 0 1 1 TRACK-OFFSET ADJUST OFF  
V
V
1 0 0 1 0 1 0 0 LASER ON  
1 0 0 1 0 1 0 1 LASER OFF : F-SERVO ON  
1 0 0 1 0 1 1 0 LASER OFF : F-SERVO OFF  
1 0 0 1 0 1 1 1 SPINDLE 8CM  
1 0 0 1 1 0 0 0 SPINDLE 12 CM  
1 0 0 1 1 0 0 1 SPINDLE OFF  
V
V
V
1 0 0 1 1 0 1 0 SLED ON  
1 0 0 1 1 0 1 1 SLED OFF  
1 0 0 1 1 1 0 0 E/F BALANCE START  
1 0 0 1 1 1 0 1 TRACK-SERVO OFF  
1 0 0 1 1 1 1 0 TRACK-SERVO ON  
Nonadjusted  
V
Notes Concerning Microprocessor Program Creation  
1. Commands  
After sending the FOCUS START command and the E/F BALANCE START command, send 11111110 (FEH) in order to  
clear the internal registers of the IC.  
Reason: Although the above commands are executed at point 1 in the timing chart below, the same commands will be  
executed again at point 2 if there is subsequent input to CE as shown below.  
Timing  
‘‘FOCUS START’’ command  
‘‘E/F BALANCE START’’ command  
When sending a TRACK-OFFSET ADJUST START command or a FOCUS-OFFSET ADJUST START command after either  
VCC ON (POWER ON RESET), RESET command, or a corresponding OFFSET ADJUST OFF command, waiting time is  
necessary as listed below. (Only when a 4.2 MHz clock is input.)  
TRACK-OFFSET ADJUST START: 4 ms or more  
FOCUS-OFFSET ADJUST START: 30 ms or more  
2. E/F balance adjustment  
E/F balance adjustments should be made in a bit region of the disc, not a mirrored region. (This is because the E/F balance  
adjustment entails about 100 to 200 track kicks.)  
Since there is no track-kick for LA9231M, measures must be taken during EF balance adjustment to obtain a stable TE  
signal. (By a sled movement signal from a microprocessor, for example.)  
No.5189 - 11/20  
LA9230M/9231M  
Pin Internal Equivalent Circuit  
Pin No., ( ): Pin Name  
Internal Equivalent Circuit  
Pin 1 (FIN2)  
Pin 2 (FIN1)  
Pin 3 (E)  
Pin 4 (F)  
Pin 5 (TB)  
Pin 6 (TE)  
Pin 17 (FD)  
Pin 21 (FE)  
Pin 26 (SP)  
Pin 28 (SLEQ)  
Pin 44 (SLI)  
Pin 16 (FD)  
Pin 27 (SPD)  
Pin43 (SLC)  
Pin 8 (TESI)  
Pin 36 (TES)  
Continued on next page.  
No.5189 - 12/20  
LA9230M/9231M  
Continued from preceding page.  
Pin No., ( ): Pin Name  
Internal Equivalent Circuit  
Pin 9 (SCI)  
Pin 34 (TGL)  
Pin 7 (TE)  
Pin 10 (TH)  
Pin 11 (TA)  
Pin 12 (TD)  
Pin 13 (TD)  
Continued on next page.  
No.5189 - 13/20  
LA9230M/9231M  
Continued from preceding page.  
Pin No., ( ): Pin Name  
Pin 14 (JP)  
Internal Equivalent Circuit  
Pin 15 (TO)  
Pin 18 (FA)  
Pin 19 (FA)  
Pin 20 (FE)  
Continued on next page.  
No.5189 - 14/20  
LA9230M/9231M  
Continued from preceding page.  
Pin No., ( )Pin Name  
Internal Equivalent Circuit  
Pin 24 (SPI)  
Pin 25 (SPG)  
Pin 29 (SLD)  
Pin 30 (SL)  
Pin 31 (SL+)  
Pin 32 (JP)  
Pin 33 (JP+)  
Pin 35 (TOFF)  
Continued on next page.  
No.5189 - 15/20  
LA9230M/9231M  
Continued from preceding page.  
Pin No., ( ): Pin Name  
Internal Equivalent Circuit  
Pin 37 (HFL)  
Pin 49 (DEF)  
Pin 54 (DRF)  
* Pin 46 (FSC)  
[LA9231M only]  
Pin 38 (SLOF)  
Pin 39 (CV)  
Pin 40 (CV+)  
Pin 23 (SP)  
Pin 42 (RF)  
Pin 50 (CLK)  
Continued on next page.  
No.5189 - 16/20  
LA9230M/9231M  
Continued from preceding page.  
Pin No., ( ): Pin Name  
Internal Equivalent Circuit  
Pin 51 (CL)  
Pin 52 (DAT)  
Pin 53 (CE)  
Pin 57 (REFI)  
Pin 58 (VR)  
Pin 59 (LF2)  
Pin 41 (RFSM)  
Pin 60 (PH1)  
Pin 61 (BH1)  
Continued on next page.  
No.5189 - 17/20  
LA9230M/9231M  
Continued from preceding page.  
Pin No., ( ): Pin Name  
Pin 62 (LDD)  
Internal Equivalent Circuit  
Pin 63 (LDS)  
No.5189 - 18/20  
LA9230M/9231M  
Sample Application Circuit  
Pin descriptions enclosed in dotted lines or brackets apply to the LA9231M only.  
No.5189 - 19/20  
LA9230M/9231M  
No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment,  
nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or  
indirectly cause injury, death or property loss.  
Anyone purchasing any products described or contained herein for an above-mentioned use shall:  
1 Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors  
and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and  
expenses associated with such use:  
2 Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO  
ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.  
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume  
production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use  
or any infringements of intellectual property rights or other rights of third parties.  
This catalog provides information as of September, 1995. Specifications and information herein are subject to change without notice.  
No.5189 - 20/20  

相关型号:

LA9231

Analog Signal Processor ASP for CD players
SANYO

LA9231M

Analog Signal Processor ASP for CD players
SANYO

LA9233

Analog Signal Processor ASP for CD players
SANYO

LA9233M

Analog Signal Processor ASP for CD players
SANYO

LA9240M

Analog Signal Processor (ASP) for CD players
SANYO

LA9241M

Analog Signal Processor ASP for CD players
SANYO

LA9242M

Analog Signal Processor ASP for CD Players
SANYO

LA9247T

CD-ROM Digital Servo RF IC
SANYO

LA9250M

CD Player Analog Signal Processor (ASP)
SANYO

LA9251

CD Player Analog Signal Processor (ASP)
SANYO