STK415-140-E [SANYO]

2-Channel Power Switching Audio Power IC, 120W+120W; 2通道电源开关音频功率IC, 120W + 120W
STK415-140-E
型号: STK415-140-E
厂家: SANYO SEMICON DEVICE    SANYO SEMICON DEVICE
描述:

2-Channel Power Switching Audio Power IC, 120W+120W
2通道电源开关音频功率IC, 120W + 120W

开关 商用集成电路 电源开关 放大器 局域网
文件: 总12页 (文件大小:182K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ordering number : EN*A1501  
Thick-Film Hybrid IC  
2-Channel Power Switching  
Audio Power IC, 120W+120W  
STK415-140-E  
Overview  
The STK415-140-E is a class H audio power amplifier hybrid IC that features a built-in power supply switching circuit.  
This IC provides high efficiency audio power amplification by controlling (switching) the supply voltage supplied to the  
power devices according to the detected level of the input audio signal.  
Applications  
Audio power amplifiers.  
Features  
Pin-to-pin compatible outputs ranging from 80W to 180W.  
Can be used to replace the STK416-100 series (3-channel models) and the class-AB series (2, 3-channel models) due to  
its pin compatibility.  
Pure complementary construction by new Darlington power transistors  
Output load impedance: R = 8Ω to 4Ω supported  
L
Using insulated metal substrate that features superlative heat dissipation characteristics that are among the highest in the  
industry.  
Series Models  
STK415-090-E  
STK415-100-E  
STK415-120-E  
STK415-130-E  
STK415-140-E  
Output 1 (10%/1kHz)  
80W×2 channels  
90W×2 channels  
120W×2 channels  
150W×2 channels  
180W×2 channels  
Output 2 (0.8%/20Hz to 20kHz)  
50W×2 channels  
60W×2 channels  
80W×2 channels  
100W×2 channels  
120W×2 channels  
Max. rated V (quiescent)  
H
60V  
41V  
37V  
27V  
65V  
42V  
39V  
29V  
73V  
80V  
46V  
51V  
34V  
80V  
51V  
52V  
32V  
Max. rated V (quiescent)  
L
45V  
Recommended operating V (8Ω)  
46V  
32V  
H
Recommended operating V (8Ω)  
L
Dimensions (excluding pin height)  
64.0mm×31.1mm×9.0mm  
Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to  
"standard application", intended for the use as general electronics equipment (home appliances, AV equipment,  
communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be  
intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace  
instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety  
equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case  
of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee  
thereof. If you should intend to use our products for applications outside the standard applications of our  
customer who is considering such use and/or outside the scope of our intended standard applications, please  
consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our  
customer shall be solely responsible for the use.  
Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate  
the performance, characteristics, and functions of the described products in the independent state, and are not  
guarantees of the performance, characteristics, and functions of the described products as mounted in the  
customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent  
device, the customer should always evaluate and test devices mounted in the customer  
'
s products or  
equipment.  
70809HKIM No. A1501-1/12  
STK415-140-E  
Specifications  
Absolute maximum ratings at Ta=25°C (excluding rated temperature items), Tc=25°C unless otherwise specified  
Parameter  
Symbol  
max (1)  
max (2)  
max (3)  
max (1)  
max (2)  
max (3)  
Conditions  
Ratings  
Unit  
V
V
V
V
V
V
maximum quiescent supply voltage 1  
maximum supply voltage 2  
maximum supply voltage 3  
maximum quiescent supply voltage 1  
maximum supply voltage 2  
maximum supply voltage 3  
V
V
V
V
V
V
V
When no signal  
80  
78  
60  
51  
48  
36  
60  
V
H
H
H
L
H
H
H
L
R 6Ω  
V
L
R 4Ω  
V
L
When no signal  
V
R 6Ω  
V
L
L
L
R 4Ω  
V
L
L
L
Maximum voltage between V  
V
*4  
-V max  
L
No loading  
V
H and  
L
H
Standby pin maximum voltage  
Thermal resistance  
Vst max  
θj-c  
-0.3 to +5.5  
1.5  
V
Per power transistor  
°C/W  
°C  
°C  
°C  
Junction temperature  
Tj max  
Tc max  
Tstg  
Both the Tj max and Tc max conditions must be met.  
150  
IC substrate operating temperature  
Storage temperature  
125  
-30 to +125  
Allowable load shorted time  
*3  
ts  
V
P
= 52V, V = 32V, R =6Ω, f=50Hz,  
L L  
=120W, 1-channel active  
H
O
0.3  
s
Electrical Characteristics at Tc=25°C, R =8Ω (non-inductive load), Rg=600Ω, VG=40dB, VZ=15V  
L
Conditions *1  
Ratings  
Parameter  
Symbol  
unit  
W
V
f
P
THD  
(%)  
O
min  
typ  
max  
(V)  
(Hz)  
(W)  
Output power  
P
(1)  
(2)  
V
H
52  
32  
O
20 to 20k  
0.8  
0.8  
120  
V
L
P
V
42  
28  
O
H
1k  
R =4Ω  
120  
0.4  
L
V
L
Total harmonic distortion  
Frequency characteristics  
Input impedance  
THD  
V
52  
32  
H
20 to 20k  
120  
1.0  
1.0  
%
Hz  
V
L
f , f  
V
52  
32  
L
H
H
+0 -3dB  
20 to 50k  
55  
V
L
ri  
V
52  
32  
H
1k  
kΩ  
V
L
Output noise voltage  
Quiescent current  
*2  
V
V
58  
38  
NO  
H
Rg=2.2kΩ  
1.0  
mVrms  
mA  
mV  
V
V
L
I
V
58  
38  
30  
CCO  
H
R =∞  
L
V
V
100  
L
Output neutral voltage  
V
58  
38  
N
H
-70  
2.5  
0
0
+70  
0.6  
V
L
Pin 17 voltage when  
standby ON  
VST ON  
V
52  
32  
H
Standby  
*7  
*7  
V
L
Pin 17 voltage when  
standby OFF  
VST OFF  
V
52  
32  
H
Operating  
3.0  
V
V
L
[Remarks]  
*1: Unless otherwise specified, use a constant-voltage power supply to supply power when inspections are carried out.  
*2: The output noise voltage values shown are peak values read with a VTVM. However, an AC stabilized (50Hz)  
power supply should be used to minimize the influence of AC primary side flicker noise on the reading.  
*3: Use the designated transformer power supply circuit shown in the figure below for the measurements of allowable  
load shorted time and output noise voltage.  
*4: Design circuits so that (|V |-|V |) is always less than 40V when switching the power supply with the load connected.  
H L  
*5: Set up the V power supply with an offset voltage at power supply switching (V -V ) of about 8V as an initial target.  
L
L
O
*6: Please connect –Pre V  
pin (#5 pin) with the stable minimum voltage and connect so that current does not flow in  
CC  
by reverse bias.  
*7: Use the standby pin (pin 17) so that the applied voltage never exceeds the maximum rating.  
The power amplifier is turned on by applying +2.5V to +5.5V to the standby pin (pin 17).  
*8: Thermal design must be implemented based on the conditions under which the customer’s end products are  
expected to operate on the market.  
*9: A thermoplastic adhesive resin is used for this hybrid IC.  
No. A1501-2/12  
STK415-140-E  
DBA40C  
DBA40C  
10000μF  
10000μF  
+V  
+V  
-V  
H
L
+
+
500Ω  
500Ω  
500Ω  
500Ω  
+
+
-V  
H
L
10000μF  
10000μF  
Designated transformer power supply  
(MG-250 equivalent)  
Designated transformer power supply  
(MG-200 equivalent)  
Package Dimensions  
unit:mm (typ)  
64.0  
55.6  
9.0  
(R1.8)  
1
19  
3.6  
0.4  
2.9  
2.0  
18 2.0=36.0  
0.5  
(9.8)  
5.5  
Internal Equivalent Circuit  
7
12  
Comparator  
Pre Driver  
CH2  
Pre Driver  
CH1  
3
1
15  
16  
2
4
Stand-by  
Comparator  
5
6
SUB  
13  
14  
17  
18  
9
19  
8 10  
11  
No. A1501-3/12  
STK415-140-E  
Application Circuit Example  
STK415-100 series  
+OFF -OFF  
SET SET  
OUT OUT OUT OUT  
Ch1+ Ch1-Ch2+ Ch2-  
IN  
NF ST NF  
IN  
+V -V  
-Pre -V +V  
H H  
+Pre SUB GND  
Ch1 Ch1 BY Ch2 Ch2  
L
L
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
R30  
C22  
C23  
Stand-by  
R24  
R26  
R18  
R19  
C08  
D03 D04  
R14  
C13  
R15  
C14  
C07  
C17  
R22  
Ch2-IN  
GND  
R06  
R05  
C20  
C19  
+V  
Ch1-IN  
H
R03  
C05  
R21  
C16  
C01  
D01  
+V  
L
L02  
R01  
C03  
C04  
GND  
Ch2-OUT  
GND  
C11  
R09  
R12  
R02  
C06  
-V  
L
D02  
C02  
R04  
L01  
R11  
R08  
C10  
-V  
H
Ch1-OUT  
No. A1501-4/12  
STK415-140-E  
Recommended Values for Application Parts (for the test circuit)  
Recommended  
Larger than Recommended  
Smaller than  
Recommended Value  
Power switching circuit  
activates at higher  
Symbol  
Description  
Value  
Value  
R01, R02  
1.5kΩ  
Determine the current flowing into the power switching  
Power holding circuit  
remains active at lower  
frequencies.  
circuit (comparator), (3mA to 10mA at V power  
H
switching)  
frequencies.  
R03, R04  
R05, R06  
100Ω/1W  
56kΩ  
Ripple filtering resistors  
Decreased pass-through  
current at high frequencies.  
VN offset  
Increased pass-through  
current at high frequencies.  
(Used with C05 and C06 to form a ripple filter.)  
Input bias resistors  
(Virtually determine the input impedance.)  
Oscillation prevention resistor  
(Ensure R05=R18, R06=R19 when changing.)  
R08, R09  
R11, R12  
R14,R15  
4.7Ω/1W  
4.7Ω  
-
-
-
-
Oscillation prevention resistor  
560Ω  
Used with R18 and R19 to determine the voltage gain  
VG. (VG should desirably be determined by the R14  
and R15 value.)  
Likely to oscillate  
(VG<40dB)  
None  
R18, R19  
56kΩ  
1kΩ  
Used with R14 and R15 to determine the voltage gain  
VG.  
-
-
-
R21, R22  
R24, R26  
Input filtering resistor  
-
0.22Ω 10%,  
5W  
Output emitter resistors  
Decrease in maximum  
output power  
Likely to cause thermal-  
runaway.  
(Use of cement resistor is desirable)  
R30  
Remarks *7  
Use a limiting resistor according to the voltage applied to the standby pin so that it remains within the rating.  
C01, C02  
100μF/  
Oscillation prevention capacitors.  
100V  
Insert the capacitors as close to the IC as possible to  
decrease the power impedance for reliable IC  
operation (use of electrolytic capacitors are  
desirable).  
-
-
-
-
C03, C04  
C05, C06  
100μF/  
Oscillation prevention capacitors.  
Insert the capacitors as close to the IC as possible to  
decrease the power impedance for reliable IC  
operation (use of electrolytic capacitors are  
desirable).  
50V  
100μF/  
Decoupling capacitors.  
Increase in ripple components that pass into the input side  
from the power line.  
100V  
Eliminate ripple components that pass into the input  
side from the power line.  
(Used with R03 and R04 to form a ripple filter.)  
Oscillation prevention capacitor  
C07, C08  
C10, C11  
3pF  
Likely to oscillate  
Likely to oscillate  
0.1μF  
Oscillation prevention capacitor  
(Mylar capacitors are recommended.)  
NF capacitor  
C13, C14  
22μF/  
Increase in low-frequency  
voltage gain, with higher  
pop noise at power-on.  
Decrease in low-frequency  
voltage gain  
10V  
(Changes the low cutoff frequency;  
ex/f =1/2π •C13R14)  
L
C16, C17  
C19, C20  
2.2μF/  
50V  
Input coupling capacitor (block DC current)  
-
-
-
470pF  
Input filter capacitor  
(Used with R21 and R22 to form a filter that suppresses  
high-frequency noises.)  
-
C22, C23  
D01, D02  
100pF  
18V  
Oscillation prevention capacitor  
Likely to oscillate.  
Determine the offset voltage at V V power.  
Decreased distortion at  
power switching time  
Increased distortion at  
power switching time.  
L
H
D03, D04  
L01, L02  
3A/60V  
Reverse current prevention diodes  
(FRD is recommended.)  
-
-
3μH  
Oscillation prevention inductance  
None  
Likely to oscillate.  
No. A1501-5/12  
STK415-140-E  
Sample PCB Trace Pattern  
STK415-100-E-Sr/STK416-100-E-Sr PCB PARTS LIST  
Parts List  
STK415, 416-100Sr PCB Parts List  
STK415 (416)  
PCB No.  
PARTS  
RATING  
-090-E, -100-E,  
-120-E, 130-E  
STK415-140-E  
R01, R02  
R03, R04  
-
ERX1SJ***  
1.5kΩ, 1W  
1.5kΩ, 1W  
enabled  
enabled  
100Ω, 1W  
ERG1SJ101  
R05, R06, (R07), R18,  
R19, (R20)  
56kΩ, 1/6W  
RN16S563FK  
enabled  
enabled  
R08, R09, (R10)  
enabled  
enabled  
enabled  
enabled  
4.7Ω, 1W  
4.7Ω, 1/4W  
-
ERX1SJ4R7  
RN14S4R7FK  
RN16S***FK  
RN16S102FK  
BPR56CFR22J  
BPR56CFR22J  
-
R11, R12, (R13)  
R14, R15, (R16)  
R21, R22, (R23)  
R25, R27, (R29)  
R24, R26, (R28)  
R35, R36, R37  
C01, C02, C05, C06  
C03, C04  
560Ω, 1/6W  
560Ω, 1/6W  
enabled  
enabled  
1kΩ, 1/6W  
0.22Ω 10%, 5W  
0.22Ω 10%, 5W  
-
Short  
Short  
enabled  
enabled  
Short  
Short  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
100μF, 100V  
100μF, 50V  
3pF  
100MV100HC  
50MV100HC  
DD104-63B3ROK50  
ECQ-V1H104JZ  
10MV220HC  
50MV2R2HC  
DD104-63B471K50  
DD104-63B101K50  
-
C07, C08, (C09)  
C10, C11, (C12)  
C13, C14, (C15)  
C16, C17, (C18)  
C19, C20, (C21)  
C22, C23, (C24)  
D01, D02  
0.1μF, 100V  
22μF, 10V  
2.2μF, 50V  
470pF  
100pF  
-
GZA15X (SANYO)  
enabled  
GZA18X (SANYO)  
enabled  
D03, D04  
IF (AV)=3A/60V  
3μH  
L01, L02, (L03)  
enabled  
enabled  
Stand-By  
R30  
R32  
R33  
R34  
C25  
D05  
TR1  
3.3kΩ,1/6W  
1kΩ,1/6W  
33kΩ,1/6W  
2kΩ,1/6W  
47μF,10V  
RN16S332FK  
RN16S102FK  
RN16S333FK  
RN16S202FK  
10MV47HC  
GMB01 (Ref.)  
2SC2274 (Ref.)  
20mm  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
enabled  
-
enabled  
enabled  
-
J01  
enabled  
enabled  
Jumper  
Jumper  
Jumper  
J02, J03, J06  
J04, J05  
enabled  
enabled  
10mm  
enabled  
enabled  
7mm  
(*1) STK416-100Sr (3ch AMP) doesn’t mount parts of ( ).  
No. A1501-6/12  
STK415-140-E  
Pin Assignments  
[STK433-000/-100/-200 Sr & STK415/416-100 Sr Pin Layout]  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
2ch class-AB  
2ch classAB/2.00mm  
STK433-030-E 30W/JEITA  
STK433-040-E 40W/JEITA  
STK433-060-E 50W/JEITA  
STK433-070-E 60W/JEITA  
-
-
+
V
C
C
O
U
T
/
O
U
T
/
O
U
T
/
O
U
T
/
+
P
R
E
I
N
F
/
S
T
A
N
D
|
N
F
/
I
P
R
E
V
C
C
S
U
B
G
N
D
N
/
N
/
C
H
1
C
H
1
C
H
2
C
H
2
C
H
1
C
H
1
-
C
H
2
C
H
2
-
G
N
D
STK433-090-E 80W/JEITA  
STK433-100-E 100W/JEITA  
STK433-120-E 120W/JEITA  
STK433-130-E 150W/JEITA  
B
Y
+
+
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
3ch class-AB  
3ch classAB/2.00mm  
STK433-230A-E 30W/JEITA  
STK433-240A-E 40W/JEITA  
STK433-260A-E 50W/JEITA  
STK433-270-E 60W/JEITA  
STK433-290-E 80W/JEITA  
STK433-300-E 100W/JEITA  
STK433-320-E 120W/JEITA  
STK433-330-E 150W/JEITA  
-
-
+
V
C
C
O
U
T
/
O
U
T
/
O
U
T
/
O
U
T
/
+
P
R
E
I
N
F
/
S
T
A
N
D
|
N
F
/
I
I
N
F
/
O
U
T
/
O
U
T
/
P
R
E
V
C
C
S
U
B
G
N
D
N
/
N
/
N
/
C
H
1
C
H
1
C
H
2
C
H
2
C
H
3
C
H
3
C
H
1
C
H
1
-
C
H
2
C
H
2
-
C
H
3
C
H
3
-
G
N
D
B
Y
+
+
+
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
2ch classH/2.00mm  
2ch class-H  
STK415-090-E 80W/JEITA  
STK415-100-E 90W/JEITA  
STK415-120-E 120W/JEITA  
STK415-130-E 150W/JEITA  
STK415-140-E 180W/JEITA  
+
V
L
-
+
O
F
F
S
E
T
-
-
-
+
V
H
O
U
T
/
O
U
T
/
O
U
T
/
O
U
T
/
+
P
R
E
I
N
F
/
S
T
A
N
D
|
N
F
/
I
V
L
O
F
F
S
E
T
P
R
E
V
H
S
U
B
G
N
D
N
/
N
/
C
H
1
C
H
1
C
H
2
C
H
2
C
H
1
C
H
1
-
C
H
2
C
H
2
-
G
N
D
B
Y
+
+
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
3ch classH/2.00mm  
3ch class-H  
STK416-090-E 80W/JEITA  
STK416-100-E 90W/JEITA  
STK416-120-E 120W/JEITA  
STK416-130-E 150W/JEITA  
+
V
L
-
+
O
F
F
S
E
T
-
-
-
+
V
H
O
U
T
/
O
U
T
/
O
U
T
/
O
U
T
/
+
P
R
E
I
N
F
/
S
T
A
N
D
|
N
F
/
I
I
N
F
/
O
U
T
/
O
U
T
/
V
L
O
F
F
S
E
T
P
R
E
V
H
S
U
B
G
N
D
N
/
N
/
N
/
C
H
1
C
H
1
C
H
2
C
H
2
C
H
3
C
H
3
C
H
1
C
H
1
-
C
H
2
C
H
2
-
C
H
3
C
H
3
-
G
N
D
B
Y
+
+
+
No. A1501-7/12  
STK415-140-E  
Evaluation Board Characteristics  
THD - P  
Pd - P  
O
O
300  
250  
200  
150  
100  
7
V = 52V  
H
5
3
2
V = 32V  
L
VG=40dB  
f=1kHz  
10  
7
5
Rg=600Ω  
Tc=25°C  
3
2
1.0  
R =6Ω  
L
7
5
2ch Drive  
3
2
V = 52V  
0.1  
H
7
V = 32V  
5
3
2
100  
L
VG=40dB  
Rg=600Ω  
Tc=25°C  
0.01  
7
50  
0
5
3
2
R =6Ω  
L
2ch Drive  
0.001  
0.1  
2
3
5 7  
2
3
5 7  
2
3
5 7  
2
3
5 7  
2
3
5 7  
2
3
5 7  
10  
2
3
5 7  
100  
2
3
5 7  
1000  
1.0  
10  
100  
1000  
0.1  
1.0  
Output power, P /ch - W  
Output power, P /ch - W  
ITF02704  
ITF02705  
P
- VO  
L
P
O
- VO  
H
O
300  
250  
200  
150  
100  
300  
250  
200  
150  
100  
V = 32V  
L
VG=40dB  
Rg=600Ω  
V = 52V  
H
VG=40dB  
Rg=600Ω  
R =6Ω  
R =6Ω  
L
L
2ch Drive  
2ch Drive  
50  
0
50  
0
10  
20  
30  
40  
50  
30  
40  
50  
60  
70  
Supply voltage, V  
-
V
Supply voltage, V - V  
H
ITF02706  
ITF02707  
L
P
- f  
O
300  
250  
200  
150  
100  
V = 52V  
H
V = 32V  
L
VG=40dB  
Rg=600Ω  
Tc=25°C  
THD=10%  
THD=0.8%  
R =6Ω  
L
2ch Drive  
50  
0
2
3
5 7  
2
3
5 7  
2
3
5 7  
2
3
5 7  
100k  
10  
100  
1k  
10k  
Frequency, f - Hz  
ITF02708  
No. A1501-8/12  
STK415-140-E  
[Thermal Design Example for STK415-140-E (R = 8Ω)]  
L
The thermal resistance, θc-a, of the heat sink for total power dissipation, Pd, within the hybrid IC is determined as  
follows.  
Condition 1: The hybrid IC substrate temperature, Tc, must not exceed 125°C.  
Pd × θc-a + Ta < 125°C ................................................................................................. (1)  
Ta: Guaranteed ambient temperature for the end product  
Condition 2: The junction temperature, Tj, of each power transistor must not exceed 150°C.  
Pd × θc-a + Pd/N × θj-c + Ta < 150°C .......................................................................... (2)  
N: Number of power transistors  
θj-c: Thermal resistance per power transistor  
However, the power dissipation, Pd, for the power transistors shall be allocated equally among the number of power  
transistors.  
The following inequalities result from solving equations (1) and (2) for θc-a.  
θc-a < (125 Ta)/Pd ...................................................................................................... (1)'  
θc-a < (150 Ta)/Pd − θj-c/N ........................................................................................ (2)'  
Values that satisfy these two inequalities at the same time represent the required heat sink thermal resistance.  
When the following specifications have been stipulated, the required heat sink thermal resistance can be determined  
from formulas (1)' and (2)'.  
Supply voltage  
Load resistance  
V , V  
R
L
H L  
Guaranteed ambient temperature  
Ta  
[Example]  
When the IC supply voltage, V = 52V, V = 32V and R is 6Ω, the total power dissipation, Pd, within the hybrid  
H
L
L
IC, will be a maximum of 156W at 1kHz for a continuous sine wave signal according to the Pd-P characteristics.  
O
For the music signals normally handled by audio amplifiers, a value of 1/8P max is generally used for Pd as an  
O
estimate of the power dissipation based on the type of continuous signal. (Note that the factor used may differ  
depending on the safety standard used.)  
This is:  
Pd 63.0W  
(when 1/8P max. = 15W, P max. = 120W).  
O O  
The number of power transistors in audio amplifier block of these hybrid ICs, N, is 4, and the thermal resistance per  
transistor, θj-c, is 1.5°C/W. Therefore, the required heat sink thermal resistance for a guaranteed ambient temperature,  
Ta, of 50°C will be as follows.  
From formula (1)'  
θc-a < (125 50)/63.0  
< 1.19  
From formula (2)'  
θc-a < (150 50)/63.0 1.5/4  
< 1.21  
Therefore, the value of 1.19°C/W, which satisfies both of these formulae, is the required thermal resistance of the heat  
sink.  
Note that this thermal design example assumes the use of a constant-voltage power supply, and is therefore not a  
verified design for any particular user’s end product.  
No. A1501-9/12  
STK415-140-E  
STK415-100 Series Stand-by control, Mute control, Load-short protection & DC  
offset protection application  
*1 Set the limiting resistor value R1 so that the voltage applied to the standby  
pin (pin 17) never exceeds the maximum rated value VST max.  
4.7kΩ  
STK415-100 series  
#17pin  
reference voltage VST  
+OFF -OFF  
OUT OUT OUT OUT  
Ch1+ Ch1- Ch2+ Ch2-  
NF  
Ch2  
IN  
NF  
Ch1 Ch1  
IN  
Ch2  
ST-  
BY  
-V  
+V  
-Pre -V  
+V  
SUB  
+Pre GND  
SET  
SET  
L
L
H
H
1
2
3
4
6
7
8
9 10 11 12 13 14 15 16 17 18 19  
5
1kΩ  
6.8kΩ  
33kΩ  
Stand-by Control  
H: Operation Mode (+5V)  
L: Stand-by Mode (0V)  
(*1) R30  
ex) 3.3kΩ  
47μF  
/10V  
2kΩ  
GND  
*3 *3  
6.8kΩ  
Ch2 IN  
*2  
10kΩ  
GND  
10kΩ  
10kΩ  
2.2kΩ  
Ch1 IN  
22kΩ  
1kΩ  
*2  
56kΩ  
Latch up  
circuit  
+V  
H
Load  
Short  
Protection  
circuit  
0.1μF  
10kΩ  
+V  
L
V1  
Mute Control  
H: Single Mute  
L: Normal  
(*4)  
R2  
Ch2 OUT  
GND  
100kΩ  
-V  
L
GND  
GND  
82kΩ  
+5V  
Stand-by  
Control  
-V  
H
100  
kΩ  
22μF  
22μF  
82kΩ  
+5V  
Mute  
Control  
Ch1 OUT  
DC offset protection  
MUTE  
PLAY  
ST-BY  
MUTE  
ST-BY  
*2 METAL PLATE CEMENT RESISTOR 0.22Ω 10%(5W)  
*3 DIODE 3A/60V  
STK415-100 Series Application explanation  
Stand-by Circuit  
in Pre Driver IC  
SW transistor  
4.7kΩ (*3)  
STK415-100 series  
ΔV  
BE  
1) Stand-by control circuit part  
H: Operation mode (+5V)  
L: Stand-by mode (0V)  
Ch1  
Ch1  
Ch1  
Ch2  
Ch2  
Ch1  
Ch2  
Ch2  
IN  
-PRE -V  
+V  
+PRE  
12  
GND  
NF STBY  
OUT(+) OUT(-) OUT(+) OUT(-)  
SUB  
13  
IN  
NF  
H
H
1
4
5
6
7
8
10  
11  
14  
15  
16  
17  
18  
19  
9
1kΩ  
6.8kΩ  
6.8kΩ  
56kΩ  
33kΩ  
56kΩ  
(*1) R30  
ex) 3.3kΩ  
Tr5  
Stand-By Control  
Voltage VST  
I1  
2kΩ  
47μF  
Tr1  
Tr2  
Point.B  
Point.B  
Point.C  
I2  
Point.C  
22kΩ  
56kΩ  
Operate mode (VST  
)2.5V  
)< 0.6V (0V typ)  
OFF  
Stand-By mode (VST  
ON  
(2) Load short  
detection part  
I3  
Tr4  
(*4) R2  
1kΩ  
0.1μF  
10kΩ  
Tr3  
(3) Latch-up  
circuit part  
100kΩ  
-V  
CC  
Tr5  
82kΩ  
Tr6  
OUT Ch1  
OUT Ch2  
22μF  
82kΩ 22μF  
100  
kΩ  
(4) DC offset  
protection  
No. A1501-10/12  
STK415-140-E  
The protection circuit application for the STK415-100sr consists of the following blocks (blocks (1) to (4)).  
(1) Standby control circuit block  
(2) Load short-circuit detection block  
(3) Latch-up circuit block  
(4) DC voltage protection block  
1) Standby control circuit block  
Concerning pin 17 reference voltage VST  
<1> Operation mode  
The switching transistor of the predriver IC turns on when the pin 17 reference voltage, VST, becomes greater  
than or equal to 2.5V, placing the amplifier into the operation mode.  
Example: When VST (min.) = 2.5V  
I1 is approximately equal to 0.40mA since VST = (*2) × IST + 0.6V 2.5V = 4.7kΩ × IST + 0.6V.  
<2> Standby mode  
The switching transistor of the predriver IC turns off when the pin 17 reference voltage, VST, becomes lower  
than or equal to 0.6V (typ. 0V), placing the amplifier into the standby mode.  
Example: When VST = 0.6V  
I1 is approximately equal to 0mA since VST = (*2) × IST + 0.6V 0.6V = 4.7kΩ × IST + 0.6V.  
(*1) Limiting resistor  
Determine the value of R1 so that the voltage VST applied to the standby pin (pin 17) falls within the rating  
(+2.5V to 5.5V (typ. 3.0V)).  
(*2) The standby control voltage must be supplied from the host including microcontrollers.  
(*3) A 4.7kΩ limiting resistor is also incorporated inside the hybrid IC (at pin 17).  
2) Load short-circuit detection block  
Since the voltage between point B and point C is less than 0.6V in normal operation mode (V  
TR2) is not activated, the load short-circuit detection block does not operate.  
< 0.6V) and TR1 (or  
BE  
When a load short-circuit occurs, however, the voltage between point B and point C becomes larger than 0.6V,  
causing TR1 (or TR2) to turn on (V  
> 0.6V), and current I2 to flows.  
BE  
3) Latch-up circuit block  
TR3 is activated when I2 is supplied to the latch-up circuit.  
When TR3 turns on and current I3 starts flowing, VST goes down to 0V (standby mode), protecting the power  
amplifier.  
Since TR3 and TR4 configure a thyristor, once TR3 is activated, the IC is held in the standby mode.  
To release the standby mode and reactivate the power amplifier, it is necessary to set the standby control voltage (*2)  
temporarily low (0V). Subsequently, when the standby control is returned to high, the power amplifier will become  
active again.  
(*4) The I3 value varies depending on the supply voltage. Determine the value of R2 using the formula below, so that  
I1 is equal to or less than I3.  
I1 I3 = V /R2  
CC  
4) DC offset protection block  
The DC offset protection circuit is activated when 0.5V (typ) voltage is applied to either "OUT CH1" or "OUT  
CH2," and the hybrid IC is shut down (standby mode).  
To release the IC from the standby mode and reactivate the power amplifier, it is necessary to set the standby control  
voltage temporarily low (0V).  
Subsequently, when the standby control is returned to high (+5V, for example), the power amplifier will become  
active again.  
The protection level must be set using the 82kΩ resistor. Furthermore, the time constant must be determined using  
22μ//22μ capacitors to prevent the amplifier from malfunctioning due to the audio signal.  
No. A1501-11/12  
STK415-140-E  
STK415-140-E BTL Application  
STK415-140-E  
H
(*1) The voltage applied to the Stand-by pin (#17) must not  
exceed the maximum rated value (VST max).  
+OFF  
SET SET  
OUT OUT OUT OUT  
Ch1+ Ch1- Ch2+ Ch2-  
IN NF ST- NF IN  
GND  
+Pre  
SUB  
+V  
1
-OFF -Pre  
+V  
L
-V  
-V  
6
L
Ch1Ch1 BY Ch2 Ch2  
H
2
3
4
7
8
9
10 11 12 13 14 15 16 17 18 19  
5
R30 (*1)  
100  
pF  
Stand-By Control  
Voltage VST  
56kΩ  
56kΩ  
60V 60V  
/3A /3A  
3pF  
560Ω 560Ω  
3pF  
22μF  
/10V  
22μF  
/10V  
GND  
100Ω/  
1W  
1kΩ  
+V  
H
Ch1 IN  
100μF  
/100V  
2.2μF  
18V  
56kΩ  
100μF  
/50V  
+V  
L
/100V  
33μF  
33μF  
100μF  
/50V  
3μH  
Ch2 OUT  
GND  
0.1μF  
4.7Ω  
100μF  
/50V  
100μF  
/100V  
4.7Ω/1W  
-V  
L
R =8Ω  
GND  
18V  
L
100μF  
/100V  
100Ω/  
1W  
3μH  
0.1μF  
4.7Ω/1W  
-V  
H
4.7Ω  
Ch1 OUT  
SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using  
products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition  
ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd.  
products described or contained herein.  
SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all  
semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or  
malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise  
to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt  
safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not  
limited to protective circuits and error prevention circuits for safe design, redundant design, and structural  
design.  
In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are  
controlled under any of applicable local export control laws and regulations, such products may require the  
export license from the authorities concerned in accordance with the above law.  
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or  
mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise,  
without the prior written consent of SANYO Semiconductor Co.,Ltd.  
Any and all information described or contained herein are subject to change without notice due to  
product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the  
SANYO Semiconductor Co.,Ltd. product that you intend to use.  
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed  
for volume production.  
Upon using the technical information or products described herein, neither warranty nor license shall be granted  
with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third  
party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's  
intellectual property rights which has resulted from the use of the technical information and products mentioned  
above.  
This catalog provides information as of July 2009. Specifications and information herein are subject  
to change without notice.  
No. A1501-12/12  
PS  

相关型号:

STK4150MK2

2ch./1packge, +- Power Supply 6W/ch. ~ 100W/ch. THD=0.4%
SANYO

STK4150MK5

STK Audio Power Amplifier
SANYO

STK4151

2ch./1packge, +- Power Supply Built-in Muting Circuit 25W/ch. ~ 70W/ch. THD=0.02%
SANYO

STK4151II

2-CHANNEL AF POWER AMP
ETC

STK4151V

AF Power Amplifier (Split Power Supply) (30W + 30W min, THD = 0.08%)
SANYO

STK4151X

2ch./1packge, +- Power Supply Built-in Muting Circuit 25W/ch. ~ 70W/ch. THD=0.02%
SANYO

STK4152

AF Power Amplifier (Split Power Supply) (30W + 30W min, THD = 0.4%)
SANYO

STK4152

AF Power Amplifier (Split Power Supply)
ISC

STK4152II

AF Power Amplifier (Split Power Supply) (30W + 30W min, THD = 0.4%)
SANYO

STK4152V

Features of the IMST Hybird ICs
ETC

STK4154MK2

Features of the IMST Hybird ICs
ETC

STK4154MK5

Features of the IMST Hybird ICs
ETC