STK4152II [SANYO]

AF Power Amplifier (Split Power Supply) (30W + 30W min, THD = 0.4%); 自动对焦功率放大器(分体式电源) ( 30W + 30W分钟, THD = 0.4 % )
STK4152II
型号: STK4152II
厂家: SANYO SEMICON DEVICE    SANYO SEMICON DEVICE
描述:

AF Power Amplifier (Split Power Supply) (30W + 30W min, THD = 0.4%)
自动对焦功率放大器(分体式电源) ( 30W + 30W分钟, THD = 0.4 % )

放大器 功率放大器
文件: 总8页 (文件大小:457K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ordering number: EN2202B  
Thick Film Hybrid IC  
STK4152II  
AF Power Amplifier (Split Power Supply)  
(30W + 30W min,THD = 0.4%)  
Features  
Package Dimensions  
unit: mm  
• The STK4102II series (STK4152II) and STK4101V  
series (high-grade type) are pin-compatible in the out-  
put range of 6W to 50W and enable easy design.  
• Small-sized package whose pin assignment is the same  
as that of the STK4101II series  
4040  
[STK4152II  
]
• Built-in muting circuit to cut off various kinds of pop  
noise  
• Greatly reduced heat sink due to substrate temperature  
125°C guaranteed  
• Excellent cost performance  
Specifications  
Maximum Ratings at Ta = 25°C  
Parameter  
Maximum supply voltage  
Symbol  
Conditions  
Ratings  
42  
Unit  
V
max  
±
V
CC  
Thermal resistance  
θ
j-c  
2.1  
°C/W  
Junction Temperature  
Tj  
Tc  
150  
°
°
°
C
C
C
Operating substrate temperature  
Storage temperature  
125  
–30 to +125  
2
Tstg  
ts  
Available time for load short-circuit  
V
=
±
27.5V, R = 8  
, f = 50Hz, Po = 30W  
s
CC  
L
Recommended Operating Conditions at Ta = 25°C  
Parameter  
Recommended supply voltage  
Load resistance  
Symbol  
Conditions  
Ratings  
Unit  
V
V
±27.5  
CC  
R
8
L
SANYO Electric Co., Ltd. Semiconductor Business Headquarters  
TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN  
70997HA (ID) / 92293YK / O138YT / 9068MO, TS No. 2202—1/8  
STK4152II  
Operating Characteristics at Ta = 25°C, V = ±27.5V, R = 8, Rg = 600, VG = 40dB,  
CC  
L
R : non-inductive load  
L
Parameter  
Quiescent current  
Symbol  
Conditions  
33V  
min  
typ  
40  
max  
Unit  
Icco  
V
=
±
20  
100  
mA  
CC  
THD = 0.4%,  
f = 20Hz to 20kHz  
Po (1)  
30  
35  
W
W
Output power  
V
=
±25V, THD = 1.0%,  
CC  
Po (2)  
THD  
R
= 4, f = 1kHz  
L
Total harmonic distortion  
Frequency response  
Po = 1.0W, f = 1kHz  
+0  
0.3  
%
f , f  
Po = 1.0W,  
dB  
20 to 50k  
55  
Hz  
L
H
–3  
Input impedance  
Output noise voltage  
Neutral voltage  
r
Po = 1.0W, f = 1kHz  
kΩ  
i
V
V
V
=
=
±
33V, Rg = 10k  
1.2  
+70  
–10  
mVrms  
mV  
NO  
CC  
V
±33V  
–70  
–2  
0
N
CC  
Muting voltage  
V
–5  
V
M
Notes.  
For power supply at the time of test, use a constant-voltage power supply  
unless otherwise specified.  
For measurement of the available time for load shorte-circuit and output  
noise voltage, use the specified transformer power supply shown right.  
The output noise voltage is represented by the peak value on rms scale  
(VTVM) of average value indicating type. For AC power supply, use an  
AC stabilized power supply (50Hz) to eliminate the effect of flicker noise  
in AC primary line.  
Specified Transformer Power Supply  
(Equivalent to RP-25)  
Equivalent Circuit  
No. 2202—2/8  
STK4152II  
Sample Application Circuit : 30W min 2-channel AF power amplifier  
Sample Printed Circuit Pattern for Application Circuit (Cu-foiled side)  
No. 2202—3/8  
STK4152II  
Input voltage, Vi - mV  
Output power, P - W  
O
Output power, P - W  
Frequency, f - Hz  
O
Operating substrate temperature, Tc - °C  
Frequency, f - Hz  
No. 2202—4/8  
STK4152II  
Supply voltage, V - V  
Supply voltage, V - V  
CC  
CC  
Output power, P - W  
Output power, P - W  
O
O
Frequency, f - Hz  
No. 2202—5/8  
STK4152II  
Description of External Parts  
Input filter capacitors  
C1, C2  
• A filter formed with R3 or R4 can be used to reduce noise at high frequencies.  
Input coupling capacitors  
• Used to block DC current. When the reactance of the capacitor increases at low frequencies, the dependence of 1/f noise on signal source  
resistance causes the output noise to worsen. It is better to decrease the reactance.  
To reduce the pop noise at the time of application of power, it is effective to increase C3, C4 that fix the time constant on the input side and  
to decrease C5, C6 on the NF side.  
C3, C4  
C5, C6  
NF capacitors  
• These capacitors fix the low cutoff frequency as shown below.  
1
fL = --------------------------  
[Hz]  
2
π C5 R5  
To provide the desired voltage gain at low frequencies, it is better to increase C5. However, do not increase C5 more than needed because  
the pop noise level becomes higher at the time of application of power.  
Decoupling capacitor  
C15  
• Used to eliminate the ripple components that mix into the input side from the power line (+V ).  
CC  
Bootstrap capacitors  
C11, C12  
• When the capacitor value is decreased, the distortion is liable to be higher at low frequencies.  
Oscillation blocking capacitors  
C9, C10  
C14  
• Must be inserted as close to the IC power supply pins as possible so that the power supply impedance is decreased to operate the IC stably.  
• Electrolytic capacitors are recommended for C9, C10.  
Capacitor for ripple filter  
• Capacitor for the TR10-used ripple filter in the IC system  
Oscillation blocking capacitor  
C7  
• A polyester film capacitor, being excellent in temperature characteristic, frequency characteristic, is recommended for C7.  
R3, R4  
R1, R2  
Resistors for input filter  
Input bias resistors  
• Used to bias the input pin potential to zero. These resistors fix the input impedance practically.  
These resistors fix voltage gain VG.  
R5, R9  
It is recommended to use R5 (R6) = 560, R9 (R10) = 56kfor VG = 40dB.  
(R6, R10)  
To adjust VG, it is desirable to change R9 (or R10).  
• When R9 (or R10) is changed to adjust VG, R1 (=R2) =R9 (=R10) must be set to ensure V balance.  
N
R11, R13  
Bootstrap resistors  
(R12, R14)  
• The quiescent current is set by these resistors 2.2k+ 2.2k. It is recommended to use this resistor value.  
Resistor for ripple filter  
R21  
R18  
• (Limiting resistor for predriver transistor at the time of load short)  
Used to ensure plus/minus balance at the time of clip.  
Resistor for ripple filter  
R19, R20  
R15, R16  
• When muting TR11 is turned ON, current flows from ground to -V through TR 11. It is recommended to use 1k(1/2W) + 1k(1/2W)  
CC  
allowing for the power that may be dissipated on that occasion.  
Oscillation blocking resistors  
No. 2202—6/8  
STK4152II  
Sample Application Circuit (protection circuit and muting circuit)  
Thermal Design  
The IC power dissipation of the STK4152II at the IC-operated mode is 41.4W max. at load resistance 8and 67W max.  
at load resistance 4(simultaneous drive of 2 channels) for continuous sine wave as shown in Figure 1 and 2.  
Output power, P - W  
Output power, P - W  
O
O
Figure 2. STK4152II Pd – PO (RL = 4)  
Figure 1. STK4152II Pd – PO (RL = 8)  
No. 2202—7/8  
STK4152II  
In an actual application where a music signal is used, it is impractical to estimate the power dissipation based on the con-  
tinuous signal as shown above, because too large a heat sink must be used. It is reasonable to estimate the power dissipa-  
tion as 1/10 Po max. (EIAJ).  
That is, Pd = 26W at 8, Pd = 38W at 4Ω  
Thermal resistance θc-a of a heat sink for this IC power dissipation (Pd) is fixed under conditions 1 and 2 shown below.  
Condition 1: Tc = Pd × θc-a + Ta 125°C............................................... (1)  
where Ta : Specified ambient temperature  
Tc : Operating substrate temperature  
Condition 2: Tj= Pd × (θc-a) + Pd/4 × (θj-c) + Ta 150°C..................... (2)  
where Tj : Junction temperature of power transistor  
Assuming that the power dissipation is shared equally among the four power transistors (2 channels × 2), thermal resis-  
tance θj-c is 2.1°C/W and  
Pd × (θc-a + 2.1/4) + Ta 150°C........................................ (3)  
Thermal resistance θc-a of a heat sink must satisfy ine-  
qualities (1) and (3).  
Figure 3 shows the relation between Pd and θc-a given  
from (1) and (3) with Ta as a parameter.  
θ
[Example] The thermal resistance of a heat sink is  
obtained when the ambient temperature speci-  
fied for a stereo amplifier is 50°C.  
Assuming V = ±27.5V, R = 8,  
CC  
L
V
= ±25V, R = 4,  
CC  
L
R = 8: Pd1 = 26W at 1/10 Po max.  
L
R = 4: Pd2 = 38W at 1/10 Po max.  
L
The thermal resistance of a heat sink is  
obtained from Figure 3.  
R = 8: θc-a1 = 2.88°C/W  
L
IC Power dissipation, Pd - W  
R = 4: θc-a2 = 1.97°C/W  
L
Figure 3. STK4152II θc-a – Pd  
Tj when a heat sink is used is obtained from  
(3).  
R = 8: Tj = 138.7°C  
L
R = 4: Tj = 145.0°C  
L
No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear  
power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury,  
death or property loss.  
Anyone purchasing any products described or contained herein for an above-mentioned use shall:  
Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their  
officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated  
with such use:  
Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO.,  
LTD., its affiliates, subsidiaries and distributors or any of their officers and employees, jointly or severally.  
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO  
believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of  
intellectual property rights or other rights of third parties.  
This catalog provides information as of July, 1997. Specifications and information herein are subject to change without notice.  
No. 2202—8/8  

相关型号:

STK4152V

Features of the IMST Hybird ICs
ETC

STK4154MK2

Features of the IMST Hybird ICs
ETC

STK4154MK5

Features of the IMST Hybird ICs
ETC

STK4155MK2

STK Audio Power Amplifier
ETC

STK4155MK5

Features of the IMST Hybird ICs
ETC

STK4159MK2

STK4159MK2
ETC

STK4159MK2SERIES

Triple Audio Amplifier
ETC

STK416-090

3-Channel Power Switching Audio Power IC, 80W+80W+80W
ETC

STK416-090-E

Thick-Film Hybrid IC 3-Channel Power Switching Audio Power IC, 80W+80W+80W
SANYO

STK416-100-E

Thick-Film Hybrid IC 3-Channel Power Switching Audio Power IC, 80W+80W+80W
SANYO

STK416-120-E

Thick-Film Hybrid IC 3-Channel Power Switching Audio Power IC, 80W+80W+80W
SANYO

STK416-130-E

Thick-Film Hybrid IC 3-Channel Power Switching Audio Power IC, 80W+80W+80W
SANYO