S1D15208F00A [SEIKO]

LIQUID CRYSTAL DISPLAY DRIVER, PQFP128, PLASTIC, QFP-128;
S1D15208F00A
型号: S1D15208F00A
厂家: SEIKO EPSON CORPORATION    SEIKO EPSON CORPORATION
描述:

LIQUID CRYSTAL DISPLAY DRIVER, PQFP128, PLASTIC, QFP-128

驱动
文件: 总40页 (文件大小:311K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4. S1D15206 Series  
Rev. 3.5  
Contents  
1. DESCRIPTION ................................................................................................................................................4-1  
2. FEATURES......................................................................................................................................................4-1  
3. BLOCK DIAGRAM (S1D15206*00**) ............................................................................................................4-2  
4. PIN LAYOUT ...................................................................................................................................................4-3  
5. PIN DESCRIPTION .........................................................................................................................................4-6  
6. FUNCTION DESCRIPTION.............................................................................................................................4-8  
7. COMMANDS .................................................................................................................................................4-18  
8. ABSOLUTE MAXIMUM RATINGS ................................................................................................................4-22  
9. ELECTRICAL CHARACTERISTICS..............................................................................................................4-23  
10. EXTERNAL WIRINGS ...................................................................................................................................4-32  
11. DIMENSIONS ................................................................................................................................................4-37  
– i –  
Rev. 3.5  
S1D15206 Series  
• High-speed, 8-bit microprocessor interface allowing direct  
connection to both the 8080 and 6800  
• Supported serial interface  
1. DESCRIPTION  
The S1D15206 series is a single-chip LCD driver for dot-matrix  
liquid crystal displays (LCD’s). It accepts serial or 8-bit parallel  
display data directly from a microprocessor and stores data in an on-  
chip display RAM. It can generate an LCD drive signal independent  
from microprocessor clock.  
• Rich command functions (upward compatible to S1D15200  
Series); they are Read/Write Display Data, Display On/Off  
Switching, Set Page Address, Set Initial Display Line, Set  
Column Address, Read Status, Static Drive On/Off Switch-  
ing, Select Duty, Duty+1, Read-Modify-Write, Select  
Segment Driver Direction, Power Save, Reset, Set Power  
Control, Set Electronic Controls, Clock Stop.  
• On-chip CR oscillator circuit  
• On-chip LCD power circuit (The on-chip and external LCD  
power supplies are software selectable.)  
• Very low power consumption  
• Flexible power voltages; 2.4 to 6.0 V (VDD-VSS) and -13.0  
to -4.0 V (VDD-V5)  
• -40 to +85°C wide operating temperature range  
• CMOS process  
As the S1D15206 series features the very low power dissipation and  
wide operating voltage range, it can easily realize a powerful but  
compact display unit having a small battery.  
A single chip of S1D15206 series can drive a 17×80-pixel or 33×64-  
pixel LCD panel.  
(Note: The S1D15206 series are not designed to have EMI resist-  
ance.)  
2. FEATURES  
• Direct data display using the display RAM. When RAM  
data bit is 0, it is not displayed; when 1, it is displayed.  
• Large 80×33-bit RAM capacity  
• 128-pin QFP5 package with aluminum pad or Au bump  
• On-chip LCD driver circuit (97 segment and common  
drivers)  
Series Specifications (for 128-pin flat package)  
Operating clock  
(Internal OSC) (Typ.)  
fCL  
Segment  
driver  
Common  
driver  
VREG  
type  
COM  
pin positions  
Model  
Duty  
QFP  
S1D15206F00A  
S1D15206F11A  
S1D15206F10A  
S1D15206F14A  
S1D15206F14Y  
S1D15208F00A  
2.9  
*
*
*
*
*
*
Type A  
Type B  
5.8  
2.9  
Type 1  
5
1/8, 1/9, 1/16, 1/17  
80  
64  
17  
33  
20 kHz  
2.9  
2.9  
2.9  
5.8  
Type 2  
Type 1  
26  
5
Type A  
1/32, 1/33  
S1D15208D11B  
*
VREG type  
Type 1 VREG (Built-in power supply regulating voltage)  
Temperature gradient: -0.17% /°C  
Type 2 VREG (Built-in power supply regulating voltage)  
Temperature gradient: 0.00% /°C  
COMS pin positions Refer to No. P3 (Package pin layout), No. P4 (PAD layout) and No. P5 (PAD coordinates).  
An S1D15206 series package has one of following subcodes according to its package type (an example of S1D15206):  
S1D15206F****:  
128-pin QFP5 flat package  
128-pin QFP26 flat package  
Bear chip  
S1D15206F**Y*:  
S1D15206D****:  
S1D15206D**A* :Al-pad chip  
S1D15206D**B* :Au-bump chip  
S1D15206T****:  
TCP  
Rev.3.5  
EPSON  
4–1  
S1D15206 Series  
3. BLOCK DIAGRAM (S1D15206*00**)  
CMOS  
SEG0·····························SEG79 COM0 ····COM15  
···············································  
·····················  
VSS  
VDD  
V1  
V2  
V3  
V4  
V5  
Voltage  
select  
circuit  
Segment driver  
Common driver  
Shift register  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
Display data latch  
V
R
Power circuit  
VOUT  
80x33-dot display data RAM  
Column address decoder  
7-bit column address counter  
7-bit column address register  
Page address  
register  
FR  
CL  
Display timing  
generator circuit  
M/S  
Status  
register  
Bus holder  
Command decoder  
Oscillator  
Microprocessor interface  
I/O buffer  
SR2 SR1 WR  
CS2 CS1 A0  
D0 D1 D2 D3 D4 D5 D6 D7  
RD  
4–2  
EPSON  
Rev.3.5  
S1D15206 Series  
4. PIN LAYOUT  
Package Pin Assignment  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG60  
SEG61  
SEG15  
64  
103  
SEG14  
SEG13  
SEG12  
SEG11  
SEG10  
SEG9  
SEG8  
SEG7  
SEG6  
SEG5  
SEG4  
SEG3  
SEG2  
SEG1  
SEG0  
COMS  
110  
SEG62  
SEG63  
SEG64 (COM15)  
SEG65 (COM14)  
SEG66 (COM13)  
SEG67 (COM12)  
SEG68 (COM11)  
SEG69 (COM10)  
SEG70 (COM 9)  
SEG71 (COM 8)  
SEG72 (COM 7)  
SEG73 (COM 6)  
SEG74 (COM 5)  
SEG75 (COM 4)  
SEG76 (COM 3)  
SEG77 (COM 2)  
SEG78 (COM 1)  
SEG79 (COM 0)  
50  
Index  
[COM15]  
120  
COM15 (COM31) [COM14]  
COM14 (COM30) [COM13]  
COM13 (COM29)  
COM12 (COM28)  
COM11 (COM27)  
COM10 (COM26)  
COM9 (COM25)  
COM8 (COM24)  
[COM12]  
[COM11]  
[COM10]  
[COM 9]  
[COM 8]  
[COM 7]  
39  
128  
COM7 (COM23) [COM 6]  
Pin name in ( ) apply to S1D15208.  
Pin name in [ ] apply to S1D15206D10**(CMOS Pin=Type B).  
*
*
Rev.3.5  
EPSON  
4–3  
S1D15206 Series  
Pad Layout  
102  
90  
80  
70  
65  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG60  
SEG61  
SEG15  
SEG14  
SEG13  
SEG12  
SEG11  
SEG10  
SEG9  
SEG8  
SEG7  
SEG6  
SEG5  
SEG4  
SEG3  
SEG2  
SEG1  
SEG0  
COMS  
COM15 (COM31) [COM14]  
COM14 (COM30) [COM13]  
COM13 (COM29) [COM12]  
COM12 (COM28) [COM11]  
COM11 (COM27) [COM10]  
COM10 (COM26) [COM 9]  
COM9 (COM25) [COM 8]  
COM8 (COM24) [COM 7]  
COM7 (COM23) [COM 6]  
COM6 (COM22) [COM 5]  
103  
110  
64  
Y
SEG62  
SEG63  
SEG64 (COM15)  
SEG65 (COM14)  
SEG66 (COM13)  
SEG67 (COM12)  
SEG68 (COM11)  
SEG69 (COM10)  
SEG70 (COM9)  
SEG71 (COM8)  
SEG72 (COM7)  
SEG73 (COM6)  
SEG74 (COM5)  
SEG75 (COM4)  
SEG76 (COM3)  
SEG77 (COM2)  
SEG78 (COM1)  
SEG79 (COM0)  
50  
X
[COM15]  
120  
128  
38  
37  
1
10  
20  
30  
* Pin names in ( ) apply to S1D15208.  
* Pin names in [  
] apply to S1D15206D10** (CMOS pin = Type B).  
Al- pad chip  
• Chip size  
5.92 mm × 4.68 mm  
• Chip thickness0.4 mm  
• Pad opening 90.2 µm × 90.2 µm  
• Pad pitch  
130 µm (Min)  
Au- bump chip (reference)  
• Chip size  
5.92 mm × 4.68 mm  
• Chip thickness0.4 mm  
• Bump size  
81.7 µm × 81.7 µm  
• Bump height 22.5 µm  
4–4  
EPSON  
Rev.3.5  
S1D15206 Series  
Pad Center Coordinates  
PAD No.  
PIN Name  
X
Y
PAD No.  
PIN Name  
X
Y
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
SEG33  
SEG34  
SEG35  
SEG36  
SEG37  
SEG38  
SEG39  
SEG40  
SEG41  
SEG42  
SEG43  
SEG44  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
SEG50  
SEG51  
SEG52  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG60  
SEG61  
SEG62  
SEG63  
2516  
2367  
2218  
2088  
1957  
1827  
1697  
1567  
1437  
1307  
1177  
1046  
916  
786  
656  
526  
396  
266  
135  
5
–125  
–255  
–385  
–515  
–646  
–776  
–906  
–1036  
–1166  
–1296  
–1426  
–1557  
–1687  
–1817  
–1947  
–2077  
–2226  
–2375  
–2802  
2185  
1
2
3
4
5
6
7
8
9
V1  
V2  
V3  
V4  
V5  
VR  
VDD  
VOUT  
CAP2–  
CAP2+  
CAP1–  
CAP1+  
VSS  
M/S  
SR2  
SR1  
WR  
RD  
CS2  
CS1  
A0  
FR  
CL  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
–2767  
–2637  
–2507  
–2377  
–2246  
–2116  
–1985  
–1857  
–1727  
–1522  
–1318  
–1113  
–553  
–356  
–226  
–95  
35  
165  
295  
425  
555  
719  
849  
979  
1109  
1239  
1369  
1500  
1630  
1760  
1890  
2069  
2199  
2329  
2459  
2589  
2719  
2802  
–2106  
–2149  
–2176  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
–2166  
–2185  
COM0 (COM16) [CMOS ]  
COM1 (COM17) [COM0 ]  
COM2 (COM18) [COM1 ]  
COM3 (COM19) [COM2 ]  
COM4 (COM20) [COM3 ]  
COM5 (COM21) [COM4 ]  
COM6 (COM22) [COM5 ]  
COM7 (COM23) [COM6 ]  
COM8 (COM24) [COM7 ]  
COM9 (COM25) [COM8 ]  
COM10 (COM26) [COM9 ]  
COM11 (COM27) [COM10]  
COM12 (COM28) [COM11]  
COM13 (COM29) [COM12]  
COM14 (COM30) [COM13]  
COM15 (COM31) [COM14]  
COMS  
SEG0  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
–1654  
–1524  
–1393  
–1263  
–1133  
–1003  
–873  
–743  
–612  
–482  
–352  
–193  
–63  
67  
197  
327  
457  
588  
718  
848  
978  
1932  
1802  
1672  
1541  
1411  
1281  
1151  
1021  
891  
760  
599  
469  
339  
[COM15]  
SEG64 (COM15)  
SEG65 (COM14)  
SEG66 (COM13)  
SEG67 (COM12)  
SEG68 (COM11)  
SEG69 (COM10)  
SEG70 (COM9)  
SEG71 (COM8)  
SEG72 (COM7)  
SEG73 (COM6)  
SEG74 (COM5)  
SEG75 (COM4)  
SEG76 (COM3)  
SEG77 (COM2)  
SEG78 (COM1)  
SEG79 (COM0)  
209  
78  
–52  
–182  
–312  
–442  
–572  
–703  
–833  
–963  
–1093  
–1223  
–1353  
1108  
1238  
1368  
1499  
1629  
1759  
* Pin names in ( ) apply to S1D15208.  
* Pin names in [ ] apply to S1D15206D10 (CMOS pin = Type B).  
*
Rev.3.5  
EPSON  
4–5  
S1D15206 Series  
5. PIN DESCRIPTION  
Power Supply  
Name  
VDD  
I/O  
Description  
+5VDC power supply. Common to microprocessor power supply pin VCC  
Ground  
Number of pins  
Supply  
Supply  
Supply  
.
1
1
5
VSS  
V1, V2  
V3, V4  
V5  
LCD driver supply voltages. The Set Power Control command can switch  
the on-chip and external power supply modes of these pins.  
When external mode selects, the voltage determined by LCD cell is  
impedance-converted by a resistive divider or an operational amplifier for  
application. Voltages should be the following relationship:  
VDD V1 V2 V3 V4 V5  
When master mode selects, these voltages are generated on the chip:  
S1D15206  
S1D15208  
V1  
V2  
V3  
V4  
1/5 V5  
2/5 V5  
3/5 V5  
4/5 V5  
1/7 V5  
2/7 V5  
5/7 V5  
6/7 V5  
LCD Driver Supplies  
Name  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
VOUT  
I/O  
Description  
Number of pins  
O
O
O
O
O
I
DC/DC voltage converter capacitor 1 positive connection  
DC/DC voltage converter capacitor 1 negative connection  
DC/DC voltage converter capacitor 2 positive connection  
DC/DC voltage converter capacitor 2 negative connection  
DC/DC voltage converter output  
1
1
1
1
1
1
VR  
Voltage adjustment pin. Applies voltage between VDD and V5 using  
a resistive divider.  
Microprocessor Interface  
Name  
I/O  
Description  
Number of pins  
D0 to D7  
(SI)  
(SCL)  
I/O  
Data input/outputs. The 8-bit bidirectional data buses to be connected  
to the standard 8-bit microprocessor data buses. When the serial  
interface selects, D7 is serial data input (SI) and D6 is serial clock input  
(SCL).  
8
A0  
I
Control/display data flag input. It is connected to the LSB of micro-  
processor address bus. When LOW, the data on D0 to D7 is control data.  
When HIGH, the data on D0 to D7 is display data.  
1
CS1  
CS2  
I
I
Chip select input. Data input/output is enabled when -CS1 is LOW and  
CS2 is HIGH.  
2
1
RD  
(E)  
• Read enable input. When interfacing to an 8080-series microprocessor  
and when its RD is LOW, the S1D15206 series data bus output is enabled.  
• When interfacing to an 6800-series microprocessor and when its R/W  
Enable (E) is HIGH, the S1D15206 series R/W input is enabled.  
WR  
(R/W)  
• Write enable input. When interfacing to an 8080-series microprocessor,  
WR is active LOW.  
1
• When interfacing to an 6800-series microprocessor,  
it will be read mode when R/W is HIGH and it will be write mode when  
R/W is LOW.  
R/W = “1” : Read  
R/W = “0” : Write  
4–6  
EPSON  
Rev.3.5  
S1D15206 Series  
Name  
I/O  
Description  
Number of pins  
SR1,  
SR2  
I
Microprocessor interface select, and parallel/serial data input select.  
2
SR1  
0
SR2  
1
Type  
8080 microprocessor bus (parallel  
input)  
1
1
6800 microprocessor bus (parallel  
input)  
Serial input  
Reset  
1
0
0
0
* In serial mode, no data can be read from RAM and D0 to  
D5 are HZ. RD and WR must be HIGH or LOW.  
When set for the 68 family MPU, the SR1 and SR2 timing must match or  
SR1 must rise first.  
LCD Driver Outputs  
Name  
M/S  
I/O  
I
Description  
Normally “1”.  
Number of pins  
1
1
1
CL  
I/O  
I/O  
O
Normally “1”.  
FR  
Normally “1”.  
SEGn  
LCD segment driver output. VDD, V2, V3, or V5 can select according  
to the display RAM and FR signal.  
80 (S1D15206)  
or 64 (S1D15208)  
RAM data FR signal Output voltage  
of SEGn  
1
0
1
0
VDD  
V5  
V2  
V3  
VDD  
1
0
Power save  
COMn  
O
LCD common driver output. VDD, V1, V4, or V5 can select according  
to IC internal scan signal and FR signal. The common scan sequence  
is reversed in slave mode.  
16 (S1D15206)  
or 32 (S1D15208)  
Internal scan  
signal  
FR  
signal  
Output voltage  
of COMn  
1
0
1
0
V5  
VDD  
V1  
V4  
VDD  
1
0
Power save  
COMS  
O
Indicator COM output. COMS pin is equivalent to following COM output  
pin when Duty+1 command is running:  
1
S1D15206  
S1D15208  
1/9 duty 1/17 duty 1/33 duty  
Indicator  
COMS  
output  
COM8  
COM16 COM32  
Rev.3.5  
EPSON  
4–7  
S1D15206 Series  
6. FUNCTION DESCRIPTION  
MPU Interface  
Parallel/Serial Interface  
The S1D15206 series can transfer data via 8-bit bidirectional data buses D0 to D7 or via serial data input D7 (SI). The 8-bit parallel data input  
or serial data input, 8080/6800-series microprocessor, and reset status can select according to SR1 and SR2.  
No data can be read from RAM and no status can be read during serial data input. Also, RD and WR are high or low, and D0 to D5 are open.  
Table 1  
SR1  
SR2  
Type  
CS1  
CS2  
A0  
RD  
WR  
Data (D0 to D7)  
D0 to D7  
0
1
8080 microprocessor  
bus (parallel)  
CS1  
CS2  
A0  
RD  
WR  
1
1
6800 microprocessor  
bus (parallel)  
CS1  
CS2  
A0  
E
R/W  
D0 to D7  
1
0
0
0
Serial input  
Reset  
CS1  
CS1  
CS2  
CS2  
A0  
A0  
0/1  
RD  
0/1  
D6 (SCL) and D7 (SI)  
— — — — — — —  
WR  
* When set for the 68 family interface, the SR1 and SR2 timing must match or SR1 must rise first.  
SR1  
SR2  
The 68 family interface  
RESET  
Data Bus Signals  
The S1D15206 series identifies the data bus signal according to A0, RD, and WR (E, R/W) signals.  
Table 2  
Common  
6800 processor  
8080 processor  
Function  
A0  
1
WR (R/W)  
RD  
0
WR  
1
1
0
1
0
Reads display data.  
Writes display data.  
Reads status.  
1
1
0
0
0
1
0
1
0
Writes control data in internal register. (commands)  
edge of every eighth serial clock signal.  
Serial Interface (SR1 is high and SR2 is low)  
The serial data input is determined to be the display data when A0  
is high, and it is control data when A0 is low. A0 is read on rising  
edge of every eighth clock signal.  
Figure 1 shows a timing chart of serial interface signals. The serial  
clock signal must be terminated correctly against termination reflec-  
tion and ambient noise. Operation checkout on the actual machine  
is recommended.  
The serial interface consists of an 8-bit shift register and a 3-bit  
counter. The serial data input and serial clock input are enabled  
when CS1 is low and CS2 is high (in chip select status). When chip  
is not selected, the shift register and counter are reset.  
When serial data input is enabled by SR1 and SR2, D7 (SI) receives  
serial data and D6 (SCL) receives serial clock. Serial data of D7, D6,  
..., D0 is read at D7 in this sequence when serial clock goes high.  
They are converted into 8-bit parallel data and processed on rising  
4–8  
EPSON  
Rev.3.5  
S1D15206 Series  
CS1  
CS2  
D7(S1)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D6(SCL)  
A0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
Figure 1  
from display RAM in the first read (dummy) cycle, stores it in bus  
holder, and outputs it onto system bus in the next data read cycle.  
Also, the microprocessor temporarily stores display data in bus  
holder, and stores it in display RAM until the next data write cycle  
starts.  
When viewed from the microprocessor, the S1D15206 series access  
speed greatly depends on the cycle time rather than access time to the  
display RAM (tACC and tDS). It shows the data transfer speed to/  
from the microprocessor can increase. If the cycle time is inappro-  
priate, the microprocessor can insert the NOP instruction that is  
equivalent to the wait cycle setup. However, there is a restriction in  
the display RAM read sequence. When an address is set, the  
specified address data is NOT output at the immediately following  
read instruction. The address data is output during second data read.  
A single dummy read must be inserted after address setup and after  
write cycle (refer to Figure 2).  
Chip Select Inputs  
The S1D15206 series can interface to microprocessor when CS1 is  
LOW and CS2 is HIGH.  
When these pins are set to any other combination, D0 to D7 are high  
impedance. A0, RD, andWR input are disabled. However, the reset  
signal is entered regardless of CS1 and CS2 setup. The internal IC  
status including LCD driver circuit is held until a reset signal is  
entered.  
Access to Display Data RAM and Internal Registers  
The S1D15206 series can perform a series of pipeline processing  
between LSI’s using bus holder of internal data bus in order to match  
the operating frequency of display RAM and internal registers with  
the microprocessor. For example, the microprocessor reads data  
•Write  
WR  
MPU  
DATA  
n
n+1  
n+2  
n+3  
Latched  
n
Bus holder  
Write signal  
n+1  
n+2  
n+3  
Internal  
timing  
•Read  
WR  
RD  
MPU  
DATA  
N
N
n
n+1  
Address  
preset  
Read signal  
Internal  
timing  
Preset  
N
Incremented  
N+1  
Column  
address  
N
N+2  
n
n+1  
Read address n  
n+2  
Bus holder  
Set address n  
Dummy read  
Read address n+1  
n: Current data  
N: Dummy data  
Figure 2  
Rev.3.5  
EPSON  
4–9  
S1D15206 Series  
unlocked when a column address is set again. The Column Address  
counter is independent of Page Address register.  
When ADC Select command is issued to display inverse display, the  
column address decoder inverts the relationship between RAM  
column address and display segment output.  
Busy Flag  
The Busy flag is set when the S1D15206 series starts to operate.  
During operating, it accepts Read Status instruction only. The busy  
flag signal is output at pin D7 when Read Status is issued. If the cycle  
time (tcyc) is correct, the microprocessor needs not to check the flag  
before issuing a command. This can greatly improve the microproc-  
essor performance.  
Page Address Register  
This is a 4-bit page address register that provides page address to the  
display RAM (refer to Figure 4). The microprocessor issues Set  
Page Address command to change the page and access to another  
page. Page address 4 (D2 is high, but D0 and D1 are low) is RAM  
area dedicate to the indicator, and display data D0 is only valid.  
Initial Display Line Register  
When the display RAM data is read, the display line according to  
COM0 (usually, the top line of screen) is determined using register  
data. The register is also used for screen scrolling and page  
switching.  
Display Data RAM  
The Set Display Start Line command sets the 5-bit display start  
address in this register. The register data is preset on the line counter  
each time FR signal status changes. The line counter is incremented  
by oscillator circuit output (in master mode) or CL input (in slave  
mode), and it generates a line address to allow 80-bit sequential data  
output from display RAM to LCD driver circuit.  
The display data RAM stores pixel data for LCD. It is a 33-column  
by 80-row (4-page by 8+1 bit) addressable array. Each pixel can be  
selected when page and column addresses are specified.  
The time required to transfer data is very short because the micro-  
processor enters D0 to D7 corresponding to LCD common lines as  
shown in Figure 3. Therefore, multiple S1D15206’s can easily  
configure a large display having the high flexibility with very few  
data transmission restriction.  
The microprocessor writes and reads data to/from the RAM through  
I/O buffer. As LCD controller operates independently, data can be  
written into RAM at the same time as data is being displayed,  
without causing the LCD to flicker.  
Column Address Counter  
This is a 7-bit presettable counter that provides column address to the  
display RAM (refer to Figure 4). It is incremented by 1 when a Read/  
Write command is entered. However, the counter is not incremented  
but locked if a non-existing address above 50H is specified. It is  
D0  
D1  
1
0
COM0  
COM1  
D2  
D3  
D4  
1
0
0
COM2  
COM3  
COM4  
Display data RAM  
Display on LCD  
Figure 3  
4–10  
EPSON  
Rev.3.5  
S1D15206 Series  
Relationship between display data RAM and addresses (if initial display line is 08):  
COM  
output  
Line  
address  
00  
Page  
Data  
address  
D0  
COM 0  
COM 1  
COM 2  
COM 3  
COM 4  
COM 5  
COM 6  
COM 7  
COM 8  
COM 9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM S  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
01  
02  
03  
04  
05  
06  
07  
08  
D2,D1,D0  
=0,0,0  
Page 0  
Start  
1/8  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
Page 1  
0,0,1  
Page 2  
1/16  
0,1,0  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
Page 3  
Page 4  
0,1,1  
1,0,0  
A
D
C
Column  
address  
D0=00001020304050607  
D0=14F 4E 4D 4C 4B 4A  
SEGOUT  
4D 4E 4F  
020100  
777879  
4948  
0 1 2 3 4 5 6 7  
Figure 4  
The timing of LCD panel driver outputs is independent of the timing  
of RAM data input from microprocessor.  
Display Timing Generator Circuit  
This section explains how the display timing generator circuit  
operates.  
LCD AC Signal (FR)  
The LCD AC signal, FR, is generated from the display clock. The  
FR controller generates dual-frame AC driver waveforms for LCD  
panel driver circuit.  
Signal generation to line counter and display data latch  
circuit  
The line address counter, RAM, and latch circuit of the S1D15206  
series operate synchronous to the display clock (the oscillator circuit  
outp).mm The LCD drive signal is sent to LCD panel driver output  
pin SEGn.  
Rev.3.5  
EPSON  
4–11  
S1D15206 Series  
• Dual-frame AC driver waveforms  
(If S1D15206 is used in 1/16 duty)  
15 16  
1
2
3
4
5
6
11 12 13 14 15 16  
1
2
Display clock  
FR  
VDD  
V1  
COM0  
V4  
V5  
VDD  
V1  
COM1  
V4  
V5  
RAM data  
VDD  
V2  
V3  
V5  
SEGn  
Common timing Signals  
The common timing generator circuit uses the display clock to  
generate common timing signal and FR frame signal. The Duty  
Select command can select 1/8 or 1/16 duty (S1D15206). A  
combination of Select Duty and Duty+1 commands can select 1/9 or  
1/17 duty (S1D15206).  
Display Data Latch Circuit  
Power Supply Circuit  
This circuit temporarily stores (or latches) display data (during a  
single common signal period) when it is output from display RAM  
to LCD panel driver circuit. This latch is controlled by Display ON/  
OFF and Static Drive ON/OFF commands. These commands do not  
alter the data.  
The power supply circuit produces voltage to drive LCD panel at low  
power consumption. The power circuit consists of three subcircuits:  
voltage tripler, voltage regulator, and voltage follower. The voltage  
tripler outputs VDD -(VSS×2) or -(VSS×3) voltage at VOUT. The  
regulator circuit generates V5 voltage using external resistor. The  
voltage follower circuit changes the impedance of V1 to V4 that are  
generated from V5 through division with internal resistors. (Details  
are explained later.)  
S1D15206 series can drive LCD panel using on-chip power circuit.  
However, the on-chip power circuit is intended to use for a small  
LCD panel and it is inappropriate to a large panel requiring multiple  
driver chips. As the large LCD panel has the dropped display quality  
due to large load capacity, it must use an external power source.  
The power circuit is controlled by Set Power Control command.  
This command sets a three-bit data in Power Control register to  
select one of eight power circuit functions. The external power  
supply and part of on-chip power circuit functions can be used  
simultaneously. The following explains how the Set Power Control  
command works.  
LCD Driver  
This is a multiplexer circuit consisting of 96 segment outputs to  
generate four-level LCD panel drive signals. The circuit also has a  
pair of COM outputs for indicator display.  
The COMn output has a shift register to sequentially output COM  
scan signals. The LCD panel drive voltage is generated by a specific  
combination of display data, COM scan signal, and FR signal.  
Figure 6 gives an example of SEG and COM output waveforms.  
Oscillation Circuit  
This is a low power consumption CR oscillator having an oscillator  
resistor, and its output is used as the display timing signal source or  
as the clock for voltage boost circuit of LCD power supply.  
The display clock output can be stopped by Clock Stop command to  
minimize the current consumption of LCD panel.  
4–12  
EPSON  
Rev.3.5  
S1D15206 Series  
[Control by Set Power Control command]  
D2 turns on when triple booster control bit goes HIGH, and D2 turns off when this bit goes LOW.  
D1 turns on when voltage regulator control bit goes HIGH, and D1 turns off when this bit goes LOW.  
D0 turns on when voltage follower control bit goes HIGH, and D0 turns off when this bit goes LOW.  
[Practical combination examples]  
Voltage  
booster  
Voltage  
regulator  
Voltage  
follower  
External voltage Voltage booster Voltage regulator  
D2 D1 D0  
input  
terminal  
terminal  
1
1
0
0
1
0
1
0
1
0
1
0
ON  
ON  
ON  
OFF  
ON  
ON  
OFF  
ON  
Used  
Used  
Used  
OPEN  
Used  
OFF  
OFF  
To VOUT  
To V1 to V5  
OPEN  
OPEN  
OFF  
OFF  
OPEN  
To use the on-chip (internal) power supply only, set  
(D2,D1,D0)=(1,1,1).  
Voltage tripler  
If capacitors C1 are inserted between CAP1+ and CAP1-, between  
CAP2+ and CAP2–, and between VSS and VOUT, the potential  
between VDD and VSS is boosted to triple toward negative side and  
it is output at VOUT. For double boosting, remove only capacitor C1  
between CAP2+ and CAP2-, open CAP2+, and jumper between  
CAP2- and VOUT. The double boosted voltage appears at VOUT  
(CAP2-).  
To use the voltage booster circuit only, set (D2,D1,D0)=(1,0,0).  
To use the voltage regulator and voltage follower, set  
(D2,D1,D0)=(0,1,1).  
To use an external power supply only, set (D2,D1,D0)=(0,0,0).  
The booster receives signals from oscillator circuit and, therefore,  
the oscillator must be active. The following shows the boosted  
potential.  
Notes: 1. The voltage booster terminals are CAP1+, CAP1-, CAP2+,  
and CAP2-.  
2. The above listed examples are the most practical use to  
control each circuit using control bits. Any other setup is  
unpractical and omitted in this manual.  
3. The V/F circuit alone cannot be used. When this circuit  
is used, the V adjustment circuit must be set simultaneously.  
(VCC=+5V) VDD=0V  
(GND) VSS=-5V  
VDD=0V  
VSS=-5V  
VOUT=2VSS =-10V  
VOUT=3VSS =-15V  
Potential during double boosting  
Potential during triple boosting  
Rev.3.5  
EPSON  
4–13  
S1D15206 Series  
Voltage regulator  
The boosting voltage occurring at VOUT is sent to the voltage regulator and the V5 liquid crystal display (LCD) drive voltage is output. This  
V5 voltage can be determined by the following equation when resistors Ra and Rb (R1, R2 and R3) are adjusted within the range of |V5|<|VOUT|.  
VDD  
R1  
R2  
VREG  
Ra  
Rb  
Rb  
Ra  
V5=(1+ ) · VREG+IREF · Rb  
R2  
+
-
R3+R2–R2  
R1+R2  
V5  
=(1+  
) · VREG  
IREF  
Voltage regulation  
current  
UR  
+IREF · (R3+R2–R2)  
R3  
where, VREG is the constant voltage source of the IC, and it is  
To use the Electronic Volume Control Function, issue the Set Power  
Control command to simultaneously operate both the voltage  
regulator circuit and voltage follower circuit.  
.
constant (VREG = –3.1 V). (VREG=Type1) VREG=VSS(VDD basis)  
.
(VREG=Type2)  
IREF is the voltage regulation current of the Electronic Volume  
Also, when the voltage tripler off, the voltage must be supplied from  
VOUT terminal.  
.
Control Function, and IREF=2.4 µA if the electronic volume control  
.
register (32-state) has (D4,D3,D2,D1,D0)=(1,1,1,1,1).  
To adjust the V5 output voltage, insert a variable resistor between  
VR, VDD and V5 as shown. A combination of R1 and R3 constant  
resistors and R2 variable resistor is recommended for fine-adjustment  
of V5 voltage.  
When the Electronic Volume Control Function is used, the V5  
voltage can be expressed as follows:  
Rb  
Ra  
5
V5 = (1 +  
) · VREG + IREF · Rb ..................  
(Variable voltage range)  
Setup example of resistors R1, R2 and R3:  
When the Electronic Volume Control Function is OFF (electronic  
volume control register values are (D4,D3,D2,D1,D0)  
=(0,0,0,0,0)):  
The increased V5 voltage is controlled by use of IREF current source  
of the IC. (For 32 voltage levels, IREF=IREF/31)  
R3 + R2 – R2  
The minimum setup voltage of the V5 absolute value is determined  
by the ratio of external Ra and Rb, and the increased voltage by the  
Electronic Volume Control Function is determined by resistor Rb.  
Therefore, the resistors must be set as follows:  
1
V5 = (1 +  
) · VREG .................  
R1 + R2  
(As IREF = 0A)  
• R1 + R2 + R3 = 6.0 M............................  
2
(Determined by the current passing between VDD and V5)  
• Variable voltage range by R2: –6.2 to –9.3 V  
(Determined by the LCD characteristics)  
R2 = 0, VREG = –3.1 V  
(1) Determine Rb resistor depending on the V5 variable voltage  
range by use of the Electronic Volume Control.  
V5 variable voltage range  
Rb =  
IREF  
To obtain V5 = –9.3 V, from equation (1):  
3
R2 + R3 = 2 · R1 .........................  
(2) To obtain the minimum voltage of the V5 absolute value,  
determine Ra using the Rb of Step (1) above.  
R2 = R2, VREG = –3.1 V  
To obtain V5 = –6.2 V, from equation (1):  
4
R1 + R2 = 1 · R1 .........................  
Rb  
V5  
Ra =  
[V5 = (1 + Rb/Ra) · VREG]  
–1  
2
3
4
From equations  
,
and  
:
R1 = 2.0 MΩ  
R2 = 1.0 MΩ  
R3 = 3.0 MΩ  
VREG  
The S1D15206 series have the built-in VREG reference voltage and  
REF current source which are constant during voltage variation.  
I
The voltage regulator circuit has a temperature gradient of  
approximately –0.17%/°C as the VREG voltage. To obtain another  
temperature gradient, use the Electronic Volume Control Function  
for software processing using the MPU.  
As the VR pin has a high input impedance, the shielded and short  
lines must be protected from a noise interference.  
However, they may change due to the variation occurring in IC  
manufacturing and due to the temperature change as shown below.  
Consider such variation and temperature change, and set the Ra and  
Rb appropriate to the LCD used.  
V
V
REG =–3.1V±0.4V (Type1)  
REG =VSS (VDD basis) (Type2)  
VREG =–0.17%/˚C  
VREG =–0.00%/˚C  
When the VREG = Type 2, similarly preset R1, R2 and R3 on the basis  
I
I
REF = –1.2 µA ± 40% (For 16 levels)  
REF = –2.4 µA ± 40% (For 32 levels)  
IREF = 0.011 µA/°C  
IREF = 0.022 µA/°C  
of VREG = VSS  
.
Ra is a variable resistor that is used to correct the V5 voltage change  
due to VREG and IREF variation. Also, the contrast adjustment is  
recommended for each IC chip.  
Before adjusting the LCD screen contrast, set the electronic volume  
control register values to (D4,D3,D2,D1,D0)=(1,0,0,0,0) or  
(0,1,1,1,1) first.  
When not using the Electronic Volume Control Function, set the  
register values to (D4,D3,D2,D1,D0)=(0,0,0,0,0) by sending the  
RES signal or by issuing the Set Electronic Volume Control Register  
command.  
Voltage regulator circuit using the Electronic Volume  
Control Function  
The Electronic Volume Control Function can adjust the intensity  
(brightness level) of liquid crystal display (LCD) screen by command  
control of V5 LCD driver voltage.  
This function sets five-bit data in the electronic volume control  
register, and the V5 LCD driver voltage can be one of 32-state  
voltages.  
4–14  
EPSON  
Rev.3.5  
S1D15206 Series  
Setup example of constants when Electronic Volume Control  
Function is used:  
If Ta = 50°C:  
V5 max = (1 + Rb/Ra) · VREG  
V5 maximum voltage: V5 = –6.2 V (Electronic volume control  
register values (D4,D3,D2,D1,D0)=(0,0,0,0,0))  
V5 minimum voltages: V5 = –8.6 V (Electronic volume control  
register values (D4,D3,D2,D1,D0)=(1,1,1,1,1))  
V5 variable voltage range: 2.4 V  
= (1 + 1 M/1 M) × (–3.1 V) × {1 + (–0.17%/°C)  
× (50°C – 25°C)}  
= –5.94 V  
V5 min = V5 max + Rb · IREF  
= –5.94 V + 1MΩ × {–2.4 µA + (0.022 µA/°C) ×  
Variable voltage levels: 32 levels  
(–50°C – 25°C)}  
(1) Determining the Rb:  
= –8.89 V  
V5 variable voltage range  
2.4 V  
2.4 µA  
The margin must also be determined in the same procedure given  
above by considering the VREG and IREF variation. This margin  
calculation results show that the V5 center value is affected by the  
Rb =  
=
|IREF  
|
Rb = 1.0 MΩ  
(2) Determining the Ra:  
Rb  
V
REG and IREF variation. The voltage setup width of the Electronic  
Volume Control depends on the IREF variation. When the typical  
value of 0.2 V/step is set, for example, the maximum variation range  
of 0.12 to 0.28 V must be considered.  
1.0 MΩ  
Ra =  
=
V5 max  
VREG  
–6.2 V  
–3.1 V  
–1  
–1  
Ra = 1.0 MΩ  
When the VREG = Type 2, it so becomes that VREG = VSS and there  
is no temperature gradient. However, IREF carries the same  
temperature characteristics as with VREG = Type 1.  
5
According to the V5 voltage and temperature change, equation can  
be as follows (if VDD = 0 V reference):  
If Ta = 25°C:  
V5 max = (1 + Rb/Ra) · VREG  
= (1 + 1 M/1 M) × (–3.1 V)  
= –6.2 V  
V5 min = V5 max + Rb · IREF  
= –6.2 V + 1 MΩ × (–2.4 µA)  
= –8.6 V  
Voltage generator for LCD (Voltage fullower)  
The V5 potential is divided using resistance within IC and V1, V2, V3  
and V4 potentials are generated for LCD panel drive. These  
potentials are then converted in impedance by voltage follower, and  
sent to LCD driver circuit.  
Because the LCD drive voltage has been fixed to each model, the  
display quality may drop in specific duty selected by Select Duty  
command. If it occurs, use an external power supply.  
If Ta = –10°C:  
V5 max = (1 + Rb/Ra) · VREG  
= (1 + 1 M/1M) × (–3.1 V) × {1 + (–0.17%/°C)  
× (–10°C – 25°C)}  
Model  
LCD drive voltage  
= –6.57 V  
S1D15206  
S1D15208  
1/5 of bias voltage  
1/7 of bias voltage  
V5 min = V5 max + Rb · IREF  
= –6.57 V + 1MΩ × {–2.4 µA + (0.022 µA/°C) ×  
(–10°C – 25°C)}  
Subsection gives wiring examples and reference parts list when on-  
chip power supply is used and when not used.  
= –8.20 V  
Command sequence for built-in power circuit startup  
The built-in power circuit must follow the command sequence given below.  
• To start the built-in power  
circuit after release of Power  
Save mode:  
• To start the built-in power  
circuit when logic units are  
being powered:  
Release the Power Save  
mode. (Static drive is  
OFF or display is ON.)  
Hardware reset  
(SR1=SR2='0')  
Setup of power  
control  
Setup of power  
control  
*After approx. 200 msec  
Display turns ON.  
*After approx. 200 msec  
Display turns ON.  
* When the Set Power Control command is issued, the V DD level signal is output at both COM and SEG terminals for approximately 200 msec.  
Any other command can be entered during this period.  
Rev.3.5  
EPSON  
4–15  
S1D15206 Series  
When turning off the built-in power circuit, observe the following command sequence to mainyain power save status.  
When turning off the built-in  
power supply:  
Display “OFF”  
Command AEh  
Command A5h  
Power save  
command  
Static drive “ON”  
Built-in power supply “OFF”  
* Precautions when installing the COG  
the resistance of ITO wiring is being inserted in series with the  
switching transistor, thus dominating the boosting ability.  
Consequently, the boosting ability will be hindered as a result  
and pay sufficient attention to the wiring to respective boosting  
capacitors.  
When installing the COG, it is necessary to duly consider the fact that  
there exists a resistance of the ITO wiring occurring between the  
driver chip and the externally connected parts (such as capacitors and  
resistors). By the influence of this resistance, non-conformity may  
occur with the indications on the liquid crystal display.  
Therefore, when installing the COG design the module paying  
sufficient considerations to the following three points.  
1. Suppress the resistance occurring between the driver chip pin to  
the externally connected parts as much as possible.  
2. Suppress the resistance connecting to the power supply pin of  
the driver chip.  
3. Make various COG module samples with different ITO sheet  
resistance to select the module with the sheet resistance with  
sufficient operation margin.  
2. Connection of the smoothing capacitors for the liquid crystal  
drive  
The smoothing capacitors for the liquid crystal driving potentials  
(V1. V2, V3 and V4) are indispensable for liquid crystal drives  
not only for the purpose of mere stabilization of the voltage  
levels. If the ITO wiring resistance which occurs pursuant to  
installation of the COG is supplemented to these smoothing  
capacitors, the liquid crystal driving potentials become unstable  
to cause non-conformity with the indications of the liquid  
crystal display. Therefore, when using the COG module, we  
definitely recommend to connect reinforcing resistors externally.  
Reference value of the resistance is 100kto 1M.  
Meanwhile, because of the existence of these reinforcing  
resistors, current consumption will increase.  
Also, as for this driver IC, pay sufficient attention to the following  
points when connecting to external parts for the characteristics of the  
circuit.  
1. Connection to the boosting capacitors The boosting capacitors  
(the capacitors connecting to respective CAP pins and capacitor  
being inserted between VOUT and VSS2) of this IC are being  
switched over by use of the transistor with very low ON-  
resistance of about 10. However, when installing the COG,  
Indicated below is an exemplary connection diagram of external  
resistors.  
Please make sufficient evaluation work for the display statuses with  
any connection tests.  
Exemplary connection diagram 1.  
Exemplary connection diagram 2.  
VDD  
VDD  
V
DD  
VDD  
R4  
R4  
V
V
V
1
2
3
V1  
V2  
V3  
C2  
C2  
C2  
C2  
C2  
C2  
R4  
R4  
V
V
4
5
V
4
5
C
2
2
C
2
2
R4  
R4  
V
C
C
4–16  
EPSON  
Rev.3.5  
S1D15206 Series  
11. Static drive  
12. Clock  
: Off  
: Output  
Reset Circuit  
The S1D15206 series chip parameters are initialized when both  
SR1 and SR2 are set to low.  
As explained in Section 4-32, the microprocessor should also be  
reset when SR1 and SR2 are reset. The SR1 and SR2 go low only  
when logical low pulses are entered at least 10 microseconds (refer  
to Section for AC characteristics). The normal reset signal appears  
1 microsecond after the rising edge of this signal.  
If the on-board LCD power circuit of the S1D15206 series is not  
used, both SR1 and SR2 must be low when an external LCD power  
is supplied. If not low, the IC chip may be destroyed by surge  
current. When reset, each register is cleared but the present setup of  
oscillator circuit and output terminals (FR, CL, D0 to D7) is not  
cleared.  
Initial parameter setup  
1. Display  
2. Duty cycle  
3. ADC select  
: Off  
: 1/16 (S1D15206)  
: Normal (D0 ADC com  
mand is high and  
ADC status flag is set)  
: Off  
: 0  
: Line 1  
: Address 0  
: Page 0  
4. Read-modify-write  
5. Power Control register  
6. Initial Display Line register  
7. Column Address counter  
8. Page Address register  
9. Register data of serial interface : Cleared  
10. Electronic control register  
As the S1D15206 series does not have a Power-On Clear circuit,  
both SR1 and SR2 must go low when logic power applies. If not, any  
recovery may fail.  
The Reset command can reset parameters 6 to 10 listed above.  
: 0  
0 1 2 3  
0 1 2 3  
16 0 1 2 3  
32 0 1 2 3  
16  
32  
COM 0  
COM 1  
COM 2  
COM 3  
COM 4  
VDD  
VSS  
FR  
VDD  
V1  
V2  
V3  
V4  
V5  
COM 0  
COM 5  
COM 6  
COM 7  
VDD  
V1  
V2  
V3  
V4  
V5  
COM 1  
COM 2  
SEG 0  
SEG 1  
COM 8  
VDD  
V1  
V2  
V3  
V4  
V5  
COM 9  
COM 10  
COM 11  
COM 12  
VDD  
V1  
V2  
V3  
V4  
V5  
COM 13  
COM 14  
COM 15  
VDD  
V1  
V2  
V3  
V4  
V5  
S
E
S
E
S S S  
E E E  
G G G G G  
0
1 2 3 4  
V5  
V4  
V3  
V2  
V1  
COM -SEG 0  
VDD  
-V1  
-V2  
-V3  
-V4  
-V5  
V5  
V4  
V3  
V2  
V1  
VDD  
-V1  
-V2  
-V3  
-V4  
-V5  
COM -SEG 1  
Figure 6  
Rev.3.5  
EPSON  
4–17  
S1D15206 Series  
7. COMMANDS  
Page 4–21 lists available commands. The S1D15206 series uses a  
combination of A0, RD and WR (or R/W) signals to identify data bus  
signals. As the chip analyzes and executes each command using  
internal timing clock only (any external clock is required), its  
processing speed is very HIGH and its busy check is usually not  
required.  
R/W  
A0 RD WR D7 D6 D5 F4 D3 D2 D1 D0  
0
1
0
0
A6 A5 A4 A3 A2 A1 A0  
A6 A5 A4 A3 A2 A1 A0 Column address  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
:
(1) Display ON/OFF  
:
Alternatively turns the display on and off.  
1
0
0
1
1
1
1
7 9  
R/W  
(5) Read Status  
A0 RD WR D7 D6 D5 F4 D3 D2 D1 D0  
0
1
0
1
0
1
0
1
1
1
D
R/W  
A0 RD WR D7 D6 D5 F4 D3 D2 D1 D0  
The display turns off when D goes low, and it turns on when D  
goes HIGH.  
0
0
1
BUSY ADC ON/OFF RESET PS  
0
0
0
(2) Initial Display Line  
BUSY: When high, the S1D15206 series is busy due to internal  
operation or reset. Any command is rejected until BUSY  
goes LOW. The busy check is not required if enough time  
is provided for each cycle.  
Specifies line address (refer to Figure 4) to determine the initial  
display line, or COM0. The RAM display data becomes the top  
line of LCD screen. It is followed by the higher number of lines  
in ascending order, corresponding to the duty cycle. When this  
command changes the line address, the smooth scrolling or  
page change takes place.  
ADC:  
Indicates the relationship between RAM column address  
and segment drivers. When LOW, the display is normal  
and column address “79-n” corresponds to segment driver  
n. When HIGH, the display is reversed and column  
address n corresponds to segment driver n.  
R/W  
A0 RD WR D7 D6 D5 F4 D3 D2 D1 D0  
0
1
0
1
1
0
A4 A3 A2 A1 A0  
HIGH-order bit  
Line address  
ON/OFF: Indicates whether the display is on or off. When goes low,  
the display turns on. When goes HIGH, the display turns  
off. This is the opposite of Display ON/OFF command.  
A4  
A3  
A2  
A1  
A0  
0
0
0
0
0
0
0
0
0
:
0
0
1
0
1
0
0
1
2
RESET: Indicates the initialization is in progress by SR1 and  
SR2 to go LOW or by Reset command. When LOW,  
the display is on. When HIGH, the chip is being reset.  
:
1
1
1
1
1
1
1
1
0
1
3 0  
3 1  
PS:  
When LOW, LCD panel is in Power Save mode.  
(3) Set Page Address  
(6) Write Display Data  
Specifies page address to load display RAM data to page  
address register. Any RAM data bit can be accessed when its  
page address and column address are specified. The display  
remains unchanged even when the page address is changed.  
Page address 4 is the display RAM area dedicate to the indica-  
tor, and only D0 is valid for data change.  
Writes 8-bit data in display RAM. As the column address is  
incremented by 1 automatically after each write, the microproc-  
essor can continue to write data of multiple words.  
R/W  
A0 RD WR D7 D6 D5 F4 D3 D2 D1 D0  
1
1
0
Write data  
R/W  
A0 RD WR D7 D6 D5 F4 D3 D2 D1 D0  
(7) Read Display Data  
Reads 8-bit data from display RAM area specified by column  
address and page address. As the column address is incremented  
by 1 automatically after each write, the microprocessor can  
continue to read data of multiple words. A single dummy read  
is required immediately after column address setup. Refer to  
the display RAM section of FUNCTIONAL DESCRIPTION  
for details.  
0
1
0
1
0
1
1
1
A2 A1 A0  
A2  
0
0
0
0
A1  
0
0
1
1
A0  
Page Address  
0
1
0
1
0
0
1
2
3
4
R/W  
1
0
A0 RD WR D7 D6 D5 F4 D3 D2 D1 D0  
(4) Set Column Address  
1
0
1
Read data  
Specifies column address of display RAM. When the micro-  
processor repeats to access to the display RAM, the column  
address counter is incremented by 1 during each access until  
address 80 is accessed. The page address is not changed during  
this time.  
(8) ADC Select  
Changes the relationship between RAM column address and  
segment driver. The order of segment driver output pins can be  
reversed by software. This allows flexible IC layout during  
LCD module assembly. For details, refer to the column address  
section of Figure 4. When display data is written or read, the  
column address is incremented by 1 as shown in Figure 4.  
4–18  
EPSON  
Rev.3.5  
S1D15206 Series  
R/W  
R/W  
A0 RD WR D7 D6 D5 F4 D3 D2 D1 D0  
A0 RD WR D7 D6 D5 F4 D3 D2 D1 D0  
0
1
0
1
0
1
0
0
0
0
D
0
1
0
1
0
1
0
1
0
1
D
When D is low, the right rotation (normal direction). When  
D is HIGH, the left rotation (reverse direction).  
Model  
D
Duty  
0
1
1/8 or 1/16  
1/9 or 1/17  
S1D15206  
S1D15208  
(9) Static Drive ON/OFF  
Forcibly turns the entire display ON and makes all common  
outputs selectable regardless of RAM data contents. The RAM  
data is held.  
0
1
1/32  
1/33  
(12) Read-Modify-Write  
R/W  
A pair of Read-Modify-Write and End commands must always  
be used. Once Read-Modify-Write is issued, column address is  
not incremented by Read Display Data command but  
incremented by Write Display Data command only. It contin-  
ues until End command is issued. When the End is issued,  
column address returns to the address when Read-Modify-  
Write was issued. This can reduce the microprocessor load  
when data of a specific display area is repeatedly changed  
during cursor blinking or others.  
A0 RD WR D7 D6 D5 F4 D3 D2 D1 D0  
0
1
0
1
0
1
0
0
0
0
D
When D goes LOW, the static drive turns off. When D goes  
HIGH, the static drive turns on.  
The LCD panel enters Power Save mode if Static Drive ON  
command is issued when the display is off. Refer to the Power  
Save section for details.  
R/W  
A0 RD WR D7 D6 D5 F4 D3 D2 D1 D0  
(10) Select Duty  
Selects the LCD driver duty. However, the bias of LCD driver  
voltage is fixed when on-chip power circuit is used (refer to  
Subsection).  
0
1
0
1
1
1
0
0
0
0
0
Note: Any command except Read/Write Display Data and Set  
Column Address can be issued during Read-Modify-Write  
mode.  
R/W  
A0 RD WR D7 D6 D5 F4 D3 D2 D1 D0  
0
1
0
1
0
1
0
1
0
0
D
• Cursor display sequence  
Model  
D
Duty  
Set Page Address  
0
1
1/8  
1/16  
S1D15206  
S1D15208  
Set Column Address  
0
1
1/32  
1/32  
(11) Duty+1  
Read-Modify-Write  
Dummy Read  
Increments the duty by 1. If 1/8 duty is set for the S1D15206,  
for example, it is incremented to 1/9 duty. If 1/16 duty is set, it  
is incremented to 1/17 duty. The COMS terminal functions as  
COM8 or COM16. The display line of RAM area correspond-  
ing to page address 4, or D0, is always accessed.  
Read Data  
Write Data  
No  
Completed?  
Yes  
End  
Rev.3.5  
EPSON  
4–19  
S1D15206 Series  
(13) End  
Cancels Read-Modify-Write mode and returns column address to the original address (when Read-Modify-Write was issued).  
R/W  
A0 RD WR D7 D6 D5 F4 D3 D2 D1 D0  
0
1
0
1
1
1
0
1
1
1
0
Return  
Column address  
N
N+1  
N+2  
N+3  
N+m  
N
Read-Modify-Write mode is selected.  
End  
(14) Reset  
D4  
D3  
D2  
D1  
D0  
| V5 |  
Low  
Resets the Initial Display Line register, Column Address coun-  
ter, Page Address register, register data of serial interface, and  
Electronic Control register to their initial status. The Reset  
command does not affect on the contents of display RAM.  
Refer to the Reset circuit section of FUNCTIONAL DESCRIP-  
TION.  
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
0
1
0
1
1
1
1
1
1
0
1
1
1
0
1
R/W  
High  
A0 RD WR D7 D6 D5 F4 D3 D2 D1 D0  
Set register to (D4,D3,D2,D1,D0)=(0,0,0,0,0) to suppress elec-  
tronic control function.  
0
1
0
1
1
1
0
0
0
1
0
The Reset command cannot initialize LCD power supply. Only  
RES (that sets SR1 and SR2 to low) can initialize the supplies.  
(17) Clock Stop  
Stops clock output at CL to reduce current consumption.  
(15) Set Power Control  
R/W  
Selects one of eight power circuit functions using 3-bit register.  
An external power supply and part of on-chip power supply  
functions can be used simultaneously. Refer to Power Circuit  
section of FUNCTIONAL DESCRIPTION for details.  
A0 RD WR D7 D6 D5 F4 D3 D2 D1 D0  
0
1
0
1
1
1
0
0
1
1
D
Clock outputs when D is low, but clock stops when D is high.  
R/W  
A0 RD WR D7 D6 D5 F4 D3 D2 D1 D0  
(18) Power Save (a combination with Static Drive command)  
Sets LCD panel in power save mode if Static Drive ON is issued  
when the display is off. Power consumption drops power  
consumption level.  
0
1
0
1
0
1
1
0
D2 D1 D0  
When D0 goes LOW, voltage follower turns off. When D0 goes  
HIGH, it turns on.  
When D1 goes LOW, voltage regulator turns off. When D1 goes  
HIGH, it turns on.  
When D2 goes LOW, voltage booster turns off. When D2 goes  
HIGH, it turns on.  
When LCD panel enters Power Save mode:  
(a) Both oscillator and power supply stop.  
(b) LCD driver stops, and segment and common driver have  
V
DD level output.  
(c) External clock input is disabled, and clock output is set  
to low (at CL).  
(d) Both display data and operation mode before issue of  
Power Save are held.  
(16) Set Electronic Control  
Adjusts the contrast of LCD panel display by changing V5 LCD  
drive voltage that is output by voltage regulator of on-chip  
power supply.  
This command selects one of 32 V5 LCD drive voltages by  
storing data in 5-bit register. The V5 voltage adjusting range  
should be determined depending on the external resistance.  
Refer to the Voltage Regulator Circuit section of FUNC-  
TIONAL DESCRIPTION for details.  
(As the power control register is cleared, the Set Power  
Control command must be issued again after the Power  
Save mode has been released.)  
(e) All LCD driver voltages are fixed to VDD  
.
The Power Save is released when the display is turned on or  
when Static Drive OFF is issued. If external voltage driver  
resistors are used to supply voltage to LCD panel, current  
passing through resistors must be cut off. An external power  
supply must be turned off if used; its voltage must be fixed to  
floating or VDD level.  
* When the S1D15206 series is operating, the internal status  
data set by commands is held. However, the internal status  
may change due to an excessive ambient noise. The package  
and system noise generation must be suppressed or a noise  
protection design must be considered.  
This command is valid only when voltage regulator circuit is  
turned on by Set Power Control command.  
R/W  
A0 RD WR D7 D6 D5 F4 D3 D2 D1 D0  
0
1
0
1
0
0
D4 D3 D2 D1 D0  
We recommend to periodically refresh the internal status  
data to prevent a spike noise and other interference.  
4–20  
EPSON  
Rev.3.5  
S1D15206 Series  
S1D15206 Series Command Table  
Code  
Command  
Function  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
(1) Display ON/OFF  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
0
1
0
1
0
1
1
1
0
1
Turns on LCD panel when goes  
HIGH, and turns off when goes LOW.  
(2) Initial Display Line  
(3) Set Page Address  
(4) Set Column Address  
Initial display address  
Specifies RAM display line for  
COM0.  
1
1
Page address Sets the display RAM page in  
Page Address register.  
Column address  
Sets RAM column address in  
Column register.  
(5) Read Status  
0
1
1
0
0
1
0
1
1
0
1
0
Status  
0
0
0
0
0
Reads the status information.  
Writes data in display RAM.  
Reads data from display RAM.  
(6) Write Display Data  
(7) Read Display Data  
(8) ADC Select  
Write data  
Read data  
1
0
1
0
0
0
1
Sets normal relationship between  
RAM column address and seg-  
ment driver when low, but re-  
verses the relationship when HIGH.  
(9) Static Drive ON/OFF  
(10) Duty Select  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
1
0
0
0
0
1
Normal indication when LOW, but  
full indication when HIGH.  
0
1
Selects LCD driver duty of 1/8 (1/  
16) when LOW and 1/16 (1/32)  
when HIGH.  
(11) Duty+1  
0
0
1
1
0
0
1
1
0
1
1
1
0
0
1
0
0
0
1
0
0
1
Selects normal LCD driver duty  
when LOW, and selects the duty  
added by 1 when HIGH.  
(12) Read-Modify-Write  
0
Increments Column Address  
counter during each write when  
HIGH and during each read when  
LOW.  
(13) End  
0
0
0
1
1
1
0
0
0
1
1
1
1
1
0
1
1
1
0
0
1
1
0
0
1
0
1
1
0
0
Releases the Read-Modify-Write.  
Resets internal functions.  
(14) Reset  
(15) Set Power Control  
Power control Selects various power circuit  
functions.  
(16) Set Electronic Control  
(17) Clock Stop  
0
0
1
1
0
0
1
1
0
1
0
1
Electronic control value  
Sets V5 output voltage to Elec-  
tronic Control register.  
0
0
1
1
0
1
Stops clock output at CL when  
LOW, and stops clock when HIGH.  
(18) Power Save  
A combination of Display OFF and  
Static Drive ON commands.  
Note: Do not use any other command, or the system malfunction may result.  
Rev.3.5  
EPSON  
4–21  
S1D15206 Series  
8. ABSOLUTE MAXIMUM RATINGS  
Parameter  
Symbol  
Rating  
–0.3 to +7.0  
–0.3 to +6.0  
–18.0 to +0.3  
V5 to +0.3  
Unit  
V
VDD  
Supply voltage range  
Triple voltage  
conversion  
VDD  
Driver supply voltage range (1)  
Driver supply voltage range (2)  
Input voltage range  
V5  
V
V
V1, V2, V3, V4  
VIN  
VO  
–0.3 to VDD+0.3  
–0.3 to VDD+0.3  
250  
V
Output voltage range  
V
Allowable loss  
PD  
mW  
°C  
°C  
Operating temperature range  
TOPR  
TSTG  
–40 to +85  
QFP • TCP  
Bear chip  
–65 to +150  
–55 to +125  
260-10 (at leads)  
Storage temperature range  
Soldering temperature and time  
TSOLDER  
°C•sec  
VCC  
VDD  
GND  
VSS  
V1  
to V5, VOUT, VREG  
(Microprocessor side)  
(S1D15206 series side)  
Notes: 1. V1 to V5, VOUT, and VREG voltages are based on VDD=0 V.  
2. Voltages VDD V1 V2 V3 V4 V5 VSS VOUT must always be satisfied.  
3. If an LSI exceeds its absolute maximum rating, it may be damaged permanently. It is desirable to use it under electrical characteristics  
conditions during general operation. Otherwise, an LSI malfunction or reduced LSI reliability may result.  
4. The moisture resistance of the flat package may drop during soldering. Take care not to excessively heat the package resin during  
chip mounting.  
4–22  
EPSON  
Rev.3.5  
S1D15206 Series  
9. ELECTRICAL CHARACTERISTICS  
DC Characteristics  
VDD = 5 V ±10%, VSS = 0 V, Ta = –40 to +85°C unless otherwise noted.  
Item  
Power voltage (1)  
Operating voltage  
(2)  
Symbol  
VDD  
Condition  
Min.  
2.4  
Typ.  
Max.  
6.0  
Unit  
V
Pin used  
VDD *1  
V5 *2  
V1, V2  
V3, V4  
*3  
Operational  
Operational  
V5  
–13.0  
–4.0  
V
Operational V1, V2  
Operational V3, V4  
0.6 × V5  
V5  
VDD  
V
0.4 × V5  
VDD  
V
HIGH-level input voltage  
LOW-level input voltage  
HIGH-level output voltage  
LOW-level output voltage  
HIGH-level input voltage  
LOW-level input voltage  
VIHC  
0.7 × VDD  
0.8 × VDD  
VSS  
V
VDD = 2.7 V  
VDD  
VILC  
0.3 × VDD  
0.2 × VDD  
VDD  
V
V
V
V
V
*3  
*4  
*4  
*5  
*5  
VDD = 2.7 V  
VSS  
VOHC  
VOLC  
VIHS  
VILS  
IOH = –1 mA  
0.8 × VDD  
0.8 × VDD  
VSS  
VDD = 2.7 V, IOH = –0.5 mA  
IOH = 1 mA  
VDD  
0.2 × VDD  
0.2 × VDD  
0.8 × VDD  
0.8 × VDD  
0.6 × VDD  
0.6 × VDD  
1.0  
VDD = 2.7 V, IOL = 0.5 mA  
VSS  
0.4 × VDD  
0.4 × VDD  
0.2 × VDD  
0.2 × VDD  
–1.0  
VDD = 2.7 V  
VDD = 2.7 V  
Input leakage current  
Output leakage current  
LCD driver ON resistance  
ILI  
µA  
µA  
KΩ  
*6  
*7  
ILO  
–3.0  
3.0  
SEG0 to 79  
COS0 to 15  
COMS *9  
RON  
Ta = 25°C  
V5 = –0.5 V  
15.0  
30.0  
Static current consumption  
Input pin capacity  
IDDQ  
CIN  
fCL  
CS = CL = VDD  
0.05  
5.0  
2.9  
5.8  
3.0  
8.0  
3.7  
7.4  
µA  
pF  
VDD  
Ta = 25°C, f = 1 MHz  
Ta = 25°C, VDD = 2.7 to 5 V  
Input pins  
CL output frequency  
2.4  
4.8  
kHz  
*8  
Applies to the  
S1D15206*10**,  
S1D15208*10**  
Dynamic current consumption (1) when the built-in power supply is OFF  
1.7 times of normal products apply to fCL = 5.8 kHz products of S1D15206F11** and S1D15208F11** .  
Ta = 25°C  
Remarks  
*12  
Item  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Unit  
S1D15206  
IDD (1)  
VDD = 5.0V, V5–VDD = –6.0V  
VDD = 3.0V, V5–VDD = –6.0V  
VDD = 5.0V, V5–VDD = –8.0V  
VDD = 3.0V, V5–VDD = –8.0V  
9.1  
18  
µA  
12.0  
7.5  
24  
S1D15208  
15  
9.5  
19  
Rev.3.5  
EPSON  
4–23  
S1D15206 Series  
Dynamic current consumption (2) when the built-in power supply is ON (Display all white)  
1.7 times of normal products apply to fCL = 5.8 kHz products of S1D15206F11** and S1D15208F11**.  
Ta = 25°C  
Remarks  
*13  
Item  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Unit  
S1D15206  
IDD (2) VDD = 5.0V, V5–VDD = –6.0V, dual boosting  
VDD = 3.0V, V5–VDD = –6.0V, triple boosting  
VDD = 5.0V, V5–VDD = –8.0V, dual boosting  
VDD = 3.0V, V5–VDD = –8.0V, triple boosting  
31  
62  
µA  
44  
88  
S1D15208  
37  
74  
55  
110  
Dynamic current consumption (2) when the built-in power supply is ON (Display checker pattern)  
1.7 times of normal products apply to fCL = 5.8 kHz products of S1D15206F11** and S1D15208F11**.  
Ta = 25°C  
Item  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Remarks  
*13  
S1D15206  
IDD (2) VDD = 5.0V, V5–VDD = –6.0V, dual boosting  
VDD = 3.0V, V5–VDD = –6.0V, triple boosting  
VDD = 5.0V, V5–VDD = –8.0V, dual boosting  
VDD = 3.0V, V5–VDD = –8.0V, triple boosting  
34  
68  
µA  
46  
92  
S1D15208  
42  
84  
60  
120  
Current consumption during Power Save mode V = 0 V, V = 2.7 to 5.5 V  
SS  
DD  
Ta = 25°C  
Remarks  
Item  
Symbol  
IDDS1  
Conditions  
S1D15206, S1D15208  
Min.  
Typ.  
3
Max.  
6
Unit  
Power save  
mode  
µA  
Typical current consumption characteristics (reference data)  
Dynamic current consumption (1) when LCD external power mode lamp is ON  
20  
(µA)  
Conditions: The built-in power supply is  
OFF and an external power  
supply is used.  
15  
S1D15206 V5-VDD=–6.0V  
S1D15208 V5-VDD=–8.0V  
Ta=25°C  
S1D15208  
I DD (1)  
10  
5
Remarks: *12  
1.7 times of normal products apply  
to fCL = 5.8 kHz products of  
S1D15206F11** and S1D15208F11**.  
S1D15206  
0
1
2
3
4
5
6
7
(V)  
VDD  
Dynamic current consumption (2) when the LCD built-in power supply lamp is ON  
80  
(µA)  
Conditions: The built-in power supply is ON.  
S1D15206 V5-VDD=–6.0V dual boosting  
S1D15208 V5-VDD=–8.0V triple boosting  
Ta=25°C  
60  
S1D15208  
Remarks: *13  
IDD (2)  
1.7 times of normal products apply  
to fCL = 5.8 kHz products of  
S1D15206F11** and S1D15208F11**.  
40  
20  
S1D15206  
0
1
2
3
4
5
6
7
(V)  
VDD  
4–24  
EPSON  
Rev.3.5  
S1D15206 Series  
• Current consumption I DD during access (2) during MPU access cycle  
It shows the current consumption when a checker  
pattern is always written in fSYNC timing.  
10  
(mA)  
S1D15206  
When not accessed, only the current consumption  
of IDD (2) occurs.  
1
0.1  
IDD(2)  
Conditions: S1D15206 V5 – VDD = –6.0 V, dual boosting  
S1D15208 V5 – VDD = –8.0 V, triple boosting  
Ta = 25°C  
S1D15208  
0.01  
0
0.01  
f CYC  
0.1  
(MHz)  
1
10  
Item  
Symbol  
VDD  
Conditions  
Min.  
2.4  
Typ. Max.  
Unit Pins used  
Input voltage  
6.0  
V
V
V
*10  
Booster output voltage  
VOUT  
VOUT  
VDD reference (during triple boosting) –16.5  
VOUT  
VOUT  
Voltage regulator circuit  
operating voltage  
VDD reference  
–16.5  
–4.0  
Voltage follower operating  
voltage  
V5  
VDD reference  
–13.0  
–4.0  
V
*11  
Reference voltage  
VREG VDD reference Ta = 25°C  
–3.5 –3.1 –2.7  
V
VR  
* See notes below.  
*1 Although the wide range of operating voltage is guaranteed, a spike voltage change during access to the MPU is not guaranteed.  
*2 The operating voltage range of the VDD and V5 systems (See Figure 9.)  
The operating voltage range is applied if an external power supply is used.  
*3 Pins D0 to D5, A0, CS1, CS2, RD (E), WR (R/W), M/S, CL, and FR  
*4 Pins D0 to D7, FR, and CL  
*5 Pins SI (D7), SCL (D6), SR1, and SR2  
*6 Pins A0, RD (E), WR (R/W), CS1, CS2, M/S, SR1, and SR2  
*7 Applied if pins D0 to D7, FR, and CL are high impedance.  
*8 For the relationship between CL output frequency and frames, see Figure 7.  
For the relationship between CL output frequency and power voltage, see Figure 8.  
For the relationship between CL output frequency and temperature, see Figure 11.  
*9 The resistance when the 0.1-volt voltage is applied between the SEG and COM output terminals and each power terminal (V1, V2, V3 or  
V4). It must be within operating voltage (2).  
RON = 0.1 V/I  
where, I is the current that flows between power supply and SEG or COM terminal when the 0.1-volt voltage is applied.  
*10 If the triple voltage by the built-in power circuit are used the VDD primary power must be used within the input voltage range.  
*11 The V5 voltage can be adjusted within the voltage follower operating range by use of voltage regulator.  
*12 Applied if the built-in oscillation circuit is used and if not accessed by the MPU.  
*13 Applied if the built-in oscillation circuit and the built-in power circuit are used, and if not accessed by the MPU.  
The current flowing through the voltage regulator resistors (R1, R2 and R3) is not included.  
When the built-in voltage booster is used, the current consumption for the VDD power supply is shown.  
• Relationship between CL output frequency and frames  
(S1D15206 series)  
• Relationship between CL output frequency and power  
voltage  
The relationship between CL output frequency (fCL) and frame  
frequency (fF) can be determined as follows:  
Ta=25°C  
6
f
CL=5.80  
Applies to the  
S1D15206*11**,  
5
4
3
2
1
Duty  
fF  
S1D15208*11**  
1/9  
1/17  
8 • FOSC/288  
8 • fOSC/272  
S1D15206  
S1D15208  
fCL  
[KHz]  
f
CL=2.90  
1/33  
8 • fOSC/264  
Figure 7  
("fF" indicates the LCD current alternating cycle, but not the  
cycle of f F signals.)  
0
2
4
6
8
VDD [V]  
Figure 8  
Rev.3.5  
EPSON  
4–25  
S1D15206 Series  
Operating voltage range on VDD and V5  
-20  
-15  
-13  
-4  
[V]  
-10  
V5  
-7.2  
-5  
2.4  
6
0
2
4
8
VDD  
[V]  
IDD measuring circuits  
A
A
VDD  
VDD  
V1  
V2  
V1  
V2  
0V  
0V  
-5V  
-5V  
S1D152  
S1D152  
V3  
V4  
V3  
V4  
0V  
-2.7V  
V5  
V5  
VSS  
VSS  
Relationship between CL output frequency and temperature  
7
6
Applies to the  
S1D15206*11**,  
5
S1D15208*11**  
4
fCL  
[KHz]  
3
2
1
-40  
0
40  
80  
120  
[
]
Ta ˚C  
4–26  
EPSON  
Rev.3.5  
S1D15206 Series  
Read/write characteristics I (8080-series microprocessor)  
tAH8  
AC Characteristics  
(1) System buses  
A0  
tAW8  
CS1  
(CS2="1")  
tCYC8  
tCCLW  
tCCLR  
WR,RD  
tCCHW  
tCCHR  
tDH8  
tDS8  
D0~D7  
(WRITE)  
tACC8  
tCH8  
D0~D7  
(READ)  
VSS = 0 V, VDD = 5.0 V ±10%, Ta = –40 to +85°C  
Parameter  
Signal  
Symbol  
Condition  
Min.  
Max.  
Unit  
Address hold time  
Address setup time  
A0  
tAH8  
tAW8  
5
5
ns  
ns  
System cycle time  
tCYC8  
400  
ns  
Control LOW pulse width (WR)  
Control LOW pulse width (RD)  
Control HIGH pulse width (WR)  
Control HIGH pulse width (RD)  
WR  
RD  
WR  
RD  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
100  
75  
145  
145  
Data setup time  
Data hold time  
tDS8  
tDH8  
80  
10  
ns  
ns  
RD access time  
Output disable time  
D0 to D7  
tACC8  
tCH8  
CL=100pF  
80  
60  
ns  
ns  
10  
VSS = 0 V, VDD = 2.7 V to 4.5 V, Ta = –40 to +85°C  
Parameter  
Signal  
Symbol  
Condition  
Min.  
Max.  
Unit  
Address hold time  
Address setup time  
A0  
tAH8  
tAW8  
10  
10  
ns  
ns  
System cycle time  
tCYC8  
800  
ns  
Control LOW pulse width (WR)  
Control LOW pulse width (RD)  
Control HIGH pulse width (WR)  
Control HIGH pulse width (RD)  
WR  
RD  
WR  
RD  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
185  
185  
285  
285  
ns  
ns  
Data setup time  
Data hold time  
tDS8  
tDH8  
160  
20  
ns  
ns  
RD access time  
Output disable time  
D0 to D7  
tACC8  
tCH8  
CL=100pF  
180  
120  
ns  
ns  
20  
Notes: 1. tCCLW and tCCLR are limited depending on the overlap time of CS1 LOW (CS2 HIGH) and WR or RD LOW.  
2. The input signal rise and fall times must be within 15 nanoseconds.  
3. All signal timings are limited based on 20% and 80% of VDD voltage.  
Rev.3.5  
EPSON  
4–27  
S1D15206 Series  
(2) System buses  
Read/write characteristics II (6800-series microprocessor)  
A0  
tAH6  
tAW6  
CS1  
(CS2="1")  
tCYC6  
tEWLW  
tEWLR  
RD (E)  
tEWHW  
tEWHR  
WR (R/W)  
tDH6  
tDS6  
D0~D7  
(WR1TE)  
tACC6  
tOH6  
D0~D7  
(READ)  
VSS = 0 V, VDD = 5.0 V ±10%, Ta = –40 to +85°C  
Parameter  
Signal  
Symbol  
Condition  
Min.  
Max.  
Unit  
System cycle time  
tCYC6  
400  
ns  
Address setup time  
Address hold time  
WR (R/W)  
A0  
tAW6  
tAH6  
20  
10  
ns  
ns  
Data setup time  
Data hold time  
tDS6  
tDH6  
80  
10  
ns  
ns  
D0 to D7  
Output disable time  
Access time  
tOH6  
tACC6  
CL=100pF  
10  
60  
90  
ns  
ns  
Enable  
READ  
tEWLR  
tEWLW  
tEWHR  
tEWHW  
85  
75  
ns  
ns  
ns  
ns  
RD (E)  
RD (E)  
LOW pulse width WRITE  
Enable  
READ  
135  
145  
HIGH pulse width WRITE  
VSS = 0 V, VDD = 2.7 V to 4.5 V, Ta = –40 to +85°C  
Parameter  
Signal  
Symbol  
Condition  
Min.  
Max.  
Unit  
System cycle time  
tCYC6  
800  
ns  
Address setup time  
Address hold time  
WR (R/W)  
A0  
tAW6  
tAH6  
40  
20  
ns  
ns  
Data setup time  
Data hold time  
tDS6  
tDH6  
160  
20  
ns  
ns  
D0 to D7  
Output disable time  
Access time  
tOH6  
tACC6  
CL=100pF  
20  
120  
180  
ns  
ns  
Enable  
LOW pulse width WRITE  
Enable READ  
HIGH pulse width WRITE  
READ  
tEWLR  
tEWLW  
tEWHR  
tEWHW  
185  
145  
285  
325  
ns  
ns  
ns  
ns  
RD (E)  
RD (E)  
Notes: 1. tEWHR and tEWHW are limited depending on the overlap time of CS1 LOW (CS2 high) and RD (E) HIGH.  
2. The input signal rise and fall times must be within 15 nanoseconds.  
3. All signal timings are limited based on 20% and 80% of VDD voltage.  
4–28  
EPSON  
Rev.3.5  
S1D15206 Series  
(3) Serial interface  
tCSS  
tCSH  
CS1  
(CS2="1")  
tSAS  
tSAH  
A0  
tSCYC  
tSLW  
Serial clock (D6)  
Serial data (D7)  
tSHW  
tSDH  
tSDS  
D1 data  
D0 data  
D7 data  
VSS = 0 V, VDD = 5.0 V ±10%, Ta = –40 to +85°C  
Parameter  
Signal  
Symbol  
Condition  
Min.  
Max.  
Unit  
Serial clock cycle  
Serial clock HIGH pulse width  
Serial clock LOW pulse width  
Serial clock  
tSCYC  
tSHW  
tSLW  
500  
150  
150  
ns  
ns  
ns  
Address setup time  
Address hold time  
A0  
tSAS  
tSAH  
120  
200  
ns  
ns  
Data setup time  
Data hold time  
Serial data  
tSDS  
tSDH  
120  
120  
ns  
ns  
CS serial clock time  
CS1  
(CS2="1")  
tCSS  
tCSH  
80  
400  
ns  
ns  
VSS = 0 V, VDD = 2.7 to 4.5V, Ta = –40 to +85°C  
Parameter  
Signal  
Symbol  
Condition  
Min.  
Max.  
Unit  
Serial clock cycle  
Serial clock HIGH pulse width  
Serial clock LOW pulse width  
Serial clock  
tSCYC  
tSHW  
tSLW  
1000  
300  
300  
ns  
ns  
ns  
Address setup time  
Address hold time  
A0  
tSAS  
tSAH  
250  
400  
ns  
ns  
Data setup time  
Data hold time  
Serial data  
tSDS  
tSDH  
250  
250  
ns  
ns  
CS serial clock time  
CS1  
(CS2="1")  
tCSS  
tCSH  
160  
800  
ns  
ns  
Notes: 1. The input signal rise and fall times must be within 15 nanoseconds.  
2. All signal timings are limited based on 20% and 80% of VDD voltage.  
Rev.3.5  
EPSON  
4–29  
S1D15206 Series  
(4) Display control timing  
t WHCL  
CL  
FR  
tr  
tf  
t WLCL  
tDFR  
VSS = 0 V, VDD = 5.0 V ±10%, Ta = –40 to +85°C  
Parameter  
LOW level pulse width  
HIGH level pulse width  
Rise time  
Signal  
Symbol  
Condition  
Min.  
35  
Typ.  
Max.  
Unit  
µs  
CL  
tWLCL  
tWHCL  
tr  
35  
µs  
30  
30  
120  
120  
1.0  
ns  
Fall time  
tf  
ns  
FR delay time  
FR  
tDFR  
–1.0  
0.2  
µs  
VSS = 0 V, VDD = 2.7 V to 4.5 V, Ta = –40 to +85°C  
Parameter  
LOW level pulse width  
HIGH level pulse width  
Rise time  
Signal  
Symbol  
tWLCL  
tWHCL  
tr  
Condition  
Min.  
70  
Typ.  
Max.  
Unit  
µs  
CL  
70  
µs  
60  
60  
240  
240  
2.0  
ns  
Fall time  
tf  
ns  
FR delay time  
FR  
tDFR  
–2.0  
0.4  
µs  
Output timing  
Parameter  
VSS = 0 V, VDD = 5.0 V ±10%,Ta = –40 to +85°C  
Signal  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
FR delay time  
FR  
tDFR  
CL=100pF  
0.2  
0.4  
µs  
VSS = 0 V, VDD = 2.7 V to 4.5 V, Ta = –40 to +85°C  
Parameter  
Signal  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
FR delay time  
FR  
tDFR  
CL=100pF  
0.4  
0.8  
µs  
Notes: 1. All signal timings are limited based on 20% and 80% of VDD voltage.  
4–30  
EPSON  
Rev.3.5  
S1D15206 Series  
(5) Reset timing  
t RW  
Reset input  
(SR1 and SR2  
are LOW.)  
t R  
Internal circuit  
status  
During reset  
End of reset  
VDD = 5.0 V ±10%, Ta = –40 to +85°C  
Parameter  
Reset time  
Signal  
Symbol  
tR  
Condition  
Condition  
Min.  
1.0  
10  
Typ.  
Max.  
Unit  
µs  
Reset LOW pulse width  
Reset input  
tRW  
µs  
V
DD = 2.7 V ±10%, Ta = –40 to +85°C  
Parameter  
Reset time  
Signal  
Symbol  
tR  
Min.  
3.0  
30  
Typ.  
Max.  
Unit  
µs  
Reset LOW pulse width  
Reset input  
tRW  
µs  
Notes: 1. tR (reset time) represents the period from rising edge of reset input to end of internal circuit reset. The S1D15206 series can  
operate normally after tR.  
2. tRW specifies the minimum pulse width of reset input. The low pulse exceeding tRW is required for reset.  
3. The input signal rise and fall times must be within 15 nanoseconds.  
4. All signal timings are limited based on 20% and 80% of VDD voltage.  
Rev.3.5  
EPSON  
4–31  
S1D15206 Series  
10. EXTERNAL WIRINGS  
Power Supply and LCD Power Circuit  
If a single S1D15206 series chip is used and if on-board power supply is used and not used  
If on-chip power supply is used  
If on-chip power supply is NOT used  
VDD  
VDD  
M/S  
M/S  
VOUT  
VOUT  
CAP1+  
CAP1-  
CAP2+  
CAP2-  
VSS  
CAP1+  
CAP1-  
CAP2+  
CAP2-  
VSS  
C1  
C1  
C1  
S1D152*******  
S1D152*******  
VDD  
V1  
VDD  
V1  
V2  
V3  
V4  
V5  
V2  
V3  
V4  
V5  
External  
power  
supply  
C2  
R1  
VR  
VR  
R2  
R3  
Parts list (Reference)  
.
Variable V5 = –9.3 to –6.2 V  
.
C 1  
C 2  
R 1  
R 1  
R 1  
0.1 to 1 µF  
Note: Use jumper and shielded wires  
as the input impedance of VR  
terminal is high.  
0.1 to 1 µF  
2.0 MΩ  
1.0 MΩ  
3.0 MΩ  
Setting value for your reference: 100 kto 1 M.  
S1D1520*D****  
VDD, V0  
In order to select an optimum value for resistor R4, you should  
reference the LCD and the drive waveform.  
R4  
R4  
Notes: 1. Because of high input impedance on VR terminal,  
wiring should made as short as possible and shielded  
wire should be used for the wiring.  
C2  
V1  
V2  
V3  
V4  
2. C1 and C2 depend on size of the liquid crystal panel  
to be driven. The value to be selected for C1 and C2  
must be able to stabilize the liquid crystal drive  
voltage.  
[A setting example]  
Turn on the voltage regulator circuit and the voltage  
follower circuit to apply voltage to VOUT externally.  
Display the LCD heavy load patterns (horizontal  
stripe-shaped), then select the C2 value that can  
stabilize the liquid crystal drive voltages (V1 to V5).  
All C2 capacity values selected, however, must be  
the same. Then, turn on every built-in power  
supplies and select an appropriate C1 value.  
3. In order to regulate the voltage, a capacitor must be  
connected between VDD and VSS (near to the IC).  
R4  
R4  
V5  
4–32  
EPSON  
Rev.3.5  
S1D15206 Series  
Microprocessor Interface  
The S1D15206 series chips can directly connect to 8080 and 6800-series microprocessors. Also, serial interfacing requires less signal lines  
between them.  
8080-series microprocessors  
Wiring example 1:  
VCC  
VDD  
A0  
A0  
SR2  
CS2  
A1 to A7  
IORQ  
Decoder  
RESET  
CS1  
S1D15206  
MPU  
D0 to D7  
RD  
D0 to D7  
RD  
WR  
SR1  
WR  
RES  
VSS  
GND  
Wiring example 2:  
VCC  
VDD  
A0  
A0  
SR2  
CS2  
A1 to A7  
IORQ  
Decoder  
RESET  
CS1  
S1D15206  
MPU  
D0 to D7  
RD  
D0 to D7  
RD  
WR  
SR1  
WR  
RES  
VSS  
GND  
Rev.3.5  
EPSON  
4–33  
S1D15206 Series  
6800-series microprocessors  
Wiring example 1:  
VCC  
VDD  
A0  
A0  
SR2  
CS2  
A1 to A15  
VMA  
Decoder  
RESET  
CS1  
S1D15206  
MPU  
D0 to D7  
E
D0 to D7  
RD (E)  
WR (R/W)  
SR1  
R/W  
RES  
VSS  
GND  
Wiring example 2:  
VCC  
VDD  
A0  
A0  
SR2  
CS2  
A1 to A15  
VMA  
Decoder  
RESET  
CS1  
S1D15206  
MPU  
D0 to D7  
E
D0 to D7  
RD (E)  
WR (R/W)  
SR1  
R/W  
RES  
VSS  
GND  
4–34  
EPSON  
Rev.3.5  
S1D15206 Series  
Serial interface  
Wiring example 1:  
VDD  
VCC  
A0  
Port 1  
Port 2  
SR2  
CS1  
CS2  
RD  
WR  
S1D15206  
MPU  
Port 3  
Port 4  
SI (D7)  
SCL (D6)  
SR1  
RES  
GND  
VSS  
RESET  
Wiring example 2:  
VDD  
VCC  
A0  
Port 1  
SR2  
Port 2  
CS1  
CS2  
RD  
WR  
S1D15206  
MPU  
Port 3  
Port 4  
SI (D7)  
SCL (D6)  
SR1  
RES  
GND  
VSS  
RESET  
Rev.3.5  
EPSON  
4–35  
S1D15206 Series  
LCD Panel and Wiring Examples  
Single-chip configuration  
S1D15206 : 80×17dot  
S1D15208 : 64×33dot  
SEG  
SEG  
80  
64  
S1D15206  
S1D15208  
COM  
COM  
COM  
17  
17  
16  
4–36  
EPSON  
Rev.3.5  
S1D15206 Series  
11. DIMENSIONS  
Plastic 128-Pin QFP5 Package  
± 0.4  
± 0.1  
23.6  
20.0  
102  
65  
103  
64  
Index  
128  
39  
1
38  
0.2  
± 0.1  
0.5  
1.8  
The package dimensions are subject to change without notice.  
Rev.3.5  
EPSON  
4–37  
S1D15206 Series  
TPC shape S1D15206T00A (Reference drawing)  
*
( M a r k i n g a r e a )  
( M o l d a r e a )  
This dimensional outline drawing is subject to change for improvements without prior notice  
4–38  
EPSON  
Rev.3.5  

相关型号:

S1D15300D10A

Interface Circuit
SEIKO

S1D15300D10B

Liquid Crystal Driver, 133-Segment, CMOS, DIE-172
SEIKO

S1D15300D15A

Interface Circuit
SEIKO

S1D15300D15B

LIQUID CRYSTAL DISPLAY DRIVER, UUC172, DIE-172
SEIKO

S1D15300T

Liquid Crystal Driver, 133-Segment, CMOS, TCP
SEIKO

S1D15301D00A

LIQUID CRYSTAL DISPLAY DRIVER, UUC172, DIE-172
SEIKO

S1D15301D00B

Liquid Crystal Driver, 132-Segment, CMOS, DIE-172
SEIKO

S1D15302D00A

LIQUID CRYSTAL DISPLAY DRIVER, UUC172, DIE-172
SEIKO

S1D15302D00B

Liquid Crystal Driver, 133-Segment, CMOS, DIE-172
SEIKO

S1D15302D11B

Liquid Crystal Driver, 133-Segment, CMOS, DIE-172
SEIKO

S1D15302D14A

Liquid Crystal Driver, 133-Segment, CMOS, DIE-172
SEIKO

S1D15303D15A

LIQUID CRYSTAL DISPLAY DRIVER, UUC172, DIE-172
SEIKO