S1D15300D15A [SEIKO]

Interface Circuit;
S1D15300D15A
型号: S1D15300D15A
厂家: SEIKO EPSON CORPORATION    SEIKO EPSON CORPORATION
描述:

Interface Circuit

文件: 总41页 (文件大小:325K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5. S1D15300 Series  
Rev. 1.4  
Contents  
1. DESCRIPTION ................................................................................................................................................5-1  
2. FEATURES......................................................................................................................................................5-1  
3. BLOCK DIAGRAM (S1D15300D00B ) ...........................................................................................................5-2  
*
4. PAD LAYOUT ..................................................................................................................................................5-3  
5. PIN DESCRIPTION .........................................................................................................................................5-5  
6. FUNCTIONAL DESCRIPTION ........................................................................................................................5-8  
7. COMMANDS .................................................................................................................................................5-19  
8. COMMAND SETTING (For Refrence) ...........................................................................................................5-24  
9. ABSOLUTE MAXIMUM RATINGS ................................................................................................................5-27  
10. ELECTRICAL CHARACTERISTICS..............................................................................................................5-28  
11. MPU INTERFACE (For Reference) ...............................................................................................................5-36  
12. CONNECTION BETWEEN LCD DRIVERS...................................................................................................5-37  
– i –  
Rev. 1.4  
S1D15300 Series  
tions. Accordingly, this driver can be operated with a minimum  
current consumption and its on-board low-current-consumption  
liquid crystal power supply can implement a high-performance  
handy display system with a minimum current consumption and a  
smallest LSI configuration.  
Two types of S1D15300 series are available: one in which common  
outputs are arranged on a single side and the other in which common  
outputs are arranged on both sides.  
1. DESCRIPTION  
The S1D15300 series is a single-chip LCD driver for dot-matrix  
liquid crystal displays (LCD’s) which is directly connectable to a  
microcomputer bus. It accepts 8-bit serial or parallel display data  
directly sent from a microcomputer and stores it in an on-chip  
display RAM. It generates an LCD drive signal independent of  
microprocessor clock.  
The use of the on-chip display RAM of 65 × 132 bits and a one-to-  
one correspondence between LCD panel pixel dots and on-chip  
RAM bits permits implementation of displays with a high degree of  
freedom.  
As a total of 133 circuits of common and segment outputs are  
incorporated, a single chip of S1D15300 can make 33 × 100-dot (16  
× 16-dot kanji font: 6 columns × 2 lines) displays, and a single chip  
of S1D15301 can make 65 × 132-dot (kanji font: 8 columns x 4 lines)  
displays when the S1D15301 is combined with the common driver  
S1D16700.  
2. FEATURES  
• Direct RAM data display using the display RAM. When  
RAM data bit is 0, it is not displayed. When RAM data bit  
is 1, it is displayed. (At normal display)  
• RAM capacity: 65 × 132 = 8580 bits  
• High-speed 8-bit microprocessor interface allowing direct  
connection to both the 8080 and 6800.  
• Serial interface  
The S1D15302 can display the 65 × 200-dot (or 12-column by 4-line  
Kanji font) area using two ICs in master and slave modes. As an  
independent static indicator display is provided for time-division  
driving, the low-power display is realized during system standby  
and others.  
• Many command functions: Read/Write Display Data, Dis-  
play ON/OFF, Normal/Reverse Display, Page Address Set,  
Set Display Start Line, Set Column Address, Read Status,  
All Display ON/OFF, Set LCD Bias, Electronic contrast  
Controls, Read Modify Write, Select Segment Driver Direc-  
tion, Power Save  
No external operation clock is required for RAM read/write opera-  
• Series specifications (in cases of chip shipments)  
Type 1 [VREG (Built-in power supply regulating voltage)  
Temperature gradient: -0.2% / °C]  
Name  
Duty  
1/33  
1/33  
1/65  
1/65  
LCD bias  
1/5, 1/6  
1/5, 1/6  
1/6, 1/8  
1/6, 1/8  
Segment driver COM driver Display area Remarks  
✽✽  
✽✽  
✽✽  
✽✽  
S1D15300D00  
S1D15300D10  
S1D15301D00  
S1D15302D00  
100  
100  
132  
100  
33  
33  
0
33 × 100  
33 × 100  
65 × 132  
65 × 200  
COM single-side layout  
COM dual-side layout  
S1D16700 is used as the COM.  
COM single-side, right-hand layout  
33  
✽✽  
S1D15302D11  
S1D15305D10  
1/65  
1/35  
1/6, 1/8  
1/5, 1/6  
100  
98  
33  
35  
65 × 200  
35 × 98  
COM single-side, left-hand layout  
COM both-side layout  
✽✽  
Type 2 [VREG Temperature gradient: 0.00% / °C]  
Name  
Duty  
1/33  
1/65  
1/17  
1/9  
LCD bias  
1/5, 1/6  
1/6, 1/8  
1/5  
Segment driver COM driver Display area Remarks  
✽✽  
✽✽  
✽✽  
✽✽  
S1D15300D15  
S1D15302D14  
S1D15303D15  
S1D15304D14  
100  
100  
116  
124  
33  
33  
17  
9
33 × 100  
65 × 200  
17 × 116  
9 × 124  
COM both-side layout  
COM single-side, right-hand layout  
COM both-side layout  
1/5  
COM single-side layout  
Note: The S1D15300 series has the following subcodes depending on their shapes. (The S1D15300 examples are given.)  
: TCP (The TCP subcode differs from the inherent chip subcode.)  
S1D15300T****  
S1D15300D****  
S1D15300D**A*  
: Bear chips  
: Al-pad chip  
S1D15300D**B*  
: Au-bump chip  
• On-chip LCD power circuit: Voltage booster, voltage  
regulator, voltage follower × 4.  
• Wide operating temperature range:  
Ta = -40 to 85°C  
• On-chip electronic contrast control functions  
• Ultra low power consumption  
• CMOS process  
• Package: TCP and bare chip  
• Non-radiation-resistant design  
• Power supply voltages:  
V
V
DD - VSS -2.4 V to -6.0 V  
DD - V5 -4.5 V to -16.0 V  
Rev.1.4  
EPSON  
5–1  
S1D15300 Series  
3. BLOCK DIAGRAM (S1D15300D00B )  
*
COMS  
O15  
O0  
O99 O100  
·····················  
VSS  
···············································  
VDD  
V1  
V2  
V3  
Segment driver  
Common driver  
Shift register  
V4  
V5  
CAP1+  
CAP1–  
Display data latch  
Power supply  
CAP2+  
circuit  
CAP2–  
CAP3–  
VOUT  
VR  
132 x 65-dot  
display data RAM  
Output  
status  
selector  
circuit  
Column address decoder  
8-bit column address counter  
8-bit column address register  
Page address  
register  
FRS  
FR  
Display timing  
generator circuit  
CL  
DYO  
DOF  
M//S  
Status  
register  
Bus holder  
Command decoder  
Oscillator  
VS1  
Microprocessor interface  
I/O buffer  
D4 D3  
CS1 CS2 A0 RD WR C86 P/S RES  
(E) (R/W)  
D7 D6  
(SI) (SCL)  
D5  
D2 D1  
D0  
5–2  
EPSON  
Rev.1.4  
S1D15300 Series  
4. PAD LAYOUT  
S1D15300 series chips  
51  
1
52  
172  
Die No.  
86  
138  
137  
87  
Chip Size:  
Pad Pitch:  
6.65x4.57 mm  
118 µm (Min.)  
S1D1530*D**A*  
(Al-pad chip)  
90x90 µm  
300 µm  
Pad Center Size:  
Chip Thickness:  
S1D1530*D**B*  
(Al-bump chip)  
76x76 µm  
Bump Size:  
Bump Height:  
Chip Thickness:  
23µm (Typ.)  
625 µm  
Rev.1.4  
EPSON  
5–3  
S1D15300 Series  
Pad Center Coordinates  
Unit: µm  
PAD PIN  
PAD PIN  
No. Name  
51 O5  
PAD PIN  
PAD PIN  
No. Name  
X
Y
X
Y
No. Name  
X
Y
No. Name  
151 O105  
152 O106  
153 O107  
154 O108  
155 O109  
156 O110  
157 O111  
158 O112  
159 O113  
160 O114  
161 O115  
162 O116  
163 O117  
164 O118  
165 O119  
166 O120  
167 O121  
168 O122  
169 O123  
170 O124  
171 O125  
172 O126  
X
Y
1
2
3
4
5
6
7
8
9
O127  
O128  
O129  
O130  
O131  
2986 2142  
2862  
-2986 2142 101 O55  
-3178 2006 102 O56  
1888 103 O57  
1770 104 O58  
1652 105 O59  
1534 106 O60  
1416 107 O61  
1298 108 O62  
1180 109 O63  
1062 110 O64  
-1298 -2142  
-1180  
-1062  
-944  
3178 -472  
-354  
-236  
-118  
0
52 O6  
2738  
53 O7  
2614  
54 O8  
2490  
55 O9  
-826  
COMS 2366  
56 O10  
57 O11  
58 O12  
59 O13  
60 O14  
61 O15  
62 O16  
63 O17  
64 O18  
65 O19  
66 O20  
67 O21  
68 O22  
69 O23  
70 O24  
71 O25  
72 O26  
73 O27  
74 O28  
75 O29  
76 O30  
77 O31  
78 O32  
79 O33  
80 O34  
81 O35  
82 O36  
83 O37  
84 O38  
85 O39  
86 O40  
87 O41  
88 O42  
89 O43  
90 O44  
91 O45  
92 O46  
93 O47  
94 O48  
95 O49  
96 O50  
97 O51  
98 O52  
99 O53  
100 O54  
-708  
118  
FRS  
FR  
2242  
2124  
2006  
1888  
1770  
1652  
1534  
1416  
1298  
1180  
1062  
944  
-590  
236  
-472  
354  
DYO  
-354  
472  
10 CL  
-236  
590  
11 DOF  
12 VS1  
13 M/S  
14 RES  
15 P/S  
16 CS1  
17 CS2  
18 C86  
19 A0  
944  
826  
708  
590  
472  
354  
236  
118  
0
111 O65  
112 O66  
113 O67  
114 O68  
115 O69  
116 O70  
117 O71  
118 O72  
119 O73  
-118  
708  
0
826  
118  
944  
236  
1062  
1180  
1298  
1416  
1534  
1652  
1770  
1888  
2006  
354  
472  
590  
708  
826  
826  
20 WR(W/R)  
21 RD(E)  
22 VDD  
23 D0  
708  
-118 120 O74  
-236 121 O75  
-354 122 O76  
-472 123 O77  
-590 124 O78  
-708 125 O79  
-826 126 O80  
-944 127 O81  
-1062 128 O82  
-1180 129 O83  
-1298 130 O84  
-1416 131 O85  
-1534 132 O86  
-1652 133 O87  
-1770 134 O88  
-1888 135 O89  
-2006 136 O90  
-2986 -2142 137 O91  
944  
590  
1062  
1180  
1298  
1416  
1534  
1652  
1770  
1888  
2006  
2124  
2242  
2366  
2490  
2614  
2738  
2862  
2986  
3178 -2006  
-1888  
-1770  
-1652  
-1534  
-1416  
-1298  
-1180  
-1062  
-944  
472  
354  
24 D1  
236  
25 D2  
118  
26 D3  
0
27 D4  
-118  
-236  
-354  
-472  
-590  
-708  
-826  
28 D5  
29 D6(SCL)  
30 D7(SI)  
31 VSS  
32 VOUT  
33 CAP3-  
34 CAP1+ -944  
35 CAP1- -1062  
36 CAP2+ -1180  
37 CAP2- -1298  
38 V5  
39 VR  
40 VDD  
41 V1  
42 V2  
43 V3  
44 V4  
45 V5  
46 O0  
47 O1  
48 O2  
49 O3  
50 O4  
-1416  
-1534  
-1652  
-1770  
-1888  
-2006  
-2124  
-2242  
-2366  
-2490  
-2614  
-2738  
-2862  
-2862  
-2738  
-2614  
-2490  
-2366  
-2242  
-2124  
-2006  
-1888  
-1770  
-1652  
-1534  
-1416  
138 O92  
139 O93  
140 O94  
141 O95  
142 O96  
143 O97  
144 O98  
145 O99  
146 O100  
147 O101  
148 O102  
149 O103  
150 O104  
-826  
-708  
-590  
5–4  
EPSON  
Rev.1.4  
S1D15300 Series  
5. PIN DESCRIPTION  
Power Supply  
Name  
VDD  
I/O  
Description  
+5V power supply. Connect to microprocessor power supply pin VCC  
Ground  
Number of pins  
Supply  
Supply  
Supply  
.
2
1
VSS  
V1, V2  
V3, V4  
V5  
LCD driver supply voltages. The voltage determined by LCD cell is  
impedance-converted by a resistive driver or an operational amplifier  
for application. Voltages should be the following relationship:  
6
V
DD V1 V2 V3 V4 V5  
When the on-chip operating power circuit is on, the following voltages  
are given to V1 to V4 by the on-chip power circuit. Voltage selection is  
performed by the Set LCD Bias command. (The S1D15303 and S1D15304  
are fixed to 1/5 bias.)  
S1D15300/S1D15305 S1D15301  
S1D15302  
V1  
V2  
V3  
V4  
1/5•V5 1/6•V5 1/6•V5 1/8•V5 1/6•V5 1/8•V5  
2/5•V5 2/6•V5 2/6•V5 2/8•V5 2/6•V5 2/8•V5  
3/5•V5 4/6•V5 4/6•V5 6/8•V5 4/6•V5 6/8•V5  
4/5•V5 5/6•V5 5/6•V5 7/8•V5 5/6•V5 7/8•V5  
S1D15303  
S1D15304  
V1  
V2  
V3  
V4  
1/5•V5  
2/5•V5  
3/5•V5  
4/5•V5  
1/5•V5  
2/5•V5  
3/5•V5  
4/5•V5  
LCD Driver Supplies  
Name  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
CAP3–  
VOUT  
I/O  
Description  
Number of pins  
O
O
O
O
O
I/O  
I
DC/DC voltage converter capacitor 1 positive connection  
DC/DC voltage converter capacitor 1 negative connection  
DC/DC voltage converter capacitor 2 positive connection  
DC/DC voltage converter capacitor 2 negative connection  
DC/DC voltage converter capacitor 1 negative connection  
DC/DC voltage converter output  
1
1
1
1
1
1
1
VR  
Voltage adjustment pin. Applies voltage between VDD and V5 using  
a resistive divider.  
Microprocessor Interface  
Name  
I/O  
Description  
Number of pins  
D0 to D7  
I/O  
8-bit bi-directional data bus to be connected to the standard 8-bit or 16-bit  
microprocessor data bus.  
8
(SI)  
(SCL)  
When the serial interface selects;  
D7: Serial data input (SI)  
D6: Serial clock input (SCL)  
A0  
I
Control/display data flag input. It is connected to the LSB of micro-  
processor address bus. When LOW, the data on D0 to D7 is control data.  
When HIGH, the data on D0 to D7 is display data.  
1
RES  
When RES is caused to go LOW, initialization is executed.  
A reset operation is performed at the RES signal level.  
1
2
1
CS1  
CS2  
I
I
Chip select input. Data input/output is enabled when -CS1 is LOW and  
CS2 is HIGH. When chip select is non-active, D0 to D7 will be "HZ".  
RD  
(E)  
• When interfacing to an 8080 series microprocessor:  
Active LOW. This input connects the RD signal of the 8080 series  
microprocessor. While this signal is LOW, the S1D15300 series data  
bus output is enabled.  
• When interfacing to a 6800 series microprocessor:  
Active HIGH. This is used as an enable clock input pin of the 6800 series  
microprocessor.  
Rev.1.4  
EPSON  
5–5  
S1D15300 Series  
Name  
I/O  
Description  
Number of pins  
WR  
(R/W)  
I
• Write enable input. When interfacing to an 8080-series microprocessor,  
WR is active LOW.  
1
• When interfacing to an 6800-series microprocessor,  
it will be read mode when R/W is HIGH and it will be write mode when  
R/W is LOW.  
R/W = “1”:Read  
R/W = “0”:Write  
C86  
P/S  
I
I
Microprocessor interface select terminal.  
C86 = HIGH: 6800 series microprocessor interface  
C86 = LOW: 8080 series microprocessor interface  
1
1
Serial data input/parallel data input select pin.  
P/S Chip select Data/command Data Read/write Serial clock  
HIGH CS1, CS2  
LOW CS1, CS2  
A0  
A0  
D0-D7 RD, WR  
SI(D7) Write only SCL(D6)  
* In serial mode, no data can be read from RAM.  
When P/S = LOW, D0 to D5 are HZ and RD and WR must be fixed HIGH  
or LOW.  
LCD Driver Outputs  
Name  
I/O  
Description  
Number of pins  
M/S  
I
S1D15300 series master/slave mode select input. When a necessary  
signal is output to the LCD, the master operation is synchronized with  
the LCD system, while when a necessary signal is input to the LCD,  
the slave operation is synchronized with the LCD system.  
M/S = HIGH: Master operation  
1
M/S = LOW : Slave operation  
The folLOWing is provided depending on the M/S status.  
Power  
supply  
circuit  
OSC  
Model  
Status  
CL  
FR  
DYO  
FRS DOF  
circuit  
Master Enabled Enabled Output Output Output Output Output  
S1D1530*D****  
Slave Disabled Disabled Input Input  
HZ  
HZ  
Input  
CL  
FR  
I/O  
I/O  
I/O  
Display clock input/output. When the S1D15300 series selects master/  
slave mode, each CL pin is connected. When it is used in  
combination with the common driver, this input/output is connected to  
common driver YSCL pin.  
M/S = HIGH: Output  
M/S = LOW: Input  
1
1
1
LCD AC signal input/output. When the S1D15300 series selects master/  
slave mode, each FR pin is connected.  
When the S1D15300 series selects master mode this input/output is  
connected to the common driver FR pin.  
M/S = HIGH: Output  
M/S = LOW: Input  
DYO  
Common drive signal output. This output is enabled for only at master  
operation and connects to the common driver DIO pin. It becomes HZ  
at slave operation.  
VS1  
O
Test pin. Don’t connect.  
1
1
DOF  
I/O  
LCD blanking control input/output. When the S1D15300 series selects  
master/slave mode, the respective DOF pin is connected. When it  
is used in combination with the common driver (S1D16305), this output/  
input is connected to the common driver DOFF pin.  
M/S = HIGH: Output  
M/S = LOW: Input  
FRS  
O
Static drive output.  
This is enabled only at master operation and used together with the FR  
pin. This output becomes HZ at slave operation.  
1
5–6  
EPSON  
Rev.1.4  
S1D15300 Series  
Name  
I/O  
Description  
Number of pins  
On  
(SEG n)  
(Com n)  
O
LCD drive output. The following assignment is made depending on  
the model.  
132  
SEG  
COM  
O0~O99  
O100~O131  
S1D15300D00**  
S1D15300D10**  
S1D15300D15**  
S1D15301D00**  
S1D15302D00**  
S1D15302D14**  
S1D15302D11**  
S1D15303D15**  
S1D15304D14**  
S1D15305D10**  
O16~O115  
O0~O131  
O0~O99  
O0~O15, O116~O131  
O100~O131  
O32~O131  
O8~O123  
O0~O123  
O18~O115  
O0~O31  
O0~O7, O124~O131  
O124~O131  
O0~O17, O116~O131  
SEG output. LCD segment drive output. One of VDD, V2, V3 and  
V5 levels is selected by combination of the contents of display RAM  
and FR signal.  
On output voltage  
Normal display Reverse display  
RAM data  
HIGH  
FR  
HIGH  
LOW  
HIGH  
LOW  
VDD  
V2  
V5  
V3  
V2  
VDD  
V5  
0
V3  
Power save  
VDD  
COM output. LCD common drive output. One of VDD, V1, V4 and V5  
levels is selected by combination of scan data and FR signal.  
Scan data  
HIGH  
FR  
On output voltage  
HIGH  
LOW  
HIGH  
LOW  
V5  
VDD  
V1  
LOW  
V4  
Power save  
VDD  
COMS  
O
Indicator COM output. When it is not used, it is made open.  
Effective only with the S1D15300, S1D15302, S1D15303 and S1D15304,  
S1D15305 and “HZ” with the S1D15301.  
1
When multiple numbers of the S1D15300, S1D15302, S1D15303 and  
S1D15304, S1D15305 are used, the same COMS signal is output to both  
master and slave units.  
Total  
172  
Rev.1.4  
EPSON  
5–7  
S1D15300 Series  
6. FUNCTIONAL DESCRIPTION  
Microprocessor Interface  
Interface type selection  
The S1D15300 series can transfer data via 8-bit bi-directional data buses (D7 to D0) or via serial data input (SI). When HIGHor LOW is selected  
for the polarity of P/S pin, either 8-bit parallel data input or serial data input can be selected as shown in Table 1. When serial data input is selected,  
RAM data cannot be read out.  
Table 1  
P/S  
Type  
CS1  
CS2  
A0  
RD  
WR  
C86  
D7  
D6  
D0 to D5  
HIGH  
LOW  
Parallel input  
Serial input  
CS1  
CS1  
CS2  
CS2  
A0  
A0  
RD  
WR  
C86  
D7  
SI  
D6  
SCL  
D0 to D5  
(HZ)  
“–” must always be HIGH or LOW.  
Parallel input  
When the S1D15300 series selects parallel input (P/S = HIGH), the 8080 series microprocessor or 6800 series microprocessor can be selected  
by causing the C86 pin to go HIGH or LOW as shown in Table 2.  
Table 2  
C86  
Type  
CS1  
CS2  
A0  
RD  
WR  
D0 to D7  
HIGH  
6800 micro-  
processor bus  
8080 micro-  
processor bus  
CS1  
CS2  
A0  
E
R/W  
D0 to D7  
LOW  
CS1  
CS2  
A0  
RD  
RW  
D0 to D7  
Data Bus Signals  
The S1D15300 series identifies the data bus signal according to A0, E, R/W, (RD, WR) signals.  
Table 3  
Common  
6800 processor  
8080 processor  
Function  
A0  
1
(R/W)  
RD  
0
WR  
1
1
0
1
0
Reads display data.  
Writes display data.  
Reads status.  
1
1
0
0
0
1
0
1
0
Writes control data in internal register. (Command)  
Serial Interface (P/S is low)  
The serial interface consists of an 8-bit shift register and a 3-bit counter. The serial data input and serial clock input are enabled when CS1 is  
low and CS2 is high (in chip select status). When chip is not selected, the shift register and counter are reset.  
Serial data of D7, D6, ..., D0 is read at D7 in this sequence when serial clock (SCL) goes high. They are converted into 8-bit parallel data and  
processed on rising edge of every eighth serial clock signal.  
The serial data input (S1) is determined to be the display data when A0 is high, and it is control data when A0 is low. A0 is read on rising edge  
of every eighth clock signal.  
Figure 1 shows a timing chart of serial interface signals. The serial clock signal must be terminated correctly against termination reflection and  
ambient noise. Operation checkout on the actual machine is recommended.  
CS1  
CS2  
D7 D6 D5 D4 D3 D2 D1  
D0 D7 D6 D5 D4 D3 D2 D1  
SI  
SCL  
1
2
3
4
5
6
7
8
9
10  
11 12  
13 14  
A0  
Figure 1  
5–8  
EPSON  
Rev.1.4  
S1D15300 Series  
Also, the microprocessor temporarily stores display data in bus  
holder, and stores it in display RAM until the next data write cycle  
starts.  
Chip Select Inputs  
The S1D15300 series has two chip select pins, CS1 and CS2 and can  
interface to a microprocessor when CS1 is low and CS2 is high.  
When these pins are set to any other combination, D0 to D7 are high  
impedance and A0, RD and WR inputs are disabled.  
When serial input interface is selected, the shift register and counter  
are reset.  
When viewed from the microprocessor, the S1D15300 series access  
speed greatly depends on the cycle time rather than access time to the  
display RAM (tACC). It shows the data transfer speed to/from the  
microprocessor can increase. If the cycle time is inappropriate, the  
microprocessor can insert the NOP instruction that is equivalent to  
the wait cycle setup. However, there is a restriction in the display  
RAM read sequence. When an address is set, the specified address  
data is NOT output at the immediately following read instruction.  
The address data is output during second data read. A single dummy  
read must be inserted after address setup and after write cycle (refer  
to Figure 2).  
Access to Display Data RAM and Internal Registers  
The S1D15300 series can perform a series of pipeline processing  
between LSI’s using bus holder of internal data bus in order to match  
the operating frequency of display RAM and internal registers with  
the microprocessor. For example, the microprocessor reads data  
from display RAM in the first read (dummy) cycle, stores it in bus  
holder, and outputs it onto system bus in the next data read cycle.  
•Write  
WR  
MPU  
DATA  
n
n+1  
n+2  
n+3  
Latched  
n
Bus holder  
Write signal  
n+1  
n+2  
n+3  
Internal  
timing  
•Read  
WR  
RD  
MPU  
DATA  
N
N
n
n+1  
Address  
preset  
Read signal  
Internal  
timing  
Preset  
Incremented  
N+1  
Column  
address  
N
N+2  
N
n
n+1  
n+2  
Bus holder  
Set address n  
Dummy read  
Data Read address n  
Data Read address n+1  
Figure 2  
COM0 (usually, the top line of screen) is determined using register  
data. The register is also used for screen scrolling and page  
switching.  
Busy Flag  
The Busy flag is set when the S1D15300 series starts to operate.  
During operating, it accepts Read Status instruction only. The busy  
flag signal is output at pin D7 when Read Status is issued. If the cycle  
time (tcyc) is correct, the microprocessor needs not to check the flag  
before issuing a command. This can greatly improve the microproc-  
essor performance.  
The Set Display Start Line command sets the 6-bit display start  
address in this register. The register data is preset on the line counter  
each time FR signal status changes. The line counter is incremented  
by CL signal and it generates a line address to allow 132-bit  
Initial Display Line Register  
When the display RAM data is read, the display line according to  
Rev.1.4  
EPSON  
5–9  
S1D15300 Series  
RAM area dedicate to the indicator, and display data D0 is only  
valid.  
Column Address Counter  
This is a 8 bit presettable counter that provides column address to the  
display RAM (refer to Figure 4). It is incremented by 1 when a Read/  
Write command is entered. However, the counter is not incremented  
but locked if a non-existing address above 84H is specified. It is  
unlocked when a column address is set again. The Column Address  
counter is independent of Page Address register.  
When ADC Select command is issued to display inverse display, the  
column address decoder inverts the relationship between RAM  
column address and display segment output.  
Display Data RAM  
The display data RAM stores pixel data for LCD. It is a 65-column  
by 132-row (8-page by 8 bit+1) addressable array. Each pixel can  
be selected when page and column addresses are specified.  
The time required to transfer data is very short because the micro-  
processor enters D0 to D7 corresponding to LCD common lines as  
shown in Figure 3. Therefore, multiple S1D15300 can easily  
configure a large display having the high flexibility with very few  
data transmission restriction.  
The microprocessor writes and reads data to/from the RAM through  
I/O buffer. As LCD controller operates independently, data can be  
written into RAM at the same time as data is being displayed,  
without causing the LCD to flicker.  
Page Address Register  
This is a 4-bit page address register that provides page address to the  
display RAM (refer to Figure 4). The microprocessor issues Set  
Page Address command to change the page and access to another  
page. Page address 8 (D3 is high, but D2, D1 and D0 are low) is  
D0  
D1  
1
0
COM0  
COM1  
D2  
D3  
D4  
1
0
0
COM2  
COM3  
COM4  
Display data RAM  
Display on LCD  
Figure 3  
5–10  
EPSON  
Rev.1.4  
S1D15300 Series  
Relationship between display data RAM and addresses (if initial display line is 1CH):  
Line  
address  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
COM  
output  
Page  
Data  
address  
D0  
COM 0  
COM 1  
COM 2  
COM 3  
COM 4  
COM 5  
COM 6  
COM 7  
COM 8  
COM 9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COMS  
D1  
D2  
D3, D2,  
Page 0  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1,D0  
0,0,0,0  
Page 1  
0,0,0,1  
0,0,1,0  
0,0,1,1  
0,1,0,0  
0,1,0,1  
0,1,1,0  
Page 2  
1/64  
19  
1A  
1B  
1C  
1D  
1E  
1F  
Page 3  
Start  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
Page 4  
1/32  
Page 5  
Page 6  
Page 7  
Page 8  
0,1,1,1  
1,0,0,0  
Page 8 is accessed during  
1/65 or 1/33 duty.  
Figure 4  
Rev.1.4  
EPSON  
5–11  
S1D15300 Series  
Output Status Selector  
The S1D15300 series except S1D15301 can set a COM output scan direction to reduce restrictions at LCD module assembly. This scan direction  
is set by setting “1” or “0” in the output status register D3. Fig.5 shows the status.  
Fig. 5 shows the status.  
LCD output  
O0  
O131  
83 (H)  
0 (H)  
ADC  
"0"  
"1"  
0 (H)  
83 (H)  
Column address  
Display data RAM  
(D0)  
D3  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
SEG100  
SEG100  
COM0  
COM31  
COM0  
✽✽  
S1D15300D00  
COM31  
✽✽  
✽✽  
✽✽  
✽✽  
✽✽  
S1D15300D10  
S1D15300D15  
S1D15301D00  
S1D15302D00  
S1D15302D14  
COM15  
0
SEG100  
SEG100  
SEG132  
COM16 31  
COM16 31  
COM15  
0
SEG100  
SEG100  
0
COM0  
COM31  
COM0  
COM31  
COM31  
COM0  
SEG100  
SEG100  
✽✽  
✽✽  
✽✽  
✽✽  
S1D15302D11  
S1D15303D15  
S1D15304D14  
S1D15305D10  
31  
COM7  
COM8  
0
COM8  
15  
0
SEG116  
SEG116  
SEG124  
SEG124  
SEG98  
15  
COM7  
COM0  
COM7  
7
0
COM18 33  
COM17  
COM17  
0
0
SEG98  
COM16 33  
The COMS pin is assigned to COM32 on S1D15300 and it is assigned to COM64 on S1D15302 independent from their output status.  
The COMS pin of the S1D15303 is assigned to COM16 the COMS pin of the S1D15304 is assigned to COM8 and the COMS pin of the S1D15305  
is assigned to COM34.  
Figure 5 shows the COM output pin numbers of S1D15302D00** and S1D15302D11** in the master mode. In the slave mode, COM0 to  
COM31 must be replaced by COM32 to COM63.  
FR (master output)  
64  
0
1
2
30 31  
64  
0
1
2
30 31  
Master Common  
Slave Common  
63 64  
32 33 34  
62 63 64  
32  
When the S1D15300 is operated in slave mode on the assumption of  
multi-chip, the FR pin and CL pin become input pins.  
Display Timing Generator  
This section explains how the display timing generator circuit  
operates.  
Common timing signal generation  
The display clock generates an internal common timing signal and  
a start signal (DYO) to the common driver. A display clock resulting  
from frequency division of an oscillation clock is output from the CL  
pin.  
When an AC signal (FR) is switched, a high pulse is output as a DYO  
output at the training edge of the previous display clock.  
Refer to Fig. 6. The DYO output is output only in master mode.  
When the S1D15300 series is used for multi-chip, the slave requires  
to receive the FR, CL, DOF signals from the master.  
Table 4 shows the FR, CL, DYO and DOF status.  
Table 4  
Signal generation to line counter and display data latch  
circuit  
The display clock (CL) generates a clock to the line counter and a  
latch signal to the display data latch circuit.  
The line address of the display RAM is generated in synchronization  
with the display clock. 132-bit display data is latched by the display  
data latch circuit in synchronization with the display clock and  
output to the segment LCD drive output pin.  
The display data is read to the LCD drive circuit completely  
independent of access to the display data RAM from the microproc-  
essor.  
Operation  
Model  
FR  
Output Output Output Output  
Input Input Hz Input  
CL  
DYO  
DOF  
mode  
LCD AC signal (FR) generation  
Master  
S1D1530 D****  
The display clock generates an LCD AC signal (FR). The FR causes  
the LCD drive circuit to generate a AC drive waveform.  
It generates a 2-frame AC drive waveform.  
*
Slave  
HZ denotes a high-impedance status.  
5–12  
EPSON  
Rev.1.4  
S1D15300 Series  
Example of S1D15300D00B 1/33 duty  
*
Dual-frame AC driver waveforms  
32 33  
1
2
3
4
5
6
28 29 30 31 32 33  
1
2
3
4
5
CL  
FR  
DYO  
V
DD  
V1  
COM0  
COM1  
V4  
V5  
V
DD  
V1  
V4  
V5  
RAM data  
SEGn  
V
DD  
V2  
V3  
V5  
Fig. 6  
The power circuit is controlled by Set Power Control command.  
This command sets a three-bit data in Power Control register to  
select one of eight power circuit functions. The external power  
supply and part of internal power circuit functions can be used  
simultaneously. The following explains how the Set Power  
Control command works.  
Display Data Latch Circuit.  
This circuit temporarily stores (or latches) display data (during a  
single common signal period) when it is output from display RAM  
to LCD panel driver circuit. This latch is controlled by Display in  
normal/in reverse Display ON/OFF and Static All-display on com-  
mands. These commands do not alter the data.  
[Control by Set Power Control command]  
LCD Driver  
This is a multiplexer circuit consisting of 133 segment outputs to  
generate four-level LCD panel drive signals. The LCD panel drive  
voltage is generated by a specific combination of display data, COM  
scan signal, and FR signal. Figure 8 gives an example of SEG and  
COM output waveforms.  
D2 turns on when triple booster control bit goes high, and D2 turns  
off when this bit goes low.  
D1 turns on when voltage regulator control bit goes high, and D1  
turns off when this bit goes low.  
Oscillator Circuit  
D0 turns on when voltage follower control bit goes high, and D0  
turns off when this bit goes low.  
This is an oscillator having a complete built-in type CR, and its  
output is used as the display timing signal source or as the clock for  
voltage booster circuit of the LCD power supply.  
[Practical combination examples]  
Status 1: To use only the internal power supply.  
Status 2: To use only the voltage regulator and voltage follower.  
Status 3: To use only the voltage follower. input the external  
voltage as V5=Vout.  
Status 4: To use only an external power supply because the internal  
power supply does not operate.  
The oscillator circuit is available in master mode only.  
The oscillator signal is divided and output as display clock at CL pin.  
Power Supply Circuit  
The power supply circuit generates voltage to drive the LCD panel  
at low power consumption, and is available in S1D15300 master  
mode only. The power supply circuit consists of a voltage booster  
voltage regulator, and LCD drive voltage follower.  
The power supply circuit built in the S1D15300 series is set for a  
small-scale LCD panel and is inappropriate to a large-pixel panel  
and a large-display-capacity LCD panel using multiple chips. As the  
large LCD panel has the dropped display quality due to a large load  
capacity, it must use an external power source.  
* The voltage booster terminals are CAP1+, CAP1-, CAP2+, CAP2-  
and CAP3-.  
* Combinations other than those shown in the above table are  
possible but impractical.  
Voltage  
booster  
Voltage  
regulator  
Voltage  
follower  
External voltage Voltage booster Voltage regulator  
D2 D1 D0  
input  
terminal  
terminal  
1
2
3
4
1
0
0
0
1
1
0
0
1
1
1
0
ON  
ON  
ON  
ON  
ON  
Used  
Used  
OFF  
OFF  
OFF  
VOUT  
V5  
OPEN  
OPEN  
OPEN  
Used  
OFF  
OFF  
ON  
OPEN  
OPEN  
OFF  
V1 to V5  
Rev.1.4  
EPSON  
5–13  
S1D15300 Series  
For double boosting, remove only capacitor C1 between CAP2+ and  
CAP2- from the connection of triple boosting operation, open  
CAP+2 and jumper between CAP2- and VOUT (CAP3-). The  
double boosted voltage appears at VOUT (CAP3-, CAP2-).  
For quadruple boosting, set a VSS voltage range so that the voltage  
at VOUT may not exceed the absolute maximum rating.  
As the booster circuit uses signals from the oscillator circuit, the  
oscillator circuit must operate.  
Booster circuit  
If capacitors C1 are inserted between CAP1+ and CAP1-, between  
CAP2+ and CAP2-, CAP1+ and CAP3- and VSS and VOUT, the  
potential between VDD and VSS is boosted to quadruple toward the  
negative side and it is output at VOUT.  
For triple boosting, remove only capacitor C1 between CAP+1 and  
CAP3- from the connection of quadruple boosting operation and  
jumper between CAP3- and VOUT. The triple boosted voltage  
appears at VOUT (CAP3-).  
Subsection 10.1.1 gives an external wiring example to use master  
and slave chips when on-board power supply is active.  
(VCC=+5V) VDD=0V  
(GND) VSS=-5V  
VDD=0V  
VSS=-5V  
VDD=0V  
VSS=-3V  
VOUT=2VSS =-10V  
VOUT=3VSS =-15V  
VOUT=3VSS =-12V  
Potential during double boosting  
Potential during triple boosting  
Potential during quadruple boosting  
Voltage regulator circuit  
The boosting voltage occurring at VOUT is sent to the voltage regulator and the V5 liquid crystal display (LCD) driver voltage is output. This  
V5 voltage can be determined by the following equation when resistors Ra and Rb (R1, R2 and R3) are adjusted within the range of |V5| < |VOUT|.  
1
Rb  
Ra  
To obtain V5 = -10 V, from equation  
R2 + R3 = 2.92 × R1 .....................  
R2 = R2, VREG = –2.55V  
1
:
V
5
=(1+  
) VREG+IREF · Rb  
3
R3+R2-R2  
R1+R2  
=(1+  
) VREG  
To obtain V5 = -6 V, from equation  
:
4
1.35 × (R1 + R2) = R3 ..................  
+IREF · (R3+R2-R2)  
2
3
4
From equations  
,
and  
:
V
V
DD  
R1=1.27MΩ  
R2=0.85MΩ  
R3=2.88MΩ  
R1  
V
REG  
Ra  
Rb  
The voltage regulator circuit has a temperature gradient of  
approximately -0.2%/°C as the VREG voltage. To obtain another  
temperature gradient, use the Electronic Volume Control Function  
for software processing using the MPU.  
R2  
+
-
5
R2  
R3  
VR IREF  
As the VR pin has a high input impedance, the shielded and short  
lines must be protected from a noise interference.  
Voltage regulator using the Electronic Volume Control  
Function  
The Electronic Volume Control Function can adjust the intensity  
(brightness level) of liquid crystal display (LCD) screen by command  
control of V5 LCD driver voltage.  
This function sets five-bit data in the electronic volume control  
register, and the V5 LCD driver voltage can be one of 32-state  
voltages.  
To use the Electronic Volume Control Function, issue the Set Power  
Control command to simultaneously operate both the voltage  
regulator circuit and voltage follower circuit.  
V
REG is the constant voltage source of the IC, and in case of Type 1,  
.
it is constant and VREG=–2.55 V (if VDD is 0 V), In case of Type 2,  
V
variable resistor between VR, VDD and V5 as shown. A combination  
of R1 and R3 constant resistors and R2 variable resistor is  
recommended for fine-adjustment of V5 voltage.  
.
REG=VSS (VDD basis). To adjust the V5 output voltage, insert a  
Setup example of resistors R1, R2 and R3:  
Also, when the boosting circuit is off, the voltage must be supplied  
from VOUT terminal.  
When the Electronic Volume Control Function is used, the V5  
voltage can be expressed as follows:  
When the Electronic Volume Control Function is OFF (electronic  
volume control register values are (D4,D3,D2,D1,D0)=(0,0,0,0,0)):  
( 1 + R3 + R2 – R2)  
1
V5 =  
VREG .......................  
Rb  
Ra  
R1 + R2  
5
V5 = (1 +  
) VREG + Rb × ∆IREF ........................  
(As IREF = 0 A)  
• R1 + R2 + R3 = 5M................................  
2
Variable voltage range  
(Determined by the current passing between VDD and V5)  
• Variable voltage range by R2 V5 = –6 to –10 V  
(Determined by the LCD characteristics)  
The increased V5 voltage is controlled by use of IREF current source  
of the IC. (For 32 voltage levels, IREF = IREF/31)  
R2 = O, VREG = –2.55V  
5–14  
EPSON  
Rev.1.4  
S1D15300 Series  
The minimum setup voltage of the V5 absolute value is determined  
by the ratio of external Ra and Rb, and the increased voltage by the  
Electronic Volume Control Function is determined by resistor Rb.  
Therefore, the resistors must be set as follows:  
S1D15300 Series V5  
[V]  
-10V  
V5  
1) Determine Rb resistor depending on the V5 variable voltage  
range by use of the Electronic Volume Control.  
V5 variable voltage range  
(32 levels)  
V5 variable voltage range  
-5V  
Rb =  
IREF  
2) To obtain the minimum voltage of the V5 absolute value, determine  
Ra using the Rb of Step 1) above.  
(VDD) 0V  
-20  
0
20  
Ta  
40  
60  
Rb  
V5  
VREG  
Ra =  
[¡C]  
{V5 = (1 + Rb/Ra) × VREG}  
–1  
5
According to the V5 voltage and temperature change, equation can  
be as follows (if VDD = 0 V reference):  
The S1D15300 series have the built-in VREG reference voltage and  
REF current source which are constant during voltage variation.  
I
However, they may change due to the variation occurring in IC  
manufacturing and due to the temperature change as shown below.  
Consider such variation and temperature change, and set the Ra and  
Rb appropriate to the LCD used.  
Ta=–10°C  
V5max = (1+Rb/Ra) × VREG  
= (1+625k/462k) × (–2.55V)  
× {1+(–0.2%/°C) × (–10°C–25°C)}  
= –6.42V  
(Ta=–10°C)  
V
V
REG = –2.55V±0.20V (Type1)  
REG = VSS (VDD basis) (Type2) VREG = –0.00%/˚C  
VREG = –0.2%/˚C  
V5min = V5max + Rb × IREF  
(Ta=–10°C)  
= –6.42V + 625k  
I
REF = –3.2µA±40% (For 16 levels) IREF = 0.023µA/°C  
–6.5µA±40% (For 32 levels) 0.052µA/°C  
× {–6.5µA+(0.052µA/°C) × (–10°C–25°C)}  
= –11.63V  
Ra is a variable resistor that is used to correct the V5 voltage change  
due to VREG and IREF variation. Also, the contrast adjustment is  
recommended for each IC chip.  
Before adjusting the LCD screen contrast, set the electronic volume  
control register values to (D4,D3,D2,D1,D0)=(1,0,0,0,0) or  
(0,1,1,1,1) first.  
Ta=–50°C  
V5max = (1+Rb/Ra) × VREG  
= (1+625k/462k) × (–2.55V)  
× {1+(–0.2%/°C) × (50°C–25°C)}  
= –5.7V  
(Ta=50°C)  
V5min = V5max + Rb × IREF  
(Ta=50°C)  
When not using the Electronic Volume Control Function, set the  
register values to (D4,D3,D2,D1,D0)=(0,0,0,0,0) by sending the  
RES signal or the Set Electronic Volume Control Register command.  
= –5.7V + 625k  
× {–6.5µA+(0.052µA/°C) × (50°C–25°C)}  
= –8.95V  
Setup example of constants when Electronic Volume Control  
Function is used:  
The margin must also be determined in the same procedure given  
above by considering the VREG and IREF variation. This margin  
calculation results show that the V5 center value is affected by the  
V5 maximum voltage:  
V5 minimum voltages:  
V5 = –6 V (Electronic volume control  
register values (D4,D3,D2,D1,D0) =  
(0,0,0,0,0))  
V5 = –10 V (Electronic volume control  
register values (D4,D3,D2,D1,D0) =  
(1,1,1,1,1))  
V
REG and IREF variation. The voltage setup width of the Electronic  
Volume Control depends on the IREF variation. When the typical  
value of 0.2 V/step is set, for example, the maximum variation range  
of 0.12 to 0.28 V must be considered.  
In case of Type 2, it so becomes that VREG = VSS (VDD basis) and  
there is no temperature gradient. However, IREF carries the same  
temperature characteristics as with Type 1.  
V5 variable voltage range: 4 V  
Variable voltage levels:  
32 levels  
1) Determining the Rb:  
Command Sequence when Built-in Power Supply is Turned  
OFF  
V5 variable voltage range  
4V  
To turn off the built-in power supply, follow the command sequence  
as shown below to turn it off after making the system into the standby  
mode.  
R3 =  
=
| IREF  
|
6.5µA Rb = 625KΩ  
2) Determining the Ra:  
Static Indicator ON  
Display OFF  
Command ADh  
Command AEh  
Command A5h  
Rb  
Ra =  
625kΩ  
–6V  
–2.55V  
=
V5max  
VREG  
–1  
–1  
Power Save  
Command  
Ra = 462KΩ  
Entire Displays ON  
Built-in Power OFF  
Ta=25°C  
V5max = (1+Rb/Ra) × VREG  
= (1+625k/442k) × (–2.55V)  
= –6.0V  
V5min = V5 max + Rb × IREF  
= –6V + 625k × (–6.5µA)  
= –10.0V  
Rev.1.4  
EPSON  
5–15  
S1D15300 Series  
Voltage generator circuit  
1–1 Power set command  
when the built-in power supply  
is used (triple boosting)  
1–2 when the on-chip power circuit is used 2 when VOUT is input from the outside  
(D2, D1, D0) = (0, 1, 1)  
(D2, D1, D0) = (1, 1, 1)  
VDD  
VDD  
VDD  
M/S  
M/S  
M/S  
V
SS  
V
SS  
VSS  
CL  
CL  
CAP3-  
CAP1+  
CAP1-  
CAP2+  
CAP2-  
CAP3-  
CAP1+  
CAP1-  
CAP2+  
CAP2-  
CAP3-  
CAP1+  
CAP1-  
CAP2+  
CAP2-  
C1  
C1  
V
SS  
VSS  
V
SS  
V
SS  
VSS  
C1  
C1  
External  
power  
supply  
C1  
C1  
C1  
R3  
V
OUT  
V
OUT  
V
OUT  
R3  
R1  
R3  
R1  
V
V
5
V
V
5
V
V
5
S1D15300 series  
S1D15300 series  
S1D15300 series  
R2  
R2  
R2  
R
R
R
V
DD  
V
DD  
VDD  
R1  
V
DD  
V
DD  
V
DD  
V1  
V2  
V3  
V4  
V5  
V1  
V2  
V3  
V4  
V5  
V
V
V
V
V
1
2
3
4
5
C2  
C2  
C2  
3 when V5 is input from the outside  
4 when the on-chip power circuit is used  
(D2, D1, D0) = (0, 0, 1)  
VDD  
VDD  
M/S  
M/S  
V
SS  
VSS  
CL  
CAP3-  
CAP1+  
CAP1-  
CAP2+  
CAP2-  
CAP3-  
CAP1+  
CAP1-  
CAP2+  
CAP2-  
VSS  
VSS  
VSS  
External  
power  
V
OUT  
V
OUT  
supply  
V
V
5
V
V
5
S1D15300 series  
S1D15300 series  
R
R
V
DD  
VDD  
V
DD  
V
DD  
V
V
V
V
V
1
2
3
4
5
V
V
V
V
V
1
2
3
4
5
External  
power  
supply  
C2  
5–16  
EPSON  
Rev.1.4  
S1D15300 Series  
=
=
=
Reference setup value: S1D15300 V5  
S1D15301 V5  
-7 to -9 V  
-11 to -13 V (variable)  
-11 to -13 V (variable)  
Reset Circuit  
S1D15302 V5  
When the RES input goes low, this LSI is initialized.  
Initialized status  
SED1530  
SED1531  
SED1532  
1.0~4.7 uF  
0.47~1.0 uF  
1 MΩ  
C1  
C2  
R1  
R2  
R3  
1.0~4.7 uF  
1.0~4.7 uF  
1. Display OFF  
2. Normal display  
3. ADC select: Normal display (ADC command D0 =  
low)  
4. Read modify write OFF  
5. Power control register (D2, D1, D0) = (0, 0, 0)  
6. Register data clear in serial interface  
7. LCD power supply bias ratio 1/6 (S1D15300), 1/8  
(S1D15301, SE1D15302)  
0.22~0.47 uF 0.47~1.0 uF  
700 KΩ  
200 KΩ  
1 MΩ  
200 KΩ  
4 MΩ  
200 KΩ  
1.6 MΩ  
4 MΩ  
8. Static indicator: OFF  
LCD  
SIZE  
16 × 50 mm  
32 × 64 mm 32 × 100 mm  
9. Display start line register set at line 1  
10. Column address counter set at address 0  
11. Page address register set at page 0  
12. Output status register (D3) = (0)  
13. Electronic control register set at 0  
14. Test command OFF  
DOT  
CONFIGURATION  
32 × 100  
64 × 128  
64 × 200  
1: As the input impedance of VR is high, a noise protection using  
short wire and cable shield is required.  
As seen in 11. Microprocessor Interface (Reference Example),  
connect the RES pin to the reset pin of the microprocessor and  
initialize the microprocessor at the same time.  
*2: C1 and C2 depend on the capacity of the LCD panel to be  
driven. Set a value so that the LCD drive voltage may be stable.  
In case the S1D15300 series does not use the internal LCD power  
supply circuit, the RES must be low when the external LCD power  
supply is turned on.  
[Setup example]  
Turn on the voltage regulator and voltage follower and give an  
external voltage to VOUT. Display a horizontal-stripe LCD  
heavy load pattern and determine C2 so that the LCD drive  
voltage (V1 to V5) may be stable. However, the capacity value  
of C2 must be all equal. Next, turn on all the on-board power  
supplies and determine C1.  
When RES goes low, each register is cleared and set to the above  
initialized status. However, it has no effect on the oscillator circuit  
and output pins (FR, CL, DYO, D0 to D7).  
The initialization by RES pin signal is always required during  
power-on. If the control signal from the MPU is HZ, an overcurrent  
may flow through the IC. A protection is required to prevent the HZ  
signal at the input pin during power-on.  
*3: LCD SIZE means the length and breadth of the display portion  
of the LCD panel.  
Be sure to initialize it by RES pin when turning on the power supply.  
When the reset command is used, only parameters 8 to 14 in the  
above initialization are executed.  
Model  
LCD drive voltage  
S1D15300  
S1D15301  
S1D15302  
1/5 or 1/6 bias  
1/6 or 1/8 bias  
* Precautions when installing the COG  
the resistance of ITO wiring is being inserted in series with the  
switching transistor, thus dominating the boosting ability.  
Consequently, the boosting ability will be hindered as a result  
and pay sufficient attention to the wiring to respective boosting  
capacitors.  
When installing the COG, it is necessary to duly consider the fact  
that there exists a resistance of the ITO wiring occurring between the  
driver chip and the externally connected parts (such as capacitors  
and resistors). By the influence of this resistance, non-conformity  
may occur with the indications on the liquid crystal display.  
Therefore, when installing the COG design the module paying  
sufficient considerations to the following three points.  
1. Suppress the resistance occurring between the driver chip pin to  
the externally connected parts as much as possible.  
2. Suppress the resistance connecting to the power supply pin of  
the driver chip.  
3. Make various COG module samples with different ITO sheet  
resistance to select the module with the sheet resistance with  
sufficient operation margin.  
2. Connection of the smoothing capacitors for the liquid crystal  
drive  
The smoothing capacitors for the liquid crystal driving potentials  
(V1. V2, V3 and V4) are indispensable for liquid crystal drives  
not only for the purpose of mere stabilization of the voltage  
levels. If the ITO wiring resistance which occurs pursuant to  
installation of the COG is supplemented to these smoothing  
capacitors, the liquid crystal driving potentials become unstable  
to cause non-conformity with the indications of the liquid  
crystal display. Therefore, when using the COG module, we  
definitely recommend to connect reinforcing resistors externally.  
Reference value of the resistance is 100kto 1M.  
Meanwhile, because of the existence of these reinforcing  
resistors, current consumption will increase.  
Also, as for this driver IC, pay sufficient attention to the following  
points when connecting to external parts for the characteristics of the  
circuit.  
1. Connection to the boosting capacitors The boosting capacitors  
(the capacitors connecting to respective CAP pins and capacitor  
being inserted between VOUT and VSS2) of this IC are being  
switched over by use of the transistor with very low ON-  
resistance of about 10. However, when installing the COG,  
Indicated below is an exemplary connection diagram of external  
resistors.  
Please make sufficient evaluation work for the display statuses with  
any connection tests.  
Rev.1.4  
EPSON  
5–17  
S1D15300 Series  
Exemplary connection diagram 1.  
Exemplary connection diagram 2.  
VDD  
VDD  
VDD  
VDD  
R4 R4  
V1  
V2  
V3  
V1  
V2  
V3  
C2  
C2  
R4  
C2  
C2  
C2  
C2  
R4  
V4  
V5  
V4  
V5  
C2  
C2  
C2  
R4 R4  
C2  
V
DD  
COM 0  
COM 1  
COM 2  
COM 3  
COM 4  
FR  
V
SS  
DD  
V
V
V
V
V
V
V
1
2
3
4
COM 0  
5
DD  
COM 5  
COM 6  
COM 7  
V
V
V
V
V
1
2
3
4
COM 1  
COM 2  
SEG 0  
VD5D  
V
V
V
V
V
1
2
3
4
5
COM 8  
COM 9  
COM 10  
COM 11  
COM 12  
VDD  
V
V
V
V
V
V
1
2
3
4
COM 13  
COM 14  
COM 15  
5
DD  
V1  
V2  
V3  
V4  
V5  
V5  
SEG 1  
S
E
G
0
S
S
E
G
2
S
E
G
3
S
E
G
4
E
G
1
V
V
V
V
V
4
3
2
1
COM -SEG 0  
DD  
-V  
-V  
-V  
-V  
-V  
1
2
3
4
5
V
5
V
V
V
V
V
4
3
2
1
DD  
COM -SEG 1  
-V1  
-V2  
-V3  
-V4  
-V5  
Figure 8  
5–18  
EPSON  
Rev.1.4  
S1D15300 Series  
7. COMMANDS  
E
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
The S1D15300 series uses a combination of A0, RD (E) and WR (R/  
W) signals to identify data bus signals. As the chip analyzes and  
executes each command using internal timing clock only regardless  
of external clock, its processing speed is very high and its busy check  
is usually not required. The 8080 series microprocessor interface  
enters a read status when a low pulse is input to theRD pin and a write  
status when a low pulse is input to the WR pin. The 6800 series  
microprocessor interface enters a read status when a high pulse is  
input to the R/W pin and a write status when a low pulse is input to  
this pin. When a high pulse is input to the E pin, the command is  
activated. (For timing, see Timing Characteristics.) Accordingly, in  
the command explanation and command table, RD (E) becomes 1  
(high) when the 6800 series microprocessor interface reads status or  
display data. This is an only different point from the 8080 series  
microprocessor interface.  
0
1
0
1
0
1
1
A3 A2 A1 A0  
A3  
A2  
A1  
A0  
Page Address  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
1
2
3
4
5
6
7
8
(4) Set Column Address  
Specifies column address of display RAM. Divide the column  
address into 4 higher bits and 4 lower bits. Set each of them  
succession. When the microprocessor repeats to access to the  
display RAM, the column address counter is incremented by 1  
during each access until address 132 is accessed. The page  
address is not changed during this time.  
Taking the 8080 series microprocessor interface as an example,  
commands will be explained below.  
When the serial interface is selected, input data starting from D7 in  
sequence.  
(1) Display ON/OFF  
E
R/W  
Alternatively turns the display on and off.  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
E
R/W  
Higher bits  
Lower bits  
0
0
1
1
0
0
0
0
0
0
0
0
1 A7 A6 A5 A4  
0 A3 A2 A1 A0  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
0
1
0
1
1
1
D
The display turns off when D goes low, and it turns on when D  
goes high.  
A7 A6 A5 A4 A3 A2 A1 A0 Column address  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
:
(2) Start Display Line  
Specifies line address (refer to Figure 4) to determine the initial  
display line, or COM0. The RAM display data becomes the top  
line of LCD screen. It is followed by the higher number of lines  
in ascending order, corresponding to the duty cycle. When this  
command changes the line address, the smooth scrolling or  
page change takes place.  
:
1
0
0
0
0
0
1
1
1 3 1  
(5) Read Status  
E
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
E
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
0
1
BUSY ADC ON/OFF RESET  
0
0
0
0
0
1
0
0
1
A5 A4 A3 A2 A1 A0  
BUSY: When high, the S1D15206 series is busy due to internal  
operation or reset. Any command is rejected until BUSY  
goes low. The busy check is not required if enough time  
is provided for each cycle.  
High-order bit  
A5  
A4  
A3  
A2  
A1  
A0  
Line address  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
1
2
ADC:  
Indicates the relationship between RAM column address  
and segment drivers. When low, the display is normal and  
column address “131-n” corresponds to segment driver n.  
When high, the display is reversed and column address n  
corresponds to segment driver n.  
:
:
1
1
1
1
1
1
1
1
1
1
0
1
6 2  
6 3  
(3) Set Page Address  
Specifies page address to load display RAM data to page  
address register. Any RAM data bit can be accessed when its  
page address and column address are specified. The display  
remains unchanged even when the page address is changed.  
Page address 8 is the display RAM area dedicate to the indica-  
tor, and only D0 is valid for data change.  
ON/OFF: Indicates whether the display is on or off. When goes low,  
the display turns on. When goes high, the display turns  
off. This is the opposite of Display ON/OFF command.  
RESET: Indicates the initialization is in progress by RES signal  
or by Reset command. When low, the display is on.  
When high, the chip is being reset.  
(6) Write Display Data  
Writes 8-bit data in display RAM. As the column address is  
incremented by 1 automatically after each write, the microproc-  
essor can continue to write data of multiple words.  
E
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
1
1
0
Write data  
Rev.1.4  
EPSON  
5–19  
S1D15300 Series  
(7) Read Display Data  
E
R/W  
Reads 8-bit data from display RAM area specified by column  
address and page address. As the column address is incremented  
by 1 automatically after each write, the microprocessor can  
continue to read data of multiple words. A single dummy read  
is required immediately after column address setup. Refer to  
the display RAM section of FUNCTIONAL DESCRIPTION  
for details. Note that no display data can be read via the serial  
interface.  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
0
1
0
0
0
1
D
The potential V5 is resistively divided inside the IC to produce  
potentials V1, V2, V3 and V4 which are necessary to drive the LCD.  
The bias ratio can be selected using the LCD bias setting command.  
(The S1D15303 and S1D15304 are fixed to 1/5 bias.)  
Moreover, the potentials V1, V2, V3 and V4 are converted in the  
impedance and supplied to the LCD drive circuit.  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
1
0
1
Read data  
Model  
Bias ratio of LCD power supply  
1/5 bias or 1/6 bias  
S1D15300  
S1D15301  
S1D15302  
S1D15303  
S1D15304  
(8) ADC Select  
Changes the relationship between RAM column address and  
segment driver. The order of segment driver output pins can be  
reversed by software. This allows flexible IC layout during  
LCD module assembly. For details, refer to the column address  
section of Figure 4. When display data is written or read, the  
column address is incremented by 1 as shown in Figure 4.  
1/6 bias or 1/8 bias  
1/5 bias  
(12) Read-Modify-Write  
E
R/W  
A pair of Read-Modify-Write and End commands must always  
be used. Once Read-Modify-Write is issued, column address is  
not incremented by Read Display Data command but  
incremented by Write Display Data command only. It contin-  
ues until End command is issued. When the End is issued,  
column address returns to the address when Read-Modify-  
Write was issued. This can reduce the microprocessor load  
when data of a specific display area is repeatedly changed  
during cursor blinking or others.  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
0
1
0
0
0
0
D
When D is low, the right rotation (normal direction). When D  
is high, the left rotation (reverse direction).  
(9) Normal/Reverse Display  
Reverses the Display ON/OFF status without rewriting the  
contents of the display data RAM.  
E
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
E
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
1
1
0
0
0
0
0
0
1
0
1
0
1
0
0
1
1
D
Note: Any command except Read/Write Display Data and Set  
Column Address can be issued during Read-Modify-Write  
mode.  
When D is low, the RAM data is high, being LCD ON potential  
(normal display).  
When D is high, the RAM data is low, being LCD ON potential  
(reverse display).  
• Cursor display sequence  
Set Page Address  
(10) Entire Display ON  
Forcibly turns the entire display on regardless of the contents of  
the display data RAM. At this time, the contents of the display  
data RAM are held.  
Set Column Address  
This command has priority over the Normal/Reverse Display  
command. When D is low, the normal display status is pro-  
vided.  
Read-Modify-Write  
Dummy Read  
E
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
0
1
0
0
1
0
D
When D is high, the entire display ON status is provided.  
If the Entire Display ON command is executed in the display  
OFF status, the LCD panel enters Power Save mode. Refer to  
the Power Save section for details.  
Read Data  
Write Data  
(11) Set LCD Bias  
Selects a bias ratio of the voltage required for driving the LCD.  
No  
Completed?  
This command is enabled when the voltage follower in the  
power supply circuit operates.  
(The LCD bias setting command is invalid for the S1D15303  
and S1D15304. They are being fixed to the 1/5 bias.)  
Yes  
End  
5–20  
EPSON  
Rev.1.4  
S1D15300 Series  
(13) End  
Cancels Read-Modify-Write mode and returns column address to the original address (when Read-Modify-Write was issued).  
E
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
1
1
0
1
1
1
0
Return  
Column address  
N
N+1  
N+2  
N+3  
N+m  
N
Read-Modify-Write mode is selected.  
End  
(14) Reset  
D4  
D3  
D2  
D1  
D0  
| V5 |  
LOW  
Resets the Initial Display Line register, Column Address coun-  
ter, Page Address register, and output status selector circuit to  
their initial status. The Reset command does not affect on the  
contents of display RAM. Refer to the Reset circuit section of  
FUNCTIONAL DESCRIPTION.  
0
0
0
0
0
0
0
0
0
:
0
0
1
0
1
0
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
E
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
HIGH  
0
1
0
1
1
1
0
0
0
1
0
Set register to (D4,D3,D2,D1,D0)=(0,0,0,0,0) to suppress elec-  
tronic control function.  
The Reset command cannot initialize LCD power supply. Only  
the Reset siganl to the RES pin can initialize the supplies.  
(18) Static Indicator  
This command turns on or off static drive indicators. The  
indicator display is controlled by this command only, and it is  
not affected by the other display control commands.  
Either FR or FRS terminal is connected to either of static  
indicator LCD drive electrodes, and the remaining terminal is  
connected to another electrode. When the indicator is turned  
on, the static drive operates and the indicator blinks at an  
interval of approximately one second. The pattern separation  
between indicator electrodes are dynamic drive electrodes is  
recommended. A closer pattern may cause an LCD and  
electrode deterioration.  
(15) Output Status Select Register  
Applicable to the S1D15300 and S1D15302. When D is high  
or low, the scan direction of the COM output pin is selectable.  
Refer to Output Status Selector Circuit in Functional Descrip-  
tion for details.  
E
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
1
0
0
D
D: Selects the scan direction of COM output pin  
* : Invalid bit  
E
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
(16) Set Power Control  
0
1
0
1
0
1
0
1
1
0
D
Selects one of eight power circuit functions using 3-bit register.  
An external power supply and part of on-chip power circuit can  
be used simultaneously. Refer to Power Supply Circuit section  
of FUNCTIONAL DESCRIPTION for details.  
D 0: Static indicator OFF  
1: Static indicator ON  
(19) Power Save (Compound Command)  
E
R/W  
When all displays are turned on during indicator off, the Power  
Save command is issued to greatly reduce the current consump-  
tion.  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
0
0
1
0
1
A2 A1 A0  
If the static indicators are off, the Power Save command sleeps  
the system. If on, this command stands by the system.  
When A0 goes low, voltage follower turns off. When A0 goes  
high, it turns on.  
When A1 goes low, voltage regulator turns off. When A1 goes  
high, it turns on.  
When A2 goes low, voltage booster turns off. When A2 goes  
high, it turns on.  
Release the Sleep mode using the both Power Save OFF  
command (Indicator ON command or All Indicator Displays  
OFF command) and Static Indictor ON command.  
Release the Standby mode using the Power Save OFF command  
(Indicator ON command or All Indicator Displays OFF  
command).  
(17) Set Electronic Control  
Adjusts the contrast of LCD panel display by changing V5 LCD  
drive voltage that is output by voltage regulator of on-board  
power supply.  
Static OFF  
Indicator ON  
This command selects one of 32 V5 LCD drive voltages by  
storing data in 5-bit register. The V5 voltage adjusting range  
should be determined depending on the external resistance.  
Refer to the Voltage Regulator section of FUNCTIONAL  
DESCRIPTION for details.  
Power Save (compound command)  
(Sleep mode)  
(Standby mode)  
Power Save OFF (Display ON command or  
Entire Displays OFF command)  
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
0
0
A4 A3 A2 A1 A0  
Static Indicator ON  
(Sleeve mode released)  
(Standby mode released)  
Rev.1.4  
EPSON  
5–21  
S1D15300 Series  
Sleep mode  
When an external power supply is used, likewise, the function  
of this external power supply must be stopped so that it may be  
fixed to floating or VDD level, prior to or concurrently with  
causing the S1D15300 series to go to the sleep mode or standby  
mode.  
This mode stops every operation of the LCD display system,  
and can reduce current consumption nearly to a static current  
value if no access is made from the microprocessor. The  
internal status in the sleep mode is as follows:  
(1) Stops the oscillator circuit and LCD power supply circuit.  
(2) Stops the LCD drive and outputs the VDD level as the  
segment/common driver output.  
(3) Holds the display data and operation mode provided before  
the start of the sleep mode.  
When the common driver S1D16305 or S1D16501 is combined  
with the S1D15301 in the configuration, the DOF pin of the  
S1D15301 must be connected to the DOFF pin of the S1D16305  
or S1D16501.  
(4) The MPU can access to the built-in display RAM.  
(20) Test Command  
This is the dedicate IC chip test command. It must not be used  
for normal operation. If the Test command is issued errone-  
ously, set the -RES input to low or issue the Reset command to  
release the test mode.  
Standby mode  
Stops the operation of the duty LCD display system and turns  
on only the static drive system to reduce current consumption  
to the minimum level required for static drive.  
The ON operation of the static drive system indicates that the  
S1D15300 series is in the standby mode. The internal status in  
the standby mode is as follows:  
E
R/W  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
0
1
0
1
1
1
1
(1) Stops the LCD power supply circuit.  
(2) Stops the LCD drive and outputs the VDD level as the  
segment/common driver output. However, the static drive  
system operates.  
(3) Holds the display data and operation mode provided before  
the start of the standby mode.  
(4) The MPU can access to the built-in display RAM.  
When the RESET command is issued in the standby mode,  
the sleep mode is set.  
* : Invalid bit  
Cautions: The S1D15300 Series holds an operation status  
specified by each command. However, the internal  
operation status may be changed by a high level of  
ambient noise. It must be considered to suppress the  
noise on the its package and system or to prevent an  
ambient noise insertion. To prevent a spike noise, a  
built-in software for periodical status refreshment is  
recommended to use.  
When the LCD drive voltage level is given by an external  
resistive driver, the current of this resistor must be cut so that it  
may be fixed to floating or VDD level, prior to or concurrently  
with causing the S1D15300 series to go to the sleep mode or  
standby mode.  
The test command can be inserted in an unexpected  
place. Therefore, it is recommended to enter the test  
mode reset command F0h during the refresh  
sequence.  
5–22  
EPSON  
Rev.1.4  
S1D15300 Series  
Code  
Command  
Function  
A0 RD WR D7 D6 D5 D4 D3 D2 D1 D0  
(1) Display ON/OFF  
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
0
1
0
0
0
1
0
1
1
1
0
1
Turns on LCD panel when goes  
high, and turns off when goes low.  
(2) Initial Display Line  
(3) Set Page Address  
0
Start display address  
Specifies RAM display line for  
COM0.  
1
1
0
0
1
1
0
Page address  
Sets the display RAM page in  
Page Address register.  
(4) Set Column Address  
4 higher bits  
0
Higher column  
address  
Sets 4 higher bits of column  
address of display RAM in register  
(4) Set Column Address  
4 lower bits  
0
Lower column  
address  
Sets 4 lower bits of column  
address of display RAM in register  
(5) Read Status  
0
1
1
0
0
1
0
1
1
0
1
0
Status  
0
0
0
0
0
0
0
Reads the status information.  
Writes data in display RAM.  
Reads data from display RAM.  
(6) Write Display Data  
(7) Read Display Data  
(8) ADC Select  
Write data  
Read data  
1
0
1
0
0
1
Sets normal relationship between  
RAM column address and seg-  
ment driver when low, but re-  
verses the relationship when high.  
(9) Normal/Reverse Display  
(10) Entire Display ON/OFF  
(11) Set LCD Bias  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
1
Normal indication when low, but  
full indication when high.  
0
1
Selects normal display (0) or  
Entire Display ON (1).  
0
1
Sets LCD drive voltage bias ratio.  
(12) Read-Modify-Write  
0
Increments Column Address  
counter during each write when  
high and during each read when  
low.  
(13) End  
0
0
0
1
1
1
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
0
1
0
*
1
1
*
0
0
*
Releases the Read-Modify-Write.  
Resets internal functions.  
(14) Reset  
(15) Set Output Status  
Register  
0
1
Selects COM output scan  
direction. * Invalid data  
(16) Set Power Control  
0
0
0
1
1
1
0
0
0
0
1
1
0
0
0
1
0
1
0
1
Operation  
status  
Selects the power circuit  
operation mode.  
(17) Set Electronic Control  
Register  
Electronic control value  
Sets V5 output voltage to Elec-  
tronic Control register.  
(18) Set Standby  
0
1
1
0
0
1
Selects standby status.  
0: OFF 1: ON  
(19) Power Save  
Compound command of display  
OFF and entire display ON  
(20) Test Command  
(21) Test Mode Reset  
0
0
1
1
0
0
1
1
1
1
1
1
1
1
*
*
*
*
IC Test command. Do not use!  
Command of test mode reset  
0
0
0
0
Note: Do not use any other command, or the system malfunction may result.  
Rev.1.4  
EPSON  
5–23  
S1D15300 Series  
8. COMMAND SETTING (For Refrence)  
Instruction Setup Examples  
Initial setup  
Note: As power is turned on, this IC outputs non-LCD-drive potentials V2 – V6 from SEG terminal (generates output for driving the LCD)  
and V1 – V4 from COM terminal (also used for generating the LCD drive output). If charge remains on the smoothing capacitor being  
inserted between the above LCD driving terminals, the display screen can be blacked out momentarily. In order to avoid this trouble,  
it is recommended to employ the following powering on procedure.  
• When the built-in power is used immediately after the main power is turned on:  
Turn on VDD and VSS power while maintaining  
RES terminal at LOW.  
Wait until the power supply is stabilized.  
Cancel the reset mode (RES terminal = HIGH).  
Turn on the initial setup mode (Default). *1  
Function select through the commands (user setup).  
LCD bias set *2  
Operations ranging from powering on  
through the power control set must be  
completed within 5 ms.  
ADC select *3  
Common output mode select *4  
Function select through the command (user setup).  
Electronic volume *5  
Function select through the command (user setup)  
Power control set *6  
Initial setup is complete  
* This duration of 5 ms depends on the panel characteristics as well as capacity of the capacitor concerned.  
Notes: *1: Refer to the “Reset Circuit” in the Function Description.  
*2: Refer to the “LCD Bias Set” in the Command Description (11).  
*3: Refer to the “ADC Select” in the Command Description (8).  
*4: Refer to the “Output State Register Set” in the Command Description (15)  
*5: Refer to the “Supply Circuit” in the Function Description and the “Electronic Volume Register Set” in the Command Description  
(17).  
*6: Refer to the “Supply Circuit” in the Function Description and the “Power Control Set” in the Command Description (16).  
5–24  
EPSON  
Rev.1.4  
S1D15300 Series  
• When the built-in power supply is not used immediately after the main power is turned on:  
Turn VDD and VSS power on with  
RES terminal being set to LOW.  
Wait until the power supply is stabilized.  
Cancel the reset mode (RES terminal = HIGH)  
The power save mode must be turned  
on within 5 ms from powering on.  
Turn on the initial setup mode (Default) *1  
Turn on the power save mode (multiple commands) *7  
Function select through the commands (user setup)  
LCD bias set *2  
ADC select *3  
Common output mode select *4  
Function select through the command (user setup)  
Electronic volume *5  
Turn off the power save mode *6  
Operations ranging from turning off of  
the power save mode through the  
power control set must be completed  
within 5 ms.  
Function select through the command (user setup)  
Power control set * 7  
Initial setup is complete  
* This duration of 5 ms depends on the panel characteristics as well as capacity of the capacitor concerned. Check them on the actual system.  
Notes: *1: Refer to the “Reset Circuit” in the Function Description.  
*2: Refer to the “LCD Bias Set” in the Command Description (11).  
*3: Refer to the “ADC Select” in the Command Description (8).  
*4: Refer to the “Output State Register Set” in the Command Description (15)  
*5: Refer to the “Supply Circuit” in the Function Description and the “Electronic Volume Register Set” in the Command Description  
(17).  
*6: Refer to the “Supply Circuit” in the Function Description and the “Power Control Set” in the Command Description (16).  
*7: You can select either the sleep mode or standby mode for the power save mode. Refer to the “Power Save (Multiple Commands)”  
in the Command Description (19).  
Rev.1.4  
EPSON  
5–25  
S1D15300 Series  
• Data Display  
Initial setup is complete  
Function select through the commands (user setup)  
Display start line set *8  
Page address set *9  
Column address set *10  
Function select through the command (user setup)  
Display data write *11  
Function select through the command (user setup)  
Display ON/OFF *12  
Data display is complete  
Notes: *8: Refer to the “Display Line Set” in the Command Description (2).  
*9: Refer to the “Page Address Set” in the Command Description (3).  
*10:Refer to the “Column Address Set” in the Command Description (4).  
*11:Refer to the “Display Data Write” in the Command Description (6).  
*12:Refer to the “Display ON/OFF” in the Command Description (1). It is recommended to avoid the all-white-display of the display  
start data.  
• Powering Off *13  
The time spent for the operations ranging from power  
Any state  
save through powering off (VDD – VSS = 2.4V) (tH)  
must be longer than the time required for V5 to V1 go  
under the LCD panel threshold voltage (normally 1V).  
Function select through the command (user setup)  
* tH is determined by time constant of the external  
Power save *14  
resisters Ra and Rb (for adjusting voltages V5 to V1)  
and the smoothing capacitor C2.  
* It is recommended to cut tH shorter by connecting a  
Turn VDD and VSS power off  
resistor between VDD and V5.  
Notes: *13:This IC functions as the logic circuit of the power supplies VDD – VSS, and used for controlling the driver of LCD power supplies  
VDD – V5. Thus, if power supplies VDD – VSS are turned off while voltage is still present on LCD power supplies VDD – V5, drivers  
(COM and SEG) may output uncontrolled voltage. Therefore, you are required to observe the following powering off procedure:  
Turn the built-in power supply off, then turn off the IC power supplies (VDD – VSS) only after making sure that potential of V5 –  
V1 is below the LCD panel threshold voltage level. Refer to the “Supply Circuit” in the Function Description.  
*14:When the power save command is entered, you must not implement reset from RES terminal until VDD – VSS power are turned off.  
Refer to the “Power Save” in the Command Description.  
• Refresh  
It is recommended that the operating modes and display contents be refreshed periodically to prevent the effect of unexpected noise.  
Refresh sequence  
Cancel the test mode *15  
Set every command according to the state being selected  
(including setup of the default state).  
Refresh the DDRAM.  
Notes: *15:Refer to the “Test Mode Cancellation” in the Command Description (21).  
5–26  
EPSON  
Rev.1.4  
S1D15300 Series  
9. ABSOLUTE MAXIMUM RATINGS  
Parameter  
Symbol  
Rating  
Unit  
–0.3 to +7.0  
–0.3 to +6.0  
–0.3 to +4.5  
–18.0 to +0.3  
V5 to +0.3  
Supply voltage range  
Triple boosting  
VDD  
V
Quadruple boosting  
Supply voltage range (1) (VDD Level)  
Supply voltage range (2) (VDD Level)  
Input voltage range  
V5, VOUT  
V1, V2, V3, V4  
VIN  
V
V
–0.3 to VDD+0.3  
–0.3 to VDD+0.3  
–40 to +85  
V
Output voltage range  
VO  
V
Operating temperature range  
TOPR  
°C  
TCP  
Storage temperature range  
Bear chip  
–55 to +100  
–55 to +125  
TSTR  
°C  
V
CC  
V
DD  
SS  
VDD  
GND  
V
V1 to V4  
V5 , VOUT  
(System)  
(S1D15300 series)  
Notes: 1. V1 to V5, VOUT, voltages are based on VDD=0 V.  
2. Voltages VDD V1 V2 V3 V4 V5 must always be satisfied.  
3. If an LSI exceeds its absolute maximum rating, it may be damaged permanently. It is desirable to use it under electrical characteristics  
conditions during general operation. Otherwise, an LSI malfunction or reduced LSI reliability may result.  
Rev.1.4  
EPSON  
5–27  
S1D15300 Series  
10. ELECTRICAL CHARACTERISTICS  
DC Characteristics  
VSS = 0 V, VDD = 5 V ±10%, Ta = –40 to +85°C unless otherwise noted.  
Item  
Symbol  
Condition  
Min.  
4.5  
Typ.  
5.0  
Max.  
5.5  
Unit Pin used  
Recommended  
Operation  
Power voltage (1)  
VDD  
V
VSS *1  
Operational  
2.4  
6.0  
Operating voltage  
(2)  
Operational  
V5  
VDD level (VDD = 0 V)  
VDD level (VDD = 0 V)  
VDD level (VDD = 0 V)  
–16.0  
0.4 × V5  
V5  
–4.5  
V
V
V
V
V5 *2  
Operational V1, V2  
Operational V3, V4  
VDD  
V1, V2  
V3, V4  
*3  
0.6 × V5  
VDD  
HIGH-level input voltage  
LOW-level input voltage  
HIGH-level output voltage  
LOW-level output voltage  
HIGH-level input voltage  
LOW-level input voltage  
VIHC  
0.7 × VDD  
0.8 × VDD  
VSS  
VDD = 2.7 V  
VDD  
*3  
VILC  
0.3 × VDD  
0.2 × VDD  
VDD  
V
V
V
*3  
VDD = 2.7 V  
VSS  
*3  
VOHC  
VOLC  
VIHS  
VILS  
IOH = –1 mA  
0.8 × VDD  
0.8 × VDD  
VSS  
*5  
VDD = 2.7 V, IOH = –0.5 mA  
IOL = 1 mA  
VDD  
*5  
0.2 × VDD  
0.2 × VDD  
VDD  
*5  
VDD = 2.7 V, IOL = 0.5 mA  
VSS  
*5  
0.85 × VDD  
0.8 × VDD  
VSS  
*4  
VDD = 2.7 V  
VDD  
*4  
0.15 × VDD  
0.2 × VDD  
1.0  
*4  
VDD = 2.7 V  
VSS  
*4  
Input leakage current  
Output leakage current  
LCD driver ON resistance  
ILI  
ILO  
VIN = VDD or VSS  
–1.0  
µA  
µA  
kΩ  
*6  
–3.0  
3.0  
*7  
SEG n  
COM n  
RON  
Ta = 25°C  
V5 = –14.0 V  
V5 = –8.0 V  
2.0  
3.0  
0.01  
0.01  
5.0  
22  
3.0  
VDD level  
4.5  
*8  
Static current consumption  
ISSQ  
I5Q  
VIN = VDD or VSS  
5.0  
µA  
µA  
VSS  
V5  
V5 = –18.0 V (VDD level)  
Ta = 25°C, f = 1 MHz  
15.0  
Input pin capacity  
CIN  
8.0  
pF  
*3 *4  
*9  
Oscillation frequency  
fOSC  
Ta = 25°C  
VDD = 5 V  
18  
26  
kHz  
VDD = 2.7 V  
18  
22  
26  
Item  
Symbol  
Condition  
Min.  
2.4  
Typ.  
Max.  
6.0  
4.5  
Unit Pin used  
Input voltage  
VDD  
Triple boosting  
V
*10  
Quadruple boosting  
Triple voltage conversion (VDD level)  
(VDD level)  
2.4  
Booster output voltage  
Voltage regulator operation  
voltage  
VOUT  
VOUT  
–18.0  
–18.0  
V
V
VOUT  
VOUT  
–6.0  
Voltage follower operation  
voltage  
V5  
(VDD level)  
–18.0  
–16.0  
–6.0  
–4.5  
V
V
V
*11  
Reference voltage  
VREG  
Ta = 25°C (VDD level)  
–2.75 –2.55 –2.35  
For the mark *, refer to P. 1–25  
5–28  
EPSON  
Rev.1.4  
S1D15300 Series  
Dynamic current consumption (1) when the built-in power supply is OFF  
Ta = 25°C  
Item  
S1D15300/  
S1D15305  
S1D15301  
Symbol  
Condition  
Min.  
Typ.  
24  
22  
40  
36  
39  
32  
20  
20  
Max.  
40  
Unit  
Note  
VDD = 5.0V, V5 – VDD = –8.0 V  
VDD = 3.0V, V5 – VDD = –8.0 V  
VDD = 5.0V, V5 – VDD = –11.0 V  
VDD = 3.0V, V5 – VDD = –11.0 V  
VDD = 5.0V, V5 – VDD = –11.0 V  
VDD = 3.0V, V5 – VDD = –11.0 V  
VDD = 3.0V, V5 – VDD = –5.0 V  
35  
65  
IDD  
(1)  
60  
µA  
*12  
S1D15302  
65  
55  
S1D15303  
S1D15304  
35  
V
DD = 3.0V, V5 – VDD = –5.0 V  
35  
Dynamic current consumption (2) when the built-in power supply is ON  
Ta = 25°C  
Item  
S1D15300/  
S1D15305  
S1D15301  
Symbol  
Condition  
Min.  
Typ.  
41  
Max.  
70  
Unit  
Note  
VDD = 5.0V, V5 – VDD = –8.0 V, dual boosting  
VDD = 3.0V, V5 – VDD = –8.0 V, triple boosting  
VDD = 5.0V, V5 – VDD = –11.0 V, triple boosting  
VDD = 3.0V, V5 – VDD = –11.0 V, quadruple boosting  
VDD = 5.0V, V5 – VDD = –11.0 V, triple boosting  
VDD = 3.0V, V5 – VDD = –11.0 V, quadruple boosting  
VDD = 3.0V, V5 – VDD = –5.0 V, dual boosting  
VDD = 3.0V, V5 – VDD = –5.0 V, dual boosting  
48  
80  
96  
160  
190  
160  
190  
50  
IDD  
(1)  
118  
95  
µA  
*13  
S1D15302  
114  
30  
S1D15303  
S1D15304  
32  
55  
Current consumption during Power Save mode  
VSS = 0 V, VDD = 2.7 to 5.5 V Ta=25°C  
Item  
Symbol  
IDDS1  
Condition  
Min.  
Typ.  
0.01  
10  
Max.  
1
Unit  
Note  
During sleep  
During standby  
S1D15300, S1D15301, S1D15302  
S1D15300, S1D15301, S1D15302  
µA  
IDDS2  
20  
Typical current consumption characteristics (reference  
data)  
• Dynamic current consumption (1) when LCD external  
power mode lamp is ON  
80  
(uA)  
Condition: The built-in power supply is  
OFF and an external power  
supply is used.  
S1D15300/S1D15305 V5-VDD=–8.0V  
60  
S1D15301 V5-VDD=–11.0V  
S1D15302 V5-VDD=–11.0V  
S1D15303 V5-VDD=–6.0V  
S1D15304 V5-VDD=–6.0V  
Ta=25°C  
IDD (1)  
(ISS+15)  
S1D15301, S1D15302  
S1D15300/S1D15305  
40  
Remarks: 12  
20  
0
S1D15303, S1D15304  
1
2
3
4
5
6
7
(V)  
VDD  
Rev.1.4  
EPSON  
5–29  
S1D15300 Series  
Dynamic current consumption (2) when the LCD built-in  
power circuit lamp is ON  
200  
(uA)  
Condition: The built-in power circuit is ON.  
S1D15300/S1D15305: V5-VDD=–8.0 V,  
triple boosting  
S1D15301: V5-VDD=–11.0 V,  
quadruple boosting  
S1D15302: V5-VDD=–11.0 V,  
quadruple boosting  
S1D15303: V5-VDD=–5.0 V,  
dual boosting  
150  
IDD (1)  
S1D15301, S1D15302  
100  
S1D15304: V5-VDD=–5.0 V,  
dual boosting  
Ta=25°C  
S1D15300/S1D15305  
50  
S1D15303, S1D15304  
Remarks: 13  
0
1
2
3
4
5
6
7 (V)  
VDD  
*1 Though the wide range of operating voltages is guaranteed, a spike voltage change may affect the voltage assurance during access from  
the microprocessor.  
*2  
V
DD and V5 operating voltage range. (Refer to Fig. 10.)  
The operating voltage range applies if an external power supply is used.  
*3 A0, D0 - D5, D6, D7 (SI), RD (E), WR (R/W), CS1, CS2, FR, M/S, C86, P/S and DOF pins  
*4 CL, SCL (D6) and RES pins  
*5 D0 - D5, D6, D7 (SI), FR, FRS, DYO, DOF and CL pins  
*6 A0, RD (E), WR (R/W), CS1, CS2, M/S, RES, C86 and P/S pins  
*7 Applies when the D0 - D7, FR, CL, DYO and DOF pins are in high impedance,  
*8 Resistance value when 0.1 V is applied between the output pin SEGn or COMn and each power supply pin (V1, V2, V3, V4).  
This is specified in the operating voltage (2) range.  
R ON = 0.1 V/I (I: Current flowing when 0.1 V is applied in the ON status.)  
*9 For the relationship between oscillation frequency and frame frequency, refer to Fig. 9.  
*10 For triple or quadruple boosting using the on-chip power useing the primary-side power supply VDD must be used within the input voltage  
range.  
*11 The voltage regulator adjusts V5 within the voltage follower operating voltage range.  
*12, *13 Current that each IC unit consumes. It does not include the current of the LCD panel capacity, wiring capacity, etc.  
This is current consumption under the conditions of display data = checker, display ON, S1D15300 = 1/33 duty (1/6 Bias), and S1D15301  
and S1D15302 = 1/65 duty. (1/8 Bias)  
*12 Applies to the case where the on-chip oscillator circuit is used and no access is made from the microprocessor.  
*13 Applies to the case where the on-chip oscillator circuit and the on-chip power circuit are used and no access is made from the  
microprocessor.  
The current flowing through voltage regulation resistors (R1, R2 and R3) is not included.  
The current consumption, when the on-chip voltage booster is used, is for the power supply VDD  
.
Relationship between oscillation frequency and frame frequency  
The relationship between oscillation frequency fOSC and LCD frame frequency, fF can be obtained by the following expression.  
Duty  
1/33  
f CL  
f F  
S1D15300  
f OSC/8  
f OSC/(8*33)  
S1D15301  
S1D15302  
1/65  
f OSC/4  
f OSC/(4*65)  
S1D15303  
S1D15304  
S1D15305  
1/17  
1/9  
f OSC/8  
f OSC/8  
f OSC/8  
f OSC/(8*17)  
f OSC/(8*9)  
f OSC/(8*35)  
1/35  
(fF does not indicate the FR signal cycle but the AC cycle.)  
Fig. 9  
Relationship between clock (fCL) and frame frequency fF  
5–30  
EPSON  
Rev.1.4  
S1D15300 Series  
• VSS and V5 operating voltage range  
-20  
-15  
-10  
-5  
-16  
-11  
[V]  
V5-VDD  
Operating  
range  
2.4 3.5  
0
2
4
6
8
VDD  
[V]  
Fig 10  
• Current consumption at access IDD (2) - Microprocessor access cycle  
This indicates current consumption when data is always  
written on the checker pattern at fcyc. When no access  
is made, only IDD (1) occurs.  
10  
[mA]  
S1D15301,  
1
S1D15302  
I
DD (2)  
S1D15300,  
S1D15303,  
S1D15304,  
S1D15305  
Condition: S1D15300/S1D15305 V5-VDD=-8.0V,  
0.1  
triple boosting  
S1D15301 V  
quadruple boosting  
S1D15302 V -VDD=-11.0V,  
quadruple boosting  
5-VDD=-11.0V,  
0.01  
0
5
0.01  
0.1  
1
10  
S1D15303 V  
dual boosting  
5-VDD=-6.0V,  
fcyc [MHz]  
S1D15304 V  
dual boosting  
Ta = 25¡C  
5-VDD=-6.0V,  
Fig. 11  
Rev.1.4  
EPSON  
5–31  
S1D15300 Series  
AC Characteristics  
(1) System buses  
Read/write characteristics I (8080-series microprocessor)  
A0  
tAW8  
tAH8  
CS1  
(CS2="1")  
tCYC8  
tCCLW  
tCCLR  
WR,RD  
tCCHW  
tCCHR  
tDH8  
tDS8  
D0~D7  
(WRITE)  
tACC8  
tCH8  
D0~D7  
(READ)  
VDD = 5.0 V ±10%, Ta = –40 to +85°C  
Parameter  
Signal  
Symbol  
Condition  
Min.  
Max.  
Unit  
Address hold time  
Address setup time  
A0  
tAHIGH8  
tAW8  
10  
10  
ns  
ns  
System cycle time  
tCYC8  
166  
ns  
Control LOW pulse width(WR)  
Control LOW pulse width(RD)  
Control HIGH pulse width (WR)  
Control HIGH pulse width (RD)  
WR  
RD  
WR  
RD  
tCCLOWW  
tCCLOWR  
tCCHIGHW  
tCCHIGHR  
30  
70  
100  
70  
ns  
ns  
ns  
ns  
Data setup time  
Data hold time  
tDS8  
tDHIGH8  
20  
10  
ns  
ns  
RD access time  
Output disable time  
D0 to D7  
tACC8  
tCHIGH8  
CL=100pF  
10  
70  
50  
ns  
ns  
VDD = 2.7 V to 4.5 V, Ta = –40 to +85°C  
Parameter  
Signal  
Symbol  
Condition  
Min.  
Max.  
Unit  
Address hold time  
Address setup time  
A0  
tAH8  
tAW8  
19  
15  
ns  
ns  
System cycle time  
tCYC8  
450  
ns  
Control LOW pulse width (WR)  
Control LOW pulse width (RD)  
Control HIGH pulse width (WR)  
Control HIGH pulse width (RD)  
WR  
RD  
WR  
RD  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
60  
140  
200  
140  
ns  
ns  
ns  
ns  
Data setup time  
Data hold time  
tDS8  
tDH8  
40  
15  
ns  
ns  
RD access time  
Output disable time  
D0 to D7  
tACC8  
tCH8  
CL=100pF  
10  
140  
100  
ns  
ns  
Notes: 1. The input signal rise/fall time (tr, tf) is specified at 15 ns or less.  
When system cycle time is used at a high speed, it is specified by tr + tf (tCYC8 - tCCLW) or  
tr + tf (tCYC8 - tCCLR - tCCHR).  
2. Every timing is specified on the basis of 20% and 80% of VDD  
.
3. tEWHR and tEWHW are specified by the overlap period in which CS1 is “0” (CS2 = “1”) and WR and RD are “0”.  
4. When it is expected that Vss ranges from -2.4 V to -4.5 V during the operation, increase all the above specifications from -2.7 V to  
-4.5 V by 30% before the operation.  
5–32  
EPSON  
Rev.1.4  
S1D15300 Series  
(2) System buses  
Read/write characteristics II (6800-series microprocessor)  
A0  
R/W  
tAH6  
tAW6  
CS1  
(CS2="1")  
tCYC6  
tEWHW tEWHR  
tEWLW tEWLR  
E
tDS6  
tDH6  
D0~D7  
(WR1TE)  
tACC6  
tOH6  
D0~D7  
(READ)  
VDD = 5.0 V ±10%, Ta = –40 to +85°C  
Parameter  
Signal  
Symbol  
Condition  
Min.  
Max.  
Unit  
System cycle time  
tCYC6  
166  
ns  
Address setup time  
Address hold time  
A0  
W/R  
tAW6  
tAH6  
10  
10  
ns  
ns  
Data setup time  
Data hold time  
tDS6  
tDH6  
20  
10  
ns  
ns  
D0 to D7  
Output disable time  
Access time  
tOH6  
tACC6  
CL=100pF  
10  
50  
70  
ns  
ns  
Enable  
READ  
tEWHR  
tEWHW  
tEWLR  
tEWLW  
70  
30  
ns  
ns  
ns  
ns  
E
E
LOW pulse width WRITE  
Enable READ  
70  
HIGH pulse width WRITE  
100  
VDD = 2.7 V to 4.5 V, Ta = –40 to +85°C  
Parameter  
Signal  
Symbol  
Condition  
Min.  
Max.  
Unit  
System cycle time  
tCYC6  
450  
ns  
Address setup time  
Address hold time  
A0  
R/W  
tAW6  
tAH6  
15  
19  
ns  
ns  
Data setup time  
Data hold time  
tDS6  
tDH6  
40  
15  
ns  
ns  
D0 to D7  
Output disable time  
Access time  
tOH6  
tACC6  
CL=100pF  
10  
100  
140  
ns  
ns  
Enable  
LOW pulse width WRITE  
Enable READ  
HIGH pulse width WRITE  
READ  
tEWHR  
tEWHW  
tEWLR  
tEWLW  
140  
60  
ns  
ns  
ns  
ns  
E
E
140  
200  
Notes: 1. The input rise/fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is used at a high speed, it is specified by  
tr + tf (tCYC6 - tEWLW - tEWHW) or tr + tf (tCYC6 - t EWLR - tEWHR).  
2. Every timing is specified on the basis of 20% and 80% of VDD  
.
3. tEWHR and tEWHW are specified by the overlap period in which CS1 is “0” (CS2 = “1”) and E is “1”.  
4. When it is expected that Vss ranges from -2.4 V to -4.5 V during the operation, increase all the above specifications from -2.7 V to  
-4.5 V by 30% before the operation.  
Rev.1.4  
EPSON  
5–33  
S1D15300 Series  
(3) Serial interface  
tCSS  
tCSH  
CS1  
(CS2="1")  
tSAS  
tSAH  
A0  
tSCYC  
tSLW  
SCL  
SI  
tSHW  
tSDH  
tf  
tr  
tSDS  
VDD = 5.0 V ±10%, Ta = –40 to +85°C  
Parameter  
Signal  
Symbol  
Condition  
Min.  
Max.  
Unit  
Serial clock cycle  
Serial clock HIGH pulse width  
Serial clock LOW pulse width  
SCL  
tSCYC  
tSHW  
tSLW  
250  
100  
75  
ns  
ns  
ns  
Address setup time  
Address hold time  
A0  
SI  
tSAS  
tSAH  
50  
200  
ns  
ns  
Data setup time  
Data hold time  
tSDS  
tSDH  
50  
50  
ns  
ns  
CS serial clock time  
CS  
tCSS  
tCSH  
30  
100  
ns  
VDD = 2.7 to 4.5V, Ta = –40 to +85°C  
Parameter  
Signal  
Symbol  
Condition  
Min.  
Max.  
Unit  
Serial clock cycle  
Serial clock HIGH pulse width  
Serial clock LOW pulse width  
SCL  
tSCYC  
tSHW  
tSLW  
500  
200  
150  
ns  
ns  
ns  
Address setup time  
Address hold time  
A0  
SI  
tSAS  
tSAH  
100  
400  
ns  
ns  
Data setup time  
Data hold time  
tSDS  
tSDH  
100  
100  
ns  
ns  
CS serial clock time  
CS  
tCSS  
tCSH  
60  
200  
ns  
Notes: 1. The input signal rise and fall times must be within 15 nanoseconds.  
2. All signal timings are limited based on 20% and 80% of VDD voltage.  
3. When it is expected that Vss ranges from -2.4 V to -4.5 V during the operation, increase all the above specifications from -2.7 V to  
-4.5 V by 30% before the operation.  
5–34  
EPSON  
Rev.1.4  
S1D15300 Series  
(4) Display control timing  
CL  
(OUT)  
t
DFR  
FR  
t
DOH  
t
DOL  
DYO  
Output timing  
VDD = 5.0 V ±10%, Ta = –40 to +85°C  
Parameter  
Signal  
FR  
Symbol  
tDFR  
Condition  
Min.  
Typ.  
10  
Max.  
40  
Unit  
ns  
FR delay time  
CL = 50 pF  
DYO HIGH delay time  
DYO LOW delay time  
DYO  
tDOH  
40  
100  
100  
ns  
tDOL  
40  
ns  
Output timing  
VSS = 0 V, VDD = 2.7 V to 4.5 V, Ta = –40 to +85°C  
Parameter  
Signal  
FR  
Symbol  
tDFR  
Condition  
Min.  
Typ.  
15  
Max.  
80  
Unit  
ns  
FR delay time  
CL = 50 pF  
DYO HIGH delay time  
DYO LOW delay time  
DYO  
tDOH  
70  
200  
200  
ns  
tDOL  
70  
ns  
Notes: 1. The otput timing is valid in master mode.  
2. Every timing is specified on the basis of 20% and 80% of VDD  
.
(5) Reset timing  
t RW  
RES  
t R  
Internal circuit  
status  
During reset  
End of reset  
VDD = 5.0 V ±10%, Ta = –40 to +85°C  
Parameter  
Signal  
Symbol  
tR  
Condition  
Condition  
Min.  
0.5  
Typ.  
Max.  
Unit  
µs  
Reset time  
Reset LOW pulse width  
RES  
tRW  
0.5  
µs  
V
DD = 2.7 V to 4.5 V, Ta = –40 to +85°C  
Parameter  
Reset time  
Signal  
Symbol  
tR  
Min.  
1.0  
Typ.  
Max.  
Unit  
µs  
Reset LOW pulse width  
RES  
tRW  
1.0  
µs  
Note: The reset timing is specified on the basis of 20% and 80% of VDD.  
Rev.1.4  
EPSON  
5–35  
S1D15300 Series  
11. MPU INTERFACE (For Reference)  
The S1D15300 series chips can directly connect to 8080 and 6800-series microprocessors. Also, serial interfacing requires less signal lines  
between them. When multiple chips are used in the S1D15300 series they can be connected to the microprocessor and one of them can be selected  
by Chip Select.  
8080-series microprocessors  
VDD  
VCC  
VDD  
A0  
A0  
C86  
A1 to A7  
IORQ  
CS1  
CS2  
Decoder  
V
V
SS  
DD  
S1D15300  
MPU  
D0 to D7  
RD  
D0 to D7  
RD  
WR  
P/S  
WR  
VSS  
RES  
RES  
GND  
RESET  
VSS  
6800-series microprocessors  
V
DD  
V
V
DD  
DD  
V
CC  
VDD  
A0  
A0  
C86  
CS1  
CS2  
A1 to A15  
VMA  
Decoder  
S1D15300  
MPU  
D0 to D7  
E
D0 to D7  
E
R/W  
P/S  
R/W  
VSS  
RES  
RES  
GND  
RESET  
V
SS  
Serial interface  
VDD  
VDD  
VCC  
A0  
A0  
C86  
CS1  
CS2  
A1 to A7  
Decoder  
RESET  
V
DD  
S1D15300  
MPU  
or GND  
Port 1  
Port 2  
SI  
SCL  
P/S  
RES  
RES  
GND  
V
SS  
V
SS  
5–36  
EPSON  
Rev.1.4  
S1D15300 Series  
12. CONNECTION BETWEEN LCD DRIVERS  
The LCD panel display area can easily be expanded by use of multiple S1D15300 series chips. The S1D15300 series can also be connected to  
the common driver (S1D16305).  
S1D15301 to S1D16305 (S1D16305)  
VDD  
S11D16305  
DIO  
S1D15301  
(master)  
FR  
FR  
M/S  
DOFF  
YSCL  
DOF  
DOF  
CL  
DYO  
DOF  
S1D15300 to S1D15301  
VDD  
S1D15300  
(master)  
S1D15300  
(slave)  
M/S  
FR  
FR  
M/S  
VSS  
CL  
DYO  
CL  
DYO  
DOF  
S1D15302 to S1D15302  
VDD  
S1D15302  
(master)  
S1D15302  
(slave)  
M/S  
FR  
FR  
M/S  
VSS  
CL  
DYO  
CL  
DYO  
DOF  
Rev.1.4  
EPSON  
5–37  
S1D15300 Series  
S1D15300 : 100×33dot  
SEG (100)  
SEG (100)  
S1D15300D00A  
S1D15300D10A  
*
*
<Master>  
<Master>  
COM (33)  
COM (17)  
COM (16)  
COM(65)  
S1D16700  
132×65 dot  
DOFF DIO YSCL FR  
SEG(132)  
VDD  
FR  
CL  
M/S  
S1D15301  
DYO  
DOF  
S1D15302 : 200×65 dot  
SEG(100)  
SEG(100)  
S1D15302  
<Master>  
S1D15302  
<Slave>  
COM(33)  
VDD  
COM(32)  
FR  
DOF  
FR  
DOF  
M/S  
CL  
CL  
M/S  
5–38  
EPSON  
Rev.1.4  
S1D15300 Series  
Dimensional outline drawing of the flexible substrate  
(an example) The dimensions are subject to change without prior notice.  
( M o l d , m a r k i n g a r e a )  
( M o l d , m a r k i n g a r e a )  
Rev.1.4  
EPSON  
5–39  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY